lemon/min_mean_cycle.h
author Peter Kovacs <kpeter@inf.elte.hu>
Thu, 06 Aug 2009 20:31:04 +0200
changeset 809 03887b5e0f6f
parent 808 5795860737f5
child 810 93cd93e82f9b
permissions -rw-r--r--
Rename cyclePath() to cycle() in MinMeanCycle (#179)
     1 /* -*- C++ -*-
     2  *
     3  * This file is a part of LEMON, a generic C++ optimization library
     4  *
     5  * Copyright (C) 2003-2008
     6  * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
     7  * (Egervary Research Group on Combinatorial Optimization, EGRES).
     8  *
     9  * Permission to use, modify and distribute this software is granted
    10  * provided that this copyright notice appears in all copies. For
    11  * precise terms see the accompanying LICENSE file.
    12  *
    13  * This software is provided "AS IS" with no warranty of any kind,
    14  * express or implied, and with no claim as to its suitability for any
    15  * purpose.
    16  *
    17  */
    18 
    19 #ifndef LEMON_MIN_MEAN_CYCLE_H
    20 #define LEMON_MIN_MEAN_CYCLE_H
    21 
    22 /// \ingroup shortest_path
    23 ///
    24 /// \file
    25 /// \brief Howard's algorithm for finding a minimum mean cycle.
    26 
    27 #include <vector>
    28 #include <lemon/core.h>
    29 #include <lemon/path.h>
    30 #include <lemon/tolerance.h>
    31 #include <lemon/connectivity.h>
    32 
    33 namespace lemon {
    34 
    35   /// \brief Default traits class of MinMeanCycle class.
    36   ///
    37   /// Default traits class of MinMeanCycle class.
    38   /// \tparam GR The type of the digraph.
    39   /// \tparam LEN The type of the length map.
    40   /// It must conform to the \ref concepts::ReadMap "ReadMap" concept.
    41 #ifdef DOXYGEN
    42   template <typename GR, typename LEN>
    43 #else
    44   template <typename GR, typename LEN,
    45     bool integer = std::numeric_limits<typename LEN::Value>::is_integer>
    46 #endif
    47   struct MinMeanCycleDefaultTraits
    48   {
    49     /// The type of the digraph
    50     typedef GR Digraph;
    51     /// The type of the length map
    52     typedef LEN LengthMap;
    53     /// The type of the arc lengths
    54     typedef typename LengthMap::Value Value;
    55 
    56     /// \brief The large value type used for internal computations
    57     ///
    58     /// The large value type used for internal computations.
    59     /// It is \c long \c long if the \c Value type is integer,
    60     /// otherwise it is \c double.
    61     /// \c Value must be convertible to \c LargeValue.
    62     typedef double LargeValue;
    63 
    64     /// The tolerance type used for internal computations
    65     typedef lemon::Tolerance<LargeValue> Tolerance;
    66 
    67     /// \brief The path type of the found cycles
    68     ///
    69     /// The path type of the found cycles.
    70     /// It must conform to the \ref lemon::concepts::Path "Path" concept
    71     /// and it must have an \c addBack() function.
    72     typedef lemon::Path<Digraph> Path;
    73   };
    74 
    75   // Default traits class for integer value types
    76   template <typename GR, typename LEN>
    77   struct MinMeanCycleDefaultTraits<GR, LEN, true>
    78   {
    79     typedef GR Digraph;
    80     typedef LEN LengthMap;
    81     typedef typename LengthMap::Value Value;
    82 #ifdef LEMON_HAVE_LONG_LONG
    83     typedef long long LargeValue;
    84 #else
    85     typedef long LargeValue;
    86 #endif
    87     typedef lemon::Tolerance<LargeValue> Tolerance;
    88     typedef lemon::Path<Digraph> Path;
    89   };
    90 
    91 
    92   /// \addtogroup shortest_path
    93   /// @{
    94 
    95   /// \brief Implementation of Howard's algorithm for finding a minimum
    96   /// mean cycle.
    97   ///
    98   /// \ref MinMeanCycle implements Howard's algorithm for finding a
    99   /// directed cycle of minimum mean length (cost) in a digraph.
   100   ///
   101   /// \tparam GR The type of the digraph the algorithm runs on.
   102   /// \tparam LEN The type of the length map. The default
   103   /// map type is \ref concepts::Digraph::ArcMap "GR::ArcMap<int>".
   104 #ifdef DOXYGEN
   105   template <typename GR, typename LEN, typename TR>
   106 #else
   107   template < typename GR,
   108              typename LEN = typename GR::template ArcMap<int>,
   109              typename TR = MinMeanCycleDefaultTraits<GR, LEN> >
   110 #endif
   111   class MinMeanCycle
   112   {
   113   public:
   114   
   115     /// The type of the digraph
   116     typedef typename TR::Digraph Digraph;
   117     /// The type of the length map
   118     typedef typename TR::LengthMap LengthMap;
   119     /// The type of the arc lengths
   120     typedef typename TR::Value Value;
   121 
   122     /// \brief The large value type
   123     ///
   124     /// The large value type used for internal computations.
   125     /// Using the \ref MinMeanCycleDefaultTraits "default traits class",
   126     /// it is \c long \c long if the \c Value type is integer,
   127     /// otherwise it is \c double.
   128     typedef typename TR::LargeValue LargeValue;
   129 
   130     /// The tolerance type
   131     typedef typename TR::Tolerance Tolerance;
   132 
   133     /// \brief The path type of the found cycles
   134     ///
   135     /// The path type of the found cycles.
   136     /// Using the \ref MinMeanCycleDefaultTraits "default traits class",
   137     /// it is \ref lemon::Path "Path<Digraph>".
   138     typedef typename TR::Path Path;
   139 
   140     /// The \ref MinMeanCycleDefaultTraits "traits class" of the algorithm
   141     typedef TR Traits;
   142 
   143   private:
   144 
   145     TEMPLATE_DIGRAPH_TYPEDEFS(Digraph);
   146   
   147     // The digraph the algorithm runs on
   148     const Digraph &_gr;
   149     // The length of the arcs
   150     const LengthMap &_length;
   151 
   152     // Data for the found cycles
   153     bool _curr_found, _best_found;
   154     LargeValue _curr_length, _best_length;
   155     int _curr_size, _best_size;
   156     Node _curr_node, _best_node;
   157 
   158     Path *_cycle_path;
   159     bool _local_path;
   160 
   161     // Internal data used by the algorithm
   162     typename Digraph::template NodeMap<Arc> _policy;
   163     typename Digraph::template NodeMap<bool> _reached;
   164     typename Digraph::template NodeMap<int> _level;
   165     typename Digraph::template NodeMap<LargeValue> _dist;
   166 
   167     // Data for storing the strongly connected components
   168     int _comp_num;
   169     typename Digraph::template NodeMap<int> _comp;
   170     std::vector<std::vector<Node> > _comp_nodes;
   171     std::vector<Node>* _nodes;
   172     typename Digraph::template NodeMap<std::vector<Arc> > _in_arcs;
   173     
   174     // Queue used for BFS search
   175     std::vector<Node> _queue;
   176     int _qfront, _qback;
   177 
   178     Tolerance _tolerance;
   179   
   180   public:
   181   
   182     /// \name Named Template Parameters
   183     /// @{
   184 
   185     template <typename T>
   186     struct SetLargeValueTraits : public Traits {
   187       typedef T LargeValue;
   188       typedef lemon::Tolerance<T> Tolerance;
   189     };
   190 
   191     /// \brief \ref named-templ-param "Named parameter" for setting
   192     /// \c LargeValue type.
   193     ///
   194     /// \ref named-templ-param "Named parameter" for setting \c LargeValue
   195     /// type. It is used for internal computations in the algorithm.
   196     template <typename T>
   197     struct SetLargeValue
   198       : public MinMeanCycle<GR, LEN, SetLargeValueTraits<T> > {
   199       typedef MinMeanCycle<GR, LEN, SetLargeValueTraits<T> > Create;
   200     };
   201 
   202     template <typename T>
   203     struct SetPathTraits : public Traits {
   204       typedef T Path;
   205     };
   206 
   207     /// \brief \ref named-templ-param "Named parameter" for setting
   208     /// \c %Path type.
   209     ///
   210     /// \ref named-templ-param "Named parameter" for setting the \c %Path
   211     /// type of the found cycles.
   212     /// It must conform to the \ref lemon::concepts::Path "Path" concept
   213     /// and it must have an \c addBack() function.
   214     template <typename T>
   215     struct SetPath
   216       : public MinMeanCycle<GR, LEN, SetPathTraits<T> > {
   217       typedef MinMeanCycle<GR, LEN, SetPathTraits<T> > Create;
   218     };
   219     
   220     /// @}
   221 
   222   public:
   223 
   224     /// \brief Constructor.
   225     ///
   226     /// The constructor of the class.
   227     ///
   228     /// \param digraph The digraph the algorithm runs on.
   229     /// \param length The lengths (costs) of the arcs.
   230     MinMeanCycle( const Digraph &digraph,
   231                   const LengthMap &length ) :
   232       _gr(digraph), _length(length), _cycle_path(NULL), _local_path(false),
   233       _policy(digraph), _reached(digraph), _level(digraph), _dist(digraph),
   234       _comp(digraph), _in_arcs(digraph)
   235     {}
   236 
   237     /// Destructor.
   238     ~MinMeanCycle() {
   239       if (_local_path) delete _cycle_path;
   240     }
   241 
   242     /// \brief Set the path structure for storing the found cycle.
   243     ///
   244     /// This function sets an external path structure for storing the
   245     /// found cycle.
   246     ///
   247     /// If you don't call this function before calling \ref run() or
   248     /// \ref findMinMean(), it will allocate a local \ref Path "path"
   249     /// structure. The destuctor deallocates this automatically
   250     /// allocated object, of course.
   251     ///
   252     /// \note The algorithm calls only the \ref lemon::Path::addBack()
   253     /// "addBack()" function of the given path structure.
   254     ///
   255     /// \return <tt>(*this)</tt>
   256     MinMeanCycle& cycle(Path &path) {
   257       if (_local_path) {
   258         delete _cycle_path;
   259         _local_path = false;
   260       }
   261       _cycle_path = &path;
   262       return *this;
   263     }
   264 
   265     /// \name Execution control
   266     /// The simplest way to execute the algorithm is to call the \ref run()
   267     /// function.\n
   268     /// If you only need the minimum mean length, you may call
   269     /// \ref findMinMean().
   270 
   271     /// @{
   272 
   273     /// \brief Run the algorithm.
   274     ///
   275     /// This function runs the algorithm.
   276     /// It can be called more than once (e.g. if the underlying digraph
   277     /// and/or the arc lengths have been modified).
   278     ///
   279     /// \return \c true if a directed cycle exists in the digraph.
   280     ///
   281     /// \note <tt>mmc.run()</tt> is just a shortcut of the following code.
   282     /// \code
   283     ///   return mmc.findMinMean() && mmc.findCycle();
   284     /// \endcode
   285     bool run() {
   286       return findMinMean() && findCycle();
   287     }
   288 
   289     /// \brief Find the minimum cycle mean.
   290     ///
   291     /// This function finds the minimum mean length of the directed
   292     /// cycles in the digraph.
   293     ///
   294     /// \return \c true if a directed cycle exists in the digraph.
   295     bool findMinMean() {
   296       // Initialize and find strongly connected components
   297       init();
   298       findComponents();
   299       
   300       // Find the minimum cycle mean in the components
   301       for (int comp = 0; comp < _comp_num; ++comp) {
   302         // Find the minimum mean cycle in the current component
   303         if (!buildPolicyGraph(comp)) continue;
   304         while (true) {
   305           findPolicyCycle();
   306           if (!computeNodeDistances()) break;
   307         }
   308         // Update the best cycle (global minimum mean cycle)
   309         if ( !_best_found || (_curr_found &&
   310              _curr_length * _best_size < _best_length * _curr_size) ) {
   311           _best_found = true;
   312           _best_length = _curr_length;
   313           _best_size = _curr_size;
   314           _best_node = _curr_node;
   315         }
   316       }
   317       return _best_found;
   318     }
   319 
   320     /// \brief Find a minimum mean directed cycle.
   321     ///
   322     /// This function finds a directed cycle of minimum mean length
   323     /// in the digraph using the data computed by findMinMean().
   324     ///
   325     /// \return \c true if a directed cycle exists in the digraph.
   326     ///
   327     /// \pre \ref findMinMean() must be called before using this function.
   328     bool findCycle() {
   329       if (!_best_found) return false;
   330       _cycle_path->addBack(_policy[_best_node]);
   331       for ( Node v = _best_node;
   332             (v = _gr.target(_policy[v])) != _best_node; ) {
   333         _cycle_path->addBack(_policy[v]);
   334       }
   335       return true;
   336     }
   337 
   338     /// @}
   339 
   340     /// \name Query Functions
   341     /// The results of the algorithm can be obtained using these
   342     /// functions.\n
   343     /// The algorithm should be executed before using them.
   344 
   345     /// @{
   346 
   347     /// \brief Return the total length of the found cycle.
   348     ///
   349     /// This function returns the total length of the found cycle.
   350     ///
   351     /// \pre \ref run() or \ref findMinMean() must be called before
   352     /// using this function.
   353     LargeValue cycleLength() const {
   354       return _best_length;
   355     }
   356 
   357     /// \brief Return the number of arcs on the found cycle.
   358     ///
   359     /// This function returns the number of arcs on the found cycle.
   360     ///
   361     /// \pre \ref run() or \ref findMinMean() must be called before
   362     /// using this function.
   363     int cycleArcNum() const {
   364       return _best_size;
   365     }
   366 
   367     /// \brief Return the mean length of the found cycle.
   368     ///
   369     /// This function returns the mean length of the found cycle.
   370     ///
   371     /// \note <tt>alg.cycleMean()</tt> is just a shortcut of the
   372     /// following code.
   373     /// \code
   374     ///   return static_cast<double>(alg.cycleLength()) / alg.cycleArcNum();
   375     /// \endcode
   376     ///
   377     /// \pre \ref run() or \ref findMinMean() must be called before
   378     /// using this function.
   379     double cycleMean() const {
   380       return static_cast<double>(_best_length) / _best_size;
   381     }
   382 
   383     /// \brief Return the found cycle.
   384     ///
   385     /// This function returns a const reference to the path structure
   386     /// storing the found cycle.
   387     ///
   388     /// \pre \ref run() or \ref findCycle() must be called before using
   389     /// this function.
   390     const Path& cycle() const {
   391       return *_cycle_path;
   392     }
   393 
   394     ///@}
   395 
   396   private:
   397 
   398     // Initialize
   399     void init() {
   400       if (!_cycle_path) {
   401         _local_path = true;
   402         _cycle_path = new Path;
   403       }
   404       _queue.resize(countNodes(_gr));
   405       _best_found = false;
   406       _best_length = 0;
   407       _best_size = 1;
   408       _cycle_path->clear();
   409     }
   410     
   411     // Find strongly connected components and initialize _comp_nodes
   412     // and _in_arcs
   413     void findComponents() {
   414       _comp_num = stronglyConnectedComponents(_gr, _comp);
   415       _comp_nodes.resize(_comp_num);
   416       if (_comp_num == 1) {
   417         _comp_nodes[0].clear();
   418         for (NodeIt n(_gr); n != INVALID; ++n) {
   419           _comp_nodes[0].push_back(n);
   420           _in_arcs[n].clear();
   421           for (InArcIt a(_gr, n); a != INVALID; ++a) {
   422             _in_arcs[n].push_back(a);
   423           }
   424         }
   425       } else {
   426         for (int i = 0; i < _comp_num; ++i)
   427           _comp_nodes[i].clear();
   428         for (NodeIt n(_gr); n != INVALID; ++n) {
   429           int k = _comp[n];
   430           _comp_nodes[k].push_back(n);
   431           _in_arcs[n].clear();
   432           for (InArcIt a(_gr, n); a != INVALID; ++a) {
   433             if (_comp[_gr.source(a)] == k) _in_arcs[n].push_back(a);
   434           }
   435         }
   436       }
   437     }
   438 
   439     // Build the policy graph in the given strongly connected component
   440     // (the out-degree of every node is 1)
   441     bool buildPolicyGraph(int comp) {
   442       _nodes = &(_comp_nodes[comp]);
   443       if (_nodes->size() < 1 ||
   444           (_nodes->size() == 1 && _in_arcs[(*_nodes)[0]].size() == 0)) {
   445         return false;
   446       }
   447       for (int i = 0; i < int(_nodes->size()); ++i) {
   448         _dist[(*_nodes)[i]] = std::numeric_limits<LargeValue>::max();
   449       }
   450       Node u, v;
   451       Arc e;
   452       for (int i = 0; i < int(_nodes->size()); ++i) {
   453         v = (*_nodes)[i];
   454         for (int j = 0; j < int(_in_arcs[v].size()); ++j) {
   455           e = _in_arcs[v][j];
   456           u = _gr.source(e);
   457           if (_length[e] < _dist[u]) {
   458             _dist[u] = _length[e];
   459             _policy[u] = e;
   460           }
   461         }
   462       }
   463       return true;
   464     }
   465 
   466     // Find the minimum mean cycle in the policy graph
   467     void findPolicyCycle() {
   468       for (int i = 0; i < int(_nodes->size()); ++i) {
   469         _level[(*_nodes)[i]] = -1;
   470       }
   471       LargeValue clength;
   472       int csize;
   473       Node u, v;
   474       _curr_found = false;
   475       for (int i = 0; i < int(_nodes->size()); ++i) {
   476         u = (*_nodes)[i];
   477         if (_level[u] >= 0) continue;
   478         for (; _level[u] < 0; u = _gr.target(_policy[u])) {
   479           _level[u] = i;
   480         }
   481         if (_level[u] == i) {
   482           // A cycle is found
   483           clength = _length[_policy[u]];
   484           csize = 1;
   485           for (v = u; (v = _gr.target(_policy[v])) != u; ) {
   486             clength += _length[_policy[v]];
   487             ++csize;
   488           }
   489           if ( !_curr_found ||
   490                (clength * _curr_size < _curr_length * csize) ) {
   491             _curr_found = true;
   492             _curr_length = clength;
   493             _curr_size = csize;
   494             _curr_node = u;
   495           }
   496         }
   497       }
   498     }
   499 
   500     // Contract the policy graph and compute node distances
   501     bool computeNodeDistances() {
   502       // Find the component of the main cycle and compute node distances
   503       // using reverse BFS
   504       for (int i = 0; i < int(_nodes->size()); ++i) {
   505         _reached[(*_nodes)[i]] = false;
   506       }
   507       _qfront = _qback = 0;
   508       _queue[0] = _curr_node;
   509       _reached[_curr_node] = true;
   510       _dist[_curr_node] = 0;
   511       Node u, v;
   512       Arc e;
   513       while (_qfront <= _qback) {
   514         v = _queue[_qfront++];
   515         for (int j = 0; j < int(_in_arcs[v].size()); ++j) {
   516           e = _in_arcs[v][j];
   517           u = _gr.source(e);
   518           if (_policy[u] == e && !_reached[u]) {
   519             _reached[u] = true;
   520             _dist[u] = _dist[v] + _length[e] * _curr_size - _curr_length;
   521             _queue[++_qback] = u;
   522           }
   523         }
   524       }
   525 
   526       // Connect all other nodes to this component and compute node
   527       // distances using reverse BFS
   528       _qfront = 0;
   529       while (_qback < int(_nodes->size())-1) {
   530         v = _queue[_qfront++];
   531         for (int j = 0; j < int(_in_arcs[v].size()); ++j) {
   532           e = _in_arcs[v][j];
   533           u = _gr.source(e);
   534           if (!_reached[u]) {
   535             _reached[u] = true;
   536             _policy[u] = e;
   537             _dist[u] = _dist[v] + _length[e] * _curr_size - _curr_length;
   538             _queue[++_qback] = u;
   539           }
   540         }
   541       }
   542 
   543       // Improve node distances
   544       bool improved = false;
   545       for (int i = 0; i < int(_nodes->size()); ++i) {
   546         v = (*_nodes)[i];
   547         for (int j = 0; j < int(_in_arcs[v].size()); ++j) {
   548           e = _in_arcs[v][j];
   549           u = _gr.source(e);
   550           LargeValue delta = _dist[v] + _length[e] * _curr_size - _curr_length;
   551           if (_tolerance.less(delta, _dist[u])) {
   552             _dist[u] = delta;
   553             _policy[u] = e;
   554             improved = true;
   555           }
   556         }
   557       }
   558       return improved;
   559     }
   560 
   561   }; //class MinMeanCycle
   562 
   563   ///@}
   564 
   565 } //namespace lemon
   566 
   567 #endif //LEMON_MIN_MEAN_CYCLE_H