lemon/core.h
author Alpar Juttner <alpar@cs.elte.hu>
Tue, 14 Apr 2015 16:14:32 +0200
changeset 1338 0998f70d0b2d
parent 1325 1d80ec7d17eb
child 1341 c199e9976d93
permissions -rw-r--r--
Clang -std=c++11 related fixes (#325)
     1 /* -*- mode: C++; indent-tabs-mode: nil; -*-
     2  *
     3  * This file is a part of LEMON, a generic C++ optimization library.
     4  *
     5  * Copyright (C) 2003-2013
     6  * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
     7  * (Egervary Research Group on Combinatorial Optimization, EGRES).
     8  *
     9  * Permission to use, modify and distribute this software is granted
    10  * provided that this copyright notice appears in all copies. For
    11  * precise terms see the accompanying LICENSE file.
    12  *
    13  * This software is provided "AS IS" with no warranty of any kind,
    14  * express or implied, and with no claim as to its suitability for any
    15  * purpose.
    16  *
    17  */
    18 
    19 #ifndef LEMON_CORE_H
    20 #define LEMON_CORE_H
    21 
    22 #include <vector>
    23 #include <algorithm>
    24 
    25 #include <lemon/config.h>
    26 #include <lemon/bits/enable_if.h>
    27 #include <lemon/bits/traits.h>
    28 #include <lemon/assert.h>
    29 
    30 // Disable the following warnings when compiling with MSVC:
    31 // C4250: 'class1' : inherits 'class2::member' via dominance
    32 // C4267: conversion from 'size_t' to 'type', possible loss of data
    33 // C4355: 'this' : used in base member initializer list
    34 // C4503: 'function' : decorated name length exceeded, name was truncated
    35 // C4800: 'type' : forcing value to bool 'true' or 'false' (performance warning)
    36 // C4996: 'function': was declared deprecated
    37 #ifdef _MSC_VER
    38 #pragma warning( disable : 4250 4267 4355 4503 4800 4996 )
    39 #endif
    40 
    41 #if __GNUC__ > 4 || (__GNUC__ == 4 && __GNUC_MINOR__ >= 8)
    42 // Needed by the [DI]GRAPH_TYPEDEFS marcos for gcc 4.8
    43 #pragma GCC diagnostic ignored "-Wunused-local-typedefs"
    44 #endif
    45 
    46 ///\file
    47 ///\brief LEMON core utilities.
    48 ///
    49 ///This header file contains core utilities for LEMON.
    50 ///It is automatically included by all graph types, therefore it usually
    51 ///do not have to be included directly.
    52 
    53 namespace lemon {
    54 
    55   /// \brief Dummy type to make it easier to create invalid iterators.
    56   ///
    57   /// Dummy type to make it easier to create invalid iterators.
    58   /// See \ref INVALID for the usage.
    59   struct Invalid {
    60   public:
    61     bool operator==(Invalid) { return true;  }
    62     bool operator!=(Invalid) { return false; }
    63     bool operator< (Invalid) { return false; }
    64   };
    65 
    66   /// \brief Invalid iterators.
    67   ///
    68   /// \ref Invalid is a global type that converts to each iterator
    69   /// in such a way that the value of the target iterator will be invalid.
    70 #ifdef LEMON_ONLY_TEMPLATES
    71   const Invalid INVALID = Invalid();
    72 #else
    73   extern const Invalid INVALID;
    74 #endif
    75 
    76   /// \addtogroup gutils
    77   /// @{
    78 
    79   ///Create convenience typedefs for the digraph types and iterators
    80 
    81   ///This \c \#define creates convenient type definitions for the following
    82   ///types of \c Digraph: \c Node,  \c NodeIt, \c Arc, \c ArcIt, \c InArcIt,
    83   ///\c OutArcIt, \c BoolNodeMap, \c IntNodeMap, \c DoubleNodeMap,
    84   ///\c BoolArcMap, \c IntArcMap, \c DoubleArcMap.
    85   ///
    86   ///\note If the graph type is a dependent type, ie. the graph type depend
    87   ///on a template parameter, then use \c TEMPLATE_DIGRAPH_TYPEDEFS()
    88   ///macro.
    89 #define DIGRAPH_TYPEDEFS(Digraph)                                       \
    90   typedef Digraph::Node Node;                                           \
    91   typedef Digraph::NodeIt NodeIt;                                       \
    92   typedef Digraph::Arc Arc;                                             \
    93   typedef Digraph::ArcIt ArcIt;                                         \
    94   typedef Digraph::InArcIt InArcIt;                                     \
    95   typedef Digraph::OutArcIt OutArcIt;                                   \
    96   typedef Digraph::NodeMap<bool> BoolNodeMap;                           \
    97   typedef Digraph::NodeMap<int> IntNodeMap;                             \
    98   typedef Digraph::NodeMap<double> DoubleNodeMap;                       \
    99   typedef Digraph::ArcMap<bool> BoolArcMap;                             \
   100   typedef Digraph::ArcMap<int> IntArcMap;                               \
   101   typedef Digraph::ArcMap<double> DoubleArcMap
   102 
   103   ///Create convenience typedefs for the digraph types and iterators
   104 
   105   ///\see DIGRAPH_TYPEDEFS
   106   ///
   107   ///\note Use this macro, if the graph type is a dependent type,
   108   ///ie. the graph type depend on a template parameter.
   109 #define TEMPLATE_DIGRAPH_TYPEDEFS(Digraph)                              \
   110   typedef typename Digraph::Node Node;                                  \
   111   typedef typename Digraph::NodeIt NodeIt;                              \
   112   typedef typename Digraph::Arc Arc;                                    \
   113   typedef typename Digraph::ArcIt ArcIt;                                \
   114   typedef typename Digraph::InArcIt InArcIt;                            \
   115   typedef typename Digraph::OutArcIt OutArcIt;                          \
   116   typedef typename Digraph::template NodeMap<bool> BoolNodeMap;         \
   117   typedef typename Digraph::template NodeMap<int> IntNodeMap;           \
   118   typedef typename Digraph::template NodeMap<double> DoubleNodeMap;     \
   119   typedef typename Digraph::template ArcMap<bool> BoolArcMap;           \
   120   typedef typename Digraph::template ArcMap<int> IntArcMap;             \
   121   typedef typename Digraph::template ArcMap<double> DoubleArcMap
   122 
   123   ///Create convenience typedefs for the graph types and iterators
   124 
   125   ///This \c \#define creates the same convenient type definitions as defined
   126   ///by \ref DIGRAPH_TYPEDEFS(Graph) and six more, namely it creates
   127   ///\c Edge, \c EdgeIt, \c IncEdgeIt, \c BoolEdgeMap, \c IntEdgeMap,
   128   ///\c DoubleEdgeMap.
   129   ///
   130   ///\note If the graph type is a dependent type, ie. the graph type depend
   131   ///on a template parameter, then use \c TEMPLATE_GRAPH_TYPEDEFS()
   132   ///macro.
   133 #define GRAPH_TYPEDEFS(Graph)                                           \
   134   DIGRAPH_TYPEDEFS(Graph);                                              \
   135   typedef Graph::Edge Edge;                                             \
   136   typedef Graph::EdgeIt EdgeIt;                                         \
   137   typedef Graph::IncEdgeIt IncEdgeIt;                                   \
   138   typedef Graph::EdgeMap<bool> BoolEdgeMap;                             \
   139   typedef Graph::EdgeMap<int> IntEdgeMap;                               \
   140   typedef Graph::EdgeMap<double> DoubleEdgeMap
   141 
   142   ///Create convenience typedefs for the graph types and iterators
   143 
   144   ///\see GRAPH_TYPEDEFS
   145   ///
   146   ///\note Use this macro, if the graph type is a dependent type,
   147   ///ie. the graph type depend on a template parameter.
   148 #define TEMPLATE_GRAPH_TYPEDEFS(Graph)                                  \
   149   TEMPLATE_DIGRAPH_TYPEDEFS(Graph);                                     \
   150   typedef typename Graph::Edge Edge;                                    \
   151   typedef typename Graph::EdgeIt EdgeIt;                                \
   152   typedef typename Graph::IncEdgeIt IncEdgeIt;                          \
   153   typedef typename Graph::template EdgeMap<bool> BoolEdgeMap;           \
   154   typedef typename Graph::template EdgeMap<int> IntEdgeMap;             \
   155   typedef typename Graph::template EdgeMap<double> DoubleEdgeMap
   156 
   157   ///Create convenience typedefs for the bipartite graph types and iterators
   158 
   159   ///This \c \#define creates the same convenient type definitions as
   160   ///defined by \ref GRAPH_TYPEDEFS(BpGraph) and ten more, namely it
   161   ///creates \c RedNode, \c RedNodeIt, \c BoolRedNodeMap,
   162   ///\c IntRedNodeMap, \c DoubleRedNodeMap, \c BlueNode, \c BlueNodeIt,
   163   ///\c BoolBlueNodeMap, \c IntBlueNodeMap, \c DoubleBlueNodeMap.
   164   ///
   165   ///\note If the graph type is a dependent type, ie. the graph type depend
   166   ///on a template parameter, then use \c TEMPLATE_BPGRAPH_TYPEDEFS()
   167   ///macro.
   168 #define BPGRAPH_TYPEDEFS(BpGraph)                                       \
   169   GRAPH_TYPEDEFS(BpGraph);                                              \
   170   typedef BpGraph::RedNode RedNode;                                     \
   171   typedef BpGraph::RedNodeIt RedNodeIt;                                 \
   172   typedef BpGraph::RedNodeMap<bool> BoolRedNodeMap;                     \
   173   typedef BpGraph::RedNodeMap<int> IntRedNodeMap;                       \
   174   typedef BpGraph::RedNodeMap<double> DoubleRedNodeMap;                 \
   175   typedef BpGraph::BlueNode BlueNode;                                   \
   176   typedef BpGraph::BlueNodeIt BlueNodeIt;                               \
   177   typedef BpGraph::BlueNodeMap<bool> BoolBlueNodeMap;                   \
   178   typedef BpGraph::BlueNodeMap<int> IntBlueNodeMap;                     \
   179   typedef BpGraph::BlueNodeMap<double> DoubleBlueNodeMap
   180 
   181   ///Create convenience typedefs for the bipartite graph types and iterators
   182 
   183   ///\see BPGRAPH_TYPEDEFS
   184   ///
   185   ///\note Use this macro, if the graph type is a dependent type,
   186   ///ie. the graph type depend on a template parameter.
   187 #define TEMPLATE_BPGRAPH_TYPEDEFS(BpGraph)                                  \
   188   TEMPLATE_GRAPH_TYPEDEFS(BpGraph);                                         \
   189   typedef typename BpGraph::RedNode RedNode;                                \
   190   typedef typename BpGraph::RedNodeIt RedNodeIt;                            \
   191   typedef typename BpGraph::template RedNodeMap<bool> BoolRedNodeMap;       \
   192   typedef typename BpGraph::template RedNodeMap<int> IntRedNodeMap;         \
   193   typedef typename BpGraph::template RedNodeMap<double> DoubleRedNodeMap;   \
   194   typedef typename BpGraph::BlueNode BlueNode;                              \
   195   typedef typename BpGraph::BlueNodeIt BlueNodeIt;                          \
   196   typedef typename BpGraph::template BlueNodeMap<bool> BoolBlueNodeMap;     \
   197   typedef typename BpGraph::template BlueNodeMap<int> IntBlueNodeMap;       \
   198   typedef typename BpGraph::template BlueNodeMap<double> DoubleBlueNodeMap
   199 
   200   /// \brief Function to count the items in a graph.
   201   ///
   202   /// This function counts the items (nodes, arcs etc.) in a graph.
   203   /// The complexity of the function is linear because
   204   /// it iterates on all of the items.
   205   template <typename Graph, typename Item>
   206   inline int countItems(const Graph& g) {
   207     typedef typename ItemSetTraits<Graph, Item>::ItemIt ItemIt;
   208     int num = 0;
   209     for (ItemIt it(g); it != INVALID; ++it) {
   210       ++num;
   211     }
   212     return num;
   213   }
   214 
   215   // Node counting:
   216 
   217   namespace _core_bits {
   218 
   219     template <typename Graph, typename Enable = void>
   220     struct CountNodesSelector {
   221       static int count(const Graph &g) {
   222         return countItems<Graph, typename Graph::Node>(g);
   223       }
   224     };
   225 
   226     template <typename Graph>
   227     struct CountNodesSelector<
   228       Graph, typename
   229       enable_if<typename Graph::NodeNumTag, void>::type>
   230     {
   231       static int count(const Graph &g) {
   232         return g.nodeNum();
   233       }
   234     };
   235   }
   236 
   237   /// \brief Function to count the nodes in the graph.
   238   ///
   239   /// This function counts the nodes in the graph.
   240   /// The complexity of the function is <em>O</em>(<em>n</em>), but for some
   241   /// graph structures it is specialized to run in <em>O</em>(1).
   242   ///
   243   /// \note If the graph contains a \c nodeNum() member function and a
   244   /// \c NodeNumTag tag then this function calls directly the member
   245   /// function to query the cardinality of the node set.
   246   template <typename Graph>
   247   inline int countNodes(const Graph& g) {
   248     return _core_bits::CountNodesSelector<Graph>::count(g);
   249   }
   250 
   251   namespace _graph_utils_bits {
   252 
   253     template <typename Graph, typename Enable = void>
   254     struct CountRedNodesSelector {
   255       static int count(const Graph &g) {
   256         return countItems<Graph, typename Graph::RedNode>(g);
   257       }
   258     };
   259 
   260     template <typename Graph>
   261     struct CountRedNodesSelector<
   262       Graph, typename
   263       enable_if<typename Graph::NodeNumTag, void>::type>
   264     {
   265       static int count(const Graph &g) {
   266         return g.redNum();
   267       }
   268     };
   269   }
   270 
   271   /// \brief Function to count the red nodes in the graph.
   272   ///
   273   /// This function counts the red nodes in the graph.
   274   /// The complexity of the function is O(n) but for some
   275   /// graph structures it is specialized to run in O(1).
   276   ///
   277   /// If the graph contains a \e redNum() member function and a
   278   /// \e NodeNumTag tag then this function calls directly the member
   279   /// function to query the cardinality of the node set.
   280   template <typename Graph>
   281   inline int countRedNodes(const Graph& g) {
   282     return _graph_utils_bits::CountRedNodesSelector<Graph>::count(g);
   283   }
   284 
   285   namespace _graph_utils_bits {
   286 
   287     template <typename Graph, typename Enable = void>
   288     struct CountBlueNodesSelector {
   289       static int count(const Graph &g) {
   290         return countItems<Graph, typename Graph::BlueNode>(g);
   291       }
   292     };
   293 
   294     template <typename Graph>
   295     struct CountBlueNodesSelector<
   296       Graph, typename
   297       enable_if<typename Graph::NodeNumTag, void>::type>
   298     {
   299       static int count(const Graph &g) {
   300         return g.blueNum();
   301       }
   302     };
   303   }
   304 
   305   /// \brief Function to count the blue nodes in the graph.
   306   ///
   307   /// This function counts the blue nodes in the graph.
   308   /// The complexity of the function is O(n) but for some
   309   /// graph structures it is specialized to run in O(1).
   310   ///
   311   /// If the graph contains a \e blueNum() member function and a
   312   /// \e NodeNumTag tag then this function calls directly the member
   313   /// function to query the cardinality of the node set.
   314   template <typename Graph>
   315   inline int countBlueNodes(const Graph& g) {
   316     return _graph_utils_bits::CountBlueNodesSelector<Graph>::count(g);
   317   }
   318 
   319   // Arc counting:
   320 
   321   namespace _core_bits {
   322 
   323     template <typename Graph, typename Enable = void>
   324     struct CountArcsSelector {
   325       static int count(const Graph &g) {
   326         return countItems<Graph, typename Graph::Arc>(g);
   327       }
   328     };
   329 
   330     template <typename Graph>
   331     struct CountArcsSelector<
   332       Graph,
   333       typename enable_if<typename Graph::ArcNumTag, void>::type>
   334     {
   335       static int count(const Graph &g) {
   336         return g.arcNum();
   337       }
   338     };
   339   }
   340 
   341   /// \brief Function to count the arcs in the graph.
   342   ///
   343   /// This function counts the arcs in the graph.
   344   /// The complexity of the function is <em>O</em>(<em>m</em>), but for some
   345   /// graph structures it is specialized to run in <em>O</em>(1).
   346   ///
   347   /// \note If the graph contains a \c arcNum() member function and a
   348   /// \c ArcNumTag tag then this function calls directly the member
   349   /// function to query the cardinality of the arc set.
   350   template <typename Graph>
   351   inline int countArcs(const Graph& g) {
   352     return _core_bits::CountArcsSelector<Graph>::count(g);
   353   }
   354 
   355   // Edge counting:
   356 
   357   namespace _core_bits {
   358 
   359     template <typename Graph, typename Enable = void>
   360     struct CountEdgesSelector {
   361       static int count(const Graph &g) {
   362         return countItems<Graph, typename Graph::Edge>(g);
   363       }
   364     };
   365 
   366     template <typename Graph>
   367     struct CountEdgesSelector<
   368       Graph,
   369       typename enable_if<typename Graph::EdgeNumTag, void>::type>
   370     {
   371       static int count(const Graph &g) {
   372         return g.edgeNum();
   373       }
   374     };
   375   }
   376 
   377   /// \brief Function to count the edges in the graph.
   378   ///
   379   /// This function counts the edges in the graph.
   380   /// The complexity of the function is <em>O</em>(<em>m</em>), but for some
   381   /// graph structures it is specialized to run in <em>O</em>(1).
   382   ///
   383   /// \note If the graph contains a \c edgeNum() member function and a
   384   /// \c EdgeNumTag tag then this function calls directly the member
   385   /// function to query the cardinality of the edge set.
   386   template <typename Graph>
   387   inline int countEdges(const Graph& g) {
   388     return _core_bits::CountEdgesSelector<Graph>::count(g);
   389 
   390   }
   391 
   392 
   393   template <typename Graph, typename DegIt>
   394   inline int countNodeDegree(const Graph& _g, const typename Graph::Node& _n) {
   395     int num = 0;
   396     for (DegIt it(_g, _n); it != INVALID; ++it) {
   397       ++num;
   398     }
   399     return num;
   400   }
   401 
   402   /// \brief Function to count the number of the out-arcs from node \c n.
   403   ///
   404   /// This function counts the number of the out-arcs from node \c n
   405   /// in the graph \c g.
   406   template <typename Graph>
   407   inline int countOutArcs(const Graph& g,  const typename Graph::Node& n) {
   408     return countNodeDegree<Graph, typename Graph::OutArcIt>(g, n);
   409   }
   410 
   411   /// \brief Function to count the number of the in-arcs to node \c n.
   412   ///
   413   /// This function counts the number of the in-arcs to node \c n
   414   /// in the graph \c g.
   415   template <typename Graph>
   416   inline int countInArcs(const Graph& g,  const typename Graph::Node& n) {
   417     return countNodeDegree<Graph, typename Graph::InArcIt>(g, n);
   418   }
   419 
   420   /// \brief Function to count the number of the inc-edges to node \c n.
   421   ///
   422   /// This function counts the number of the inc-edges to node \c n
   423   /// in the undirected graph \c g.
   424   template <typename Graph>
   425   inline int countIncEdges(const Graph& g,  const typename Graph::Node& n) {
   426     return countNodeDegree<Graph, typename Graph::IncEdgeIt>(g, n);
   427   }
   428 
   429   namespace _core_bits {
   430 
   431     template <typename Digraph, typename Item, typename RefMap>
   432     class MapCopyBase {
   433     public:
   434       virtual void copy(const Digraph& from, const RefMap& refMap) = 0;
   435 
   436       virtual ~MapCopyBase() {}
   437     };
   438 
   439     template <typename Digraph, typename Item, typename RefMap,
   440               typename FromMap, typename ToMap>
   441     class MapCopy : public MapCopyBase<Digraph, Item, RefMap> {
   442     public:
   443 
   444       MapCopy(const FromMap& map, ToMap& tmap)
   445         : _map(map), _tmap(tmap) {}
   446 
   447       virtual void copy(const Digraph& digraph, const RefMap& refMap) {
   448         typedef typename ItemSetTraits<Digraph, Item>::ItemIt ItemIt;
   449         for (ItemIt it(digraph); it != INVALID; ++it) {
   450           _tmap.set(refMap[it], _map[it]);
   451         }
   452       }
   453 
   454     private:
   455       const FromMap& _map;
   456       ToMap& _tmap;
   457     };
   458 
   459     template <typename Digraph, typename Item, typename RefMap, typename It>
   460     class ItemCopy : public MapCopyBase<Digraph, Item, RefMap> {
   461     public:
   462 
   463       ItemCopy(const Item& item, It& it) : _item(item), _it(it) {}
   464 
   465       virtual void copy(const Digraph&, const RefMap& refMap) {
   466         _it = refMap[_item];
   467       }
   468 
   469     private:
   470       Item _item;
   471       It& _it;
   472     };
   473 
   474     template <typename Digraph, typename Item, typename RefMap, typename Ref>
   475     class RefCopy : public MapCopyBase<Digraph, Item, RefMap> {
   476     public:
   477 
   478       RefCopy(Ref& map) : _map(map) {}
   479 
   480       virtual void copy(const Digraph& digraph, const RefMap& refMap) {
   481         typedef typename ItemSetTraits<Digraph, Item>::ItemIt ItemIt;
   482         for (ItemIt it(digraph); it != INVALID; ++it) {
   483           _map.set(it, refMap[it]);
   484         }
   485       }
   486 
   487     private:
   488       Ref& _map;
   489     };
   490 
   491     template <typename Digraph, typename Item, typename RefMap,
   492               typename CrossRef>
   493     class CrossRefCopy : public MapCopyBase<Digraph, Item, RefMap> {
   494     public:
   495 
   496       CrossRefCopy(CrossRef& cmap) : _cmap(cmap) {}
   497 
   498       virtual void copy(const Digraph& digraph, const RefMap& refMap) {
   499         typedef typename ItemSetTraits<Digraph, Item>::ItemIt ItemIt;
   500         for (ItemIt it(digraph); it != INVALID; ++it) {
   501           _cmap.set(refMap[it], it);
   502         }
   503       }
   504 
   505     private:
   506       CrossRef& _cmap;
   507     };
   508 
   509     template <typename Digraph, typename Enable = void>
   510     struct DigraphCopySelector {
   511       template <typename From, typename NodeRefMap, typename ArcRefMap>
   512       static void copy(const From& from, Digraph &to,
   513                        NodeRefMap& nodeRefMap, ArcRefMap& arcRefMap) {
   514         to.clear();
   515         for (typename From::NodeIt it(from); it != INVALID; ++it) {
   516           nodeRefMap[it] = to.addNode();
   517         }
   518         for (typename From::ArcIt it(from); it != INVALID; ++it) {
   519           arcRefMap[it] = to.addArc(nodeRefMap[from.source(it)],
   520                                     nodeRefMap[from.target(it)]);
   521         }
   522       }
   523     };
   524 
   525     template <typename Digraph>
   526     struct DigraphCopySelector<
   527       Digraph,
   528       typename enable_if<typename Digraph::BuildTag, void>::type>
   529     {
   530       template <typename From, typename NodeRefMap, typename ArcRefMap>
   531       static void copy(const From& from, Digraph &to,
   532                        NodeRefMap& nodeRefMap, ArcRefMap& arcRefMap) {
   533         to.build(from, nodeRefMap, arcRefMap);
   534       }
   535     };
   536 
   537     template <typename Graph, typename Enable = void>
   538     struct GraphCopySelector {
   539       template <typename From, typename NodeRefMap, typename EdgeRefMap>
   540       static void copy(const From& from, Graph &to,
   541                        NodeRefMap& nodeRefMap, EdgeRefMap& edgeRefMap) {
   542         to.clear();
   543         for (typename From::NodeIt it(from); it != INVALID; ++it) {
   544           nodeRefMap[it] = to.addNode();
   545         }
   546         for (typename From::EdgeIt it(from); it != INVALID; ++it) {
   547           edgeRefMap[it] = to.addEdge(nodeRefMap[from.u(it)],
   548                                       nodeRefMap[from.v(it)]);
   549         }
   550       }
   551     };
   552 
   553     template <typename Graph>
   554     struct GraphCopySelector<
   555       Graph,
   556       typename enable_if<typename Graph::BuildTag, void>::type>
   557     {
   558       template <typename From, typename NodeRefMap, typename EdgeRefMap>
   559       static void copy(const From& from, Graph &to,
   560                        NodeRefMap& nodeRefMap,
   561                        EdgeRefMap& edgeRefMap) {
   562         to.build(from, nodeRefMap, edgeRefMap);
   563       }
   564     };
   565 
   566     template <typename BpGraph, typename Enable = void>
   567     struct BpGraphCopySelector {
   568       template <typename From, typename RedNodeRefMap,
   569                 typename BlueNodeRefMap, typename EdgeRefMap>
   570       static void copy(const From& from, BpGraph &to,
   571                        RedNodeRefMap& redNodeRefMap,
   572                        BlueNodeRefMap& blueNodeRefMap,
   573                        EdgeRefMap& edgeRefMap) {
   574         to.clear();
   575         for (typename From::RedNodeIt it(from); it != INVALID; ++it) {
   576           redNodeRefMap[it] = to.addRedNode();
   577         }
   578         for (typename From::BlueNodeIt it(from); it != INVALID; ++it) {
   579           blueNodeRefMap[it] = to.addBlueNode();
   580         }
   581         for (typename From::EdgeIt it(from); it != INVALID; ++it) {
   582           edgeRefMap[it] = to.addEdge(redNodeRefMap[from.redNode(it)],
   583                                       blueNodeRefMap[from.blueNode(it)]);
   584         }
   585       }
   586     };
   587 
   588     template <typename BpGraph>
   589     struct BpGraphCopySelector<
   590       BpGraph,
   591       typename enable_if<typename BpGraph::BuildTag, void>::type>
   592     {
   593       template <typename From, typename RedNodeRefMap,
   594                 typename BlueNodeRefMap, typename EdgeRefMap>
   595       static void copy(const From& from, BpGraph &to,
   596                        RedNodeRefMap& redNodeRefMap,
   597                        BlueNodeRefMap& blueNodeRefMap,
   598                        EdgeRefMap& edgeRefMap) {
   599         to.build(from, redNodeRefMap, blueNodeRefMap, edgeRefMap);
   600       }
   601     };
   602 
   603   }
   604 
   605   /// \brief Check whether a graph is undirected.
   606   ///
   607   /// This function returns \c true if the given graph is undirected.
   608 #ifdef DOXYGEN
   609   template <typename GR>
   610   bool undirected(const GR& g) { return false; }
   611 #else
   612   template <typename GR>
   613   typename enable_if<UndirectedTagIndicator<GR>, bool>::type
   614   undirected(const GR&) {
   615     return true;
   616   }
   617   template <typename GR>
   618   typename disable_if<UndirectedTagIndicator<GR>, bool>::type
   619   undirected(const GR&) {
   620     return false;
   621   }
   622 #endif
   623 
   624   /// \brief Class to copy a digraph.
   625   ///
   626   /// Class to copy a digraph to another digraph (duplicate a digraph). The
   627   /// simplest way of using it is through the \c digraphCopy() function.
   628   ///
   629   /// This class not only make a copy of a digraph, but it can create
   630   /// references and cross references between the nodes and arcs of
   631   /// the two digraphs, and it can copy maps to use with the newly created
   632   /// digraph.
   633   ///
   634   /// To make a copy from a digraph, first an instance of DigraphCopy
   635   /// should be created, then the data belongs to the digraph should
   636   /// assigned to copy. In the end, the \c run() member should be
   637   /// called.
   638   ///
   639   /// The next code copies a digraph with several data:
   640   ///\code
   641   ///  DigraphCopy<OrigGraph, NewGraph> cg(orig_graph, new_graph);
   642   ///  // Create references for the nodes
   643   ///  OrigGraph::NodeMap<NewGraph::Node> nr(orig_graph);
   644   ///  cg.nodeRef(nr);
   645   ///  // Create cross references (inverse) for the arcs
   646   ///  NewGraph::ArcMap<OrigGraph::Arc> acr(new_graph);
   647   ///  cg.arcCrossRef(acr);
   648   ///  // Copy an arc map
   649   ///  OrigGraph::ArcMap<double> oamap(orig_graph);
   650   ///  NewGraph::ArcMap<double> namap(new_graph);
   651   ///  cg.arcMap(oamap, namap);
   652   ///  // Copy a node
   653   ///  OrigGraph::Node on;
   654   ///  NewGraph::Node nn;
   655   ///  cg.node(on, nn);
   656   ///  // Execute copying
   657   ///  cg.run();
   658   ///\endcode
   659   template <typename From, typename To>
   660   class DigraphCopy {
   661   private:
   662 
   663     typedef typename From::Node Node;
   664     typedef typename From::NodeIt NodeIt;
   665     typedef typename From::Arc Arc;
   666     typedef typename From::ArcIt ArcIt;
   667 
   668     typedef typename To::Node TNode;
   669     typedef typename To::Arc TArc;
   670 
   671     typedef typename From::template NodeMap<TNode> NodeRefMap;
   672     typedef typename From::template ArcMap<TArc> ArcRefMap;
   673 
   674   public:
   675 
   676     /// \brief Constructor of DigraphCopy.
   677     ///
   678     /// Constructor of DigraphCopy for copying the content of the
   679     /// \c from digraph into the \c to digraph.
   680     DigraphCopy(const From& from, To& to)
   681       : _from(from), _to(to) {}
   682 
   683     /// \brief Destructor of DigraphCopy
   684     ///
   685     /// Destructor of DigraphCopy.
   686     ~DigraphCopy() {
   687       for (int i = 0; i < int(_node_maps.size()); ++i) {
   688         delete _node_maps[i];
   689       }
   690       for (int i = 0; i < int(_arc_maps.size()); ++i) {
   691         delete _arc_maps[i];
   692       }
   693 
   694     }
   695 
   696     /// \brief Copy the node references into the given map.
   697     ///
   698     /// This function copies the node references into the given map.
   699     /// The parameter should be a map, whose key type is the Node type of
   700     /// the source digraph, while the value type is the Node type of the
   701     /// destination digraph.
   702     template <typename NodeRef>
   703     DigraphCopy& nodeRef(NodeRef& map) {
   704       _node_maps.push_back(new _core_bits::RefCopy<From, Node,
   705                            NodeRefMap, NodeRef>(map));
   706       return *this;
   707     }
   708 
   709     /// \brief Copy the node cross references into the given map.
   710     ///
   711     /// This function copies the node cross references (reverse references)
   712     /// into the given map. The parameter should be a map, whose key type
   713     /// is the Node type of the destination digraph, while the value type is
   714     /// the Node type of the source digraph.
   715     template <typename NodeCrossRef>
   716     DigraphCopy& nodeCrossRef(NodeCrossRef& map) {
   717       _node_maps.push_back(new _core_bits::CrossRefCopy<From, Node,
   718                            NodeRefMap, NodeCrossRef>(map));
   719       return *this;
   720     }
   721 
   722     /// \brief Make a copy of the given node map.
   723     ///
   724     /// This function makes a copy of the given node map for the newly
   725     /// created digraph.
   726     /// The key type of the new map \c tmap should be the Node type of the
   727     /// destination digraph, and the key type of the original map \c map
   728     /// should be the Node type of the source digraph.
   729     template <typename FromMap, typename ToMap>
   730     DigraphCopy& nodeMap(const FromMap& map, ToMap& tmap) {
   731       _node_maps.push_back(new _core_bits::MapCopy<From, Node,
   732                            NodeRefMap, FromMap, ToMap>(map, tmap));
   733       return *this;
   734     }
   735 
   736     /// \brief Make a copy of the given node.
   737     ///
   738     /// This function makes a copy of the given node.
   739     DigraphCopy& node(const Node& node, TNode& tnode) {
   740       _node_maps.push_back(new _core_bits::ItemCopy<From, Node,
   741                            NodeRefMap, TNode>(node, tnode));
   742       return *this;
   743     }
   744 
   745     /// \brief Copy the arc references into the given map.
   746     ///
   747     /// This function copies the arc references into the given map.
   748     /// The parameter should be a map, whose key type is the Arc type of
   749     /// the source digraph, while the value type is the Arc type of the
   750     /// destination digraph.
   751     template <typename ArcRef>
   752     DigraphCopy& arcRef(ArcRef& map) {
   753       _arc_maps.push_back(new _core_bits::RefCopy<From, Arc,
   754                           ArcRefMap, ArcRef>(map));
   755       return *this;
   756     }
   757 
   758     /// \brief Copy the arc cross references into the given map.
   759     ///
   760     /// This function copies the arc cross references (reverse references)
   761     /// into the given map. The parameter should be a map, whose key type
   762     /// is the Arc type of the destination digraph, while the value type is
   763     /// the Arc type of the source digraph.
   764     template <typename ArcCrossRef>
   765     DigraphCopy& arcCrossRef(ArcCrossRef& map) {
   766       _arc_maps.push_back(new _core_bits::CrossRefCopy<From, Arc,
   767                           ArcRefMap, ArcCrossRef>(map));
   768       return *this;
   769     }
   770 
   771     /// \brief Make a copy of the given arc map.
   772     ///
   773     /// This function makes a copy of the given arc map for the newly
   774     /// created digraph.
   775     /// The key type of the new map \c tmap should be the Arc type of the
   776     /// destination digraph, and the key type of the original map \c map
   777     /// should be the Arc type of the source digraph.
   778     template <typename FromMap, typename ToMap>
   779     DigraphCopy& arcMap(const FromMap& map, ToMap& tmap) {
   780       _arc_maps.push_back(new _core_bits::MapCopy<From, Arc,
   781                           ArcRefMap, FromMap, ToMap>(map, tmap));
   782       return *this;
   783     }
   784 
   785     /// \brief Make a copy of the given arc.
   786     ///
   787     /// This function makes a copy of the given arc.
   788     DigraphCopy& arc(const Arc& arc, TArc& tarc) {
   789       _arc_maps.push_back(new _core_bits::ItemCopy<From, Arc,
   790                           ArcRefMap, TArc>(arc, tarc));
   791       return *this;
   792     }
   793 
   794     /// \brief Execute copying.
   795     ///
   796     /// This function executes the copying of the digraph along with the
   797     /// copying of the assigned data.
   798     void run() {
   799       NodeRefMap nodeRefMap(_from);
   800       ArcRefMap arcRefMap(_from);
   801       _core_bits::DigraphCopySelector<To>::
   802         copy(_from, _to, nodeRefMap, arcRefMap);
   803       for (int i = 0; i < int(_node_maps.size()); ++i) {
   804         _node_maps[i]->copy(_from, nodeRefMap);
   805       }
   806       for (int i = 0; i < int(_arc_maps.size()); ++i) {
   807         _arc_maps[i]->copy(_from, arcRefMap);
   808       }
   809     }
   810 
   811   protected:
   812 
   813     const From& _from;
   814     To& _to;
   815 
   816     std::vector<_core_bits::MapCopyBase<From, Node, NodeRefMap>* >
   817       _node_maps;
   818 
   819     std::vector<_core_bits::MapCopyBase<From, Arc, ArcRefMap>* >
   820       _arc_maps;
   821 
   822   };
   823 
   824   /// \brief Copy a digraph to another digraph.
   825   ///
   826   /// This function copies a digraph to another digraph.
   827   /// The complete usage of it is detailed in the DigraphCopy class, but
   828   /// a short example shows a basic work:
   829   ///\code
   830   /// digraphCopy(src, trg).nodeRef(nr).arcCrossRef(acr).run();
   831   ///\endcode
   832   ///
   833   /// After the copy the \c nr map will contain the mapping from the
   834   /// nodes of the \c from digraph to the nodes of the \c to digraph and
   835   /// \c acr will contain the mapping from the arcs of the \c to digraph
   836   /// to the arcs of the \c from digraph.
   837   ///
   838   /// \see DigraphCopy
   839   template <typename From, typename To>
   840   DigraphCopy<From, To> digraphCopy(const From& from, To& to) {
   841     return DigraphCopy<From, To>(from, to);
   842   }
   843 
   844   /// \brief Class to copy a graph.
   845   ///
   846   /// Class to copy a graph to another graph (duplicate a graph). The
   847   /// simplest way of using it is through the \c graphCopy() function.
   848   ///
   849   /// This class not only make a copy of a graph, but it can create
   850   /// references and cross references between the nodes, edges and arcs of
   851   /// the two graphs, and it can copy maps for using with the newly created
   852   /// graph.
   853   ///
   854   /// To make a copy from a graph, first an instance of GraphCopy
   855   /// should be created, then the data belongs to the graph should
   856   /// assigned to copy. In the end, the \c run() member should be
   857   /// called.
   858   ///
   859   /// The next code copies a graph with several data:
   860   ///\code
   861   ///  GraphCopy<OrigGraph, NewGraph> cg(orig_graph, new_graph);
   862   ///  // Create references for the nodes
   863   ///  OrigGraph::NodeMap<NewGraph::Node> nr(orig_graph);
   864   ///  cg.nodeRef(nr);
   865   ///  // Create cross references (inverse) for the edges
   866   ///  NewGraph::EdgeMap<OrigGraph::Edge> ecr(new_graph);
   867   ///  cg.edgeCrossRef(ecr);
   868   ///  // Copy an edge map
   869   ///  OrigGraph::EdgeMap<double> oemap(orig_graph);
   870   ///  NewGraph::EdgeMap<double> nemap(new_graph);
   871   ///  cg.edgeMap(oemap, nemap);
   872   ///  // Copy a node
   873   ///  OrigGraph::Node on;
   874   ///  NewGraph::Node nn;
   875   ///  cg.node(on, nn);
   876   ///  // Execute copying
   877   ///  cg.run();
   878   ///\endcode
   879   template <typename From, typename To>
   880   class GraphCopy {
   881   private:
   882 
   883     typedef typename From::Node Node;
   884     typedef typename From::NodeIt NodeIt;
   885     typedef typename From::Arc Arc;
   886     typedef typename From::ArcIt ArcIt;
   887     typedef typename From::Edge Edge;
   888     typedef typename From::EdgeIt EdgeIt;
   889 
   890     typedef typename To::Node TNode;
   891     typedef typename To::Arc TArc;
   892     typedef typename To::Edge TEdge;
   893 
   894     typedef typename From::template NodeMap<TNode> NodeRefMap;
   895     typedef typename From::template EdgeMap<TEdge> EdgeRefMap;
   896 
   897     struct ArcRefMap {
   898       ArcRefMap(const From& from, const To& to,
   899                 const EdgeRefMap& edge_ref, const NodeRefMap& node_ref)
   900         : _from(from), _to(to),
   901           _edge_ref(edge_ref), _node_ref(node_ref) {}
   902 
   903       typedef typename From::Arc Key;
   904       typedef typename To::Arc Value;
   905 
   906       Value operator[](const Key& key) const {
   907         bool forward = _from.u(key) != _from.v(key) ?
   908           _node_ref[_from.source(key)] ==
   909           _to.source(_to.direct(_edge_ref[key], true)) :
   910           _from.direction(key);
   911         return _to.direct(_edge_ref[key], forward);
   912       }
   913 
   914       const From& _from;
   915       const To& _to;
   916       const EdgeRefMap& _edge_ref;
   917       const NodeRefMap& _node_ref;
   918     };
   919 
   920   public:
   921 
   922     /// \brief Constructor of GraphCopy.
   923     ///
   924     /// Constructor of GraphCopy for copying the content of the
   925     /// \c from graph into the \c to graph.
   926     GraphCopy(const From& from, To& to)
   927       : _from(from), _to(to) {}
   928 
   929     /// \brief Destructor of GraphCopy
   930     ///
   931     /// Destructor of GraphCopy.
   932     ~GraphCopy() {
   933       for (int i = 0; i < int(_node_maps.size()); ++i) {
   934         delete _node_maps[i];
   935       }
   936       for (int i = 0; i < int(_arc_maps.size()); ++i) {
   937         delete _arc_maps[i];
   938       }
   939       for (int i = 0; i < int(_edge_maps.size()); ++i) {
   940         delete _edge_maps[i];
   941       }
   942     }
   943 
   944     /// \brief Copy the node references into the given map.
   945     ///
   946     /// This function copies the node references into the given map.
   947     /// The parameter should be a map, whose key type is the Node type of
   948     /// the source graph, while the value type is the Node type of the
   949     /// destination graph.
   950     template <typename NodeRef>
   951     GraphCopy& nodeRef(NodeRef& map) {
   952       _node_maps.push_back(new _core_bits::RefCopy<From, Node,
   953                            NodeRefMap, NodeRef>(map));
   954       return *this;
   955     }
   956 
   957     /// \brief Copy the node cross references into the given map.
   958     ///
   959     /// This function copies the node cross references (reverse references)
   960     /// into the given map. The parameter should be a map, whose key type
   961     /// is the Node type of the destination graph, while the value type is
   962     /// the Node type of the source graph.
   963     template <typename NodeCrossRef>
   964     GraphCopy& nodeCrossRef(NodeCrossRef& map) {
   965       _node_maps.push_back(new _core_bits::CrossRefCopy<From, Node,
   966                            NodeRefMap, NodeCrossRef>(map));
   967       return *this;
   968     }
   969 
   970     /// \brief Make a copy of the given node map.
   971     ///
   972     /// This function makes a copy of the given node map for the newly
   973     /// created graph.
   974     /// The key type of the new map \c tmap should be the Node type of the
   975     /// destination graph, and the key type of the original map \c map
   976     /// should be the Node type of the source graph.
   977     template <typename FromMap, typename ToMap>
   978     GraphCopy& nodeMap(const FromMap& map, ToMap& tmap) {
   979       _node_maps.push_back(new _core_bits::MapCopy<From, Node,
   980                            NodeRefMap, FromMap, ToMap>(map, tmap));
   981       return *this;
   982     }
   983 
   984     /// \brief Make a copy of the given node.
   985     ///
   986     /// This function makes a copy of the given node.
   987     GraphCopy& node(const Node& node, TNode& tnode) {
   988       _node_maps.push_back(new _core_bits::ItemCopy<From, Node,
   989                            NodeRefMap, TNode>(node, tnode));
   990       return *this;
   991     }
   992 
   993     /// \brief Copy the arc references into the given map.
   994     ///
   995     /// This function copies the arc references into the given map.
   996     /// The parameter should be a map, whose key type is the Arc type of
   997     /// the source graph, while the value type is the Arc type of the
   998     /// destination graph.
   999     template <typename ArcRef>
  1000     GraphCopy& arcRef(ArcRef& map) {
  1001       _arc_maps.push_back(new _core_bits::RefCopy<From, Arc,
  1002                           ArcRefMap, ArcRef>(map));
  1003       return *this;
  1004     }
  1005 
  1006     /// \brief Copy the arc cross references into the given map.
  1007     ///
  1008     /// This function copies the arc cross references (reverse references)
  1009     /// into the given map. The parameter should be a map, whose key type
  1010     /// is the Arc type of the destination graph, while the value type is
  1011     /// the Arc type of the source graph.
  1012     template <typename ArcCrossRef>
  1013     GraphCopy& arcCrossRef(ArcCrossRef& map) {
  1014       _arc_maps.push_back(new _core_bits::CrossRefCopy<From, Arc,
  1015                           ArcRefMap, ArcCrossRef>(map));
  1016       return *this;
  1017     }
  1018 
  1019     /// \brief Make a copy of the given arc map.
  1020     ///
  1021     /// This function makes a copy of the given arc map for the newly
  1022     /// created graph.
  1023     /// The key type of the new map \c tmap should be the Arc type of the
  1024     /// destination graph, and the key type of the original map \c map
  1025     /// should be the Arc type of the source graph.
  1026     template <typename FromMap, typename ToMap>
  1027     GraphCopy& arcMap(const FromMap& map, ToMap& tmap) {
  1028       _arc_maps.push_back(new _core_bits::MapCopy<From, Arc,
  1029                           ArcRefMap, FromMap, ToMap>(map, tmap));
  1030       return *this;
  1031     }
  1032 
  1033     /// \brief Make a copy of the given arc.
  1034     ///
  1035     /// This function makes a copy of the given arc.
  1036     GraphCopy& arc(const Arc& arc, TArc& tarc) {
  1037       _arc_maps.push_back(new _core_bits::ItemCopy<From, Arc,
  1038                           ArcRefMap, TArc>(arc, tarc));
  1039       return *this;
  1040     }
  1041 
  1042     /// \brief Copy the edge references into the given map.
  1043     ///
  1044     /// This function copies the edge references into the given map.
  1045     /// The parameter should be a map, whose key type is the Edge type of
  1046     /// the source graph, while the value type is the Edge type of the
  1047     /// destination graph.
  1048     template <typename EdgeRef>
  1049     GraphCopy& edgeRef(EdgeRef& map) {
  1050       _edge_maps.push_back(new _core_bits::RefCopy<From, Edge,
  1051                            EdgeRefMap, EdgeRef>(map));
  1052       return *this;
  1053     }
  1054 
  1055     /// \brief Copy the edge cross references into the given map.
  1056     ///
  1057     /// This function copies the edge cross references (reverse references)
  1058     /// into the given map. The parameter should be a map, whose key type
  1059     /// is the Edge type of the destination graph, while the value type is
  1060     /// the Edge type of the source graph.
  1061     template <typename EdgeCrossRef>
  1062     GraphCopy& edgeCrossRef(EdgeCrossRef& map) {
  1063       _edge_maps.push_back(new _core_bits::CrossRefCopy<From,
  1064                            Edge, EdgeRefMap, EdgeCrossRef>(map));
  1065       return *this;
  1066     }
  1067 
  1068     /// \brief Make a copy of the given edge map.
  1069     ///
  1070     /// This function makes a copy of the given edge map for the newly
  1071     /// created graph.
  1072     /// The key type of the new map \c tmap should be the Edge type of the
  1073     /// destination graph, and the key type of the original map \c map
  1074     /// should be the Edge type of the source graph.
  1075     template <typename FromMap, typename ToMap>
  1076     GraphCopy& edgeMap(const FromMap& map, ToMap& tmap) {
  1077       _edge_maps.push_back(new _core_bits::MapCopy<From, Edge,
  1078                            EdgeRefMap, FromMap, ToMap>(map, tmap));
  1079       return *this;
  1080     }
  1081 
  1082     /// \brief Make a copy of the given edge.
  1083     ///
  1084     /// This function makes a copy of the given edge.
  1085     GraphCopy& edge(const Edge& edge, TEdge& tedge) {
  1086       _edge_maps.push_back(new _core_bits::ItemCopy<From, Edge,
  1087                            EdgeRefMap, TEdge>(edge, tedge));
  1088       return *this;
  1089     }
  1090 
  1091     /// \brief Execute copying.
  1092     ///
  1093     /// This function executes the copying of the graph along with the
  1094     /// copying of the assigned data.
  1095     void run() {
  1096       NodeRefMap nodeRefMap(_from);
  1097       EdgeRefMap edgeRefMap(_from);
  1098       ArcRefMap arcRefMap(_from, _to, edgeRefMap, nodeRefMap);
  1099       _core_bits::GraphCopySelector<To>::
  1100         copy(_from, _to, nodeRefMap, edgeRefMap);
  1101       for (int i = 0; i < int(_node_maps.size()); ++i) {
  1102         _node_maps[i]->copy(_from, nodeRefMap);
  1103       }
  1104       for (int i = 0; i < int(_edge_maps.size()); ++i) {
  1105         _edge_maps[i]->copy(_from, edgeRefMap);
  1106       }
  1107       for (int i = 0; i < int(_arc_maps.size()); ++i) {
  1108         _arc_maps[i]->copy(_from, arcRefMap);
  1109       }
  1110     }
  1111 
  1112   private:
  1113 
  1114     const From& _from;
  1115     To& _to;
  1116 
  1117     std::vector<_core_bits::MapCopyBase<From, Node, NodeRefMap>* >
  1118       _node_maps;
  1119 
  1120     std::vector<_core_bits::MapCopyBase<From, Arc, ArcRefMap>* >
  1121       _arc_maps;
  1122 
  1123     std::vector<_core_bits::MapCopyBase<From, Edge, EdgeRefMap>* >
  1124       _edge_maps;
  1125 
  1126   };
  1127 
  1128   /// \brief Copy a graph to another graph.
  1129   ///
  1130   /// This function copies a graph to another graph.
  1131   /// The complete usage of it is detailed in the GraphCopy class,
  1132   /// but a short example shows a basic work:
  1133   ///\code
  1134   /// graphCopy(src, trg).nodeRef(nr).edgeCrossRef(ecr).run();
  1135   ///\endcode
  1136   ///
  1137   /// After the copy the \c nr map will contain the mapping from the
  1138   /// nodes of the \c from graph to the nodes of the \c to graph and
  1139   /// \c ecr will contain the mapping from the edges of the \c to graph
  1140   /// to the edges of the \c from graph.
  1141   ///
  1142   /// \see GraphCopy
  1143   template <typename From, typename To>
  1144   GraphCopy<From, To>
  1145   graphCopy(const From& from, To& to) {
  1146     return GraphCopy<From, To>(from, to);
  1147   }
  1148 
  1149   /// \brief Class to copy a bipartite graph.
  1150   ///
  1151   /// Class to copy a bipartite graph to another graph (duplicate a
  1152   /// graph). The simplest way of using it is through the
  1153   /// \c bpGraphCopy() function.
  1154   ///
  1155   /// This class not only make a copy of a bipartite graph, but it can
  1156   /// create references and cross references between the nodes, edges
  1157   /// and arcs of the two graphs, and it can copy maps for using with
  1158   /// the newly created graph.
  1159   ///
  1160   /// To make a copy from a graph, first an instance of BpGraphCopy
  1161   /// should be created, then the data belongs to the graph should
  1162   /// assigned to copy. In the end, the \c run() member should be
  1163   /// called.
  1164   ///
  1165   /// The next code copies a graph with several data:
  1166   ///\code
  1167   ///  BpGraphCopy<OrigBpGraph, NewBpGraph> cg(orig_graph, new_graph);
  1168   ///  // Create references for the nodes
  1169   ///  OrigBpGraph::NodeMap<NewBpGraph::Node> nr(orig_graph);
  1170   ///  cg.nodeRef(nr);
  1171   ///  // Create cross references (inverse) for the edges
  1172   ///  NewBpGraph::EdgeMap<OrigBpGraph::Edge> ecr(new_graph);
  1173   ///  cg.edgeCrossRef(ecr);
  1174   ///  // Copy a red node map
  1175   ///  OrigBpGraph::RedNodeMap<double> ormap(orig_graph);
  1176   ///  NewBpGraph::RedNodeMap<double> nrmap(new_graph);
  1177   ///  cg.redNodeMap(ormap, nrmap);
  1178   ///  // Copy a node
  1179   ///  OrigBpGraph::Node on;
  1180   ///  NewBpGraph::Node nn;
  1181   ///  cg.node(on, nn);
  1182   ///  // Execute copying
  1183   ///  cg.run();
  1184   ///\endcode
  1185   template <typename From, typename To>
  1186   class BpGraphCopy {
  1187   private:
  1188 
  1189     typedef typename From::Node Node;
  1190     typedef typename From::RedNode RedNode;
  1191     typedef typename From::BlueNode BlueNode;
  1192     typedef typename From::NodeIt NodeIt;
  1193     typedef typename From::Arc Arc;
  1194     typedef typename From::ArcIt ArcIt;
  1195     typedef typename From::Edge Edge;
  1196     typedef typename From::EdgeIt EdgeIt;
  1197 
  1198     typedef typename To::Node TNode;
  1199     typedef typename To::RedNode TRedNode;
  1200     typedef typename To::BlueNode TBlueNode;
  1201     typedef typename To::Arc TArc;
  1202     typedef typename To::Edge TEdge;
  1203 
  1204     typedef typename From::template RedNodeMap<TRedNode> RedNodeRefMap;
  1205     typedef typename From::template BlueNodeMap<TBlueNode> BlueNodeRefMap;
  1206     typedef typename From::template EdgeMap<TEdge> EdgeRefMap;
  1207 
  1208     struct NodeRefMap {
  1209       NodeRefMap(const From& from, const RedNodeRefMap& red_node_ref,
  1210                  const BlueNodeRefMap& blue_node_ref)
  1211         : _from(from), _red_node_ref(red_node_ref),
  1212           _blue_node_ref(blue_node_ref) {}
  1213 
  1214       typedef typename From::Node Key;
  1215       typedef typename To::Node Value;
  1216 
  1217       Value operator[](const Key& key) const {
  1218         if (_from.red(key)) {
  1219           return _red_node_ref[_from.asRedNodeUnsafe(key)];
  1220         } else {
  1221           return _blue_node_ref[_from.asBlueNodeUnsafe(key)];
  1222         }
  1223       }
  1224 
  1225       const From& _from;
  1226       const RedNodeRefMap& _red_node_ref;
  1227       const BlueNodeRefMap& _blue_node_ref;
  1228     };
  1229 
  1230     struct ArcRefMap {
  1231       ArcRefMap(const From& from, const To& to, const EdgeRefMap& edge_ref)
  1232         : _from(from), _to(to), _edge_ref(edge_ref) {}
  1233 
  1234       typedef typename From::Arc Key;
  1235       typedef typename To::Arc Value;
  1236 
  1237       Value operator[](const Key& key) const {
  1238         return _to.direct(_edge_ref[key], _from.direction(key));
  1239       }
  1240 
  1241       const From& _from;
  1242       const To& _to;
  1243       const EdgeRefMap& _edge_ref;
  1244     };
  1245 
  1246   public:
  1247 
  1248     /// \brief Constructor of BpGraphCopy.
  1249     ///
  1250     /// Constructor of BpGraphCopy for copying the content of the
  1251     /// \c from graph into the \c to graph.
  1252     BpGraphCopy(const From& from, To& to)
  1253       : _from(from), _to(to) {}
  1254 
  1255     /// \brief Destructor of BpGraphCopy
  1256     ///
  1257     /// Destructor of BpGraphCopy.
  1258     ~BpGraphCopy() {
  1259       for (int i = 0; i < int(_node_maps.size()); ++i) {
  1260         delete _node_maps[i];
  1261       }
  1262       for (int i = 0; i < int(_red_maps.size()); ++i) {
  1263         delete _red_maps[i];
  1264       }
  1265       for (int i = 0; i < int(_blue_maps.size()); ++i) {
  1266         delete _blue_maps[i];
  1267       }
  1268       for (int i = 0; i < int(_arc_maps.size()); ++i) {
  1269         delete _arc_maps[i];
  1270       }
  1271       for (int i = 0; i < int(_edge_maps.size()); ++i) {
  1272         delete _edge_maps[i];
  1273       }
  1274     }
  1275 
  1276     /// \brief Copy the node references into the given map.
  1277     ///
  1278     /// This function copies the node references into the given map.
  1279     /// The parameter should be a map, whose key type is the Node type of
  1280     /// the source graph, while the value type is the Node type of the
  1281     /// destination graph.
  1282     template <typename NodeRef>
  1283     BpGraphCopy& nodeRef(NodeRef& map) {
  1284       _node_maps.push_back(new _core_bits::RefCopy<From, Node,
  1285                            NodeRefMap, NodeRef>(map));
  1286       return *this;
  1287     }
  1288 
  1289     /// \brief Copy the node cross references into the given map.
  1290     ///
  1291     /// This function copies the node cross references (reverse references)
  1292     /// into the given map. The parameter should be a map, whose key type
  1293     /// is the Node type of the destination graph, while the value type is
  1294     /// the Node type of the source graph.
  1295     template <typename NodeCrossRef>
  1296     BpGraphCopy& nodeCrossRef(NodeCrossRef& map) {
  1297       _node_maps.push_back(new _core_bits::CrossRefCopy<From, Node,
  1298                            NodeRefMap, NodeCrossRef>(map));
  1299       return *this;
  1300     }
  1301 
  1302     /// \brief Make a copy of the given node map.
  1303     ///
  1304     /// This function makes a copy of the given node map for the newly
  1305     /// created graph.
  1306     /// The key type of the new map \c tmap should be the Node type of the
  1307     /// destination graph, and the key type of the original map \c map
  1308     /// should be the Node type of the source graph.
  1309     template <typename FromMap, typename ToMap>
  1310     BpGraphCopy& nodeMap(const FromMap& map, ToMap& tmap) {
  1311       _node_maps.push_back(new _core_bits::MapCopy<From, Node,
  1312                            NodeRefMap, FromMap, ToMap>(map, tmap));
  1313       return *this;
  1314     }
  1315 
  1316     /// \brief Make a copy of the given node.
  1317     ///
  1318     /// This function makes a copy of the given node.
  1319     BpGraphCopy& node(const Node& node, TNode& tnode) {
  1320       _node_maps.push_back(new _core_bits::ItemCopy<From, Node,
  1321                            NodeRefMap, TNode>(node, tnode));
  1322       return *this;
  1323     }
  1324 
  1325     /// \brief Copy the red node references into the given map.
  1326     ///
  1327     /// This function copies the red node references into the given
  1328     /// map.  The parameter should be a map, whose key type is the
  1329     /// Node type of the source graph with the red item set, while the
  1330     /// value type is the Node type of the destination graph.
  1331     template <typename RedRef>
  1332     BpGraphCopy& redRef(RedRef& map) {
  1333       _red_maps.push_back(new _core_bits::RefCopy<From, RedNode,
  1334                           RedNodeRefMap, RedRef>(map));
  1335       return *this;
  1336     }
  1337 
  1338     /// \brief Copy the red node cross references into the given map.
  1339     ///
  1340     /// This function copies the red node cross references (reverse
  1341     /// references) into the given map. The parameter should be a map,
  1342     /// whose key type is the Node type of the destination graph with
  1343     /// the red item set, while the value type is the Node type of the
  1344     /// source graph.
  1345     template <typename RedCrossRef>
  1346     BpGraphCopy& redCrossRef(RedCrossRef& map) {
  1347       _red_maps.push_back(new _core_bits::CrossRefCopy<From, RedNode,
  1348                           RedNodeRefMap, RedCrossRef>(map));
  1349       return *this;
  1350     }
  1351 
  1352     /// \brief Make a copy of the given red node map.
  1353     ///
  1354     /// This function makes a copy of the given red node map for the newly
  1355     /// created graph.
  1356     /// The key type of the new map \c tmap should be the Node type of
  1357     /// the destination graph with the red items, and the key type of
  1358     /// the original map \c map should be the Node type of the source
  1359     /// graph.
  1360     template <typename FromMap, typename ToMap>
  1361     BpGraphCopy& redNodeMap(const FromMap& map, ToMap& tmap) {
  1362       _red_maps.push_back(new _core_bits::MapCopy<From, RedNode,
  1363                           RedNodeRefMap, FromMap, ToMap>(map, tmap));
  1364       return *this;
  1365     }
  1366 
  1367     /// \brief Make a copy of the given red node.
  1368     ///
  1369     /// This function makes a copy of the given red node.
  1370     BpGraphCopy& redNode(const RedNode& node, TRedNode& tnode) {
  1371       _red_maps.push_back(new _core_bits::ItemCopy<From, RedNode,
  1372                           RedNodeRefMap, TRedNode>(node, tnode));
  1373       return *this;
  1374     }
  1375 
  1376     /// \brief Copy the blue node references into the given map.
  1377     ///
  1378     /// This function copies the blue node references into the given
  1379     /// map.  The parameter should be a map, whose key type is the
  1380     /// Node type of the source graph with the blue item set, while the
  1381     /// value type is the Node type of the destination graph.
  1382     template <typename BlueRef>
  1383     BpGraphCopy& blueRef(BlueRef& map) {
  1384       _blue_maps.push_back(new _core_bits::RefCopy<From, BlueNode,
  1385                            BlueNodeRefMap, BlueRef>(map));
  1386       return *this;
  1387     }
  1388 
  1389     /// \brief Copy the blue node cross references into the given map.
  1390     ///
  1391     /// This function copies the blue node cross references (reverse
  1392     /// references) into the given map. The parameter should be a map,
  1393     /// whose key type is the Node type of the destination graph with
  1394     /// the blue item set, while the value type is the Node type of the
  1395     /// source graph.
  1396     template <typename BlueCrossRef>
  1397     BpGraphCopy& blueCrossRef(BlueCrossRef& map) {
  1398       _blue_maps.push_back(new _core_bits::CrossRefCopy<From, BlueNode,
  1399                            BlueNodeRefMap, BlueCrossRef>(map));
  1400       return *this;
  1401     }
  1402 
  1403     /// \brief Make a copy of the given blue node map.
  1404     ///
  1405     /// This function makes a copy of the given blue node map for the newly
  1406     /// created graph.
  1407     /// The key type of the new map \c tmap should be the Node type of
  1408     /// the destination graph with the blue items, and the key type of
  1409     /// the original map \c map should be the Node type of the source
  1410     /// graph.
  1411     template <typename FromMap, typename ToMap>
  1412     BpGraphCopy& blueNodeMap(const FromMap& map, ToMap& tmap) {
  1413       _blue_maps.push_back(new _core_bits::MapCopy<From, BlueNode,
  1414                            BlueNodeRefMap, FromMap, ToMap>(map, tmap));
  1415       return *this;
  1416     }
  1417 
  1418     /// \brief Make a copy of the given blue node.
  1419     ///
  1420     /// This function makes a copy of the given blue node.
  1421     BpGraphCopy& blueNode(const BlueNode& node, TBlueNode& tnode) {
  1422       _blue_maps.push_back(new _core_bits::ItemCopy<From, BlueNode,
  1423                            BlueNodeRefMap, TBlueNode>(node, tnode));
  1424       return *this;
  1425     }
  1426 
  1427     /// \brief Copy the arc references into the given map.
  1428     ///
  1429     /// This function copies the arc references into the given map.
  1430     /// The parameter should be a map, whose key type is the Arc type of
  1431     /// the source graph, while the value type is the Arc type of the
  1432     /// destination graph.
  1433     template <typename ArcRef>
  1434     BpGraphCopy& arcRef(ArcRef& map) {
  1435       _arc_maps.push_back(new _core_bits::RefCopy<From, Arc,
  1436                           ArcRefMap, ArcRef>(map));
  1437       return *this;
  1438     }
  1439 
  1440     /// \brief Copy the arc cross references into the given map.
  1441     ///
  1442     /// This function copies the arc cross references (reverse references)
  1443     /// into the given map. The parameter should be a map, whose key type
  1444     /// is the Arc type of the destination graph, while the value type is
  1445     /// the Arc type of the source graph.
  1446     template <typename ArcCrossRef>
  1447     BpGraphCopy& arcCrossRef(ArcCrossRef& map) {
  1448       _arc_maps.push_back(new _core_bits::CrossRefCopy<From, Arc,
  1449                           ArcRefMap, ArcCrossRef>(map));
  1450       return *this;
  1451     }
  1452 
  1453     /// \brief Make a copy of the given arc map.
  1454     ///
  1455     /// This function makes a copy of the given arc map for the newly
  1456     /// created graph.
  1457     /// The key type of the new map \c tmap should be the Arc type of the
  1458     /// destination graph, and the key type of the original map \c map
  1459     /// should be the Arc type of the source graph.
  1460     template <typename FromMap, typename ToMap>
  1461     BpGraphCopy& arcMap(const FromMap& map, ToMap& tmap) {
  1462       _arc_maps.push_back(new _core_bits::MapCopy<From, Arc,
  1463                           ArcRefMap, FromMap, ToMap>(map, tmap));
  1464       return *this;
  1465     }
  1466 
  1467     /// \brief Make a copy of the given arc.
  1468     ///
  1469     /// This function makes a copy of the given arc.
  1470     BpGraphCopy& arc(const Arc& arc, TArc& tarc) {
  1471       _arc_maps.push_back(new _core_bits::ItemCopy<From, Arc,
  1472                           ArcRefMap, TArc>(arc, tarc));
  1473       return *this;
  1474     }
  1475 
  1476     /// \brief Copy the edge references into the given map.
  1477     ///
  1478     /// This function copies the edge references into the given map.
  1479     /// The parameter should be a map, whose key type is the Edge type of
  1480     /// the source graph, while the value type is the Edge type of the
  1481     /// destination graph.
  1482     template <typename EdgeRef>
  1483     BpGraphCopy& edgeRef(EdgeRef& map) {
  1484       _edge_maps.push_back(new _core_bits::RefCopy<From, Edge,
  1485                            EdgeRefMap, EdgeRef>(map));
  1486       return *this;
  1487     }
  1488 
  1489     /// \brief Copy the edge cross references into the given map.
  1490     ///
  1491     /// This function copies the edge cross references (reverse references)
  1492     /// into the given map. The parameter should be a map, whose key type
  1493     /// is the Edge type of the destination graph, while the value type is
  1494     /// the Edge type of the source graph.
  1495     template <typename EdgeCrossRef>
  1496     BpGraphCopy& edgeCrossRef(EdgeCrossRef& map) {
  1497       _edge_maps.push_back(new _core_bits::CrossRefCopy<From,
  1498                            Edge, EdgeRefMap, EdgeCrossRef>(map));
  1499       return *this;
  1500     }
  1501 
  1502     /// \brief Make a copy of the given edge map.
  1503     ///
  1504     /// This function makes a copy of the given edge map for the newly
  1505     /// created graph.
  1506     /// The key type of the new map \c tmap should be the Edge type of the
  1507     /// destination graph, and the key type of the original map \c map
  1508     /// should be the Edge type of the source graph.
  1509     template <typename FromMap, typename ToMap>
  1510     BpGraphCopy& edgeMap(const FromMap& map, ToMap& tmap) {
  1511       _edge_maps.push_back(new _core_bits::MapCopy<From, Edge,
  1512                            EdgeRefMap, FromMap, ToMap>(map, tmap));
  1513       return *this;
  1514     }
  1515 
  1516     /// \brief Make a copy of the given edge.
  1517     ///
  1518     /// This function makes a copy of the given edge.
  1519     BpGraphCopy& edge(const Edge& edge, TEdge& tedge) {
  1520       _edge_maps.push_back(new _core_bits::ItemCopy<From, Edge,
  1521                            EdgeRefMap, TEdge>(edge, tedge));
  1522       return *this;
  1523     }
  1524 
  1525     /// \brief Execute copying.
  1526     ///
  1527     /// This function executes the copying of the graph along with the
  1528     /// copying of the assigned data.
  1529     void run() {
  1530       RedNodeRefMap redNodeRefMap(_from);
  1531       BlueNodeRefMap blueNodeRefMap(_from);
  1532       NodeRefMap nodeRefMap(_from, redNodeRefMap, blueNodeRefMap);
  1533       EdgeRefMap edgeRefMap(_from);
  1534       ArcRefMap arcRefMap(_from, _to, edgeRefMap);
  1535       _core_bits::BpGraphCopySelector<To>::
  1536         copy(_from, _to, redNodeRefMap, blueNodeRefMap, edgeRefMap);
  1537       for (int i = 0; i < int(_node_maps.size()); ++i) {
  1538         _node_maps[i]->copy(_from, nodeRefMap);
  1539       }
  1540       for (int i = 0; i < int(_red_maps.size()); ++i) {
  1541         _red_maps[i]->copy(_from, redNodeRefMap);
  1542       }
  1543       for (int i = 0; i < int(_blue_maps.size()); ++i) {
  1544         _blue_maps[i]->copy(_from, blueNodeRefMap);
  1545       }
  1546       for (int i = 0; i < int(_edge_maps.size()); ++i) {
  1547         _edge_maps[i]->copy(_from, edgeRefMap);
  1548       }
  1549       for (int i = 0; i < int(_arc_maps.size()); ++i) {
  1550         _arc_maps[i]->copy(_from, arcRefMap);
  1551       }
  1552     }
  1553 
  1554   private:
  1555 
  1556     const From& _from;
  1557     To& _to;
  1558 
  1559     std::vector<_core_bits::MapCopyBase<From, Node, NodeRefMap>* >
  1560       _node_maps;
  1561 
  1562     std::vector<_core_bits::MapCopyBase<From, RedNode, RedNodeRefMap>* >
  1563       _red_maps;
  1564 
  1565     std::vector<_core_bits::MapCopyBase<From, BlueNode, BlueNodeRefMap>* >
  1566       _blue_maps;
  1567 
  1568     std::vector<_core_bits::MapCopyBase<From, Arc, ArcRefMap>* >
  1569       _arc_maps;
  1570 
  1571     std::vector<_core_bits::MapCopyBase<From, Edge, EdgeRefMap>* >
  1572       _edge_maps;
  1573 
  1574   };
  1575 
  1576   /// \brief Copy a graph to another graph.
  1577   ///
  1578   /// This function copies a graph to another graph.
  1579   /// The complete usage of it is detailed in the BpGraphCopy class,
  1580   /// but a short example shows a basic work:
  1581   ///\code
  1582   /// graphCopy(src, trg).nodeRef(nr).edgeCrossRef(ecr).run();
  1583   ///\endcode
  1584   ///
  1585   /// After the copy the \c nr map will contain the mapping from the
  1586   /// nodes of the \c from graph to the nodes of the \c to graph and
  1587   /// \c ecr will contain the mapping from the edges of the \c to graph
  1588   /// to the edges of the \c from graph.
  1589   ///
  1590   /// \see BpGraphCopy
  1591   template <typename From, typename To>
  1592   BpGraphCopy<From, To>
  1593   bpGraphCopy(const From& from, To& to) {
  1594     return BpGraphCopy<From, To>(from, to);
  1595   }
  1596 
  1597   namespace _core_bits {
  1598 
  1599     template <typename Graph, typename Enable = void>
  1600     struct FindArcSelector {
  1601       typedef typename Graph::Node Node;
  1602       typedef typename Graph::Arc Arc;
  1603       static Arc find(const Graph &g, Node u, Node v, Arc e) {
  1604         if (e == INVALID) {
  1605           g.firstOut(e, u);
  1606         } else {
  1607           g.nextOut(e);
  1608         }
  1609         while (e != INVALID && g.target(e) != v) {
  1610           g.nextOut(e);
  1611         }
  1612         return e;
  1613       }
  1614     };
  1615 
  1616     template <typename Graph>
  1617     struct FindArcSelector<
  1618       Graph,
  1619       typename enable_if<typename Graph::FindArcTag, void>::type>
  1620     {
  1621       typedef typename Graph::Node Node;
  1622       typedef typename Graph::Arc Arc;
  1623       static Arc find(const Graph &g, Node u, Node v, Arc prev) {
  1624         return g.findArc(u, v, prev);
  1625       }
  1626     };
  1627   }
  1628 
  1629   /// \brief Find an arc between two nodes of a digraph.
  1630   ///
  1631   /// This function finds an arc from node \c u to node \c v in the
  1632   /// digraph \c g.
  1633   ///
  1634   /// If \c prev is \ref INVALID (this is the default value), then
  1635   /// it finds the first arc from \c u to \c v. Otherwise it looks for
  1636   /// the next arc from \c u to \c v after \c prev.
  1637   /// \return The found arc or \ref INVALID if there is no such an arc.
  1638   ///
  1639   /// Thus you can iterate through each arc from \c u to \c v as it follows.
  1640   ///\code
  1641   /// for(Arc e = findArc(g,u,v); e != INVALID; e = findArc(g,u,v,e)) {
  1642   ///   ...
  1643   /// }
  1644   ///\endcode
  1645   ///
  1646   /// \note \ref ConArcIt provides iterator interface for the same
  1647   /// functionality.
  1648   ///
  1649   ///\sa ConArcIt
  1650   ///\sa ArcLookUp, AllArcLookUp, DynArcLookUp
  1651   template <typename Graph>
  1652   inline typename Graph::Arc
  1653   findArc(const Graph &g, typename Graph::Node u, typename Graph::Node v,
  1654           typename Graph::Arc prev = INVALID) {
  1655     return _core_bits::FindArcSelector<Graph>::find(g, u, v, prev);
  1656   }
  1657 
  1658   /// \brief Iterator for iterating on parallel arcs connecting the same nodes.
  1659   ///
  1660   /// Iterator for iterating on parallel arcs connecting the same nodes. It is
  1661   /// a higher level interface for the \ref findArc() function. You can
  1662   /// use it the following way:
  1663   ///\code
  1664   /// for (ConArcIt<Graph> it(g, src, trg); it != INVALID; ++it) {
  1665   ///   ...
  1666   /// }
  1667   ///\endcode
  1668   ///
  1669   ///\sa findArc()
  1670   ///\sa ArcLookUp, AllArcLookUp, DynArcLookUp
  1671   template <typename GR>
  1672   class ConArcIt : public GR::Arc {
  1673     typedef typename GR::Arc Parent;
  1674 
  1675   public:
  1676 
  1677     typedef typename GR::Arc Arc;
  1678     typedef typename GR::Node Node;
  1679 
  1680     /// \brief Constructor.
  1681     ///
  1682     /// Construct a new ConArcIt iterating on the arcs that
  1683     /// connects nodes \c u and \c v.
  1684     ConArcIt(const GR& g, Node u, Node v) : _graph(g) {
  1685       Parent::operator=(findArc(_graph, u, v));
  1686     }
  1687 
  1688     /// \brief Constructor.
  1689     ///
  1690     /// Construct a new ConArcIt that continues the iterating from arc \c a.
  1691     ConArcIt(const GR& g, Arc a) : Parent(a), _graph(g) {}
  1692 
  1693     /// \brief Increment operator.
  1694     ///
  1695     /// It increments the iterator and gives back the next arc.
  1696     ConArcIt& operator++() {
  1697       Parent::operator=(findArc(_graph, _graph.source(*this),
  1698                                 _graph.target(*this), *this));
  1699       return *this;
  1700     }
  1701   private:
  1702     const GR& _graph;
  1703   };
  1704 
  1705   namespace _core_bits {
  1706 
  1707     template <typename Graph, typename Enable = void>
  1708     struct FindEdgeSelector {
  1709       typedef typename Graph::Node Node;
  1710       typedef typename Graph::Edge Edge;
  1711       static Edge find(const Graph &g, Node u, Node v, Edge e) {
  1712         bool b;
  1713         if (u != v) {
  1714           if (e == INVALID) {
  1715             g.firstInc(e, b, u);
  1716           } else {
  1717             b = g.u(e) == u;
  1718             g.nextInc(e, b);
  1719           }
  1720           while (e != INVALID && (b ? g.v(e) : g.u(e)) != v) {
  1721             g.nextInc(e, b);
  1722           }
  1723         } else {
  1724           if (e == INVALID) {
  1725             g.firstInc(e, b, u);
  1726           } else {
  1727             b = true;
  1728             g.nextInc(e, b);
  1729           }
  1730           while (e != INVALID && (!b || g.v(e) != v)) {
  1731             g.nextInc(e, b);
  1732           }
  1733         }
  1734         return e;
  1735       }
  1736     };
  1737 
  1738     template <typename Graph>
  1739     struct FindEdgeSelector<
  1740       Graph,
  1741       typename enable_if<typename Graph::FindEdgeTag, void>::type>
  1742     {
  1743       typedef typename Graph::Node Node;
  1744       typedef typename Graph::Edge Edge;
  1745       static Edge find(const Graph &g, Node u, Node v, Edge prev) {
  1746         return g.findEdge(u, v, prev);
  1747       }
  1748     };
  1749   }
  1750 
  1751   /// \brief Find an edge between two nodes of a graph.
  1752   ///
  1753   /// This function finds an edge from node \c u to node \c v in graph \c g.
  1754   /// If node \c u and node \c v is equal then each loop edge
  1755   /// will be enumerated once.
  1756   ///
  1757   /// If \c prev is \ref INVALID (this is the default value), then
  1758   /// it finds the first edge from \c u to \c v. Otherwise it looks for
  1759   /// the next edge from \c u to \c v after \c prev.
  1760   /// \return The found edge or \ref INVALID if there is no such an edge.
  1761   ///
  1762   /// Thus you can iterate through each edge between \c u and \c v
  1763   /// as it follows.
  1764   ///\code
  1765   /// for(Edge e = findEdge(g,u,v); e != INVALID; e = findEdge(g,u,v,e)) {
  1766   ///   ...
  1767   /// }
  1768   ///\endcode
  1769   ///
  1770   /// \note \ref ConEdgeIt provides iterator interface for the same
  1771   /// functionality.
  1772   ///
  1773   ///\sa ConEdgeIt
  1774   template <typename Graph>
  1775   inline typename Graph::Edge
  1776   findEdge(const Graph &g, typename Graph::Node u, typename Graph::Node v,
  1777             typename Graph::Edge p = INVALID) {
  1778     return _core_bits::FindEdgeSelector<Graph>::find(g, u, v, p);
  1779   }
  1780 
  1781   /// \brief Iterator for iterating on parallel edges connecting the same nodes.
  1782   ///
  1783   /// Iterator for iterating on parallel edges connecting the same nodes.
  1784   /// It is a higher level interface for the findEdge() function. You can
  1785   /// use it the following way:
  1786   ///\code
  1787   /// for (ConEdgeIt<Graph> it(g, u, v); it != INVALID; ++it) {
  1788   ///   ...
  1789   /// }
  1790   ///\endcode
  1791   ///
  1792   ///\sa findEdge()
  1793   template <typename GR>
  1794   class ConEdgeIt : public GR::Edge {
  1795     typedef typename GR::Edge Parent;
  1796 
  1797   public:
  1798 
  1799     typedef typename GR::Edge Edge;
  1800     typedef typename GR::Node Node;
  1801 
  1802     /// \brief Constructor.
  1803     ///
  1804     /// Construct a new ConEdgeIt iterating on the edges that
  1805     /// connects nodes \c u and \c v.
  1806     ConEdgeIt(const GR& g, Node u, Node v) : _graph(g), _u(u), _v(v) {
  1807       Parent::operator=(findEdge(_graph, _u, _v));
  1808     }
  1809 
  1810     /// \brief Constructor.
  1811     ///
  1812     /// Construct a new ConEdgeIt that continues iterating from edge \c e.
  1813     ConEdgeIt(const GR& g, Edge e) : Parent(e), _graph(g) {}
  1814 
  1815     /// \brief Increment operator.
  1816     ///
  1817     /// It increments the iterator and gives back the next edge.
  1818     ConEdgeIt& operator++() {
  1819       Parent::operator=(findEdge(_graph, _u, _v, *this));
  1820       return *this;
  1821     }
  1822   private:
  1823     const GR& _graph;
  1824     Node _u, _v;
  1825   };
  1826 
  1827 
  1828   ///Dynamic arc look-up between given endpoints.
  1829 
  1830   ///Using this class, you can find an arc in a digraph from a given
  1831   ///source to a given target in amortized time <em>O</em>(log<em>d</em>),
  1832   ///where <em>d</em> is the out-degree of the source node.
  1833   ///
  1834   ///It is possible to find \e all parallel arcs between two nodes with
  1835   ///the \c operator() member.
  1836   ///
  1837   ///This is a dynamic data structure. Consider to use \ref ArcLookUp or
  1838   ///\ref AllArcLookUp if your digraph is not changed so frequently.
  1839   ///
  1840   ///This class uses a self-adjusting binary search tree, the Splay tree
  1841   ///of Sleator and Tarjan to guarantee the logarithmic amortized
  1842   ///time bound for arc look-ups. This class also guarantees the
  1843   ///optimal time bound in a constant factor for any distribution of
  1844   ///queries.
  1845   ///
  1846   ///\tparam GR The type of the underlying digraph.
  1847   ///
  1848   ///\sa ArcLookUp
  1849   ///\sa AllArcLookUp
  1850   template <typename GR>
  1851   class DynArcLookUp
  1852     : protected ItemSetTraits<GR, typename GR::Arc>::ItemNotifier::ObserverBase
  1853   {
  1854     typedef typename ItemSetTraits<GR, typename GR::Arc>
  1855     ::ItemNotifier::ObserverBase Parent;
  1856 
  1857     TEMPLATE_DIGRAPH_TYPEDEFS(GR);
  1858 
  1859   public:
  1860 
  1861     /// The Digraph type
  1862     typedef GR Digraph;
  1863 
  1864   protected:
  1865 
  1866     class AutoNodeMap : public ItemSetTraits<GR, Node>::template Map<Arc>::Type
  1867     {
  1868       typedef typename ItemSetTraits<GR, Node>::template Map<Arc>::Type Parent;
  1869 
  1870     public:
  1871 
  1872       AutoNodeMap(const GR& digraph) : Parent(digraph, INVALID) {}
  1873 
  1874       virtual void add(const Node& node) {
  1875         Parent::add(node);
  1876         Parent::set(node, INVALID);
  1877       }
  1878 
  1879       virtual void add(const std::vector<Node>& nodes) {
  1880         Parent::add(nodes);
  1881         for (int i = 0; i < int(nodes.size()); ++i) {
  1882           Parent::set(nodes[i], INVALID);
  1883         }
  1884       }
  1885 
  1886       virtual void build() {
  1887         Parent::build();
  1888         Node it;
  1889         typename Parent::Notifier* nf = Parent::notifier();
  1890         for (nf->first(it); it != INVALID; nf->next(it)) {
  1891           Parent::set(it, INVALID);
  1892         }
  1893       }
  1894     };
  1895 
  1896     class ArcLess {
  1897       const Digraph &g;
  1898     public:
  1899       ArcLess(const Digraph &_g) : g(_g) {}
  1900       bool operator()(Arc a,Arc b) const
  1901       {
  1902         return g.target(a)<g.target(b);
  1903       }
  1904     };
  1905 
  1906   protected:
  1907 
  1908     const Digraph &_g;
  1909     AutoNodeMap _head;
  1910     typename Digraph::template ArcMap<Arc> _parent;
  1911     typename Digraph::template ArcMap<Arc> _left;
  1912     typename Digraph::template ArcMap<Arc> _right;
  1913 
  1914   public:
  1915 
  1916     ///Constructor
  1917 
  1918     ///Constructor.
  1919     ///
  1920     ///It builds up the search database.
  1921     DynArcLookUp(const Digraph &g)
  1922       : _g(g),_head(g),_parent(g),_left(g),_right(g)
  1923     {
  1924       Parent::attach(_g.notifier(typename Digraph::Arc()));
  1925       refresh();
  1926     }
  1927 
  1928   protected:
  1929 
  1930     virtual void add(const Arc& arc) {
  1931       insert(arc);
  1932     }
  1933 
  1934     virtual void add(const std::vector<Arc>& arcs) {
  1935       for (int i = 0; i < int(arcs.size()); ++i) {
  1936         insert(arcs[i]);
  1937       }
  1938     }
  1939 
  1940     virtual void erase(const Arc& arc) {
  1941       remove(arc);
  1942     }
  1943 
  1944     virtual void erase(const std::vector<Arc>& arcs) {
  1945       for (int i = 0; i < int(arcs.size()); ++i) {
  1946         remove(arcs[i]);
  1947       }
  1948     }
  1949 
  1950     virtual void build() {
  1951       refresh();
  1952     }
  1953 
  1954     virtual void clear() {
  1955       for(NodeIt n(_g);n!=INVALID;++n) {
  1956         _head[n] = INVALID;
  1957       }
  1958     }
  1959 
  1960     void insert(Arc arc) {
  1961       Node s = _g.source(arc);
  1962       Node t = _g.target(arc);
  1963       _left[arc] = INVALID;
  1964       _right[arc] = INVALID;
  1965 
  1966       Arc e = _head[s];
  1967       if (e == INVALID) {
  1968         _head[s] = arc;
  1969         _parent[arc] = INVALID;
  1970         return;
  1971       }
  1972       while (true) {
  1973         if (t < _g.target(e)) {
  1974           if (_left[e] == INVALID) {
  1975             _left[e] = arc;
  1976             _parent[arc] = e;
  1977             splay(arc);
  1978             return;
  1979           } else {
  1980             e = _left[e];
  1981           }
  1982         } else {
  1983           if (_right[e] == INVALID) {
  1984             _right[e] = arc;
  1985             _parent[arc] = e;
  1986             splay(arc);
  1987             return;
  1988           } else {
  1989             e = _right[e];
  1990           }
  1991         }
  1992       }
  1993     }
  1994 
  1995     void remove(Arc arc) {
  1996       if (_left[arc] == INVALID) {
  1997         if (_right[arc] != INVALID) {
  1998           _parent[_right[arc]] = _parent[arc];
  1999         }
  2000         if (_parent[arc] != INVALID) {
  2001           if (_left[_parent[arc]] == arc) {
  2002             _left[_parent[arc]] = _right[arc];
  2003           } else {
  2004             _right[_parent[arc]] = _right[arc];
  2005           }
  2006         } else {
  2007           _head[_g.source(arc)] = _right[arc];
  2008         }
  2009       } else if (_right[arc] == INVALID) {
  2010         _parent[_left[arc]] = _parent[arc];
  2011         if (_parent[arc] != INVALID) {
  2012           if (_left[_parent[arc]] == arc) {
  2013             _left[_parent[arc]] = _left[arc];
  2014           } else {
  2015             _right[_parent[arc]] = _left[arc];
  2016           }
  2017         } else {
  2018           _head[_g.source(arc)] = _left[arc];
  2019         }
  2020       } else {
  2021         Arc e = _left[arc];
  2022         if (_right[e] != INVALID) {
  2023           e = _right[e];
  2024           while (_right[e] != INVALID) {
  2025             e = _right[e];
  2026           }
  2027           Arc s = _parent[e];
  2028           _right[_parent[e]] = _left[e];
  2029           if (_left[e] != INVALID) {
  2030             _parent[_left[e]] = _parent[e];
  2031           }
  2032 
  2033           _left[e] = _left[arc];
  2034           _parent[_left[arc]] = e;
  2035           _right[e] = _right[arc];
  2036           _parent[_right[arc]] = e;
  2037 
  2038           _parent[e] = _parent[arc];
  2039           if (_parent[arc] != INVALID) {
  2040             if (_left[_parent[arc]] == arc) {
  2041               _left[_parent[arc]] = e;
  2042             } else {
  2043               _right[_parent[arc]] = e;
  2044             }
  2045           }
  2046           splay(s);
  2047         } else {
  2048           _right[e] = _right[arc];
  2049           _parent[_right[arc]] = e;
  2050           _parent[e] = _parent[arc];
  2051 
  2052           if (_parent[arc] != INVALID) {
  2053             if (_left[_parent[arc]] == arc) {
  2054               _left[_parent[arc]] = e;
  2055             } else {
  2056               _right[_parent[arc]] = e;
  2057             }
  2058           } else {
  2059             _head[_g.source(arc)] = e;
  2060           }
  2061         }
  2062       }
  2063     }
  2064 
  2065     Arc refreshRec(std::vector<Arc> &v,int a,int b)
  2066     {
  2067       int m=(a+b)/2;
  2068       Arc me=v[m];
  2069       if (a < m) {
  2070         Arc left = refreshRec(v,a,m-1);
  2071         _left[me] = left;
  2072         _parent[left] = me;
  2073       } else {
  2074         _left[me] = INVALID;
  2075       }
  2076       if (m < b) {
  2077         Arc right = refreshRec(v,m+1,b);
  2078         _right[me] = right;
  2079         _parent[right] = me;
  2080       } else {
  2081         _right[me] = INVALID;
  2082       }
  2083       return me;
  2084     }
  2085 
  2086     void refresh() {
  2087       for(NodeIt n(_g);n!=INVALID;++n) {
  2088         std::vector<Arc> v;
  2089         for(OutArcIt a(_g,n);a!=INVALID;++a) v.push_back(a);
  2090         if (!v.empty()) {
  2091           std::sort(v.begin(),v.end(),ArcLess(_g));
  2092           Arc head = refreshRec(v,0,v.size()-1);
  2093           _head[n] = head;
  2094           _parent[head] = INVALID;
  2095         }
  2096         else _head[n] = INVALID;
  2097       }
  2098     }
  2099 
  2100     void zig(Arc v) {
  2101       Arc w = _parent[v];
  2102       _parent[v] = _parent[w];
  2103       _parent[w] = v;
  2104       _left[w] = _right[v];
  2105       _right[v] = w;
  2106       if (_parent[v] != INVALID) {
  2107         if (_right[_parent[v]] == w) {
  2108           _right[_parent[v]] = v;
  2109         } else {
  2110           _left[_parent[v]] = v;
  2111         }
  2112       }
  2113       if (_left[w] != INVALID){
  2114         _parent[_left[w]] = w;
  2115       }
  2116     }
  2117 
  2118     void zag(Arc v) {
  2119       Arc w = _parent[v];
  2120       _parent[v] = _parent[w];
  2121       _parent[w] = v;
  2122       _right[w] = _left[v];
  2123       _left[v] = w;
  2124       if (_parent[v] != INVALID){
  2125         if (_left[_parent[v]] == w) {
  2126           _left[_parent[v]] = v;
  2127         } else {
  2128           _right[_parent[v]] = v;
  2129         }
  2130       }
  2131       if (_right[w] != INVALID){
  2132         _parent[_right[w]] = w;
  2133       }
  2134     }
  2135 
  2136     void splay(Arc v) {
  2137       while (_parent[v] != INVALID) {
  2138         if (v == _left[_parent[v]]) {
  2139           if (_parent[_parent[v]] == INVALID) {
  2140             zig(v);
  2141           } else {
  2142             if (_parent[v] == _left[_parent[_parent[v]]]) {
  2143               zig(_parent[v]);
  2144               zig(v);
  2145             } else {
  2146               zig(v);
  2147               zag(v);
  2148             }
  2149           }
  2150         } else {
  2151           if (_parent[_parent[v]] == INVALID) {
  2152             zag(v);
  2153           } else {
  2154             if (_parent[v] == _left[_parent[_parent[v]]]) {
  2155               zag(v);
  2156               zig(v);
  2157             } else {
  2158               zag(_parent[v]);
  2159               zag(v);
  2160             }
  2161           }
  2162         }
  2163       }
  2164       _head[_g.source(v)] = v;
  2165     }
  2166 
  2167 
  2168   public:
  2169 
  2170     ///Find an arc between two nodes.
  2171 
  2172     ///Find an arc between two nodes.
  2173     ///\param s The source node.
  2174     ///\param t The target node.
  2175     ///\param p The previous arc between \c s and \c t. It it is INVALID or
  2176     ///not given, the operator finds the first appropriate arc.
  2177     ///\return An arc from \c s to \c t after \c p or
  2178     ///\ref INVALID if there is no more.
  2179     ///
  2180     ///For example, you can count the number of arcs from \c u to \c v in the
  2181     ///following way.
  2182     ///\code
  2183     ///DynArcLookUp<ListDigraph> ae(g);
  2184     ///...
  2185     ///int n = 0;
  2186     ///for(Arc a = ae(u,v); a != INVALID; a = ae(u,v,a)) n++;
  2187     ///\endcode
  2188     ///
  2189     ///Finding the arcs take at most <em>O</em>(log<em>d</em>)
  2190     ///amortized time, specifically, the time complexity of the lookups
  2191     ///is equal to the optimal search tree implementation for the
  2192     ///current query distribution in a constant factor.
  2193     ///
  2194     ///\note This is a dynamic data structure, therefore the data
  2195     ///structure is updated after each graph alteration. Thus although
  2196     ///this data structure is theoretically faster than \ref ArcLookUp
  2197     ///and \ref AllArcLookUp, it often provides worse performance than
  2198     ///them.
  2199     Arc operator()(Node s, Node t, Arc p = INVALID) const  {
  2200       if (p == INVALID) {
  2201         Arc a = _head[s];
  2202         if (a == INVALID) return INVALID;
  2203         Arc r = INVALID;
  2204         while (true) {
  2205           if (_g.target(a) < t) {
  2206             if (_right[a] == INVALID) {
  2207               const_cast<DynArcLookUp&>(*this).splay(a);
  2208               return r;
  2209             } else {
  2210               a = _right[a];
  2211             }
  2212           } else {
  2213             if (_g.target(a) == t) {
  2214               r = a;
  2215             }
  2216             if (_left[a] == INVALID) {
  2217               const_cast<DynArcLookUp&>(*this).splay(a);
  2218               return r;
  2219             } else {
  2220               a = _left[a];
  2221             }
  2222           }
  2223         }
  2224       } else {
  2225         Arc a = p;
  2226         if (_right[a] != INVALID) {
  2227           a = _right[a];
  2228           while (_left[a] != INVALID) {
  2229             a = _left[a];
  2230           }
  2231           const_cast<DynArcLookUp&>(*this).splay(a);
  2232         } else {
  2233           while (_parent[a] != INVALID && _right[_parent[a]] ==  a) {
  2234             a = _parent[a];
  2235           }
  2236           if (_parent[a] == INVALID) {
  2237             return INVALID;
  2238           } else {
  2239             a = _parent[a];
  2240             const_cast<DynArcLookUp&>(*this).splay(a);
  2241           }
  2242         }
  2243         if (_g.target(a) == t) return a;
  2244         else return INVALID;
  2245       }
  2246     }
  2247 
  2248   };
  2249 
  2250   ///Fast arc look-up between given endpoints.
  2251 
  2252   ///Using this class, you can find an arc in a digraph from a given
  2253   ///source to a given target in time <em>O</em>(log<em>d</em>),
  2254   ///where <em>d</em> is the out-degree of the source node.
  2255   ///
  2256   ///It is not possible to find \e all parallel arcs between two nodes.
  2257   ///Use \ref AllArcLookUp for this purpose.
  2258   ///
  2259   ///\warning This class is static, so you should call refresh() (or at
  2260   ///least refresh(Node)) to refresh this data structure whenever the
  2261   ///digraph changes. This is a time consuming (superlinearly proportional
  2262   ///(<em>O</em>(<em>m</em> log<em>m</em>)) to the number of arcs).
  2263   ///
  2264   ///\tparam GR The type of the underlying digraph.
  2265   ///
  2266   ///\sa DynArcLookUp
  2267   ///\sa AllArcLookUp
  2268   template<class GR>
  2269   class ArcLookUp
  2270   {
  2271     TEMPLATE_DIGRAPH_TYPEDEFS(GR);
  2272 
  2273   public:
  2274 
  2275     /// The Digraph type
  2276     typedef GR Digraph;
  2277 
  2278   protected:
  2279     const Digraph &_g;
  2280     typename Digraph::template NodeMap<Arc> _head;
  2281     typename Digraph::template ArcMap<Arc> _left;
  2282     typename Digraph::template ArcMap<Arc> _right;
  2283 
  2284     class ArcLess {
  2285       const Digraph &g;
  2286     public:
  2287       ArcLess(const Digraph &_g) : g(_g) {}
  2288       bool operator()(Arc a,Arc b) const
  2289       {
  2290         return g.target(a)<g.target(b);
  2291       }
  2292     };
  2293 
  2294   public:
  2295 
  2296     ///Constructor
  2297 
  2298     ///Constructor.
  2299     ///
  2300     ///It builds up the search database, which remains valid until the digraph
  2301     ///changes.
  2302     ArcLookUp(const Digraph &g) :_g(g),_head(g),_left(g),_right(g) {refresh();}
  2303 
  2304   private:
  2305     Arc refreshRec(std::vector<Arc> &v,int a,int b)
  2306     {
  2307       int m=(a+b)/2;
  2308       Arc me=v[m];
  2309       _left[me] = a<m?refreshRec(v,a,m-1):INVALID;
  2310       _right[me] = m<b?refreshRec(v,m+1,b):INVALID;
  2311       return me;
  2312     }
  2313   public:
  2314     ///Refresh the search data structure at a node.
  2315 
  2316     ///Build up the search database of node \c n.
  2317     ///
  2318     ///It runs in time <em>O</em>(<em>d</em> log<em>d</em>), where <em>d</em>
  2319     ///is the number of the outgoing arcs of \c n.
  2320     void refresh(Node n)
  2321     {
  2322       std::vector<Arc> v;
  2323       for(OutArcIt e(_g,n);e!=INVALID;++e) v.push_back(e);
  2324       if(v.size()) {
  2325         std::sort(v.begin(),v.end(),ArcLess(_g));
  2326         _head[n]=refreshRec(v,0,v.size()-1);
  2327       }
  2328       else _head[n]=INVALID;
  2329     }
  2330     ///Refresh the full data structure.
  2331 
  2332     ///Build up the full search database. In fact, it simply calls
  2333     ///\ref refresh(Node) "refresh(n)" for each node \c n.
  2334     ///
  2335     ///It runs in time <em>O</em>(<em>m</em> log<em>D</em>), where <em>m</em> is
  2336     ///the number of the arcs in the digraph and <em>D</em> is the maximum
  2337     ///out-degree of the digraph.
  2338     void refresh()
  2339     {
  2340       for(NodeIt n(_g);n!=INVALID;++n) refresh(n);
  2341     }
  2342 
  2343     ///Find an arc between two nodes.
  2344 
  2345     ///Find an arc between two nodes in time <em>O</em>(log<em>d</em>),
  2346     ///where <em>d</em> is the number of outgoing arcs of \c s.
  2347     ///\param s The source node.
  2348     ///\param t The target node.
  2349     ///\return An arc from \c s to \c t if there exists,
  2350     ///\ref INVALID otherwise.
  2351     ///
  2352     ///\warning If you change the digraph, refresh() must be called before using
  2353     ///this operator. If you change the outgoing arcs of
  2354     ///a single node \c n, then \ref refresh(Node) "refresh(n)" is enough.
  2355     Arc operator()(Node s, Node t) const
  2356     {
  2357       Arc e;
  2358       for(e=_head[s];
  2359           e!=INVALID&&_g.target(e)!=t;
  2360           e = t < _g.target(e)?_left[e]:_right[e]) ;
  2361       return e;
  2362     }
  2363 
  2364   };
  2365 
  2366   ///Fast look-up of all arcs between given endpoints.
  2367 
  2368   ///This class is the same as \ref ArcLookUp, with the addition
  2369   ///that it makes it possible to find all parallel arcs between given
  2370   ///endpoints.
  2371   ///
  2372   ///\warning This class is static, so you should call refresh() (or at
  2373   ///least refresh(Node)) to refresh this data structure whenever the
  2374   ///digraph changes. This is a time consuming (superlinearly proportional
  2375   ///(<em>O</em>(<em>m</em> log<em>m</em>)) to the number of arcs).
  2376   ///
  2377   ///\tparam GR The type of the underlying digraph.
  2378   ///
  2379   ///\sa DynArcLookUp
  2380   ///\sa ArcLookUp
  2381   template<class GR>
  2382   class AllArcLookUp : public ArcLookUp<GR>
  2383   {
  2384     using ArcLookUp<GR>::_g;
  2385     using ArcLookUp<GR>::_right;
  2386     using ArcLookUp<GR>::_left;
  2387     using ArcLookUp<GR>::_head;
  2388 
  2389     TEMPLATE_DIGRAPH_TYPEDEFS(GR);
  2390 
  2391     typename GR::template ArcMap<Arc> _next;
  2392 
  2393     Arc refreshNext(Arc head,Arc next=INVALID)
  2394     {
  2395       if(head==INVALID) return next;
  2396       else {
  2397         next=refreshNext(_right[head],next);
  2398         _next[head]=( next!=INVALID && _g.target(next)==_g.target(head))
  2399           ? next : INVALID;
  2400         return refreshNext(_left[head],head);
  2401       }
  2402     }
  2403 
  2404     void refreshNext()
  2405     {
  2406       for(NodeIt n(_g);n!=INVALID;++n) refreshNext(_head[n]);
  2407     }
  2408 
  2409   public:
  2410 
  2411     /// The Digraph type
  2412     typedef GR Digraph;
  2413 
  2414     ///Constructor
  2415 
  2416     ///Constructor.
  2417     ///
  2418     ///It builds up the search database, which remains valid until the digraph
  2419     ///changes.
  2420     AllArcLookUp(const Digraph &g) : ArcLookUp<GR>(g), _next(g) {refreshNext();}
  2421 
  2422     ///Refresh the data structure at a node.
  2423 
  2424     ///Build up the search database of node \c n.
  2425     ///
  2426     ///It runs in time <em>O</em>(<em>d</em> log<em>d</em>), where <em>d</em> is
  2427     ///the number of the outgoing arcs of \c n.
  2428     void refresh(Node n)
  2429     {
  2430       ArcLookUp<GR>::refresh(n);
  2431       refreshNext(_head[n]);
  2432     }
  2433 
  2434     ///Refresh the full data structure.
  2435 
  2436     ///Build up the full search database. In fact, it simply calls
  2437     ///\ref refresh(Node) "refresh(n)" for each node \c n.
  2438     ///
  2439     ///It runs in time <em>O</em>(<em>m</em> log<em>D</em>), where <em>m</em> is
  2440     ///the number of the arcs in the digraph and <em>D</em> is the maximum
  2441     ///out-degree of the digraph.
  2442     void refresh()
  2443     {
  2444       for(NodeIt n(_g);n!=INVALID;++n) refresh(_head[n]);
  2445     }
  2446 
  2447     ///Find an arc between two nodes.
  2448 
  2449     ///Find an arc between two nodes.
  2450     ///\param s The source node.
  2451     ///\param t The target node.
  2452     ///\param prev The previous arc between \c s and \c t. It it is INVALID or
  2453     ///not given, the operator finds the first appropriate arc.
  2454     ///\return An arc from \c s to \c t after \c prev or
  2455     ///\ref INVALID if there is no more.
  2456     ///
  2457     ///For example, you can count the number of arcs from \c u to \c v in the
  2458     ///following way.
  2459     ///\code
  2460     ///AllArcLookUp<ListDigraph> ae(g);
  2461     ///...
  2462     ///int n = 0;
  2463     ///for(Arc a = ae(u,v); a != INVALID; a=ae(u,v,a)) n++;
  2464     ///\endcode
  2465     ///
  2466     ///Finding the first arc take <em>O</em>(log<em>d</em>) time,
  2467     ///where <em>d</em> is the number of outgoing arcs of \c s. Then the
  2468     ///consecutive arcs are found in constant time.
  2469     ///
  2470     ///\warning If you change the digraph, refresh() must be called before using
  2471     ///this operator. If you change the outgoing arcs of
  2472     ///a single node \c n, then \ref refresh(Node) "refresh(n)" is enough.
  2473     ///
  2474     Arc operator()(Node s, Node t, Arc prev=INVALID) const
  2475     {
  2476       if(prev==INVALID)
  2477         {
  2478           Arc f=INVALID;
  2479           Arc e;
  2480           for(e=_head[s];
  2481               e!=INVALID&&_g.target(e)!=t;
  2482               e = t < _g.target(e)?_left[e]:_right[e]) ;
  2483           while(e!=INVALID)
  2484             if(_g.target(e)==t)
  2485               {
  2486                 f = e;
  2487                 e = _left[e];
  2488               }
  2489             else e = _right[e];
  2490           return f;
  2491         }
  2492       else return _next[prev];
  2493     }
  2494 
  2495   };
  2496 
  2497   /// @}
  2498 
  2499 } //namespace lemon
  2500 
  2501 #endif