lemon/howard.h
author Peter Kovacs <kpeter@inf.elte.hu>
Wed, 12 Aug 2009 09:45:15 +0200
changeset 815 0a42883c8221
parent 814 11c946fa8d13
child 816 e746fb14e680
permissions -rw-r--r--
Separate group for the min mean cycle classes (#179)
     1 /* -*- C++ -*-
     2  *
     3  * This file is a part of LEMON, a generic C++ optimization library
     4  *
     5  * Copyright (C) 2003-2008
     6  * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
     7  * (Egervary Research Group on Combinatorial Optimization, EGRES).
     8  *
     9  * Permission to use, modify and distribute this software is granted
    10  * provided that this copyright notice appears in all copies. For
    11  * precise terms see the accompanying LICENSE file.
    12  *
    13  * This software is provided "AS IS" with no warranty of any kind,
    14  * express or implied, and with no claim as to its suitability for any
    15  * purpose.
    16  *
    17  */
    18 
    19 #ifndef LEMON_HOWARD_H
    20 #define LEMON_HOWARD_H
    21 
    22 /// \ingroup min_mean_cycle
    23 ///
    24 /// \file
    25 /// \brief Howard's algorithm for finding a minimum mean cycle.
    26 
    27 #include <vector>
    28 #include <limits>
    29 #include <lemon/core.h>
    30 #include <lemon/path.h>
    31 #include <lemon/tolerance.h>
    32 #include <lemon/connectivity.h>
    33 
    34 namespace lemon {
    35 
    36   /// \brief Default traits class of Howard class.
    37   ///
    38   /// Default traits class of Howard class.
    39   /// \tparam GR The type of the digraph.
    40   /// \tparam LEN The type of the length map.
    41   /// It must conform to the \ref concepts::ReadMap "ReadMap" concept.
    42 #ifdef DOXYGEN
    43   template <typename GR, typename LEN>
    44 #else
    45   template <typename GR, typename LEN,
    46     bool integer = std::numeric_limits<typename LEN::Value>::is_integer>
    47 #endif
    48   struct HowardDefaultTraits
    49   {
    50     /// The type of the digraph
    51     typedef GR Digraph;
    52     /// The type of the length map
    53     typedef LEN LengthMap;
    54     /// The type of the arc lengths
    55     typedef typename LengthMap::Value Value;
    56 
    57     /// \brief The large value type used for internal computations
    58     ///
    59     /// The large value type used for internal computations.
    60     /// It is \c long \c long if the \c Value type is integer,
    61     /// otherwise it is \c double.
    62     /// \c Value must be convertible to \c LargeValue.
    63     typedef double LargeValue;
    64 
    65     /// The tolerance type used for internal computations
    66     typedef lemon::Tolerance<LargeValue> Tolerance;
    67 
    68     /// \brief The path type of the found cycles
    69     ///
    70     /// The path type of the found cycles.
    71     /// It must conform to the \ref lemon::concepts::Path "Path" concept
    72     /// and it must have an \c addBack() function.
    73     typedef lemon::Path<Digraph> Path;
    74   };
    75 
    76   // Default traits class for integer value types
    77   template <typename GR, typename LEN>
    78   struct HowardDefaultTraits<GR, LEN, true>
    79   {
    80     typedef GR Digraph;
    81     typedef LEN LengthMap;
    82     typedef typename LengthMap::Value Value;
    83 #ifdef LEMON_HAVE_LONG_LONG
    84     typedef long long LargeValue;
    85 #else
    86     typedef long LargeValue;
    87 #endif
    88     typedef lemon::Tolerance<LargeValue> Tolerance;
    89     typedef lemon::Path<Digraph> Path;
    90   };
    91 
    92 
    93   /// \addtogroup min_mean_cycle
    94   /// @{
    95 
    96   /// \brief Implementation of Howard's algorithm for finding a minimum
    97   /// mean cycle.
    98   ///
    99   /// This class implements Howard's policy iteration algorithm for finding
   100   /// a directed cycle of minimum mean length (cost) in a digraph.
   101   /// This class provides the most efficient algorithm for the
   102   /// minimum mean cycle problem, though the best known theoretical
   103   /// bound on its running time is exponential.
   104   ///
   105   /// \tparam GR The type of the digraph the algorithm runs on.
   106   /// \tparam LEN The type of the length map. The default
   107   /// map type is \ref concepts::Digraph::ArcMap "GR::ArcMap<int>".
   108 #ifdef DOXYGEN
   109   template <typename GR, typename LEN, typename TR>
   110 #else
   111   template < typename GR,
   112              typename LEN = typename GR::template ArcMap<int>,
   113              typename TR = HowardDefaultTraits<GR, LEN> >
   114 #endif
   115   class Howard
   116   {
   117   public:
   118   
   119     /// The type of the digraph
   120     typedef typename TR::Digraph Digraph;
   121     /// The type of the length map
   122     typedef typename TR::LengthMap LengthMap;
   123     /// The type of the arc lengths
   124     typedef typename TR::Value Value;
   125 
   126     /// \brief The large value type
   127     ///
   128     /// The large value type used for internal computations.
   129     /// Using the \ref HowardDefaultTraits "default traits class",
   130     /// it is \c long \c long if the \c Value type is integer,
   131     /// otherwise it is \c double.
   132     typedef typename TR::LargeValue LargeValue;
   133 
   134     /// The tolerance type
   135     typedef typename TR::Tolerance Tolerance;
   136 
   137     /// \brief The path type of the found cycles
   138     ///
   139     /// The path type of the found cycles.
   140     /// Using the \ref HowardDefaultTraits "default traits class",
   141     /// it is \ref lemon::Path "Path<Digraph>".
   142     typedef typename TR::Path Path;
   143 
   144     /// The \ref HowardDefaultTraits "traits class" of the algorithm
   145     typedef TR Traits;
   146 
   147   private:
   148 
   149     TEMPLATE_DIGRAPH_TYPEDEFS(Digraph);
   150   
   151     // The digraph the algorithm runs on
   152     const Digraph &_gr;
   153     // The length of the arcs
   154     const LengthMap &_length;
   155 
   156     // Data for the found cycles
   157     bool _curr_found, _best_found;
   158     LargeValue _curr_length, _best_length;
   159     int _curr_size, _best_size;
   160     Node _curr_node, _best_node;
   161 
   162     Path *_cycle_path;
   163     bool _local_path;
   164 
   165     // Internal data used by the algorithm
   166     typename Digraph::template NodeMap<Arc> _policy;
   167     typename Digraph::template NodeMap<bool> _reached;
   168     typename Digraph::template NodeMap<int> _level;
   169     typename Digraph::template NodeMap<LargeValue> _dist;
   170 
   171     // Data for storing the strongly connected components
   172     int _comp_num;
   173     typename Digraph::template NodeMap<int> _comp;
   174     std::vector<std::vector<Node> > _comp_nodes;
   175     std::vector<Node>* _nodes;
   176     typename Digraph::template NodeMap<std::vector<Arc> > _in_arcs;
   177     
   178     // Queue used for BFS search
   179     std::vector<Node> _queue;
   180     int _qfront, _qback;
   181 
   182     Tolerance _tolerance;
   183   
   184     // Infinite constant
   185     const LargeValue INF;
   186 
   187   public:
   188   
   189     /// \name Named Template Parameters
   190     /// @{
   191 
   192     template <typename T>
   193     struct SetLargeValueTraits : public Traits {
   194       typedef T LargeValue;
   195       typedef lemon::Tolerance<T> Tolerance;
   196     };
   197 
   198     /// \brief \ref named-templ-param "Named parameter" for setting
   199     /// \c LargeValue type.
   200     ///
   201     /// \ref named-templ-param "Named parameter" for setting \c LargeValue
   202     /// type. It is used for internal computations in the algorithm.
   203     template <typename T>
   204     struct SetLargeValue
   205       : public Howard<GR, LEN, SetLargeValueTraits<T> > {
   206       typedef Howard<GR, LEN, SetLargeValueTraits<T> > Create;
   207     };
   208 
   209     template <typename T>
   210     struct SetPathTraits : public Traits {
   211       typedef T Path;
   212     };
   213 
   214     /// \brief \ref named-templ-param "Named parameter" for setting
   215     /// \c %Path type.
   216     ///
   217     /// \ref named-templ-param "Named parameter" for setting the \c %Path
   218     /// type of the found cycles.
   219     /// It must conform to the \ref lemon::concepts::Path "Path" concept
   220     /// and it must have an \c addBack() function.
   221     template <typename T>
   222     struct SetPath
   223       : public Howard<GR, LEN, SetPathTraits<T> > {
   224       typedef Howard<GR, LEN, SetPathTraits<T> > Create;
   225     };
   226     
   227     /// @}
   228 
   229   public:
   230 
   231     /// \brief Constructor.
   232     ///
   233     /// The constructor of the class.
   234     ///
   235     /// \param digraph The digraph the algorithm runs on.
   236     /// \param length The lengths (costs) of the arcs.
   237     Howard( const Digraph &digraph,
   238             const LengthMap &length ) :
   239       _gr(digraph), _length(length), _best_found(false),
   240       _best_length(0), _best_size(1), _cycle_path(NULL), _local_path(false),
   241       _policy(digraph), _reached(digraph), _level(digraph), _dist(digraph),
   242       _comp(digraph), _in_arcs(digraph),
   243       INF(std::numeric_limits<LargeValue>::has_infinity ?
   244           std::numeric_limits<LargeValue>::infinity() :
   245           std::numeric_limits<LargeValue>::max())
   246     {}
   247 
   248     /// Destructor.
   249     ~Howard() {
   250       if (_local_path) delete _cycle_path;
   251     }
   252 
   253     /// \brief Set the path structure for storing the found cycle.
   254     ///
   255     /// This function sets an external path structure for storing the
   256     /// found cycle.
   257     ///
   258     /// If you don't call this function before calling \ref run() or
   259     /// \ref findMinMean(), it will allocate a local \ref Path "path"
   260     /// structure. The destuctor deallocates this automatically
   261     /// allocated object, of course.
   262     ///
   263     /// \note The algorithm calls only the \ref lemon::Path::addBack()
   264     /// "addBack()" function of the given path structure.
   265     ///
   266     /// \return <tt>(*this)</tt>
   267     Howard& cycle(Path &path) {
   268       if (_local_path) {
   269         delete _cycle_path;
   270         _local_path = false;
   271       }
   272       _cycle_path = &path;
   273       return *this;
   274     }
   275 
   276     /// \name Execution control
   277     /// The simplest way to execute the algorithm is to call the \ref run()
   278     /// function.\n
   279     /// If you only need the minimum mean length, you may call
   280     /// \ref findMinMean().
   281 
   282     /// @{
   283 
   284     /// \brief Run the algorithm.
   285     ///
   286     /// This function runs the algorithm.
   287     /// It can be called more than once (e.g. if the underlying digraph
   288     /// and/or the arc lengths have been modified).
   289     ///
   290     /// \return \c true if a directed cycle exists in the digraph.
   291     ///
   292     /// \note <tt>mmc.run()</tt> is just a shortcut of the following code.
   293     /// \code
   294     ///   return mmc.findMinMean() && mmc.findCycle();
   295     /// \endcode
   296     bool run() {
   297       return findMinMean() && findCycle();
   298     }
   299 
   300     /// \brief Find the minimum cycle mean.
   301     ///
   302     /// This function finds the minimum mean length of the directed
   303     /// cycles in the digraph.
   304     ///
   305     /// \return \c true if a directed cycle exists in the digraph.
   306     bool findMinMean() {
   307       // Initialize and find strongly connected components
   308       init();
   309       findComponents();
   310       
   311       // Find the minimum cycle mean in the components
   312       for (int comp = 0; comp < _comp_num; ++comp) {
   313         // Find the minimum mean cycle in the current component
   314         if (!buildPolicyGraph(comp)) continue;
   315         while (true) {
   316           findPolicyCycle();
   317           if (!computeNodeDistances()) break;
   318         }
   319         // Update the best cycle (global minimum mean cycle)
   320         if ( _curr_found && (!_best_found ||
   321              _curr_length * _best_size < _best_length * _curr_size) ) {
   322           _best_found = true;
   323           _best_length = _curr_length;
   324           _best_size = _curr_size;
   325           _best_node = _curr_node;
   326         }
   327       }
   328       return _best_found;
   329     }
   330 
   331     /// \brief Find a minimum mean directed cycle.
   332     ///
   333     /// This function finds a directed cycle of minimum mean length
   334     /// in the digraph using the data computed by findMinMean().
   335     ///
   336     /// \return \c true if a directed cycle exists in the digraph.
   337     ///
   338     /// \pre \ref findMinMean() must be called before using this function.
   339     bool findCycle() {
   340       if (!_best_found) return false;
   341       _cycle_path->addBack(_policy[_best_node]);
   342       for ( Node v = _best_node;
   343             (v = _gr.target(_policy[v])) != _best_node; ) {
   344         _cycle_path->addBack(_policy[v]);
   345       }
   346       return true;
   347     }
   348 
   349     /// @}
   350 
   351     /// \name Query Functions
   352     /// The results of the algorithm can be obtained using these
   353     /// functions.\n
   354     /// The algorithm should be executed before using them.
   355 
   356     /// @{
   357 
   358     /// \brief Return the total length of the found cycle.
   359     ///
   360     /// This function returns the total length of the found cycle.
   361     ///
   362     /// \pre \ref run() or \ref findMinMean() must be called before
   363     /// using this function.
   364     LargeValue cycleLength() const {
   365       return _best_length;
   366     }
   367 
   368     /// \brief Return the number of arcs on the found cycle.
   369     ///
   370     /// This function returns the number of arcs on the found cycle.
   371     ///
   372     /// \pre \ref run() or \ref findMinMean() must be called before
   373     /// using this function.
   374     int cycleArcNum() const {
   375       return _best_size;
   376     }
   377 
   378     /// \brief Return the mean length of the found cycle.
   379     ///
   380     /// This function returns the mean length of the found cycle.
   381     ///
   382     /// \note <tt>alg.cycleMean()</tt> is just a shortcut of the
   383     /// following code.
   384     /// \code
   385     ///   return static_cast<double>(alg.cycleLength()) / alg.cycleArcNum();
   386     /// \endcode
   387     ///
   388     /// \pre \ref run() or \ref findMinMean() must be called before
   389     /// using this function.
   390     double cycleMean() const {
   391       return static_cast<double>(_best_length) / _best_size;
   392     }
   393 
   394     /// \brief Return the found cycle.
   395     ///
   396     /// This function returns a const reference to the path structure
   397     /// storing the found cycle.
   398     ///
   399     /// \pre \ref run() or \ref findCycle() must be called before using
   400     /// this function.
   401     const Path& cycle() const {
   402       return *_cycle_path;
   403     }
   404 
   405     ///@}
   406 
   407   private:
   408 
   409     // Initialize
   410     void init() {
   411       if (!_cycle_path) {
   412         _local_path = true;
   413         _cycle_path = new Path;
   414       }
   415       _queue.resize(countNodes(_gr));
   416       _best_found = false;
   417       _best_length = 0;
   418       _best_size = 1;
   419       _cycle_path->clear();
   420     }
   421     
   422     // Find strongly connected components and initialize _comp_nodes
   423     // and _in_arcs
   424     void findComponents() {
   425       _comp_num = stronglyConnectedComponents(_gr, _comp);
   426       _comp_nodes.resize(_comp_num);
   427       if (_comp_num == 1) {
   428         _comp_nodes[0].clear();
   429         for (NodeIt n(_gr); n != INVALID; ++n) {
   430           _comp_nodes[0].push_back(n);
   431           _in_arcs[n].clear();
   432           for (InArcIt a(_gr, n); a != INVALID; ++a) {
   433             _in_arcs[n].push_back(a);
   434           }
   435         }
   436       } else {
   437         for (int i = 0; i < _comp_num; ++i)
   438           _comp_nodes[i].clear();
   439         for (NodeIt n(_gr); n != INVALID; ++n) {
   440           int k = _comp[n];
   441           _comp_nodes[k].push_back(n);
   442           _in_arcs[n].clear();
   443           for (InArcIt a(_gr, n); a != INVALID; ++a) {
   444             if (_comp[_gr.source(a)] == k) _in_arcs[n].push_back(a);
   445           }
   446         }
   447       }
   448     }
   449 
   450     // Build the policy graph in the given strongly connected component
   451     // (the out-degree of every node is 1)
   452     bool buildPolicyGraph(int comp) {
   453       _nodes = &(_comp_nodes[comp]);
   454       if (_nodes->size() < 1 ||
   455           (_nodes->size() == 1 && _in_arcs[(*_nodes)[0]].size() == 0)) {
   456         return false;
   457       }
   458       for (int i = 0; i < int(_nodes->size()); ++i) {
   459         _dist[(*_nodes)[i]] = INF;
   460       }
   461       Node u, v;
   462       Arc e;
   463       for (int i = 0; i < int(_nodes->size()); ++i) {
   464         v = (*_nodes)[i];
   465         for (int j = 0; j < int(_in_arcs[v].size()); ++j) {
   466           e = _in_arcs[v][j];
   467           u = _gr.source(e);
   468           if (_length[e] < _dist[u]) {
   469             _dist[u] = _length[e];
   470             _policy[u] = e;
   471           }
   472         }
   473       }
   474       return true;
   475     }
   476 
   477     // Find the minimum mean cycle in the policy graph
   478     void findPolicyCycle() {
   479       for (int i = 0; i < int(_nodes->size()); ++i) {
   480         _level[(*_nodes)[i]] = -1;
   481       }
   482       LargeValue clength;
   483       int csize;
   484       Node u, v;
   485       _curr_found = false;
   486       for (int i = 0; i < int(_nodes->size()); ++i) {
   487         u = (*_nodes)[i];
   488         if (_level[u] >= 0) continue;
   489         for (; _level[u] < 0; u = _gr.target(_policy[u])) {
   490           _level[u] = i;
   491         }
   492         if (_level[u] == i) {
   493           // A cycle is found
   494           clength = _length[_policy[u]];
   495           csize = 1;
   496           for (v = u; (v = _gr.target(_policy[v])) != u; ) {
   497             clength += _length[_policy[v]];
   498             ++csize;
   499           }
   500           if ( !_curr_found ||
   501                (clength * _curr_size < _curr_length * csize) ) {
   502             _curr_found = true;
   503             _curr_length = clength;
   504             _curr_size = csize;
   505             _curr_node = u;
   506           }
   507         }
   508       }
   509     }
   510 
   511     // Contract the policy graph and compute node distances
   512     bool computeNodeDistances() {
   513       // Find the component of the main cycle and compute node distances
   514       // using reverse BFS
   515       for (int i = 0; i < int(_nodes->size()); ++i) {
   516         _reached[(*_nodes)[i]] = false;
   517       }
   518       _qfront = _qback = 0;
   519       _queue[0] = _curr_node;
   520       _reached[_curr_node] = true;
   521       _dist[_curr_node] = 0;
   522       Node u, v;
   523       Arc e;
   524       while (_qfront <= _qback) {
   525         v = _queue[_qfront++];
   526         for (int j = 0; j < int(_in_arcs[v].size()); ++j) {
   527           e = _in_arcs[v][j];
   528           u = _gr.source(e);
   529           if (_policy[u] == e && !_reached[u]) {
   530             _reached[u] = true;
   531             _dist[u] = _dist[v] + _length[e] * _curr_size - _curr_length;
   532             _queue[++_qback] = u;
   533           }
   534         }
   535       }
   536 
   537       // Connect all other nodes to this component and compute node
   538       // distances using reverse BFS
   539       _qfront = 0;
   540       while (_qback < int(_nodes->size())-1) {
   541         v = _queue[_qfront++];
   542         for (int j = 0; j < int(_in_arcs[v].size()); ++j) {
   543           e = _in_arcs[v][j];
   544           u = _gr.source(e);
   545           if (!_reached[u]) {
   546             _reached[u] = true;
   547             _policy[u] = e;
   548             _dist[u] = _dist[v] + _length[e] * _curr_size - _curr_length;
   549             _queue[++_qback] = u;
   550           }
   551         }
   552       }
   553 
   554       // Improve node distances
   555       bool improved = false;
   556       for (int i = 0; i < int(_nodes->size()); ++i) {
   557         v = (*_nodes)[i];
   558         for (int j = 0; j < int(_in_arcs[v].size()); ++j) {
   559           e = _in_arcs[v][j];
   560           u = _gr.source(e);
   561           LargeValue delta = _dist[v] + _length[e] * _curr_size - _curr_length;
   562           if (_tolerance.less(delta, _dist[u])) {
   563             _dist[u] = delta;
   564             _policy[u] = e;
   565             improved = true;
   566           }
   567         }
   568       }
   569       return improved;
   570     }
   571 
   572   }; //class Howard
   573 
   574   ///@}
   575 
   576 } //namespace lemon
   577 
   578 #endif //LEMON_HOWARD_H