1 /* -*- mode: C++; indent-tabs-mode: nil; -*-
 
     3  * This file is a part of LEMON, a generic C++ optimization library.
 
     5  * Copyright (C) 2003-2009
 
     6  * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
 
     7  * (Egervary Research Group on Combinatorial Optimization, EGRES).
 
     9  * Permission to use, modify and distribute this software is granted
 
    10  * provided that this copyright notice appears in all copies. For
 
    11  * precise terms see the accompanying LICENSE file.
 
    13  * This software is provided "AS IS" with no warranty of any kind,
 
    14  * express or implied, and with no claim as to its suitability for any
 
    20  * This file contains the reimplemented version of the Mersenne Twister
 
    21  * Generator of Matsumoto and Nishimura.
 
    23  * See the appropriate copyright notice below.
 
    25  * Copyright (C) 1997 - 2002, Makoto Matsumoto and Takuji Nishimura,
 
    26  * All rights reserved.
 
    28  * Redistribution and use in source and binary forms, with or without
 
    29  * modification, are permitted provided that the following conditions
 
    32  * 1. Redistributions of source code must retain the above copyright
 
    33  *    notice, this list of conditions and the following disclaimer.
 
    35  * 2. Redistributions in binary form must reproduce the above copyright
 
    36  *    notice, this list of conditions and the following disclaimer in the
 
    37  *    documentation and/or other materials provided with the distribution.
 
    39  * 3. The names of its contributors may not be used to endorse or promote
 
    40  *    products derived from this software without specific prior written
 
    43  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
 
    44  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
 
    45  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
 
    46  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
 
    47  * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
 
    48  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
 
    49  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
 
    50  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
 
    51  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
 
    52  * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
 
    53  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
 
    54  * OF THE POSSIBILITY OF SUCH DAMAGE.
 
    57  * Any feedback is very welcome.
 
    58  * http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/emt.html
 
    59  * email: m-mat @ math.sci.hiroshima-u.ac.jp (remove space)
 
    62 #ifndef LEMON_RANDOM_H
 
    63 #define LEMON_RANDOM_H
 
    71 #include <lemon/math.h>
 
    72 #include <lemon/dim2.h>
 
    77 #include <sys/types.h>
 
    80 #include <lemon/bits/windows.h>
 
    85 ///\brief Mersenne Twister random number generator
 
    89   namespace _random_bits {
 
    91     template <typename _Word, int _bits = std::numeric_limits<_Word>::digits>
 
    92     struct RandomTraits {};
 
    94     template <typename _Word>
 
    95     struct RandomTraits<_Word, 32> {
 
    98       static const int bits = 32;
 
   100       static const int length = 624;
 
   101       static const int shift = 397;
 
   103       static const Word mul = 0x6c078965u;
 
   104       static const Word arrayInit = 0x012BD6AAu;
 
   105       static const Word arrayMul1 = 0x0019660Du;
 
   106       static const Word arrayMul2 = 0x5D588B65u;
 
   108       static const Word mask = 0x9908B0DFu;
 
   109       static const Word loMask = (1u << 31) - 1;
 
   110       static const Word hiMask = ~loMask;
 
   113       static Word tempering(Word rnd) {
 
   115         rnd ^= (rnd << 7) & 0x9D2C5680u;
 
   116         rnd ^= (rnd << 15) & 0xEFC60000u;
 
   123     template <typename _Word>
 
   124     struct RandomTraits<_Word, 64> {
 
   127       static const int bits = 64;
 
   129       static const int length = 312;
 
   130       static const int shift = 156;
 
   132       static const Word mul = Word(0x5851F42Du) << 32 | Word(0x4C957F2Du);
 
   133       static const Word arrayInit = Word(0x00000000u) << 32 |Word(0x012BD6AAu);
 
   134       static const Word arrayMul1 = Word(0x369DEA0Fu) << 32 |Word(0x31A53F85u);
 
   135       static const Word arrayMul2 = Word(0x27BB2EE6u) << 32 |Word(0x87B0B0FDu);
 
   137       static const Word mask = Word(0xB5026F5Au) << 32 | Word(0xA96619E9u);
 
   138       static const Word loMask = (Word(1u) << 31) - 1;
 
   139       static const Word hiMask = ~loMask;
 
   141       static Word tempering(Word rnd) {
 
   142         rnd ^= (rnd >> 29) & (Word(0x55555555u) << 32 | Word(0x55555555u));
 
   143         rnd ^= (rnd << 17) & (Word(0x71D67FFFu) << 32 | Word(0xEDA60000u));
 
   144         rnd ^= (rnd << 37) & (Word(0xFFF7EEE0u) << 32 | Word(0x00000000u));
 
   151     template <typename _Word>
 
   159       static const int bits = RandomTraits<Word>::bits;
 
   161       static const int length = RandomTraits<Word>::length;
 
   162       static const int shift = RandomTraits<Word>::shift;
 
   167         static const Word seedArray[4] = {
 
   168           0x12345u, 0x23456u, 0x34567u, 0x45678u
 
   171         initState(seedArray, seedArray + 4);
 
   174       void initState(Word seed) {
 
   176         static const Word mul = RandomTraits<Word>::mul;
 
   180         Word *curr = state + length - 1;
 
   181         curr[0] = seed; --curr;
 
   182         for (int i = 1; i < length; ++i) {
 
   183           curr[0] = (mul * ( curr[1] ^ (curr[1] >> (bits - 2)) ) + i);
 
   188       template <typename Iterator>
 
   189       void initState(Iterator begin, Iterator end) {
 
   191         static const Word init = RandomTraits<Word>::arrayInit;
 
   192         static const Word mul1 = RandomTraits<Word>::arrayMul1;
 
   193         static const Word mul2 = RandomTraits<Word>::arrayMul2;
 
   196         Word *curr = state + length - 1; --curr;
 
   197         Iterator it = begin; int cnt = 0;
 
   202         num = length > end - begin ? length : end - begin;
 
   204           curr[0] = (curr[0] ^ ((curr[1] ^ (curr[1] >> (bits - 2))) * mul1))
 
   211             curr = state + length - 1; curr[0] = state[0];
 
   216         num = length - 1; cnt = length - (curr - state) - 1;
 
   218           curr[0] = (curr[0] ^ ((curr[1] ^ (curr[1] >> (bits - 2))) * mul2))
 
   222             curr = state + length - 1; curr[0] = state[0]; --curr;
 
   227         state[length - 1] = Word(1) << (bits - 1);
 
   230       void copyState(const RandomCore& other) {
 
   231         std::copy(other.state, other.state + length, state);
 
   232         current = state + (other.current - other.state);
 
   236         if (current == state) fillState();
 
   239         return RandomTraits<Word>::tempering(rnd);
 
   246         static const Word mask[2] = { 0x0ul, RandomTraits<Word>::mask };
 
   247         static const Word loMask = RandomTraits<Word>::loMask;
 
   248         static const Word hiMask = RandomTraits<Word>::hiMask;
 
   250         current = state + length;
 
   252         register Word *curr = state + length - 1;
 
   255         num = length - shift;
 
   257           curr[0] = (((curr[0] & hiMask) | (curr[-1] & loMask)) >> 1) ^
 
   258             curr[- shift] ^ mask[curr[-1] & 1ul];
 
   263           curr[0] = (((curr[0] & hiMask) | (curr[-1] & loMask)) >> 1) ^
 
   264             curr[length - shift] ^ mask[curr[-1] & 1ul];
 
   267         state[0] = (((state[0] & hiMask) | (curr[length - 1] & loMask)) >> 1) ^
 
   268           curr[length - shift] ^ mask[curr[length - 1] & 1ul];
 
   279     template <typename Result,
 
   280               int shift = (std::numeric_limits<Result>::digits + 1) / 2>
 
   282       static Result mask(const Result& result) {
 
   283         return Masker<Result, (shift + 1) / 2>::
 
   284           mask(static_cast<Result>(result | (result >> shift)));
 
   288     template <typename Result>
 
   289     struct Masker<Result, 1> {
 
   290       static Result mask(const Result& result) {
 
   291         return static_cast<Result>(result | (result >> 1));
 
   295     template <typename Result, typename Word,
 
   296               int rest = std::numeric_limits<Result>::digits, int shift = 0,
 
   297               bool last = rest <= std::numeric_limits<Word>::digits>
 
   298     struct IntConversion {
 
   299       static const int bits = std::numeric_limits<Word>::digits;
 
   301       static Result convert(RandomCore<Word>& rnd) {
 
   302         return static_cast<Result>(rnd() >> (bits - rest)) << shift;
 
   307     template <typename Result, typename Word, int rest, int shift>
 
   308     struct IntConversion<Result, Word, rest, shift, false> {
 
   309       static const int bits = std::numeric_limits<Word>::digits;
 
   311       static Result convert(RandomCore<Word>& rnd) {
 
   312         return (static_cast<Result>(rnd()) << shift) |
 
   313           IntConversion<Result, Word, rest - bits, shift + bits>::convert(rnd);
 
   318     template <typename Result, typename Word,
 
   319               bool one_word = (std::numeric_limits<Word>::digits <
 
   320                                std::numeric_limits<Result>::digits) >
 
   322       static Result map(RandomCore<Word>& rnd, const Result& bound) {
 
   323         Word max = Word(bound - 1);
 
   324         Result mask = Masker<Result>::mask(bound - 1);
 
   327           num = IntConversion<Result, Word>::convert(rnd) & mask;
 
   333     template <typename Result, typename Word>
 
   334     struct Mapping<Result, Word, false> {
 
   335       static Result map(RandomCore<Word>& rnd, const Result& bound) {
 
   336         Word max = Word(bound - 1);
 
   337         Word mask = Masker<Word, (std::numeric_limits<Result>::digits + 1) / 2>
 
   347     template <typename Result, int exp>
 
   348     struct ShiftMultiplier {
 
   349       static const Result multiplier() {
 
   350         Result res = ShiftMultiplier<Result, exp / 2>::multiplier();
 
   352         if ((exp & 1) == 1) res *= static_cast<Result>(0.5);
 
   357     template <typename Result>
 
   358     struct ShiftMultiplier<Result, 0> {
 
   359       static const Result multiplier() {
 
   360         return static_cast<Result>(1.0);
 
   364     template <typename Result>
 
   365     struct ShiftMultiplier<Result, 20> {
 
   366       static const Result multiplier() {
 
   367         return static_cast<Result>(1.0/1048576.0);
 
   371     template <typename Result>
 
   372     struct ShiftMultiplier<Result, 32> {
 
   373       static const Result multiplier() {
 
   374         return static_cast<Result>(1.0/4294967296.0);
 
   378     template <typename Result>
 
   379     struct ShiftMultiplier<Result, 53> {
 
   380       static const Result multiplier() {
 
   381         return static_cast<Result>(1.0/9007199254740992.0);
 
   385     template <typename Result>
 
   386     struct ShiftMultiplier<Result, 64> {
 
   387       static const Result multiplier() {
 
   388         return static_cast<Result>(1.0/18446744073709551616.0);
 
   392     template <typename Result, int exp>
 
   394       static Result shift(const Result& result) {
 
   395         return result * ShiftMultiplier<Result, exp>::multiplier();
 
   399     template <typename Result, typename Word,
 
   400               int rest = std::numeric_limits<Result>::digits, int shift = 0,
 
   401               bool last = rest <= std::numeric_limits<Word>::digits>
 
   402     struct RealConversion{
 
   403       static const int bits = std::numeric_limits<Word>::digits;
 
   405       static Result convert(RandomCore<Word>& rnd) {
 
   406         return Shifting<Result, shift + rest>::
 
   407           shift(static_cast<Result>(rnd() >> (bits - rest)));
 
   411     template <typename Result, typename Word, int rest, int shift>
 
   412     struct RealConversion<Result, Word, rest, shift, false> {
 
   413       static const int bits = std::numeric_limits<Word>::digits;
 
   415       static Result convert(RandomCore<Word>& rnd) {
 
   416         return Shifting<Result, shift + bits>::
 
   417           shift(static_cast<Result>(rnd())) +
 
   418           RealConversion<Result, Word, rest-bits, shift + bits>::
 
   423     template <typename Result, typename Word>
 
   426       template <typename Iterator>
 
   427       static void init(RandomCore<Word>& rnd, Iterator begin, Iterator end) {
 
   428         std::vector<Word> ws;
 
   429         for (Iterator it = begin; it != end; ++it) {
 
   430           ws.push_back(Word(*it));
 
   432         rnd.initState(ws.begin(), ws.end());
 
   435       static void init(RandomCore<Word>& rnd, Result seed) {
 
   440     template <typename Word>
 
   441     struct BoolConversion {
 
   442       static bool convert(RandomCore<Word>& rnd) {
 
   443         return (rnd() & 1) == 1;
 
   447     template <typename Word>
 
   448     struct BoolProducer {
 
   452       BoolProducer() : num(0) {}
 
   454       bool convert(RandomCore<Word>& rnd) {
 
   457           num = RandomTraits<Word>::bits;
 
   459         bool r = (buffer & 1);
 
   470   /// \brief Mersenne Twister random number generator
 
   472   /// The Mersenne Twister is a twisted generalized feedback
 
   473   /// shift-register generator of Matsumoto and Nishimura. The period
 
   474   /// of this generator is \f$ 2^{19937} - 1 \f$ and it is
 
   475   /// equi-distributed in 623 dimensions for 32-bit numbers. The time
 
   476   /// performance of this generator is comparable to the commonly used
 
   479   /// This implementation is specialized for both 32-bit and 64-bit
 
   480   /// architectures. The generators differ sligthly in the
 
   481   /// initialization and generation phase so they produce two
 
   482   /// completly different sequences.
 
   484   /// The generator gives back random numbers of serveral types. To
 
   485   /// get a random number from a range of a floating point type you
 
   486   /// can use one form of the \c operator() or the \c real() member
 
   487   /// function. If you want to get random number from the {0, 1, ...,
 
   488   /// n-1} integer range use the \c operator[] or the \c integer()
 
   489   /// method. And to get random number from the whole range of an
 
   490   /// integer type you can use the argumentless \c integer() or \c
 
   491   /// uinteger() functions. After all you can get random bool with
 
   492   /// equal chance of true and false or given probability of true
 
   493   /// result with the \c boolean() member functions.
 
   496   /// // The commented code is identical to the other
 
   497   /// double a = rnd();                     // [0.0, 1.0)
 
   498   /// // double a = rnd.real();             // [0.0, 1.0)
 
   499   /// double b = rnd(100.0);                // [0.0, 100.0)
 
   500   /// // double b = rnd.real(100.0);        // [0.0, 100.0)
 
   501   /// double c = rnd(1.0, 2.0);             // [1.0, 2.0)
 
   502   /// // double c = rnd.real(1.0, 2.0);     // [1.0, 2.0)
 
   503   /// int d = rnd[100000];                  // 0..99999
 
   504   /// // int d = rnd.integer(100000);       // 0..99999
 
   505   /// int e = rnd[6] + 1;                   // 1..6
 
   506   /// // int e = rnd.integer(1, 1 + 6);     // 1..6
 
   507   /// int b = rnd.uinteger<int>();          // 0 .. 2^31 - 1
 
   508   /// int c = rnd.integer<int>();           // - 2^31 .. 2^31 - 1
 
   509   /// bool g = rnd.boolean();               // P(g = true) = 0.5
 
   510   /// bool h = rnd.boolean(0.8);            // P(h = true) = 0.8
 
   513   /// LEMON provides a global instance of the random number
 
   514   /// generator which name is \ref lemon::rnd "rnd". Usually it is a
 
   515   /// good programming convenience to use this global generator to get
 
   521     typedef unsigned long Word;
 
   523     _random_bits::RandomCore<Word> core;
 
   524     _random_bits::BoolProducer<Word> bool_producer;
 
   529     ///\name Initialization
 
   533     /// \brief Default constructor
 
   535     /// Constructor with constant seeding.
 
   536     Random() { core.initState(); }
 
   538     /// \brief Constructor with seed
 
   540     /// Constructor with seed. The current number type will be converted
 
   541     /// to the architecture word type.
 
   542     template <typename Number>
 
   543     Random(Number seed) {
 
   544       _random_bits::Initializer<Number, Word>::init(core, seed);
 
   547     /// \brief Constructor with array seeding
 
   549     /// Constructor with array seeding. The given range should contain
 
   550     /// any number type and the numbers will be converted to the
 
   551     /// architecture word type.
 
   552     template <typename Iterator>
 
   553     Random(Iterator begin, Iterator end) {
 
   554       typedef typename std::iterator_traits<Iterator>::value_type Number;
 
   555       _random_bits::Initializer<Number, Word>::init(core, begin, end);
 
   558     /// \brief Copy constructor
 
   560     /// Copy constructor. The generated sequence will be identical to
 
   561     /// the other sequence. It can be used to save the current state
 
   562     /// of the generator and later use it to generate the same
 
   564     Random(const Random& other) {
 
   565       core.copyState(other.core);
 
   568     /// \brief Assign operator
 
   570     /// Assign operator. The generated sequence will be identical to
 
   571     /// the other sequence. It can be used to save the current state
 
   572     /// of the generator and later use it to generate the same
 
   574     Random& operator=(const Random& other) {
 
   575       if (&other != this) {
 
   576         core.copyState(other.core);
 
   581     /// \brief Seeding random sequence
 
   583     /// Seeding the random sequence. The current number type will be
 
   584     /// converted to the architecture word type.
 
   585     template <typename Number>
 
   586     void seed(Number seed) {
 
   587       _random_bits::Initializer<Number, Word>::init(core, seed);
 
   590     /// \brief Seeding random sequence
 
   592     /// Seeding the random sequence. The given range should contain
 
   593     /// any number type and the numbers will be converted to the
 
   594     /// architecture word type.
 
   595     template <typename Iterator>
 
   596     void seed(Iterator begin, Iterator end) {
 
   597       typedef typename std::iterator_traits<Iterator>::value_type Number;
 
   598       _random_bits::Initializer<Number, Word>::init(core, begin, end);
 
   601     /// \brief Seeding from file or from process id and time
 
   603     /// By default, this function calls the \c seedFromFile() member
 
   604     /// function with the <tt>/dev/urandom</tt> file. If it does not success,
 
   605     /// it uses the \c seedFromTime().
 
   606     /// \return Currently always true.
 
   609       if (seedFromFile("/dev/urandom", 0)) return true;
 
   611       if (seedFromTime()) return true;
 
   615     /// \brief Seeding from file
 
   617     /// Seeding the random sequence from file. The linux kernel has two
 
   618     /// devices, <tt>/dev/random</tt> and <tt>/dev/urandom</tt> which
 
   619     /// could give good seed values for pseudo random generators (The
 
   620     /// difference between two devices is that the <tt>random</tt> may
 
   621     /// block the reading operation while the kernel can give good
 
   622     /// source of randomness, while the <tt>urandom</tt> does not
 
   623     /// block the input, but it could give back bytes with worse
 
   625     /// \param file The source file
 
   626     /// \param offset The offset, from the file read.
 
   627     /// \return True when the seeding successes.
 
   629     bool seedFromFile(const std::string& file = "/dev/urandom", int offset = 0)
 
   631     bool seedFromFile(const std::string& file = "", int offset = 0)
 
   634       std::ifstream rs(file.c_str());
 
   637       if (offset != 0 && !rs.seekg(offset)) return false;
 
   638       if (!rs.read(reinterpret_cast<char*>(buf), sizeof(buf))) return false;
 
   639       seed(buf, buf + size);
 
   643     /// \brief Seding from process id and time
 
   645     /// Seding from process id and time. This function uses the
 
   646     /// current process id and the current time for initialize the
 
   648     /// \return Currently always true.
 
   649     bool seedFromTime() {
 
   652       gettimeofday(&tv, 0);
 
   653       seed(getpid() + tv.tv_sec + tv.tv_usec);
 
   655       seed(bits::getWinRndSeed());
 
   662     ///\name Uniform distributions
 
   666     /// \brief Returns a random real number from the range [0, 1)
 
   668     /// It returns a random real number from the range [0, 1). The
 
   669     /// default Number type is \c double.
 
   670     template <typename Number>
 
   672       return _random_bits::RealConversion<Number, Word>::convert(core);
 
   676       return real<double>();
 
   679     /// \brief Returns a random real number from the range [0, 1)
 
   681     /// It returns a random double from the range [0, 1).
 
   682     double operator()() {
 
   683       return real<double>();
 
   686     /// \brief Returns a random real number from the range [0, b)
 
   688     /// It returns a random real number from the range [0, b).
 
   689     double operator()(double b) {
 
   690       return real<double>() * b;
 
   693     /// \brief Returns a random real number from the range [a, b)
 
   695     /// It returns a random real number from the range [a, b).
 
   696     double operator()(double a, double b) {
 
   697       return real<double>() * (b - a) + a;
 
   700     /// \brief Returns a random integer from a range
 
   702     /// It returns a random integer from the range {0, 1, ..., b - 1}.
 
   703     template <typename Number>
 
   704     Number integer(Number b) {
 
   705       return _random_bits::Mapping<Number, Word>::map(core, b);
 
   708     /// \brief Returns a random integer from a range
 
   710     /// It returns a random integer from the range {a, a + 1, ..., b - 1}.
 
   711     template <typename Number>
 
   712     Number integer(Number a, Number b) {
 
   713       return _random_bits::Mapping<Number, Word>::map(core, b - a) + a;
 
   716     /// \brief Returns a random integer from a range
 
   718     /// It returns a random integer from the range {0, 1, ..., b - 1}.
 
   719     template <typename Number>
 
   720     Number operator[](Number b) {
 
   721       return _random_bits::Mapping<Number, Word>::map(core, b);
 
   724     /// \brief Returns a random non-negative integer
 
   726     /// It returns a random non-negative integer uniformly from the
 
   727     /// whole range of the current \c Number type. The default result
 
   728     /// type of this function is <tt>unsigned int</tt>.
 
   729     template <typename Number>
 
   731       return _random_bits::IntConversion<Number, Word>::convert(core);
 
   734     unsigned int uinteger() {
 
   735       return uinteger<unsigned int>();
 
   738     /// \brief Returns a random integer
 
   740     /// It returns a random integer uniformly from the whole range of
 
   741     /// the current \c Number type. The default result type of this
 
   742     /// function is \c int.
 
   743     template <typename Number>
 
   745       static const int nb = std::numeric_limits<Number>::digits +
 
   746         (std::numeric_limits<Number>::is_signed ? 1 : 0);
 
   747       return _random_bits::IntConversion<Number, Word, nb>::convert(core);
 
   751       return integer<int>();
 
   754     /// \brief Returns a random bool
 
   756     /// It returns a random bool. The generator holds a buffer for
 
   757     /// random bits. Every time when it become empty the generator makes
 
   758     /// a new random word and fill the buffer up.
 
   760       return bool_producer.convert(core);
 
   765     ///\name Non-uniform distributions
 
   769     /// \brief Returns a random bool with given probability of true result.
 
   771     /// It returns a random bool with given probability of true result.
 
   772     bool boolean(double p) {
 
   773       return operator()() < p;
 
   776     /// Standard normal (Gauss) distribution
 
   778     /// Standard normal (Gauss) distribution.
 
   779     /// \note The Cartesian form of the Box-Muller
 
   780     /// transformation is used to generate a random normal distribution.
 
   785         V1=2*real<double>()-1;
 
   786         V2=2*real<double>()-1;
 
   789       return std::sqrt(-2*std::log(S)/S)*V1;
 
   791     /// Normal (Gauss) distribution with given mean and standard deviation
 
   793     /// Normal (Gauss) distribution with given mean and standard deviation.
 
   795     double gauss(double mean,double std_dev)
 
   797       return gauss()*std_dev+mean;
 
   800     /// Lognormal distribution
 
   802     /// Lognormal distribution. The parameters are the mean and the standard
 
   803     /// deviation of <tt>exp(X)</tt>.
 
   805     double lognormal(double n_mean,double n_std_dev)
 
   807       return std::exp(gauss(n_mean,n_std_dev));
 
   809     /// Lognormal distribution
 
   811     /// Lognormal distribution. The parameter is an <tt>std::pair</tt> of
 
   812     /// the mean and the standard deviation of <tt>exp(X)</tt>.
 
   814     double lognormal(const std::pair<double,double> ¶ms)
 
   816       return std::exp(gauss(params.first,params.second));
 
   818     /// Compute the lognormal parameters from mean and standard deviation
 
   820     /// This function computes the lognormal parameters from mean and
 
   821     /// standard deviation. The return value can direcly be passed to
 
   823     std::pair<double,double> lognormalParamsFromMD(double mean,
 
   826       double fr=std_dev/mean;
 
   828       double lg=std::log(1+fr);
 
   829       return std::pair<double,double>(std::log(mean)-lg/2.0,std::sqrt(lg));
 
   831     /// Lognormal distribution with given mean and standard deviation
 
   833     /// Lognormal distribution with given mean and standard deviation.
 
   835     double lognormalMD(double mean,double std_dev)
 
   837       return lognormal(lognormalParamsFromMD(mean,std_dev));
 
   840     /// Exponential distribution with given mean
 
   842     /// This function generates an exponential distribution random number
 
   843     /// with mean <tt>1/lambda</tt>.
 
   845     double exponential(double lambda=1.0)
 
   847       return -std::log(1.0-real<double>())/lambda;
 
   850     /// Gamma distribution with given integer shape
 
   852     /// This function generates a gamma distribution random number.
 
   854     ///\param k shape parameter (<tt>k>0</tt> integer)
 
   858       for(int i=0;i<k;i++) s-=std::log(1.0-real<double>());
 
   862     /// Gamma distribution with given shape and scale parameter
 
   864     /// This function generates a gamma distribution random number.
 
   866     ///\param k shape parameter (<tt>k>0</tt>)
 
   867     ///\param theta scale parameter
 
   869     double gamma(double k,double theta=1.0)
 
   872       const double delta = k-std::floor(k);
 
   873       const double v0=E/(E-delta);
 
   875         double V0=1.0-real<double>();
 
   876         double V1=1.0-real<double>();
 
   877         double V2=1.0-real<double>();
 
   880             xi=std::pow(V1,1.0/delta);
 
   881             nu=V0*std::pow(xi,delta-1.0);
 
   888       } while(nu>std::pow(xi,delta-1.0)*std::exp(-xi));
 
   889       return theta*(xi+gamma(int(std::floor(k))));
 
   892     /// Weibull distribution
 
   894     /// This function generates a Weibull distribution random number.
 
   896     ///\param k shape parameter (<tt>k>0</tt>)
 
   897     ///\param lambda scale parameter (<tt>lambda>0</tt>)
 
   899     double weibull(double k,double lambda)
 
   901       return lambda*pow(-std::log(1.0-real<double>()),1.0/k);
 
   904     /// Pareto distribution
 
   906     /// This function generates a Pareto distribution random number.
 
   908     ///\param k shape parameter (<tt>k>0</tt>)
 
   909     ///\param x_min location parameter (<tt>x_min>0</tt>)
 
   911     double pareto(double k,double x_min)
 
   913       return exponential(gamma(k,1.0/x_min))+x_min;
 
   916     /// Poisson distribution
 
   918     /// This function generates a Poisson distribution random number with
 
   919     /// parameter \c lambda.
 
   921     /// The probability mass function of this distribusion is
 
   922     /// \f[ \frac{e^{-\lambda}\lambda^k}{k!} \f]
 
   923     /// \note The algorithm is taken from the book of Donald E. Knuth titled
 
   924     /// ''Seminumerical Algorithms'' (1969). Its running time is linear in the
 
   927     int poisson(double lambda)
 
   929       const double l = std::exp(-lambda);
 
   941     ///\name Two dimensional distributions
 
   945     /// Uniform distribution on the full unit circle
 
   947     /// Uniform distribution on the full unit circle.
 
   949     dim2::Point<double> disc()
 
   953         V1=2*real<double>()-1;
 
   954         V2=2*real<double>()-1;
 
   956       } while(V1*V1+V2*V2>=1);
 
   957       return dim2::Point<double>(V1,V2);
 
   959     /// A kind of two dimensional normal (Gauss) distribution
 
   961     /// This function provides a turning symmetric two-dimensional distribution.
 
   962     /// Both coordinates are of standard normal distribution, but they are not
 
   965     /// \note The coordinates are the two random variables provided by
 
   966     /// the Box-Muller method.
 
   967     dim2::Point<double> gauss2()
 
   971         V1=2*real<double>()-1;
 
   972         V2=2*real<double>()-1;
 
   975       double W=std::sqrt(-2*std::log(S)/S);
 
   976       return dim2::Point<double>(W*V1,W*V2);
 
   978     /// A kind of two dimensional exponential distribution
 
   980     /// This function provides a turning symmetric two-dimensional distribution.
 
   981     /// The x-coordinate is of conditionally exponential distribution
 
   982     /// with the condition that x is positive and y=0. If x is negative and
 
   983     /// y=0 then, -x is of exponential distribution. The same is true for the
 
   985     dim2::Point<double> exponential2()
 
   989         V1=2*real<double>()-1;
 
   990         V2=2*real<double>()-1;
 
   993       double W=-std::log(S)/S;
 
   994       return dim2::Point<double>(W*V1,W*V2);