test/connectivity_test.cc
 branch 1.1 changeset 1081 f1398882a928 parent 696 76cbcb3e9bbb child 1158 8d2e55fac752
```     1.1 --- a/test/connectivity_test.cc	Fri Aug 05 09:33:42 2011 +0200
1.2 +++ b/test/connectivity_test.cc	Mon Aug 08 12:36:16 2011 +0200
1.3 @@ -2,7 +2,7 @@
1.4   *
1.5   * This file is a part of LEMON, a generic C++ optimization library.
1.6   *
1.7 - * Copyright (C) 2003-2009
1.8 + * Copyright (C) 2003-2011
1.9   * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
1.10   * (Egervary Research Group on Combinatorial Optimization, EGRES).
1.11   *
1.12 @@ -29,12 +29,12 @@
1.13  {
1.14    typedef ListDigraph Digraph;
1.15    typedef Undirector<Digraph> Graph;
1.16 -
1.17 +
1.18    {
1.19      Digraph d;
1.20      Digraph::NodeMap<int> order(d);
1.21      Graph g(d);
1.22 -
1.23 +
1.24      check(stronglyConnected(d), "The empty digraph is strongly connected");
1.25      check(countStronglyConnectedComponents(d) == 0,
1.26            "The empty digraph has 0 strongly connected component");
1.27 @@ -48,7 +48,7 @@
1.28      check(biEdgeConnected(g), "The empty graph is bi-edge-connected");
1.29      check(countBiEdgeConnectedComponents(g) == 0,
1.30            "The empty graph has 0 bi-edge-connected component");
1.31 -
1.32 +
1.33      check(dag(d), "The empty digraph is DAG.");
1.34      check(checkedTopologicalSort(d, order), "The empty digraph is DAG.");
1.35      check(loopFree(d), "The empty digraph is loop-free.");
1.36 @@ -82,7 +82,7 @@
1.37      check(biEdgeConnected(g), "This graph is bi-edge-connected");
1.38      check(countBiEdgeConnectedComponents(g) == 1,
1.39            "This graph has 1 bi-edge-connected component");
1.40 -
1.41 +
1.42      check(dag(d), "This digraph is DAG.");
1.43      check(checkedTopologicalSort(d, order), "This digraph is DAG.");
1.44      check(loopFree(d), "This digraph is loop-free.");
1.45 @@ -101,14 +101,14 @@
1.46      Digraph d;
1.47      Digraph::NodeMap<int> order(d);
1.48      Graph g(d);
1.49 -
1.50 +
1.57 -
1.58 +
1.62 @@ -136,23 +136,23 @@
1.63      check(loopFree(g), "This graph is loop-free.");
1.64      check(!parallelFree(g), "This graph is not parallel-free.");
1.65      check(!simpleGraph(g), "This graph is not simple.");
1.66 -
1.67 +
1.69 -
1.70 +
1.71      check(!loopFree(d), "This digraph is not loop-free.");
1.72      check(!loopFree(g), "This graph is not loop-free.");
1.73      check(!simpleGraph(d), "This digraph is not simple.");
1.74 -
1.75 +
1.77 -
1.78 +
1.79      check(!parallelFree(d), "This digraph is not parallel-free.");
1.80    }
1.81 -
1.82 +
1.83    {
1.84      Digraph d;
1.85      Digraph::ArcMap<bool> cutarcs(d, false);
1.86      Graph g(d);
1.87 -
1.88 +
1.92 @@ -172,7 +172,7 @@
1.96 -
1.97 +
1.98      check(!stronglyConnected(d), "This digraph is not strongly connected");
1.99      check(countStronglyConnectedComponents(d) == 3,
1.100            "This digraph has 3 strongly connected components");
1.101 @@ -235,7 +235,7 @@
1.102      // (T. H. Cormen, C. E. Leiserson, R. L. Rivest, C. Stein)
1.103      Digraph d;
1.104      Digraph::NodeMap<int> order(d);
1.105 -
1.106 +
1.110 @@ -255,7 +255,7 @@
1.114 -
1.115 +
1.116      check(dag(d), "This digraph is DAG.");
1.117      topologicalSort(d, order);
1.118      for (Digraph::ArcIt a(d); a != INVALID; ++a) {
1.119 @@ -267,7 +267,7 @@
1.120    {
1.121      ListGraph g;
1.122      ListGraph::NodeMap<bool> map(g);
1.123 -
1.124 +
1.128 @@ -283,10 +283,10 @@