lemon/cost_scaling.h
author Peter Kovacs <kpeter@inf.elte.hu>
Thu, 17 Oct 2013 09:29:37 +0200
changeset 1296 330264b171cf
parent 1240 ee9bac10f58e
child 1297 c0c2f5c87aa6
permissions -rw-r--r--
Fix debug checking + simplify lower bound handling (#478)
     1 /* -*- mode: C++; indent-tabs-mode: nil; -*-
     2  *
     3  * This file is a part of LEMON, a generic C++ optimization library.
     4  *
     5  * Copyright (C) 2003-2010
     6  * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
     7  * (Egervary Research Group on Combinatorial Optimization, EGRES).
     8  *
     9  * Permission to use, modify and distribute this software is granted
    10  * provided that this copyright notice appears in all copies. For
    11  * precise terms see the accompanying LICENSE file.
    12  *
    13  * This software is provided "AS IS" with no warranty of any kind,
    14  * express or implied, and with no claim as to its suitability for any
    15  * purpose.
    16  *
    17  */
    18 
    19 #ifndef LEMON_COST_SCALING_H
    20 #define LEMON_COST_SCALING_H
    21 
    22 /// \ingroup min_cost_flow_algs
    23 /// \file
    24 /// \brief Cost scaling algorithm for finding a minimum cost flow.
    25 
    26 #include <vector>
    27 #include <deque>
    28 #include <limits>
    29 
    30 #include <lemon/core.h>
    31 #include <lemon/maps.h>
    32 #include <lemon/math.h>
    33 #include <lemon/static_graph.h>
    34 #include <lemon/circulation.h>
    35 #include <lemon/bellman_ford.h>
    36 
    37 namespace lemon {
    38 
    39   /// \brief Default traits class of CostScaling algorithm.
    40   ///
    41   /// Default traits class of CostScaling algorithm.
    42   /// \tparam GR Digraph type.
    43   /// \tparam V The number type used for flow amounts, capacity bounds
    44   /// and supply values. By default it is \c int.
    45   /// \tparam C The number type used for costs and potentials.
    46   /// By default it is the same as \c V.
    47 #ifdef DOXYGEN
    48   template <typename GR, typename V = int, typename C = V>
    49 #else
    50   template < typename GR, typename V = int, typename C = V,
    51              bool integer = std::numeric_limits<C>::is_integer >
    52 #endif
    53   struct CostScalingDefaultTraits
    54   {
    55     /// The type of the digraph
    56     typedef GR Digraph;
    57     /// The type of the flow amounts, capacity bounds and supply values
    58     typedef V Value;
    59     /// The type of the arc costs
    60     typedef C Cost;
    61 
    62     /// \brief The large cost type used for internal computations
    63     ///
    64     /// The large cost type used for internal computations.
    65     /// It is \c long \c long if the \c Cost type is integer,
    66     /// otherwise it is \c double.
    67     /// \c Cost must be convertible to \c LargeCost.
    68     typedef double LargeCost;
    69   };
    70 
    71   // Default traits class for integer cost types
    72   template <typename GR, typename V, typename C>
    73   struct CostScalingDefaultTraits<GR, V, C, true>
    74   {
    75     typedef GR Digraph;
    76     typedef V Value;
    77     typedef C Cost;
    78 #ifdef LEMON_HAVE_LONG_LONG
    79     typedef long long LargeCost;
    80 #else
    81     typedef long LargeCost;
    82 #endif
    83   };
    84 
    85 
    86   /// \addtogroup min_cost_flow_algs
    87   /// @{
    88 
    89   /// \brief Implementation of the Cost Scaling algorithm for
    90   /// finding a \ref min_cost_flow "minimum cost flow".
    91   ///
    92   /// \ref CostScaling implements a cost scaling algorithm that performs
    93   /// push/augment and relabel operations for finding a \ref min_cost_flow
    94   /// "minimum cost flow" \ref amo93networkflows, \ref goldberg90approximation,
    95   /// \ref goldberg97efficient, \ref bunnagel98efficient.
    96   /// It is a highly efficient primal-dual solution method, which
    97   /// can be viewed as the generalization of the \ref Preflow
    98   /// "preflow push-relabel" algorithm for the maximum flow problem.
    99   ///
   100   /// In general, \ref NetworkSimplex and \ref CostScaling are the fastest
   101   /// implementations available in LEMON for solving this problem.
   102   /// (For more information, see \ref min_cost_flow_algs "the module page".)
   103   ///
   104   /// Most of the parameters of the problem (except for the digraph)
   105   /// can be given using separate functions, and the algorithm can be
   106   /// executed using the \ref run() function. If some parameters are not
   107   /// specified, then default values will be used.
   108   ///
   109   /// \tparam GR The digraph type the algorithm runs on.
   110   /// \tparam V The number type used for flow amounts, capacity bounds
   111   /// and supply values in the algorithm. By default, it is \c int.
   112   /// \tparam C The number type used for costs and potentials in the
   113   /// algorithm. By default, it is the same as \c V.
   114   /// \tparam TR The traits class that defines various types used by the
   115   /// algorithm. By default, it is \ref CostScalingDefaultTraits
   116   /// "CostScalingDefaultTraits<GR, V, C>".
   117   /// In most cases, this parameter should not be set directly,
   118   /// consider to use the named template parameters instead.
   119   ///
   120   /// \warning Both \c V and \c C must be signed number types.
   121   /// \warning All input data (capacities, supply values, and costs) must
   122   /// be integer.
   123   /// \warning This algorithm does not support negative costs for
   124   /// arcs having infinite upper bound.
   125   ///
   126   /// \note %CostScaling provides three different internal methods,
   127   /// from which the most efficient one is used by default.
   128   /// For more information, see \ref Method.
   129 #ifdef DOXYGEN
   130   template <typename GR, typename V, typename C, typename TR>
   131 #else
   132   template < typename GR, typename V = int, typename C = V,
   133              typename TR = CostScalingDefaultTraits<GR, V, C> >
   134 #endif
   135   class CostScaling
   136   {
   137   public:
   138 
   139     /// The type of the digraph
   140     typedef typename TR::Digraph Digraph;
   141     /// The type of the flow amounts, capacity bounds and supply values
   142     typedef typename TR::Value Value;
   143     /// The type of the arc costs
   144     typedef typename TR::Cost Cost;
   145 
   146     /// \brief The large cost type
   147     ///
   148     /// The large cost type used for internal computations.
   149     /// By default, it is \c long \c long if the \c Cost type is integer,
   150     /// otherwise it is \c double.
   151     typedef typename TR::LargeCost LargeCost;
   152 
   153     /// The \ref CostScalingDefaultTraits "traits class" of the algorithm
   154     typedef TR Traits;
   155 
   156   public:
   157 
   158     /// \brief Problem type constants for the \c run() function.
   159     ///
   160     /// Enum type containing the problem type constants that can be
   161     /// returned by the \ref run() function of the algorithm.
   162     enum ProblemType {
   163       /// The problem has no feasible solution (flow).
   164       INFEASIBLE,
   165       /// The problem has optimal solution (i.e. it is feasible and
   166       /// bounded), and the algorithm has found optimal flow and node
   167       /// potentials (primal and dual solutions).
   168       OPTIMAL,
   169       /// The digraph contains an arc of negative cost and infinite
   170       /// upper bound. It means that the objective function is unbounded
   171       /// on that arc, however, note that it could actually be bounded
   172       /// over the feasible flows, but this algroithm cannot handle
   173       /// these cases.
   174       UNBOUNDED
   175     };
   176 
   177     /// \brief Constants for selecting the internal method.
   178     ///
   179     /// Enum type containing constants for selecting the internal method
   180     /// for the \ref run() function.
   181     ///
   182     /// \ref CostScaling provides three internal methods that differ mainly
   183     /// in their base operations, which are used in conjunction with the
   184     /// relabel operation.
   185     /// By default, the so called \ref PARTIAL_AUGMENT
   186     /// "Partial Augment-Relabel" method is used, which turned out to be
   187     /// the most efficient and the most robust on various test inputs.
   188     /// However, the other methods can be selected using the \ref run()
   189     /// function with the proper parameter.
   190     enum Method {
   191       /// Local push operations are used, i.e. flow is moved only on one
   192       /// admissible arc at once.
   193       PUSH,
   194       /// Augment operations are used, i.e. flow is moved on admissible
   195       /// paths from a node with excess to a node with deficit.
   196       AUGMENT,
   197       /// Partial augment operations are used, i.e. flow is moved on
   198       /// admissible paths started from a node with excess, but the
   199       /// lengths of these paths are limited. This method can be viewed
   200       /// as a combined version of the previous two operations.
   201       PARTIAL_AUGMENT
   202     };
   203 
   204   private:
   205 
   206     TEMPLATE_DIGRAPH_TYPEDEFS(GR);
   207 
   208     typedef std::vector<int> IntVector;
   209     typedef std::vector<Value> ValueVector;
   210     typedef std::vector<Cost> CostVector;
   211     typedef std::vector<LargeCost> LargeCostVector;
   212     typedef std::vector<char> BoolVector;
   213     // Note: vector<char> is used instead of vector<bool> for efficiency reasons
   214 
   215   private:
   216 
   217     template <typename KT, typename VT>
   218     class StaticVectorMap {
   219     public:
   220       typedef KT Key;
   221       typedef VT Value;
   222 
   223       StaticVectorMap(std::vector<Value>& v) : _v(v) {}
   224 
   225       const Value& operator[](const Key& key) const {
   226         return _v[StaticDigraph::id(key)];
   227       }
   228 
   229       Value& operator[](const Key& key) {
   230         return _v[StaticDigraph::id(key)];
   231       }
   232 
   233       void set(const Key& key, const Value& val) {
   234         _v[StaticDigraph::id(key)] = val;
   235       }
   236 
   237     private:
   238       std::vector<Value>& _v;
   239     };
   240 
   241     typedef StaticVectorMap<StaticDigraph::Arc, LargeCost> LargeCostArcMap;
   242 
   243   private:
   244 
   245     // Data related to the underlying digraph
   246     const GR &_graph;
   247     int _node_num;
   248     int _arc_num;
   249     int _res_node_num;
   250     int _res_arc_num;
   251     int _root;
   252 
   253     // Parameters of the problem
   254     bool _have_lower;
   255     Value _sum_supply;
   256     int _sup_node_num;
   257 
   258     // Data structures for storing the digraph
   259     IntNodeMap _node_id;
   260     IntArcMap _arc_idf;
   261     IntArcMap _arc_idb;
   262     IntVector _first_out;
   263     BoolVector _forward;
   264     IntVector _source;
   265     IntVector _target;
   266     IntVector _reverse;
   267 
   268     // Node and arc data
   269     ValueVector _lower;
   270     ValueVector _upper;
   271     CostVector _scost;
   272     ValueVector _supply;
   273 
   274     ValueVector _res_cap;
   275     LargeCostVector _cost;
   276     LargeCostVector _pi;
   277     ValueVector _excess;
   278     IntVector _next_out;
   279     std::deque<int> _active_nodes;
   280 
   281     // Data for scaling
   282     LargeCost _epsilon;
   283     int _alpha;
   284 
   285     IntVector _buckets;
   286     IntVector _bucket_next;
   287     IntVector _bucket_prev;
   288     IntVector _rank;
   289     int _max_rank;
   290 
   291   public:
   292 
   293     /// \brief Constant for infinite upper bounds (capacities).
   294     ///
   295     /// Constant for infinite upper bounds (capacities).
   296     /// It is \c std::numeric_limits<Value>::infinity() if available,
   297     /// \c std::numeric_limits<Value>::max() otherwise.
   298     const Value INF;
   299 
   300   public:
   301 
   302     /// \name Named Template Parameters
   303     /// @{
   304 
   305     template <typename T>
   306     struct SetLargeCostTraits : public Traits {
   307       typedef T LargeCost;
   308     };
   309 
   310     /// \brief \ref named-templ-param "Named parameter" for setting
   311     /// \c LargeCost type.
   312     ///
   313     /// \ref named-templ-param "Named parameter" for setting \c LargeCost
   314     /// type, which is used for internal computations in the algorithm.
   315     /// \c Cost must be convertible to \c LargeCost.
   316     template <typename T>
   317     struct SetLargeCost
   318       : public CostScaling<GR, V, C, SetLargeCostTraits<T> > {
   319       typedef  CostScaling<GR, V, C, SetLargeCostTraits<T> > Create;
   320     };
   321 
   322     /// @}
   323 
   324   protected:
   325 
   326     CostScaling() {}
   327 
   328   public:
   329 
   330     /// \brief Constructor.
   331     ///
   332     /// The constructor of the class.
   333     ///
   334     /// \param graph The digraph the algorithm runs on.
   335     CostScaling(const GR& graph) :
   336       _graph(graph), _node_id(graph), _arc_idf(graph), _arc_idb(graph),
   337       INF(std::numeric_limits<Value>::has_infinity ?
   338           std::numeric_limits<Value>::infinity() :
   339           std::numeric_limits<Value>::max())
   340     {
   341       // Check the number types
   342       LEMON_ASSERT(std::numeric_limits<Value>::is_signed,
   343         "The flow type of CostScaling must be signed");
   344       LEMON_ASSERT(std::numeric_limits<Cost>::is_signed,
   345         "The cost type of CostScaling must be signed");
   346 
   347       // Reset data structures
   348       reset();
   349     }
   350 
   351     /// \name Parameters
   352     /// The parameters of the algorithm can be specified using these
   353     /// functions.
   354 
   355     /// @{
   356 
   357     /// \brief Set the lower bounds on the arcs.
   358     ///
   359     /// This function sets the lower bounds on the arcs.
   360     /// If it is not used before calling \ref run(), the lower bounds
   361     /// will be set to zero on all arcs.
   362     ///
   363     /// \param map An arc map storing the lower bounds.
   364     /// Its \c Value type must be convertible to the \c Value type
   365     /// of the algorithm.
   366     ///
   367     /// \return <tt>(*this)</tt>
   368     template <typename LowerMap>
   369     CostScaling& lowerMap(const LowerMap& map) {
   370       _have_lower = true;
   371       for (ArcIt a(_graph); a != INVALID; ++a) {
   372         _lower[_arc_idf[a]] = map[a];
   373       }
   374       return *this;
   375     }
   376 
   377     /// \brief Set the upper bounds (capacities) on the arcs.
   378     ///
   379     /// This function sets the upper bounds (capacities) on the arcs.
   380     /// If it is not used before calling \ref run(), the upper bounds
   381     /// will be set to \ref INF on all arcs (i.e. the flow value will be
   382     /// unbounded from above).
   383     ///
   384     /// \param map An arc map storing the upper bounds.
   385     /// Its \c Value type must be convertible to the \c Value type
   386     /// of the algorithm.
   387     ///
   388     /// \return <tt>(*this)</tt>
   389     template<typename UpperMap>
   390     CostScaling& upperMap(const UpperMap& map) {
   391       for (ArcIt a(_graph); a != INVALID; ++a) {
   392         _upper[_arc_idf[a]] = map[a];
   393       }
   394       return *this;
   395     }
   396 
   397     /// \brief Set the costs of the arcs.
   398     ///
   399     /// This function sets the costs of the arcs.
   400     /// If it is not used before calling \ref run(), the costs
   401     /// will be set to \c 1 on all arcs.
   402     ///
   403     /// \param map An arc map storing the costs.
   404     /// Its \c Value type must be convertible to the \c Cost type
   405     /// of the algorithm.
   406     ///
   407     /// \return <tt>(*this)</tt>
   408     template<typename CostMap>
   409     CostScaling& costMap(const CostMap& map) {
   410       for (ArcIt a(_graph); a != INVALID; ++a) {
   411         _scost[_arc_idf[a]] =  map[a];
   412         _scost[_arc_idb[a]] = -map[a];
   413       }
   414       return *this;
   415     }
   416 
   417     /// \brief Set the supply values of the nodes.
   418     ///
   419     /// This function sets the supply values of the nodes.
   420     /// If neither this function nor \ref stSupply() is used before
   421     /// calling \ref run(), the supply of each node will be set to zero.
   422     ///
   423     /// \param map A node map storing the supply values.
   424     /// Its \c Value type must be convertible to the \c Value type
   425     /// of the algorithm.
   426     ///
   427     /// \return <tt>(*this)</tt>
   428     template<typename SupplyMap>
   429     CostScaling& supplyMap(const SupplyMap& map) {
   430       for (NodeIt n(_graph); n != INVALID; ++n) {
   431         _supply[_node_id[n]] = map[n];
   432       }
   433       return *this;
   434     }
   435 
   436     /// \brief Set single source and target nodes and a supply value.
   437     ///
   438     /// This function sets a single source node and a single target node
   439     /// and the required flow value.
   440     /// If neither this function nor \ref supplyMap() is used before
   441     /// calling \ref run(), the supply of each node will be set to zero.
   442     ///
   443     /// Using this function has the same effect as using \ref supplyMap()
   444     /// with a map in which \c k is assigned to \c s, \c -k is
   445     /// assigned to \c t and all other nodes have zero supply value.
   446     ///
   447     /// \param s The source node.
   448     /// \param t The target node.
   449     /// \param k The required amount of flow from node \c s to node \c t
   450     /// (i.e. the supply of \c s and the demand of \c t).
   451     ///
   452     /// \return <tt>(*this)</tt>
   453     CostScaling& stSupply(const Node& s, const Node& t, Value k) {
   454       for (int i = 0; i != _res_node_num; ++i) {
   455         _supply[i] = 0;
   456       }
   457       _supply[_node_id[s]] =  k;
   458       _supply[_node_id[t]] = -k;
   459       return *this;
   460     }
   461 
   462     /// @}
   463 
   464     /// \name Execution control
   465     /// The algorithm can be executed using \ref run().
   466 
   467     /// @{
   468 
   469     /// \brief Run the algorithm.
   470     ///
   471     /// This function runs the algorithm.
   472     /// The paramters can be specified using functions \ref lowerMap(),
   473     /// \ref upperMap(), \ref costMap(), \ref supplyMap(), \ref stSupply().
   474     /// For example,
   475     /// \code
   476     ///   CostScaling<ListDigraph> cs(graph);
   477     ///   cs.lowerMap(lower).upperMap(upper).costMap(cost)
   478     ///     .supplyMap(sup).run();
   479     /// \endcode
   480     ///
   481     /// This function can be called more than once. All the given parameters
   482     /// are kept for the next call, unless \ref resetParams() or \ref reset()
   483     /// is used, thus only the modified parameters have to be set again.
   484     /// If the underlying digraph was also modified after the construction
   485     /// of the class (or the last \ref reset() call), then the \ref reset()
   486     /// function must be called.
   487     ///
   488     /// \param method The internal method that will be used in the
   489     /// algorithm. For more information, see \ref Method.
   490     /// \param factor The cost scaling factor. It must be at least two.
   491     ///
   492     /// \return \c INFEASIBLE if no feasible flow exists,
   493     /// \n \c OPTIMAL if the problem has optimal solution
   494     /// (i.e. it is feasible and bounded), and the algorithm has found
   495     /// optimal flow and node potentials (primal and dual solutions),
   496     /// \n \c UNBOUNDED if the digraph contains an arc of negative cost
   497     /// and infinite upper bound. It means that the objective function
   498     /// is unbounded on that arc, however, note that it could actually be
   499     /// bounded over the feasible flows, but this algroithm cannot handle
   500     /// these cases.
   501     ///
   502     /// \see ProblemType, Method
   503     /// \see resetParams(), reset()
   504     ProblemType run(Method method = PARTIAL_AUGMENT, int factor = 16) {
   505       LEMON_ASSERT(factor >= 2, "The scaling factor must be at least 2");
   506       _alpha = factor;
   507       ProblemType pt = init();
   508       if (pt != OPTIMAL) return pt;
   509       start(method);
   510       return OPTIMAL;
   511     }
   512 
   513     /// \brief Reset all the parameters that have been given before.
   514     ///
   515     /// This function resets all the paramaters that have been given
   516     /// before using functions \ref lowerMap(), \ref upperMap(),
   517     /// \ref costMap(), \ref supplyMap(), \ref stSupply().
   518     ///
   519     /// It is useful for multiple \ref run() calls. Basically, all the given
   520     /// parameters are kept for the next \ref run() call, unless
   521     /// \ref resetParams() or \ref reset() is used.
   522     /// If the underlying digraph was also modified after the construction
   523     /// of the class or the last \ref reset() call, then the \ref reset()
   524     /// function must be used, otherwise \ref resetParams() is sufficient.
   525     ///
   526     /// For example,
   527     /// \code
   528     ///   CostScaling<ListDigraph> cs(graph);
   529     ///
   530     ///   // First run
   531     ///   cs.lowerMap(lower).upperMap(upper).costMap(cost)
   532     ///     .supplyMap(sup).run();
   533     ///
   534     ///   // Run again with modified cost map (resetParams() is not called,
   535     ///   // so only the cost map have to be set again)
   536     ///   cost[e] += 100;
   537     ///   cs.costMap(cost).run();
   538     ///
   539     ///   // Run again from scratch using resetParams()
   540     ///   // (the lower bounds will be set to zero on all arcs)
   541     ///   cs.resetParams();
   542     ///   cs.upperMap(capacity).costMap(cost)
   543     ///     .supplyMap(sup).run();
   544     /// \endcode
   545     ///
   546     /// \return <tt>(*this)</tt>
   547     ///
   548     /// \see reset(), run()
   549     CostScaling& resetParams() {
   550       for (int i = 0; i != _res_node_num; ++i) {
   551         _supply[i] = 0;
   552       }
   553       int limit = _first_out[_root];
   554       for (int j = 0; j != limit; ++j) {
   555         _lower[j] = 0;
   556         _upper[j] = INF;
   557         _scost[j] = _forward[j] ? 1 : -1;
   558       }
   559       for (int j = limit; j != _res_arc_num; ++j) {
   560         _lower[j] = 0;
   561         _upper[j] = INF;
   562         _scost[j] = 0;
   563         _scost[_reverse[j]] = 0;
   564       }
   565       _have_lower = false;
   566       return *this;
   567     }
   568 
   569     /// \brief Reset the internal data structures and all the parameters
   570     /// that have been given before.
   571     ///
   572     /// This function resets the internal data structures and all the
   573     /// paramaters that have been given before using functions \ref lowerMap(),
   574     /// \ref upperMap(), \ref costMap(), \ref supplyMap(), \ref stSupply().
   575     ///
   576     /// It is useful for multiple \ref run() calls. By default, all the given
   577     /// parameters are kept for the next \ref run() call, unless
   578     /// \ref resetParams() or \ref reset() is used.
   579     /// If the underlying digraph was also modified after the construction
   580     /// of the class or the last \ref reset() call, then the \ref reset()
   581     /// function must be used, otherwise \ref resetParams() is sufficient.
   582     ///
   583     /// See \ref resetParams() for examples.
   584     ///
   585     /// \return <tt>(*this)</tt>
   586     ///
   587     /// \see resetParams(), run()
   588     CostScaling& reset() {
   589       // Resize vectors
   590       _node_num = countNodes(_graph);
   591       _arc_num = countArcs(_graph);
   592       _res_node_num = _node_num + 1;
   593       _res_arc_num = 2 * (_arc_num + _node_num);
   594       _root = _node_num;
   595 
   596       _first_out.resize(_res_node_num + 1);
   597       _forward.resize(_res_arc_num);
   598       _source.resize(_res_arc_num);
   599       _target.resize(_res_arc_num);
   600       _reverse.resize(_res_arc_num);
   601 
   602       _lower.resize(_res_arc_num);
   603       _upper.resize(_res_arc_num);
   604       _scost.resize(_res_arc_num);
   605       _supply.resize(_res_node_num);
   606 
   607       _res_cap.resize(_res_arc_num);
   608       _cost.resize(_res_arc_num);
   609       _pi.resize(_res_node_num);
   610       _excess.resize(_res_node_num);
   611       _next_out.resize(_res_node_num);
   612 
   613       // Copy the graph
   614       int i = 0, j = 0, k = 2 * _arc_num + _node_num;
   615       for (NodeIt n(_graph); n != INVALID; ++n, ++i) {
   616         _node_id[n] = i;
   617       }
   618       i = 0;
   619       for (NodeIt n(_graph); n != INVALID; ++n, ++i) {
   620         _first_out[i] = j;
   621         for (OutArcIt a(_graph, n); a != INVALID; ++a, ++j) {
   622           _arc_idf[a] = j;
   623           _forward[j] = true;
   624           _source[j] = i;
   625           _target[j] = _node_id[_graph.runningNode(a)];
   626         }
   627         for (InArcIt a(_graph, n); a != INVALID; ++a, ++j) {
   628           _arc_idb[a] = j;
   629           _forward[j] = false;
   630           _source[j] = i;
   631           _target[j] = _node_id[_graph.runningNode(a)];
   632         }
   633         _forward[j] = false;
   634         _source[j] = i;
   635         _target[j] = _root;
   636         _reverse[j] = k;
   637         _forward[k] = true;
   638         _source[k] = _root;
   639         _target[k] = i;
   640         _reverse[k] = j;
   641         ++j; ++k;
   642       }
   643       _first_out[i] = j;
   644       _first_out[_res_node_num] = k;
   645       for (ArcIt a(_graph); a != INVALID; ++a) {
   646         int fi = _arc_idf[a];
   647         int bi = _arc_idb[a];
   648         _reverse[fi] = bi;
   649         _reverse[bi] = fi;
   650       }
   651 
   652       // Reset parameters
   653       resetParams();
   654       return *this;
   655     }
   656 
   657     /// @}
   658 
   659     /// \name Query Functions
   660     /// The results of the algorithm can be obtained using these
   661     /// functions.\n
   662     /// The \ref run() function must be called before using them.
   663 
   664     /// @{
   665 
   666     /// \brief Return the total cost of the found flow.
   667     ///
   668     /// This function returns the total cost of the found flow.
   669     /// Its complexity is O(e).
   670     ///
   671     /// \note The return type of the function can be specified as a
   672     /// template parameter. For example,
   673     /// \code
   674     ///   cs.totalCost<double>();
   675     /// \endcode
   676     /// It is useful if the total cost cannot be stored in the \c Cost
   677     /// type of the algorithm, which is the default return type of the
   678     /// function.
   679     ///
   680     /// \pre \ref run() must be called before using this function.
   681     template <typename Number>
   682     Number totalCost() const {
   683       Number c = 0;
   684       for (ArcIt a(_graph); a != INVALID; ++a) {
   685         int i = _arc_idb[a];
   686         c += static_cast<Number>(_res_cap[i]) *
   687              (-static_cast<Number>(_scost[i]));
   688       }
   689       return c;
   690     }
   691 
   692 #ifndef DOXYGEN
   693     Cost totalCost() const {
   694       return totalCost<Cost>();
   695     }
   696 #endif
   697 
   698     /// \brief Return the flow on the given arc.
   699     ///
   700     /// This function returns the flow on the given arc.
   701     ///
   702     /// \pre \ref run() must be called before using this function.
   703     Value flow(const Arc& a) const {
   704       return _res_cap[_arc_idb[a]];
   705     }
   706 
   707     /// \brief Copy the flow values (the primal solution) into the
   708     /// given map.
   709     ///
   710     /// This function copies the flow value on each arc into the given
   711     /// map. The \c Value type of the algorithm must be convertible to
   712     /// the \c Value type of the map.
   713     ///
   714     /// \pre \ref run() must be called before using this function.
   715     template <typename FlowMap>
   716     void flowMap(FlowMap &map) const {
   717       for (ArcIt a(_graph); a != INVALID; ++a) {
   718         map.set(a, _res_cap[_arc_idb[a]]);
   719       }
   720     }
   721 
   722     /// \brief Return the potential (dual value) of the given node.
   723     ///
   724     /// This function returns the potential (dual value) of the
   725     /// given node.
   726     ///
   727     /// \pre \ref run() must be called before using this function.
   728     Cost potential(const Node& n) const {
   729       return static_cast<Cost>(_pi[_node_id[n]]);
   730     }
   731 
   732     /// \brief Copy the potential values (the dual solution) into the
   733     /// given map.
   734     ///
   735     /// This function copies the potential (dual value) of each node
   736     /// into the given map.
   737     /// The \c Cost type of the algorithm must be convertible to the
   738     /// \c Value type of the map.
   739     ///
   740     /// \pre \ref run() must be called before using this function.
   741     template <typename PotentialMap>
   742     void potentialMap(PotentialMap &map) const {
   743       for (NodeIt n(_graph); n != INVALID; ++n) {
   744         map.set(n, static_cast<Cost>(_pi[_node_id[n]]));
   745       }
   746     }
   747 
   748     /// @}
   749 
   750   private:
   751 
   752     // Initialize the algorithm
   753     ProblemType init() {
   754       if (_res_node_num <= 1) return INFEASIBLE;
   755 
   756       // Check the sum of supply values
   757       _sum_supply = 0;
   758       for (int i = 0; i != _root; ++i) {
   759         _sum_supply += _supply[i];
   760       }
   761       if (_sum_supply > 0) return INFEASIBLE;
   762 
   763       // Check lower and upper bounds
   764       LEMON_DEBUG(checkBoundMaps(),
   765           "Upper bounds must be greater or equal to the lower bounds");
   766 
   767 
   768       // Initialize vectors
   769       for (int i = 0; i != _res_node_num; ++i) {
   770         _pi[i] = 0;
   771         _excess[i] = _supply[i];
   772       }
   773 
   774       // Remove infinite upper bounds and check negative arcs
   775       const Value MAX = std::numeric_limits<Value>::max();
   776       int last_out;
   777       if (_have_lower) {
   778         for (int i = 0; i != _root; ++i) {
   779           last_out = _first_out[i+1];
   780           for (int j = _first_out[i]; j != last_out; ++j) {
   781             if (_forward[j]) {
   782               Value c = _scost[j] < 0 ? _upper[j] : _lower[j];
   783               if (c >= MAX) return UNBOUNDED;
   784               _excess[i] -= c;
   785               _excess[_target[j]] += c;
   786             }
   787           }
   788         }
   789       } else {
   790         for (int i = 0; i != _root; ++i) {
   791           last_out = _first_out[i+1];
   792           for (int j = _first_out[i]; j != last_out; ++j) {
   793             if (_forward[j] && _scost[j] < 0) {
   794               Value c = _upper[j];
   795               if (c >= MAX) return UNBOUNDED;
   796               _excess[i] -= c;
   797               _excess[_target[j]] += c;
   798             }
   799           }
   800         }
   801       }
   802       Value ex, max_cap = 0;
   803       for (int i = 0; i != _res_node_num; ++i) {
   804         ex = _excess[i];
   805         _excess[i] = 0;
   806         if (ex < 0) max_cap -= ex;
   807       }
   808       for (int j = 0; j != _res_arc_num; ++j) {
   809         if (_upper[j] >= MAX) _upper[j] = max_cap;
   810       }
   811 
   812       // Initialize the large cost vector and the epsilon parameter
   813       _epsilon = 0;
   814       LargeCost lc;
   815       for (int i = 0; i != _root; ++i) {
   816         last_out = _first_out[i+1];
   817         for (int j = _first_out[i]; j != last_out; ++j) {
   818           lc = static_cast<LargeCost>(_scost[j]) * _res_node_num * _alpha;
   819           _cost[j] = lc;
   820           if (lc > _epsilon) _epsilon = lc;
   821         }
   822       }
   823       _epsilon /= _alpha;
   824 
   825       // Initialize maps for Circulation and remove non-zero lower bounds
   826       ConstMap<Arc, Value> low(0);
   827       typedef typename Digraph::template ArcMap<Value> ValueArcMap;
   828       typedef typename Digraph::template NodeMap<Value> ValueNodeMap;
   829       ValueArcMap cap(_graph), flow(_graph);
   830       ValueNodeMap sup(_graph);
   831       for (NodeIt n(_graph); n != INVALID; ++n) {
   832         sup[n] = _supply[_node_id[n]];
   833       }
   834       if (_have_lower) {
   835         for (ArcIt a(_graph); a != INVALID; ++a) {
   836           int j = _arc_idf[a];
   837           Value c = _lower[j];
   838           cap[a] = _upper[j] - c;
   839           sup[_graph.source(a)] -= c;
   840           sup[_graph.target(a)] += c;
   841         }
   842       } else {
   843         for (ArcIt a(_graph); a != INVALID; ++a) {
   844           cap[a] = _upper[_arc_idf[a]];
   845         }
   846       }
   847 
   848       _sup_node_num = 0;
   849       for (NodeIt n(_graph); n != INVALID; ++n) {
   850         if (sup[n] > 0) ++_sup_node_num;
   851       }
   852 
   853       // Find a feasible flow using Circulation
   854       Circulation<Digraph, ConstMap<Arc, Value>, ValueArcMap, ValueNodeMap>
   855         circ(_graph, low, cap, sup);
   856       if (!circ.flowMap(flow).run()) return INFEASIBLE;
   857 
   858       // Set residual capacities and handle GEQ supply type
   859       if (_sum_supply < 0) {
   860         for (ArcIt a(_graph); a != INVALID; ++a) {
   861           Value fa = flow[a];
   862           _res_cap[_arc_idf[a]] = cap[a] - fa;
   863           _res_cap[_arc_idb[a]] = fa;
   864           sup[_graph.source(a)] -= fa;
   865           sup[_graph.target(a)] += fa;
   866         }
   867         for (NodeIt n(_graph); n != INVALID; ++n) {
   868           _excess[_node_id[n]] = sup[n];
   869         }
   870         for (int a = _first_out[_root]; a != _res_arc_num; ++a) {
   871           int u = _target[a];
   872           int ra = _reverse[a];
   873           _res_cap[a] = -_sum_supply + 1;
   874           _res_cap[ra] = -_excess[u];
   875           _cost[a] = 0;
   876           _cost[ra] = 0;
   877           _excess[u] = 0;
   878         }
   879       } else {
   880         for (ArcIt a(_graph); a != INVALID; ++a) {
   881           Value fa = flow[a];
   882           _res_cap[_arc_idf[a]] = cap[a] - fa;
   883           _res_cap[_arc_idb[a]] = fa;
   884         }
   885         for (int a = _first_out[_root]; a != _res_arc_num; ++a) {
   886           int ra = _reverse[a];
   887           _res_cap[a] = 0;
   888           _res_cap[ra] = 0;
   889           _cost[a] = 0;
   890           _cost[ra] = 0;
   891         }
   892       }
   893 
   894       // Initialize data structures for buckets
   895       _max_rank = _alpha * _res_node_num;
   896       _buckets.resize(_max_rank);
   897       _bucket_next.resize(_res_node_num + 1);
   898       _bucket_prev.resize(_res_node_num + 1);
   899       _rank.resize(_res_node_num + 1);
   900 
   901       return OPTIMAL;
   902     }
   903     
   904     // Check if the upper bound is greater than or equal to the lower bound
   905     // on each forward arc.
   906     bool checkBoundMaps() {
   907       for (int j = 0; j != _res_arc_num; ++j) {
   908         if (_forward[j] && _upper[j] < _lower[j]) return false;
   909       }
   910       return true;
   911     }
   912 
   913     // Execute the algorithm and transform the results
   914     void start(Method method) {
   915       const int MAX_PARTIAL_PATH_LENGTH = 4;
   916 
   917       switch (method) {
   918         case PUSH:
   919           startPush();
   920           break;
   921         case AUGMENT:
   922           startAugment(_res_node_num - 1);
   923           break;
   924         case PARTIAL_AUGMENT:
   925           startAugment(MAX_PARTIAL_PATH_LENGTH);
   926           break;
   927       }
   928 
   929       // Compute node potentials (dual solution)
   930       for (int i = 0; i != _res_node_num; ++i) {
   931         _pi[i] = static_cast<Cost>(_pi[i] / (_res_node_num * _alpha));
   932       }
   933       bool optimal = true;
   934       for (int i = 0; optimal && i != _res_node_num; ++i) {
   935         LargeCost pi_i = _pi[i];
   936         int last_out = _first_out[i+1];
   937         for (int j = _first_out[i]; j != last_out; ++j) {
   938           if (_res_cap[j] > 0 && _scost[j] + pi_i - _pi[_target[j]] < 0) {
   939             optimal = false;
   940             break;
   941           }
   942         }
   943       }
   944 
   945       if (!optimal) {
   946         // Compute node potentials for the original costs with BellmanFord
   947         // (if it is necessary)
   948         typedef std::pair<int, int> IntPair;
   949         StaticDigraph sgr;
   950         std::vector<IntPair> arc_vec;
   951         std::vector<LargeCost> cost_vec;
   952         LargeCostArcMap cost_map(cost_vec);
   953 
   954         arc_vec.clear();
   955         cost_vec.clear();
   956         for (int j = 0; j != _res_arc_num; ++j) {
   957           if (_res_cap[j] > 0) {
   958             int u = _source[j], v = _target[j];
   959             arc_vec.push_back(IntPair(u, v));
   960             cost_vec.push_back(_scost[j] + _pi[u] - _pi[v]);
   961           }
   962         }
   963         sgr.build(_res_node_num, arc_vec.begin(), arc_vec.end());
   964 
   965         typename BellmanFord<StaticDigraph, LargeCostArcMap>::Create
   966           bf(sgr, cost_map);
   967         bf.init(0);
   968         bf.start();
   969 
   970         for (int i = 0; i != _res_node_num; ++i) {
   971           _pi[i] += bf.dist(sgr.node(i));
   972         }
   973       }
   974 
   975       // Shift potentials to meet the requirements of the GEQ type
   976       // optimality conditions
   977       LargeCost max_pot = _pi[_root];
   978       for (int i = 0; i != _res_node_num; ++i) {
   979         if (_pi[i] > max_pot) max_pot = _pi[i];
   980       }
   981       if (max_pot != 0) {
   982         for (int i = 0; i != _res_node_num; ++i) {
   983           _pi[i] -= max_pot;
   984         }
   985       }
   986 
   987       // Handle non-zero lower bounds
   988       if (_have_lower) {
   989         int limit = _first_out[_root];
   990         for (int j = 0; j != limit; ++j) {
   991           if (_forward[j]) _res_cap[_reverse[j]] += _lower[j];
   992         }
   993       }
   994     }
   995 
   996     // Initialize a cost scaling phase
   997     void initPhase() {
   998       // Saturate arcs not satisfying the optimality condition
   999       for (int u = 0; u != _res_node_num; ++u) {
  1000         int last_out = _first_out[u+1];
  1001         LargeCost pi_u = _pi[u];
  1002         for (int a = _first_out[u]; a != last_out; ++a) {
  1003           Value delta = _res_cap[a];
  1004           if (delta > 0) {
  1005             int v = _target[a];
  1006             if (_cost[a] + pi_u - _pi[v] < 0) {
  1007               _excess[u] -= delta;
  1008               _excess[v] += delta;
  1009               _res_cap[a] = 0;
  1010               _res_cap[_reverse[a]] += delta;
  1011             }
  1012           }
  1013         }
  1014       }
  1015 
  1016       // Find active nodes (i.e. nodes with positive excess)
  1017       for (int u = 0; u != _res_node_num; ++u) {
  1018         if (_excess[u] > 0) _active_nodes.push_back(u);
  1019       }
  1020 
  1021       // Initialize the next arcs
  1022       for (int u = 0; u != _res_node_num; ++u) {
  1023         _next_out[u] = _first_out[u];
  1024       }
  1025     }
  1026 
  1027     // Price (potential) refinement heuristic
  1028     bool priceRefinement() {
  1029 
  1030       // Stack for stroing the topological order
  1031       IntVector stack(_res_node_num);
  1032       int stack_top;
  1033 
  1034       // Perform phases
  1035       while (topologicalSort(stack, stack_top)) {
  1036 
  1037         // Compute node ranks in the acyclic admissible network and
  1038         // store the nodes in buckets
  1039         for (int i = 0; i != _res_node_num; ++i) {
  1040           _rank[i] = 0;
  1041         }
  1042         const int bucket_end = _root + 1;
  1043         for (int r = 0; r != _max_rank; ++r) {
  1044           _buckets[r] = bucket_end;
  1045         }
  1046         int top_rank = 0;
  1047         for ( ; stack_top >= 0; --stack_top) {
  1048           int u = stack[stack_top], v;
  1049           int rank_u = _rank[u];
  1050 
  1051           LargeCost rc, pi_u = _pi[u];
  1052           int last_out = _first_out[u+1];
  1053           for (int a = _first_out[u]; a != last_out; ++a) {
  1054             if (_res_cap[a] > 0) {
  1055               v = _target[a];
  1056               rc = _cost[a] + pi_u - _pi[v];
  1057               if (rc < 0) {
  1058                 LargeCost nrc = static_cast<LargeCost>((-rc - 0.5) / _epsilon);
  1059                 if (nrc < LargeCost(_max_rank)) {
  1060                   int new_rank_v = rank_u + static_cast<int>(nrc);
  1061                   if (new_rank_v > _rank[v]) {
  1062                     _rank[v] = new_rank_v;
  1063                   }
  1064                 }
  1065               }
  1066             }
  1067           }
  1068 
  1069           if (rank_u > 0) {
  1070             top_rank = std::max(top_rank, rank_u);
  1071             int bfirst = _buckets[rank_u];
  1072             _bucket_next[u] = bfirst;
  1073             _bucket_prev[bfirst] = u;
  1074             _buckets[rank_u] = u;
  1075           }
  1076         }
  1077 
  1078         // Check if the current flow is epsilon-optimal
  1079         if (top_rank == 0) {
  1080           return true;
  1081         }
  1082 
  1083         // Process buckets in top-down order
  1084         for (int rank = top_rank; rank > 0; --rank) {
  1085           while (_buckets[rank] != bucket_end) {
  1086             // Remove the first node from the current bucket
  1087             int u = _buckets[rank];
  1088             _buckets[rank] = _bucket_next[u];
  1089 
  1090             // Search the outgoing arcs of u
  1091             LargeCost rc, pi_u = _pi[u];
  1092             int last_out = _first_out[u+1];
  1093             int v, old_rank_v, new_rank_v;
  1094             for (int a = _first_out[u]; a != last_out; ++a) {
  1095               if (_res_cap[a] > 0) {
  1096                 v = _target[a];
  1097                 old_rank_v = _rank[v];
  1098 
  1099                 if (old_rank_v < rank) {
  1100 
  1101                   // Compute the new rank of node v
  1102                   rc = _cost[a] + pi_u - _pi[v];
  1103                   if (rc < 0) {
  1104                     new_rank_v = rank;
  1105                   } else {
  1106                     LargeCost nrc = rc / _epsilon;
  1107                     new_rank_v = 0;
  1108                     if (nrc < LargeCost(_max_rank)) {
  1109                       new_rank_v = rank - 1 - static_cast<int>(nrc);
  1110                     }
  1111                   }
  1112 
  1113                   // Change the rank of node v
  1114                   if (new_rank_v > old_rank_v) {
  1115                     _rank[v] = new_rank_v;
  1116 
  1117                     // Remove v from its old bucket
  1118                     if (old_rank_v > 0) {
  1119                       if (_buckets[old_rank_v] == v) {
  1120                         _buckets[old_rank_v] = _bucket_next[v];
  1121                       } else {
  1122                         int pv = _bucket_prev[v], nv = _bucket_next[v];
  1123                         _bucket_next[pv] = nv;
  1124                         _bucket_prev[nv] = pv;
  1125                       }
  1126                     }
  1127 
  1128                     // Insert v into its new bucket
  1129                     int nv = _buckets[new_rank_v];
  1130                     _bucket_next[v] = nv;
  1131                     _bucket_prev[nv] = v;
  1132                     _buckets[new_rank_v] = v;
  1133                   }
  1134                 }
  1135               }
  1136             }
  1137 
  1138             // Refine potential of node u
  1139             _pi[u] -= rank * _epsilon;
  1140           }
  1141         }
  1142 
  1143       }
  1144 
  1145       return false;
  1146     }
  1147 
  1148     // Find and cancel cycles in the admissible network and
  1149     // determine topological order using DFS
  1150     bool topologicalSort(IntVector &stack, int &stack_top) {
  1151       const int MAX_CYCLE_CANCEL = 1;
  1152 
  1153       BoolVector reached(_res_node_num, false);
  1154       BoolVector processed(_res_node_num, false);
  1155       IntVector pred(_res_node_num);
  1156       for (int i = 0; i != _res_node_num; ++i) {
  1157         _next_out[i] = _first_out[i];
  1158       }
  1159       stack_top = -1;
  1160 
  1161       int cycle_cnt = 0;
  1162       for (int start = 0; start != _res_node_num; ++start) {
  1163         if (reached[start]) continue;
  1164 
  1165         // Start DFS search from this start node
  1166         pred[start] = -1;
  1167         int tip = start, v;
  1168         while (true) {
  1169           // Check the outgoing arcs of the current tip node
  1170           reached[tip] = true;
  1171           LargeCost pi_tip = _pi[tip];
  1172           int a, last_out = _first_out[tip+1];
  1173           for (a = _next_out[tip]; a != last_out; ++a) {
  1174             if (_res_cap[a] > 0) {
  1175               v = _target[a];
  1176               if (_cost[a] + pi_tip - _pi[v] < 0) {
  1177                 if (!reached[v]) {
  1178                   // A new node is reached
  1179                   reached[v] = true;
  1180                   pred[v] = tip;
  1181                   _next_out[tip] = a;
  1182                   tip = v;
  1183                   a = _next_out[tip];
  1184                   last_out = _first_out[tip+1];
  1185                   break;
  1186                 }
  1187                 else if (!processed[v]) {
  1188                   // A cycle is found
  1189                   ++cycle_cnt;
  1190                   _next_out[tip] = a;
  1191 
  1192                   // Find the minimum residual capacity along the cycle
  1193                   Value d, delta = _res_cap[a];
  1194                   int u, delta_node = tip;
  1195                   for (u = tip; u != v; ) {
  1196                     u = pred[u];
  1197                     d = _res_cap[_next_out[u]];
  1198                     if (d <= delta) {
  1199                       delta = d;
  1200                       delta_node = u;
  1201                     }
  1202                   }
  1203 
  1204                   // Augment along the cycle
  1205                   _res_cap[a] -= delta;
  1206                   _res_cap[_reverse[a]] += delta;
  1207                   for (u = tip; u != v; ) {
  1208                     u = pred[u];
  1209                     int ca = _next_out[u];
  1210                     _res_cap[ca] -= delta;
  1211                     _res_cap[_reverse[ca]] += delta;
  1212                   }
  1213 
  1214                   // Check the maximum number of cycle canceling
  1215                   if (cycle_cnt >= MAX_CYCLE_CANCEL) {
  1216                     return false;
  1217                   }
  1218 
  1219                   // Roll back search to delta_node
  1220                   if (delta_node != tip) {
  1221                     for (u = tip; u != delta_node; u = pred[u]) {
  1222                       reached[u] = false;
  1223                     }
  1224                     tip = delta_node;
  1225                     a = _next_out[tip] + 1;
  1226                     last_out = _first_out[tip+1];
  1227                     break;
  1228                   }
  1229                 }
  1230               }
  1231             }
  1232           }
  1233 
  1234           // Step back to the previous node
  1235           if (a == last_out) {
  1236             processed[tip] = true;
  1237             stack[++stack_top] = tip;
  1238             tip = pred[tip];
  1239             if (tip < 0) {
  1240               // Finish DFS from the current start node
  1241               break;
  1242             }
  1243             ++_next_out[tip];
  1244           }
  1245         }
  1246 
  1247       }
  1248 
  1249       return (cycle_cnt == 0);
  1250     }
  1251 
  1252     // Global potential update heuristic
  1253     void globalUpdate() {
  1254       const int bucket_end = _root + 1;
  1255 
  1256       // Initialize buckets
  1257       for (int r = 0; r != _max_rank; ++r) {
  1258         _buckets[r] = bucket_end;
  1259       }
  1260       Value total_excess = 0;
  1261       int b0 = bucket_end;
  1262       for (int i = 0; i != _res_node_num; ++i) {
  1263         if (_excess[i] < 0) {
  1264           _rank[i] = 0;
  1265           _bucket_next[i] = b0;
  1266           _bucket_prev[b0] = i;
  1267           b0 = i;
  1268         } else {
  1269           total_excess += _excess[i];
  1270           _rank[i] = _max_rank;
  1271         }
  1272       }
  1273       if (total_excess == 0) return;
  1274       _buckets[0] = b0;
  1275 
  1276       // Search the buckets
  1277       int r = 0;
  1278       for ( ; r != _max_rank; ++r) {
  1279         while (_buckets[r] != bucket_end) {
  1280           // Remove the first node from the current bucket
  1281           int u = _buckets[r];
  1282           _buckets[r] = _bucket_next[u];
  1283 
  1284           // Search the incomming arcs of u
  1285           LargeCost pi_u = _pi[u];
  1286           int last_out = _first_out[u+1];
  1287           for (int a = _first_out[u]; a != last_out; ++a) {
  1288             int ra = _reverse[a];
  1289             if (_res_cap[ra] > 0) {
  1290               int v = _source[ra];
  1291               int old_rank_v = _rank[v];
  1292               if (r < old_rank_v) {
  1293                 // Compute the new rank of v
  1294                 LargeCost nrc = (_cost[ra] + _pi[v] - pi_u) / _epsilon;
  1295                 int new_rank_v = old_rank_v;
  1296                 if (nrc < LargeCost(_max_rank)) {
  1297                   new_rank_v = r + 1 + static_cast<int>(nrc);
  1298                 }
  1299 
  1300                 // Change the rank of v
  1301                 if (new_rank_v < old_rank_v) {
  1302                   _rank[v] = new_rank_v;
  1303                   _next_out[v] = _first_out[v];
  1304 
  1305                   // Remove v from its old bucket
  1306                   if (old_rank_v < _max_rank) {
  1307                     if (_buckets[old_rank_v] == v) {
  1308                       _buckets[old_rank_v] = _bucket_next[v];
  1309                     } else {
  1310                       int pv = _bucket_prev[v], nv = _bucket_next[v];
  1311                       _bucket_next[pv] = nv;
  1312                       _bucket_prev[nv] = pv;
  1313                     }
  1314                   }
  1315 
  1316                   // Insert v into its new bucket
  1317                   int nv = _buckets[new_rank_v];
  1318                   _bucket_next[v] = nv;
  1319                   _bucket_prev[nv] = v;
  1320                   _buckets[new_rank_v] = v;
  1321                 }
  1322               }
  1323             }
  1324           }
  1325 
  1326           // Finish search if there are no more active nodes
  1327           if (_excess[u] > 0) {
  1328             total_excess -= _excess[u];
  1329             if (total_excess <= 0) break;
  1330           }
  1331         }
  1332         if (total_excess <= 0) break;
  1333       }
  1334 
  1335       // Relabel nodes
  1336       for (int u = 0; u != _res_node_num; ++u) {
  1337         int k = std::min(_rank[u], r);
  1338         if (k > 0) {
  1339           _pi[u] -= _epsilon * k;
  1340           _next_out[u] = _first_out[u];
  1341         }
  1342       }
  1343     }
  1344 
  1345     /// Execute the algorithm performing augment and relabel operations
  1346     void startAugment(int max_length) {
  1347       // Paramters for heuristics
  1348       const int PRICE_REFINEMENT_LIMIT = 2;
  1349       const double GLOBAL_UPDATE_FACTOR = 1.0;
  1350       const int global_update_skip = static_cast<int>(GLOBAL_UPDATE_FACTOR *
  1351         (_res_node_num + _sup_node_num * _sup_node_num));
  1352       int next_global_update_limit = global_update_skip;
  1353 
  1354       // Perform cost scaling phases
  1355       IntVector path;
  1356       BoolVector path_arc(_res_arc_num, false);
  1357       int relabel_cnt = 0;
  1358       int eps_phase_cnt = 0;
  1359       for ( ; _epsilon >= 1; _epsilon = _epsilon < _alpha && _epsilon > 1 ?
  1360                                         1 : _epsilon / _alpha )
  1361       {
  1362         ++eps_phase_cnt;
  1363 
  1364         // Price refinement heuristic
  1365         if (eps_phase_cnt >= PRICE_REFINEMENT_LIMIT) {
  1366           if (priceRefinement()) continue;
  1367         }
  1368 
  1369         // Initialize current phase
  1370         initPhase();
  1371 
  1372         // Perform partial augment and relabel operations
  1373         while (true) {
  1374           // Select an active node (FIFO selection)
  1375           while (_active_nodes.size() > 0 &&
  1376                  _excess[_active_nodes.front()] <= 0) {
  1377             _active_nodes.pop_front();
  1378           }
  1379           if (_active_nodes.size() == 0) break;
  1380           int start = _active_nodes.front();
  1381 
  1382           // Find an augmenting path from the start node
  1383           int tip = start;
  1384           while (int(path.size()) < max_length && _excess[tip] >= 0) {
  1385             int u;
  1386             LargeCost rc, min_red_cost = std::numeric_limits<LargeCost>::max();
  1387             LargeCost pi_tip = _pi[tip];
  1388             int last_out = _first_out[tip+1];
  1389             for (int a = _next_out[tip]; a != last_out; ++a) {
  1390               if (_res_cap[a] > 0) {
  1391                 u = _target[a];
  1392                 rc = _cost[a] + pi_tip - _pi[u];
  1393                 if (rc < 0) {
  1394                   path.push_back(a);
  1395                   _next_out[tip] = a;
  1396                   if (path_arc[a]) {
  1397                     goto augment;   // a cycle is found, stop path search
  1398                   }
  1399                   tip = u;
  1400                   path_arc[a] = true;
  1401                   goto next_step;
  1402                 }
  1403                 else if (rc < min_red_cost) {
  1404                   min_red_cost = rc;
  1405                 }
  1406               }
  1407             }
  1408 
  1409             // Relabel tip node
  1410             if (tip != start) {
  1411               int ra = _reverse[path.back()];
  1412               min_red_cost =
  1413                 std::min(min_red_cost, _cost[ra] + pi_tip - _pi[_target[ra]]);
  1414             }
  1415             last_out = _next_out[tip];
  1416             for (int a = _first_out[tip]; a != last_out; ++a) {
  1417               if (_res_cap[a] > 0) {
  1418                 rc = _cost[a] + pi_tip - _pi[_target[a]];
  1419                 if (rc < min_red_cost) {
  1420                   min_red_cost = rc;
  1421                 }
  1422               }
  1423             }
  1424             _pi[tip] -= min_red_cost + _epsilon;
  1425             _next_out[tip] = _first_out[tip];
  1426             ++relabel_cnt;
  1427 
  1428             // Step back
  1429             if (tip != start) {
  1430               int pa = path.back();
  1431               path_arc[pa] = false;
  1432               tip = _source[pa];
  1433               path.pop_back();
  1434             }
  1435 
  1436           next_step: ;
  1437           }
  1438 
  1439           // Augment along the found path (as much flow as possible)
  1440         augment:
  1441           Value delta;
  1442           int pa, u, v = start;
  1443           for (int i = 0; i != int(path.size()); ++i) {
  1444             pa = path[i];
  1445             u = v;
  1446             v = _target[pa];
  1447             path_arc[pa] = false;
  1448             delta = std::min(_res_cap[pa], _excess[u]);
  1449             _res_cap[pa] -= delta;
  1450             _res_cap[_reverse[pa]] += delta;
  1451             _excess[u] -= delta;
  1452             _excess[v] += delta;
  1453             if (_excess[v] > 0 && _excess[v] <= delta) {
  1454               _active_nodes.push_back(v);
  1455             }
  1456           }
  1457           path.clear();
  1458 
  1459           // Global update heuristic
  1460           if (relabel_cnt >= next_global_update_limit) {
  1461             globalUpdate();
  1462             next_global_update_limit += global_update_skip;
  1463           }
  1464         }
  1465 
  1466       }
  1467 
  1468     }
  1469 
  1470     /// Execute the algorithm performing push and relabel operations
  1471     void startPush() {
  1472       // Paramters for heuristics
  1473       const int PRICE_REFINEMENT_LIMIT = 2;
  1474       const double GLOBAL_UPDATE_FACTOR = 2.0;
  1475 
  1476       const int global_update_skip = static_cast<int>(GLOBAL_UPDATE_FACTOR *
  1477         (_res_node_num + _sup_node_num * _sup_node_num));
  1478       int next_global_update_limit = global_update_skip;
  1479 
  1480       // Perform cost scaling phases
  1481       BoolVector hyper(_res_node_num, false);
  1482       LargeCostVector hyper_cost(_res_node_num);
  1483       int relabel_cnt = 0;
  1484       int eps_phase_cnt = 0;
  1485       for ( ; _epsilon >= 1; _epsilon = _epsilon < _alpha && _epsilon > 1 ?
  1486                                         1 : _epsilon / _alpha )
  1487       {
  1488         ++eps_phase_cnt;
  1489 
  1490         // Price refinement heuristic
  1491         if (eps_phase_cnt >= PRICE_REFINEMENT_LIMIT) {
  1492           if (priceRefinement()) continue;
  1493         }
  1494 
  1495         // Initialize current phase
  1496         initPhase();
  1497 
  1498         // Perform push and relabel operations
  1499         while (_active_nodes.size() > 0) {
  1500           LargeCost min_red_cost, rc, pi_n;
  1501           Value delta;
  1502           int n, t, a, last_out = _res_arc_num;
  1503 
  1504         next_node:
  1505           // Select an active node (FIFO selection)
  1506           n = _active_nodes.front();
  1507           last_out = _first_out[n+1];
  1508           pi_n = _pi[n];
  1509 
  1510           // Perform push operations if there are admissible arcs
  1511           if (_excess[n] > 0) {
  1512             for (a = _next_out[n]; a != last_out; ++a) {
  1513               if (_res_cap[a] > 0 &&
  1514                   _cost[a] + pi_n - _pi[_target[a]] < 0) {
  1515                 delta = std::min(_res_cap[a], _excess[n]);
  1516                 t = _target[a];
  1517 
  1518                 // Push-look-ahead heuristic
  1519                 Value ahead = -_excess[t];
  1520                 int last_out_t = _first_out[t+1];
  1521                 LargeCost pi_t = _pi[t];
  1522                 for (int ta = _next_out[t]; ta != last_out_t; ++ta) {
  1523                   if (_res_cap[ta] > 0 &&
  1524                       _cost[ta] + pi_t - _pi[_target[ta]] < 0)
  1525                     ahead += _res_cap[ta];
  1526                   if (ahead >= delta) break;
  1527                 }
  1528                 if (ahead < 0) ahead = 0;
  1529 
  1530                 // Push flow along the arc
  1531                 if (ahead < delta && !hyper[t]) {
  1532                   _res_cap[a] -= ahead;
  1533                   _res_cap[_reverse[a]] += ahead;
  1534                   _excess[n] -= ahead;
  1535                   _excess[t] += ahead;
  1536                   _active_nodes.push_front(t);
  1537                   hyper[t] = true;
  1538                   hyper_cost[t] = _cost[a] + pi_n - pi_t;
  1539                   _next_out[n] = a;
  1540                   goto next_node;
  1541                 } else {
  1542                   _res_cap[a] -= delta;
  1543                   _res_cap[_reverse[a]] += delta;
  1544                   _excess[n] -= delta;
  1545                   _excess[t] += delta;
  1546                   if (_excess[t] > 0 && _excess[t] <= delta)
  1547                     _active_nodes.push_back(t);
  1548                 }
  1549 
  1550                 if (_excess[n] == 0) {
  1551                   _next_out[n] = a;
  1552                   goto remove_nodes;
  1553                 }
  1554               }
  1555             }
  1556             _next_out[n] = a;
  1557           }
  1558 
  1559           // Relabel the node if it is still active (or hyper)
  1560           if (_excess[n] > 0 || hyper[n]) {
  1561              min_red_cost = hyper[n] ? -hyper_cost[n] :
  1562                std::numeric_limits<LargeCost>::max();
  1563             for (int a = _first_out[n]; a != last_out; ++a) {
  1564               if (_res_cap[a] > 0) {
  1565                 rc = _cost[a] + pi_n - _pi[_target[a]];
  1566                 if (rc < min_red_cost) {
  1567                   min_red_cost = rc;
  1568                 }
  1569               }
  1570             }
  1571             _pi[n] -= min_red_cost + _epsilon;
  1572             _next_out[n] = _first_out[n];
  1573             hyper[n] = false;
  1574             ++relabel_cnt;
  1575           }
  1576 
  1577           // Remove nodes that are not active nor hyper
  1578         remove_nodes:
  1579           while ( _active_nodes.size() > 0 &&
  1580                   _excess[_active_nodes.front()] <= 0 &&
  1581                   !hyper[_active_nodes.front()] ) {
  1582             _active_nodes.pop_front();
  1583           }
  1584 
  1585           // Global update heuristic
  1586           if (relabel_cnt >= next_global_update_limit) {
  1587             globalUpdate();
  1588             for (int u = 0; u != _res_node_num; ++u)
  1589               hyper[u] = false;
  1590             next_global_update_limit += global_update_skip;
  1591           }
  1592         }
  1593       }
  1594     }
  1595 
  1596   }; //class CostScaling
  1597 
  1598   ///@}
  1599 
  1600 } //namespace lemon
  1601 
  1602 #endif //LEMON_COST_SCALING_H