lemon/digraph_adaptor.h
author Balazs Dezso <deba@inf.elte.hu>
Sun, 30 Nov 2008 19:00:30 +0100
changeset 431 4b6112235fad
parent 430 05357da973ce
permissions -rw-r--r--
Improvements in graph adaptors (#67)

Remove DigraphAdaptor and GraphAdaptor
Remove docs of base classes
Move the member documentations to real adaptors
Minor improvements in documentation
     1 /* -*- C++ -*-
     2  *
     3  * This file is a part of LEMON, a generic C++ optimization library
     4  *
     5  * Copyright (C) 2003-2008
     6  * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
     7  * (Egervary Research Group on Combinatorial Optimization, EGRES).
     8  *
     9  * Permission to use, modify and distribute this software is granted
    10  * provided that this copyright notice appears in all copies. For
    11  * precise terms see the accompanying LICENSE file.
    12  *
    13  * This software is provided "AS IS" with no warranty of any kind,
    14  * express or implied, and with no claim as to its suitability for any
    15  * purpose.
    16  *
    17  */
    18 
    19 #ifndef LEMON_DIGRAPH_ADAPTOR_H
    20 #define LEMON_DIGRAPH_ADAPTOR_H
    21 
    22 ///\ingroup graph_adaptors
    23 ///\file
    24 ///\brief Several digraph adaptors.
    25 ///
    26 ///This file contains several useful digraph adaptor classes.
    27 
    28 #include <lemon/core.h>
    29 #include <lemon/maps.h>
    30 #include <lemon/bits/variant.h>
    31 
    32 #include <lemon/bits/base_extender.h>
    33 #include <lemon/bits/graph_adaptor_extender.h>
    34 #include <lemon/bits/graph_extender.h>
    35 #include <lemon/tolerance.h>
    36 
    37 #include <algorithm>
    38 
    39 namespace lemon {
    40 
    41   template<typename _Digraph>
    42   class DigraphAdaptorBase {
    43   public:
    44     typedef _Digraph Digraph;
    45     typedef DigraphAdaptorBase Adaptor;
    46     typedef Digraph ParentDigraph;
    47 
    48   protected:
    49     Digraph* _digraph;
    50     DigraphAdaptorBase() : _digraph(0) { }
    51     void setDigraph(Digraph& digraph) { _digraph = &digraph; }
    52 
    53   public:
    54     DigraphAdaptorBase(Digraph& digraph) : _digraph(&digraph) { }
    55 
    56     typedef typename Digraph::Node Node;
    57     typedef typename Digraph::Arc Arc;
    58    
    59     void first(Node& i) const { _digraph->first(i); }
    60     void first(Arc& i) const { _digraph->first(i); }
    61     void firstIn(Arc& i, const Node& n) const { _digraph->firstIn(i, n); }
    62     void firstOut(Arc& i, const Node& n ) const { _digraph->firstOut(i, n); }
    63 
    64     void next(Node& i) const { _digraph->next(i); }
    65     void next(Arc& i) const { _digraph->next(i); }
    66     void nextIn(Arc& i) const { _digraph->nextIn(i); }
    67     void nextOut(Arc& i) const { _digraph->nextOut(i); }
    68 
    69     Node source(const Arc& a) const { return _digraph->source(a); }
    70     Node target(const Arc& a) const { return _digraph->target(a); }
    71 
    72     typedef NodeNumTagIndicator<Digraph> NodeNumTag;
    73     int nodeNum() const { return _digraph->nodeNum(); }
    74     
    75     typedef EdgeNumTagIndicator<Digraph> EdgeNumTag;
    76     int arcNum() const { return _digraph->arcNum(); }
    77 
    78     typedef FindEdgeTagIndicator<Digraph> FindEdgeTag;
    79     Arc findArc(const Node& u, const Node& v, const Arc& prev = INVALID) {
    80       return _digraph->findArc(u, v, prev);
    81     }
    82   
    83     Node addNode() { return _digraph->addNode(); }
    84     Arc addArc(const Node& u, const Node& v) { return _digraph->addArc(u, v); }
    85 
    86     void erase(const Node& n) const { _digraph->erase(n); }
    87     void erase(const Arc& a) const { _digraph->erase(a); }
    88   
    89     void clear() const { _digraph->clear(); }
    90     
    91     int id(const Node& n) const { return _digraph->id(n); }
    92     int id(const Arc& a) const { return _digraph->id(a); }
    93 
    94     Node nodeFromId(int ix) const { return _digraph->nodeFromId(ix); }
    95     Arc arcFromId(int ix) const { return _digraph->arcFromId(ix); }
    96 
    97     int maxNodeId() const { return _digraph->maxNodeId(); }
    98     int maxArcId() const { return _digraph->maxArcId(); }
    99 
   100     typedef typename ItemSetTraits<Digraph, Node>::ItemNotifier NodeNotifier;
   101     NodeNotifier& notifier(Node) const { return _digraph->notifier(Node()); } 
   102 
   103     typedef typename ItemSetTraits<Digraph, Arc>::ItemNotifier ArcNotifier;
   104     ArcNotifier& notifier(Arc) const { return _digraph->notifier(Arc()); } 
   105     
   106     template <typename _Value>
   107     class NodeMap : public Digraph::template NodeMap<_Value> {
   108     public:
   109 
   110       typedef typename Digraph::template NodeMap<_Value> Parent;
   111 
   112       explicit NodeMap(const Adaptor& adaptor) 
   113 	: Parent(*adaptor._digraph) {}
   114 
   115       NodeMap(const Adaptor& adaptor, const _Value& value)
   116 	: Parent(*adaptor._digraph, value) { }
   117 
   118     private:
   119       NodeMap& operator=(const NodeMap& cmap) {
   120         return operator=<NodeMap>(cmap);
   121       }
   122 
   123       template <typename CMap>
   124       NodeMap& operator=(const CMap& cmap) {
   125         Parent::operator=(cmap);
   126         return *this;
   127       }
   128       
   129     };
   130 
   131     template <typename _Value>
   132     class ArcMap : public Digraph::template ArcMap<_Value> {
   133     public:
   134       
   135       typedef typename Digraph::template ArcMap<_Value> Parent;
   136       
   137       explicit ArcMap(const Adaptor& adaptor) 
   138 	: Parent(*adaptor._digraph) {}
   139 
   140       ArcMap(const Adaptor& adaptor, const _Value& value)
   141 	: Parent(*adaptor._digraph, value) {}
   142 
   143     private:
   144       ArcMap& operator=(const ArcMap& cmap) {
   145         return operator=<ArcMap>(cmap);
   146       }
   147 
   148       template <typename CMap>
   149       ArcMap& operator=(const CMap& cmap) {
   150         Parent::operator=(cmap);
   151         return *this;
   152       }
   153 
   154     };
   155 
   156   };
   157 
   158 
   159   template <typename _Digraph>
   160   class RevDigraphAdaptorBase : public DigraphAdaptorBase<_Digraph> {
   161   public:
   162     typedef _Digraph Digraph;
   163     typedef DigraphAdaptorBase<_Digraph> Parent;
   164   protected:
   165     RevDigraphAdaptorBase() : Parent() { }
   166   public:
   167     typedef typename Parent::Node Node;
   168     typedef typename Parent::Arc Arc;
   169 
   170     void firstIn(Arc& a, const Node& n) const { Parent::firstOut(a, n); }
   171     void firstOut(Arc& a, const Node& n ) const { Parent::firstIn(a, n); }
   172 
   173     void nextIn(Arc& a) const { Parent::nextOut(a); }
   174     void nextOut(Arc& a) const { Parent::nextIn(a); }
   175 
   176     Node source(const Arc& a) const { return Parent::target(a); }
   177     Node target(const Arc& a) const { return Parent::source(a); }
   178 
   179     typedef FindEdgeTagIndicator<Digraph> FindEdgeTag;
   180     Arc findArc(const Node& u, const Node& v, 
   181 		const Arc& prev = INVALID) {
   182       return Parent::findArc(v, u, prev);
   183     }
   184 
   185   };
   186     
   187 
   188   ///\ingroup graph_adaptors
   189   ///
   190   ///\brief A digraph adaptor which reverses the orientation of the arcs.
   191   ///
   192   /// If \c g is defined as
   193   ///\code
   194   /// ListDigraph dg;
   195   ///\endcode
   196   /// then
   197   ///\code
   198   /// RevDigraphAdaptor<ListDigraph> dga(dg);
   199   ///\endcode
   200   /// implements the digraph obtained from \c dg by 
   201   /// reversing the orientation of its arcs.
   202   ///
   203   /// A good example of using RevDigraphAdaptor is to decide whether
   204   /// the directed graph is strongly connected or not. The digraph is
   205   /// strongly connected iff each node is reachable from one node and
   206   /// this node is reachable from the others. Instead of this
   207   /// condition we use a slightly different, from one node each node
   208   /// is reachable both in the digraph and the reversed digraph. Now
   209   /// this condition can be checked with the Dfs algorithm and the
   210   /// RevDigraphAdaptor class.
   211   ///
   212   /// The implementation:
   213   ///\code
   214   /// bool stronglyConnected(const Digraph& digraph) {
   215   ///   if (NodeIt(digraph) == INVALID) return true;
   216   ///   Dfs<Digraph> dfs(digraph);
   217   ///   dfs.run(NodeIt(digraph));
   218   ///   for (NodeIt it(digraph); it != INVALID; ++it) {
   219   ///     if (!dfs.reached(it)) {
   220   ///       return false;
   221   ///     }
   222   ///   }
   223   ///   typedef RevDigraphAdaptor<const Digraph> RDigraph;
   224   ///   RDigraph rdigraph(digraph);
   225   ///   DfsVisit<RDigraph> rdfs(rdigraph);
   226   ///   rdfs.run(NodeIt(digraph));
   227   ///   for (NodeIt it(digraph); it != INVALID; ++it) {
   228   ///     if (!rdfs.reached(it)) {
   229   ///       return false;
   230   ///     }
   231   ///   }
   232   ///   return true;
   233   /// }
   234   ///\endcode
   235   template<typename _Digraph>
   236   class RevDigraphAdaptor : 
   237     public DigraphAdaptorExtender<RevDigraphAdaptorBase<_Digraph> > {
   238   public:
   239     typedef _Digraph Digraph;
   240     typedef DigraphAdaptorExtender<
   241       RevDigraphAdaptorBase<_Digraph> > Parent;
   242   protected:
   243     RevDigraphAdaptor() { }
   244   public:
   245 
   246     /// \brief Constructor
   247     ///
   248     /// Creates a reverse graph adaptor for the given digraph
   249     explicit RevDigraphAdaptor(Digraph& digraph) { 
   250       Parent::setDigraph(digraph); 
   251     }
   252   };
   253 
   254   /// \brief Just gives back a reverse digraph adaptor
   255   ///
   256   /// Just gives back a reverse digraph adaptor
   257   template<typename Digraph>
   258   RevDigraphAdaptor<const Digraph>
   259   revDigraphAdaptor(const Digraph& digraph) {
   260     return RevDigraphAdaptor<const Digraph>(digraph);
   261   }
   262 
   263   template <typename _Digraph, typename _NodeFilterMap, 
   264 	    typename _ArcFilterMap, bool checked = true>
   265   class SubDigraphAdaptorBase : public DigraphAdaptorBase<_Digraph> {
   266   public:
   267     typedef _Digraph Digraph;
   268     typedef _NodeFilterMap NodeFilterMap;
   269     typedef _ArcFilterMap ArcFilterMap;
   270 
   271     typedef SubDigraphAdaptorBase Adaptor;
   272     typedef DigraphAdaptorBase<_Digraph> Parent;
   273   protected:
   274     NodeFilterMap* _node_filter;
   275     ArcFilterMap* _arc_filter;
   276     SubDigraphAdaptorBase() 
   277       : Parent(), _node_filter(0), _arc_filter(0) { }
   278 
   279     void setNodeFilterMap(NodeFilterMap& node_filter) {
   280       _node_filter = &node_filter;
   281     }
   282     void setArcFilterMap(ArcFilterMap& arc_filter) {
   283       _arc_filter = &arc_filter;
   284     }
   285 
   286   public:
   287 
   288     typedef typename Parent::Node Node;
   289     typedef typename Parent::Arc Arc;
   290 
   291     void first(Node& i) const { 
   292       Parent::first(i); 
   293       while (i != INVALID && !(*_node_filter)[i]) Parent::next(i); 
   294     }
   295 
   296     void first(Arc& i) const { 
   297       Parent::first(i); 
   298       while (i != INVALID && (!(*_arc_filter)[i] 
   299 	     || !(*_node_filter)[Parent::source(i)]
   300 	     || !(*_node_filter)[Parent::target(i)])) Parent::next(i); 
   301     }
   302 
   303     void firstIn(Arc& i, const Node& n) const { 
   304       Parent::firstIn(i, n); 
   305       while (i != INVALID && (!(*_arc_filter)[i] 
   306 	     || !(*_node_filter)[Parent::source(i)])) Parent::nextIn(i); 
   307     }
   308 
   309     void firstOut(Arc& i, const Node& n) const { 
   310       Parent::firstOut(i, n); 
   311       while (i != INVALID && (!(*_arc_filter)[i] 
   312 	     || !(*_node_filter)[Parent::target(i)])) Parent::nextOut(i); 
   313     }
   314 
   315     void next(Node& i) const { 
   316       Parent::next(i); 
   317       while (i != INVALID && !(*_node_filter)[i]) Parent::next(i); 
   318     }
   319 
   320     void next(Arc& i) const { 
   321       Parent::next(i); 
   322       while (i != INVALID && (!(*_arc_filter)[i] 
   323 	     || !(*_node_filter)[Parent::source(i)]
   324 	     || !(*_node_filter)[Parent::target(i)])) Parent::next(i); 
   325     }
   326 
   327     void nextIn(Arc& i) const { 
   328       Parent::nextIn(i); 
   329       while (i != INVALID && (!(*_arc_filter)[i] 
   330 	     || !(*_node_filter)[Parent::source(i)])) Parent::nextIn(i); 
   331     }
   332 
   333     void nextOut(Arc& i) const { 
   334       Parent::nextOut(i); 
   335       while (i != INVALID && (!(*_arc_filter)[i] 
   336 	     || !(*_node_filter)[Parent::target(i)])) Parent::nextOut(i); 
   337     }
   338 
   339     void hide(const Node& n) const { _node_filter->set(n, false); }
   340     void hide(const Arc& a) const { _arc_filter->set(a, false); }
   341 
   342     void unHide(const Node& n) const { _node_filter->set(n, true); }
   343     void unHide(const Arc& a) const { _arc_filter->set(a, true); }
   344 
   345     bool hidden(const Node& n) const { return !(*_node_filter)[n]; }
   346     bool hidden(const Arc& a) const { return !(*_arc_filter)[a]; }
   347 
   348     typedef False NodeNumTag;
   349     typedef False EdgeNumTag;
   350 
   351     typedef FindEdgeTagIndicator<Digraph> FindEdgeTag;
   352     Arc findArc(const Node& source, const Node& target, 
   353 		const Arc& prev = INVALID) {
   354       if (!(*_node_filter)[source] || !(*_node_filter)[target]) {
   355         return INVALID;
   356       }
   357       Arc arc = Parent::findArc(source, target, prev);
   358       while (arc != INVALID && !(*_arc_filter)[arc]) {
   359         arc = Parent::findArc(source, target, arc);
   360       }
   361       return arc;
   362     }
   363 
   364     template <typename _Value>
   365     class NodeMap : public SubMapExtender<Adaptor, 
   366         typename Parent::template NodeMap<_Value> > {
   367     public:
   368       typedef _Value Value;
   369       typedef SubMapExtender<Adaptor, typename Parent::
   370                              template NodeMap<Value> > MapParent;
   371     
   372       NodeMap(const Adaptor& adaptor) 
   373 	: MapParent(adaptor) {}
   374       NodeMap(const Adaptor& adaptor, const Value& value) 
   375 	: MapParent(adaptor, value) {}
   376     
   377     private:
   378       NodeMap& operator=(const NodeMap& cmap) {
   379 	return operator=<NodeMap>(cmap);
   380       }
   381     
   382       template <typename CMap>
   383       NodeMap& operator=(const CMap& cmap) {
   384         MapParent::operator=(cmap);
   385 	return *this;
   386       }
   387     };
   388 
   389     template <typename _Value>
   390     class ArcMap : public SubMapExtender<Adaptor, 
   391 	typename Parent::template ArcMap<_Value> > {
   392     public:
   393       typedef _Value Value;
   394       typedef SubMapExtender<Adaptor, typename Parent::
   395                              template ArcMap<Value> > MapParent;
   396     
   397       ArcMap(const Adaptor& adaptor) 
   398 	: MapParent(adaptor) {}
   399       ArcMap(const Adaptor& adaptor, const Value& value) 
   400 	: MapParent(adaptor, value) {}
   401     
   402     private:
   403       ArcMap& operator=(const ArcMap& cmap) {
   404 	return operator=<ArcMap>(cmap);
   405       }
   406     
   407       template <typename CMap>
   408       ArcMap& operator=(const CMap& cmap) {
   409         MapParent::operator=(cmap);
   410 	return *this;
   411       }
   412     };
   413 
   414   };
   415 
   416   template <typename _Digraph, typename _NodeFilterMap, typename _ArcFilterMap>
   417   class SubDigraphAdaptorBase<_Digraph, _NodeFilterMap, _ArcFilterMap, false> 
   418     : public DigraphAdaptorBase<_Digraph> {
   419   public:
   420     typedef _Digraph Digraph;
   421     typedef _NodeFilterMap NodeFilterMap;
   422     typedef _ArcFilterMap ArcFilterMap;
   423 
   424     typedef SubDigraphAdaptorBase Adaptor;
   425     typedef DigraphAdaptorBase<Digraph> Parent;
   426   protected:
   427     NodeFilterMap* _node_filter;
   428     ArcFilterMap* _arc_filter;
   429     SubDigraphAdaptorBase() 
   430       : Parent(), _node_filter(0), _arc_filter(0) { }
   431 
   432     void setNodeFilterMap(NodeFilterMap& node_filter) {
   433       _node_filter = &node_filter;
   434     }
   435     void setArcFilterMap(ArcFilterMap& arc_filter) {
   436       _arc_filter = &arc_filter;
   437     }
   438 
   439   public:
   440 
   441     typedef typename Parent::Node Node;
   442     typedef typename Parent::Arc Arc;
   443 
   444     void first(Node& i) const { 
   445       Parent::first(i); 
   446       while (i!=INVALID && !(*_node_filter)[i]) Parent::next(i); 
   447     }
   448 
   449     void first(Arc& i) const { 
   450       Parent::first(i); 
   451       while (i!=INVALID && !(*_arc_filter)[i]) Parent::next(i); 
   452     }
   453 
   454     void firstIn(Arc& i, const Node& n) const { 
   455       Parent::firstIn(i, n); 
   456       while (i!=INVALID && !(*_arc_filter)[i]) Parent::nextIn(i); 
   457     }
   458 
   459     void firstOut(Arc& i, const Node& n) const { 
   460       Parent::firstOut(i, n); 
   461       while (i!=INVALID && !(*_arc_filter)[i]) Parent::nextOut(i); 
   462     }
   463 
   464     void next(Node& i) const { 
   465       Parent::next(i); 
   466       while (i!=INVALID && !(*_node_filter)[i]) Parent::next(i); 
   467     }
   468     void next(Arc& i) const { 
   469       Parent::next(i); 
   470       while (i!=INVALID && !(*_arc_filter)[i]) Parent::next(i); 
   471     }
   472     void nextIn(Arc& i) const { 
   473       Parent::nextIn(i); 
   474       while (i!=INVALID && !(*_arc_filter)[i]) Parent::nextIn(i); 
   475     }
   476 
   477     void nextOut(Arc& i) const { 
   478       Parent::nextOut(i); 
   479       while (i!=INVALID && !(*_arc_filter)[i]) Parent::nextOut(i); 
   480     }
   481 
   482     void hide(const Node& n) const { _node_filter->set(n, false); }
   483     void hide(const Arc& e) const { _arc_filter->set(e, false); }
   484 
   485     void unHide(const Node& n) const { _node_filter->set(n, true); }
   486     void unHide(const Arc& e) const { _arc_filter->set(e, true); }
   487 
   488     bool hidden(const Node& n) const { return !(*_node_filter)[n]; }
   489     bool hidden(const Arc& e) const { return !(*_arc_filter)[e]; }
   490 
   491     typedef False NodeNumTag;
   492     typedef False EdgeNumTag;
   493 
   494     typedef FindEdgeTagIndicator<Digraph> FindEdgeTag;
   495     Arc findArc(const Node& source, const Node& target, 
   496 		  const Arc& prev = INVALID) {
   497       if (!(*_node_filter)[source] || !(*_node_filter)[target]) {
   498         return INVALID;
   499       }
   500       Arc arc = Parent::findArc(source, target, prev);
   501       while (arc != INVALID && !(*_arc_filter)[arc]) {
   502         arc = Parent::findArc(source, target, arc);
   503       }
   504       return arc;
   505     }
   506 
   507     template <typename _Value>
   508     class NodeMap : public SubMapExtender<Adaptor, 
   509         typename Parent::template NodeMap<_Value> > {
   510     public:
   511       typedef _Value Value;
   512       typedef SubMapExtender<Adaptor, typename Parent::
   513                              template NodeMap<Value> > MapParent;
   514     
   515       NodeMap(const Adaptor& adaptor) 
   516 	: MapParent(adaptor) {}
   517       NodeMap(const Adaptor& adaptor, const Value& value) 
   518 	: MapParent(adaptor, value) {}
   519     
   520     private:
   521       NodeMap& operator=(const NodeMap& cmap) {
   522 	return operator=<NodeMap>(cmap);
   523       }
   524     
   525       template <typename CMap>
   526       NodeMap& operator=(const CMap& cmap) {
   527         MapParent::operator=(cmap);
   528 	return *this;
   529       }
   530     };
   531 
   532     template <typename _Value>
   533     class ArcMap : public SubMapExtender<Adaptor, 
   534 	typename Parent::template ArcMap<_Value> > {
   535     public:
   536       typedef _Value Value;
   537       typedef SubMapExtender<Adaptor, typename Parent::
   538                              template ArcMap<Value> > MapParent;
   539     
   540       ArcMap(const Adaptor& adaptor) 
   541 	: MapParent(adaptor) {}
   542       ArcMap(const Adaptor& adaptor, const Value& value) 
   543 	: MapParent(adaptor, value) {}
   544     
   545     private:
   546       ArcMap& operator=(const ArcMap& cmap) {
   547 	return operator=<ArcMap>(cmap);
   548       }
   549     
   550       template <typename CMap>
   551       ArcMap& operator=(const CMap& cmap) {
   552         MapParent::operator=(cmap);
   553 	return *this;
   554       }
   555     };
   556 
   557   };
   558 
   559   /// \ingroup graph_adaptors
   560   ///
   561   /// \brief A digraph adaptor for hiding nodes and arcs from a digraph.
   562   /// 
   563   /// SubDigraphAdaptor shows the digraph with filtered node-set and 
   564   /// arc-set. If the \c checked parameter is true then it filters the arc-set
   565   /// respect to the source and target.
   566   /// 
   567   /// If the \c checked template parameter is false then the
   568   /// node-iterator cares only the filter on the node-set, and the
   569   /// arc-iterator cares only the filter on the arc-set.  Therefore
   570   /// the arc-map have to filter all arcs which's source or target is
   571   /// filtered by the node-filter.
   572   ///\code
   573   /// typedef ListDigraph Digraph;
   574   /// DIGRAPH_TYPEDEFS(Digraph);
   575   /// Digraph g;
   576   /// Node u=g.addNode(); //node of id 0
   577   /// Node v=g.addNode(); //node of id 1
   578   /// Arc a=g.addArc(u, v); //arc of id 0
   579   /// Arc f=g.addArc(v, u); //arc of id 1
   580   /// BoolNodeMap nm(g, true);
   581   /// nm.set(u, false);
   582   /// BoolArcMap am(g, true);
   583   /// am.set(a, false);
   584   /// typedef SubDigraphAdaptor<Digraph, BoolNodeMap, BoolArcMap> SubDGA;
   585   /// SubDGA ga(g, nm, am);
   586   /// for (SubDGA::NodeIt n(ga); n!=INVALID; ++n)
   587   ///   std::cout << g.id(n) << std::endl;
   588   /// for (SubDGA::ArcIt a(ga); a!=INVALID; ++a) 
   589   ///   std::cout << g.id(a) << std::endl;
   590   ///\endcode
   591   /// The output of the above code is the following.
   592   ///\code
   593   /// 1
   594   /// 1
   595   ///\endcode
   596   /// Note that \c n is of type \c SubDGA::NodeIt, but it can be converted to
   597   /// \c Digraph::Node that is why \c g.id(n) can be applied.
   598   /// 
   599   /// For other examples see also the documentation of
   600   /// NodeSubDigraphAdaptor and ArcSubDigraphAdaptor.
   601   template<typename _Digraph, 
   602 	   typename _NodeFilterMap = typename _Digraph::template NodeMap<bool>, 
   603 	   typename _ArcFilterMap = typename _Digraph::template ArcMap<bool>, 
   604 	   bool checked = true>
   605   class SubDigraphAdaptor : 
   606     public DigraphAdaptorExtender<
   607     SubDigraphAdaptorBase<_Digraph, _NodeFilterMap, _ArcFilterMap, checked> > {
   608   public:
   609     typedef _Digraph Digraph;
   610     typedef _NodeFilterMap NodeFilterMap;
   611     typedef _ArcFilterMap ArcFilterMap;
   612 
   613     typedef DigraphAdaptorExtender<
   614       SubDigraphAdaptorBase<Digraph, NodeFilterMap, ArcFilterMap, checked> >
   615     Parent;
   616 
   617     typedef typename Parent::Node Node;
   618     typedef typename Parent::Arc Arc;
   619 
   620   protected:
   621     SubDigraphAdaptor() { }
   622   public:
   623 
   624     /// \brief Constructor
   625     ///
   626     /// Creates a sub-digraph-adaptor for the given digraph with
   627     /// given node and arc map filters.
   628     SubDigraphAdaptor(Digraph& digraph, NodeFilterMap& node_filter, 
   629 		      ArcFilterMap& arc_filter) { 
   630       setDigraph(digraph);
   631       setNodeFilterMap(node_filter);
   632       setArcFilterMap(arc_filter);
   633     }
   634 
   635     /// \brief Hides the node of the graph
   636     ///
   637     /// This function hides \c n in the digraph, i.e. the iteration 
   638     /// jumps over it. This is done by simply setting the value of \c n  
   639     /// to be false in the corresponding node-map.
   640     void hide(const Node& n) const { Parent::hide(n); }
   641 
   642     /// \brief Hides the arc of the graph
   643     ///
   644     /// This function hides \c a in the digraph, i.e. the iteration 
   645     /// jumps over it. This is done by simply setting the value of \c a
   646     /// to be false in the corresponding arc-map.
   647     void hide(const Arc& a) const { Parent::hide(a); }
   648 
   649     /// \brief Unhides the node of the graph
   650     ///
   651     /// The value of \c n is set to be true in the node-map which stores 
   652     /// hide information. If \c n was hidden previuosly, then it is shown 
   653     /// again
   654     void unHide(const Node& n) const { Parent::unHide(n); }
   655 
   656     /// \brief Unhides the arc of the graph
   657     ///
   658     /// The value of \c a is set to be true in the arc-map which stores 
   659     /// hide information. If \c a was hidden previuosly, then it is shown 
   660     /// again
   661     void unHide(const Arc& a) const { Parent::unHide(a); }
   662 
   663     /// \brief Returns true if \c n is hidden.
   664     ///
   665     /// Returns true if \c n is hidden.
   666     ///
   667     bool hidden(const Node& n) const { return Parent::hidden(n); }
   668 
   669     /// \brief Returns true if \c a is hidden.
   670     ///
   671     /// Returns true if \c a is hidden.
   672     ///
   673     bool hidden(const Arc& a) const { return Parent::hidden(a); }
   674 
   675   };
   676 
   677   /// \brief Just gives back a sub-digraph-adaptor
   678   ///
   679   /// Just gives back a sub-digraph-adaptor
   680   template<typename Digraph, typename NodeFilterMap, typename ArcFilterMap>
   681   SubDigraphAdaptor<const Digraph, NodeFilterMap, ArcFilterMap>
   682   subDigraphAdaptor(const Digraph& digraph, 
   683 		    NodeFilterMap& nfm, ArcFilterMap& afm) {
   684     return SubDigraphAdaptor<const Digraph, NodeFilterMap, ArcFilterMap>
   685       (digraph, nfm, afm);
   686   }
   687 
   688   template<typename Digraph, typename NodeFilterMap, typename ArcFilterMap>
   689   SubDigraphAdaptor<const Digraph, const NodeFilterMap, ArcFilterMap>
   690   subDigraphAdaptor(const Digraph& digraph, 
   691                    NodeFilterMap& nfm, ArcFilterMap& afm) {
   692     return SubDigraphAdaptor<const Digraph, const NodeFilterMap, ArcFilterMap>
   693       (digraph, nfm, afm);
   694   }
   695 
   696   template<typename Digraph, typename NodeFilterMap, typename ArcFilterMap>
   697   SubDigraphAdaptor<const Digraph, NodeFilterMap, const ArcFilterMap>
   698   subDigraphAdaptor(const Digraph& digraph, 
   699                    NodeFilterMap& nfm, ArcFilterMap& afm) {
   700     return SubDigraphAdaptor<const Digraph, NodeFilterMap, const ArcFilterMap>
   701       (digraph, nfm, afm);
   702   }
   703 
   704   template<typename Digraph, typename NodeFilterMap, typename ArcFilterMap>
   705   SubDigraphAdaptor<const Digraph, const NodeFilterMap, const ArcFilterMap>
   706   subDigraphAdaptor(const Digraph& digraph, 
   707                    NodeFilterMap& nfm, ArcFilterMap& afm) {
   708     return SubDigraphAdaptor<const Digraph, const NodeFilterMap, 
   709       const ArcFilterMap>(digraph, nfm, afm);
   710 
   711   }
   712 
   713 
   714 
   715   ///\ingroup graph_adaptors
   716   ///
   717   ///\brief An adaptor for hiding nodes from a digraph.
   718   ///
   719   ///An adaptor for hiding nodes from a digraph.  This adaptor
   720   ///specializes SubDigraphAdaptor in the way that only the node-set
   721   ///can be filtered. In usual case the checked parameter is true, we
   722   ///get the induced subgraph. But if the checked parameter is false
   723   ///then we can filter only isolated nodes.
   724   template<typename _Digraph, 
   725 	   typename _NodeFilterMap = typename _Digraph::template NodeMap<bool>, 
   726 	   bool checked = true>
   727   class NodeSubDigraphAdaptor : 
   728     public SubDigraphAdaptor<_Digraph, _NodeFilterMap, 
   729 			     ConstMap<typename _Digraph::Arc, bool>, checked> {
   730   public:
   731 
   732     typedef _Digraph Digraph;
   733     typedef _NodeFilterMap NodeFilterMap;
   734 
   735     typedef SubDigraphAdaptor<Digraph, NodeFilterMap, 
   736 			      ConstMap<typename Digraph::Arc, bool>, checked> 
   737     Parent;
   738 
   739     typedef typename Parent::Node Node;
   740 
   741   protected:
   742     ConstMap<typename Digraph::Arc, bool> const_true_map;
   743 
   744     NodeSubDigraphAdaptor() : const_true_map(true) {
   745       Parent::setArcFilterMap(const_true_map);
   746     }
   747 
   748   public:
   749 
   750     /// \brief Constructor
   751     ///
   752     /// Creates a node-sub-digraph-adaptor for the given digraph with
   753     /// given node map filter.
   754     NodeSubDigraphAdaptor(Digraph& _digraph, NodeFilterMap& node_filter) : 
   755       Parent(), const_true_map(true) { 
   756       Parent::setDigraph(_digraph);
   757       Parent::setNodeFilterMap(node_filter);
   758       Parent::setArcFilterMap(const_true_map);
   759     }
   760 
   761     /// \brief Hides the node of the graph
   762     ///
   763     /// This function hides \c n in the digraph, i.e. the iteration 
   764     /// jumps over it. This is done by simply setting the value of \c n  
   765     /// to be false in the corresponding node-map.
   766     void hide(const Node& n) const { Parent::hide(n); }
   767 
   768     /// \brief Unhides the node of the graph
   769     ///
   770     /// The value of \c n is set to be true in the node-map which stores 
   771     /// hide information. If \c n was hidden previuosly, then it is shown 
   772     /// again
   773     void unHide(const Node& n) const { Parent::unHide(n); }
   774 
   775     /// \brief Returns true if \c n is hidden.
   776     ///
   777     /// Returns true if \c n is hidden.
   778     ///
   779     bool hidden(const Node& n) const { return Parent::hidden(n); }
   780 
   781   };
   782 
   783 
   784   /// \brief Just gives back a  node-sub-digraph adaptor
   785   ///
   786   /// Just gives back a node-sub-digraph adaptor
   787   template<typename Digraph, typename NodeFilterMap>
   788   NodeSubDigraphAdaptor<const Digraph, NodeFilterMap>
   789   nodeSubDigraphAdaptor(const Digraph& digraph, NodeFilterMap& nfm) {
   790     return NodeSubDigraphAdaptor<const Digraph, NodeFilterMap>(digraph, nfm);
   791   }
   792 
   793   template<typename Digraph, typename NodeFilterMap>
   794   NodeSubDigraphAdaptor<const Digraph, const NodeFilterMap>
   795   nodeSubDigraphAdaptor(const Digraph& digraph, const NodeFilterMap& nfm) {
   796     return NodeSubDigraphAdaptor<const Digraph, const NodeFilterMap>
   797       (digraph, nfm);
   798   }
   799 
   800   ///\ingroup graph_adaptors
   801   ///
   802   ///\brief An adaptor for hiding arcs from a digraph.
   803   ///
   804   ///An adaptor for hiding arcs from a digraph. This adaptor
   805   ///specializes SubDigraphAdaptor in the way that only the arc-set
   806   ///can be filtered. The usefulness of this adaptor is demonstrated
   807   ///in the problem of searching a maximum number of arc-disjoint
   808   ///shortest paths between two nodes \c s and \c t. Shortest here
   809   ///means being shortest with respect to non-negative
   810   ///arc-lengths. Note that the comprehension of the presented
   811   ///solution need's some elementary knowledge from combinatorial
   812   ///optimization.
   813   ///
   814   ///If a single shortest path is to be searched between \c s and \c
   815   ///t, then this can be done easily by applying the Dijkstra
   816   ///algorithm. What happens, if a maximum number of arc-disjoint
   817   ///shortest paths is to be computed. It can be proved that an arc
   818   ///can be in a shortest path if and only if it is tight with respect
   819   ///to the potential function computed by Dijkstra.  Moreover, any
   820   ///path containing only such arcs is a shortest one.  Thus we have
   821   ///to compute a maximum number of arc-disjoint paths between \c s
   822   ///and \c t in the digraph which has arc-set all the tight arcs. The
   823   ///computation will be demonstrated on the following digraph, which
   824   ///is read from the dimacs file \c sub_digraph_adaptor_demo.dim.
   825   ///The full source code is available in \ref
   826   ///sub_digraph_adaptor_demo.cc.  If you are interested in more demo
   827   ///programs, you can use \ref dim_to_dot.cc to generate .dot files
   828   ///from dimacs files.  The .dot file of the following figure was
   829   ///generated by the demo program \ref dim_to_dot.cc.
   830   ///
   831   ///\dot
   832   ///digraph lemon_dot_example {
   833   ///node [ shape=ellipse, fontname=Helvetica, fontsize=10 ];
   834   ///n0 [ label="0 (s)" ];
   835   ///n1 [ label="1" ];
   836   ///n2 [ label="2" ];
   837   ///n3 [ label="3" ];
   838   ///n4 [ label="4" ];
   839   ///n5 [ label="5" ];
   840   ///n6 [ label="6 (t)" ];
   841   ///arc [ shape=ellipse, fontname=Helvetica, fontsize=10 ];
   842   ///n5 ->  n6 [ label="9, length:4" ];
   843   ///n4 ->  n6 [ label="8, length:2" ];
   844   ///n3 ->  n5 [ label="7, length:1" ];
   845   ///n2 ->  n5 [ label="6, length:3" ];
   846   ///n2 ->  n6 [ label="5, length:5" ];
   847   ///n2 ->  n4 [ label="4, length:2" ];
   848   ///n1 ->  n4 [ label="3, length:3" ];
   849   ///n0 ->  n3 [ label="2, length:1" ];
   850   ///n0 ->  n2 [ label="1, length:2" ];
   851   ///n0 ->  n1 [ label="0, length:3" ];
   852   ///}
   853   ///\enddot
   854   ///
   855   ///\code
   856   ///Digraph g;
   857   ///Node s, t;
   858   ///LengthMap length(g);
   859   ///
   860   ///readDimacs(std::cin, g, length, s, t);
   861   ///
   862   ///cout << "arcs with lengths (of form id, source--length->target): " << endl;
   863   ///for(ArcIt e(g); e!=INVALID; ++e) 
   864   ///  cout << g.id(e) << ", " << g.id(g.source(e)) << "--" 
   865   ///       << length[e] << "->" << g.id(g.target(e)) << endl;
   866   ///
   867   ///cout << "s: " << g.id(s) << " t: " << g.id(t) << endl;
   868   ///\endcode
   869   ///Next, the potential function is computed with Dijkstra.
   870   ///\code
   871   ///typedef Dijkstra<Digraph, LengthMap> Dijkstra;
   872   ///Dijkstra dijkstra(g, length);
   873   ///dijkstra.run(s);
   874   ///\endcode
   875   ///Next, we consrtruct a map which filters the arc-set to the tight arcs.
   876   ///\code
   877   ///typedef TightArcFilterMap<Digraph, const Dijkstra::DistMap, LengthMap> 
   878   ///  TightArcFilter;
   879   ///TightArcFilter tight_arc_filter(g, dijkstra.distMap(), length);
   880   ///
   881   ///typedef ArcSubDigraphAdaptor<Digraph, TightArcFilter> SubGA;
   882   ///SubGA ga(g, tight_arc_filter);
   883   ///\endcode
   884   ///Then, the maximum nimber of arc-disjoint \c s-\c t paths are computed 
   885   ///with a max flow algorithm Preflow.
   886   ///\code
   887   ///ConstMap<Arc, int> const_1_map(1);
   888   ///Digraph::ArcMap<int> flow(g, 0);
   889   ///
   890   ///Preflow<SubGA, ConstMap<Arc, int>, Digraph::ArcMap<int> > 
   891   ///  preflow(ga, const_1_map, s, t);
   892   ///preflow.run();
   893   ///\endcode
   894   ///Last, the output is:
   895   ///\code  
   896   ///cout << "maximum number of arc-disjoint shortest path: " 
   897   ///     << preflow.flowValue() << endl;
   898   ///cout << "arcs of the maximum number of arc-disjoint shortest s-t paths: " 
   899   ///     << endl;
   900   ///for(ArcIt e(g); e!=INVALID; ++e) 
   901   ///  if (preflow.flow(e))
   902   ///    cout << " " << g.id(g.source(e)) << "--"
   903   ///         << length[e] << "->" << g.id(g.target(e)) << endl;
   904   ///\endcode
   905   ///The program has the following (expected :-)) output:
   906   ///\code
   907   ///arcs with lengths (of form id, source--length->target):
   908   /// 9, 5--4->6
   909   /// 8, 4--2->6
   910   /// 7, 3--1->5
   911   /// 6, 2--3->5
   912   /// 5, 2--5->6
   913   /// 4, 2--2->4
   914   /// 3, 1--3->4
   915   /// 2, 0--1->3
   916   /// 1, 0--2->2
   917   /// 0, 0--3->1
   918   ///s: 0 t: 6
   919   ///maximum number of arc-disjoint shortest path: 2
   920   ///arcs of the maximum number of arc-disjoint shortest s-t paths:
   921   /// 9, 5--4->6
   922   /// 8, 4--2->6
   923   /// 7, 3--1->5
   924   /// 4, 2--2->4
   925   /// 2, 0--1->3
   926   /// 1, 0--2->2
   927   ///\endcode
   928   template<typename _Digraph, typename _ArcFilterMap>
   929   class ArcSubDigraphAdaptor : 
   930     public SubDigraphAdaptor<_Digraph, ConstMap<typename _Digraph::Node, bool>, 
   931 			     _ArcFilterMap, false> {
   932   public:
   933     typedef _Digraph Digraph;
   934     typedef _ArcFilterMap ArcFilterMap;
   935 
   936     typedef SubDigraphAdaptor<Digraph, ConstMap<typename Digraph::Node, bool>, 
   937 			      ArcFilterMap, false> Parent;
   938 
   939     typedef typename Parent::Arc Arc;
   940 
   941   protected:
   942     ConstMap<typename Digraph::Node, bool> const_true_map;
   943 
   944     ArcSubDigraphAdaptor() : const_true_map(true) {
   945       Parent::setNodeFilterMap(const_true_map);
   946     }
   947 
   948   public:
   949 
   950     /// \brief Constructor
   951     ///
   952     /// Creates a arc-sub-digraph-adaptor for the given digraph with
   953     /// given arc map filter.
   954     ArcSubDigraphAdaptor(Digraph& digraph, ArcFilterMap& arc_filter) 
   955       : Parent(), const_true_map(true) { 
   956       Parent::setDigraph(digraph);
   957       Parent::setNodeFilterMap(const_true_map);
   958       Parent::setArcFilterMap(arc_filter);
   959     }
   960 
   961     /// \brief Hides the arc of the graph
   962     ///
   963     /// This function hides \c a in the digraph, i.e. the iteration 
   964     /// jumps over it. This is done by simply setting the value of \c a
   965     /// to be false in the corresponding arc-map.
   966     void hide(const Arc& a) const { Parent::hide(a); }
   967 
   968     /// \brief Unhides the arc of the graph
   969     ///
   970     /// The value of \c a is set to be true in the arc-map which stores 
   971     /// hide information. If \c a was hidden previuosly, then it is shown 
   972     /// again
   973     void unHide(const Arc& a) const { Parent::unHide(a); }
   974 
   975     /// \brief Returns true if \c a is hidden.
   976     ///
   977     /// Returns true if \c a is hidden.
   978     ///
   979     bool hidden(const Arc& a) const { return Parent::hidden(a); }
   980 
   981   };
   982 
   983   /// \brief Just gives back an arc-sub-digraph adaptor
   984   ///
   985   /// Just gives back an arc-sub-digraph adaptor
   986   template<typename Digraph, typename ArcFilterMap>
   987   ArcSubDigraphAdaptor<const Digraph, ArcFilterMap>
   988   arcSubDigraphAdaptor(const Digraph& digraph, ArcFilterMap& afm) {
   989     return ArcSubDigraphAdaptor<const Digraph, ArcFilterMap>(digraph, afm);
   990   }
   991 
   992   template<typename Digraph, typename ArcFilterMap>
   993   ArcSubDigraphAdaptor<const Digraph, const ArcFilterMap>
   994   arcSubDigraphAdaptor(const Digraph& digraph, const ArcFilterMap& afm) {
   995     return ArcSubDigraphAdaptor<const Digraph, const ArcFilterMap>
   996       (digraph, afm);
   997   }
   998 
   999   template <typename _Digraph>
  1000   class UndirDigraphAdaptorBase { 
  1001   public:
  1002     typedef _Digraph Digraph;
  1003     typedef UndirDigraphAdaptorBase Adaptor;
  1004 
  1005     typedef True UndirectedTag;
  1006 
  1007     typedef typename Digraph::Arc Edge;
  1008     typedef typename Digraph::Node Node;
  1009 
  1010     class Arc : public Edge {
  1011       friend class UndirDigraphAdaptorBase;
  1012     protected:
  1013       bool _forward;
  1014 
  1015       Arc(const Edge& edge, bool forward) :
  1016         Edge(edge), _forward(forward) {}
  1017 
  1018     public:
  1019       Arc() {}
  1020 
  1021       Arc(Invalid) : Edge(INVALID), _forward(true) {}
  1022 
  1023       bool operator==(const Arc &other) const {
  1024 	return _forward == other._forward && 
  1025 	  static_cast<const Edge&>(*this) == static_cast<const Edge&>(other);
  1026       }
  1027       bool operator!=(const Arc &other) const {
  1028 	return _forward != other._forward || 
  1029 	  static_cast<const Edge&>(*this) != static_cast<const Edge&>(other);
  1030       }
  1031       bool operator<(const Arc &other) const {
  1032 	return _forward < other._forward ||
  1033 	  (_forward == other._forward &&
  1034 	   static_cast<const Edge&>(*this) < static_cast<const Edge&>(other));
  1035       }
  1036     };
  1037 
  1038 
  1039 
  1040     void first(Node& n) const {
  1041       _digraph->first(n);
  1042     }
  1043 
  1044     void next(Node& n) const {
  1045       _digraph->next(n);
  1046     }
  1047 
  1048     void first(Arc& a) const {
  1049       _digraph->first(a);
  1050       a._forward = true;
  1051     }
  1052 
  1053     void next(Arc& a) const {
  1054       if (a._forward) {
  1055 	a._forward = false;
  1056       } else {
  1057 	_digraph->next(a);
  1058 	a._forward = true;
  1059       }
  1060     }
  1061 
  1062     void first(Edge& e) const {
  1063       _digraph->first(e);
  1064     }
  1065 
  1066     void next(Edge& e) const {
  1067       _digraph->next(e);
  1068     }
  1069 
  1070     void firstOut(Arc& a, const Node& n) const {
  1071       _digraph->firstIn(a, n);
  1072       if( static_cast<const Edge&>(a) != INVALID ) {
  1073 	a._forward = false;
  1074       } else {
  1075 	_digraph->firstOut(a, n);
  1076 	a._forward = true;
  1077       }
  1078     }
  1079     void nextOut(Arc &a) const {
  1080       if (!a._forward) {
  1081 	Node n = _digraph->target(a);
  1082 	_digraph->nextIn(a);
  1083 	if (static_cast<const Edge&>(a) == INVALID ) {
  1084 	  _digraph->firstOut(a, n);
  1085 	  a._forward = true;
  1086 	}
  1087       }
  1088       else {
  1089 	_digraph->nextOut(a);
  1090       }
  1091     }
  1092 
  1093     void firstIn(Arc &a, const Node &n) const {
  1094       _digraph->firstOut(a, n);
  1095       if (static_cast<const Edge&>(a) != INVALID ) {
  1096 	a._forward = false;
  1097       } else {
  1098 	_digraph->firstIn(a, n);
  1099 	a._forward = true;
  1100       }
  1101     }
  1102     void nextIn(Arc &a) const {
  1103       if (!a._forward) {
  1104 	Node n = _digraph->source(a);
  1105 	_digraph->nextOut(a);
  1106 	if( static_cast<const Edge&>(a) == INVALID ) {
  1107 	  _digraph->firstIn(a, n);
  1108 	  a._forward = true;
  1109 	}
  1110       }
  1111       else {
  1112 	_digraph->nextIn(a);
  1113       }
  1114     }
  1115 
  1116     void firstInc(Edge &e, bool &d, const Node &n) const {
  1117       d = true;
  1118       _digraph->firstOut(e, n);
  1119       if (e != INVALID) return;
  1120       d = false;
  1121       _digraph->firstIn(e, n);
  1122     }
  1123 
  1124     void nextInc(Edge &e, bool &d) const {
  1125       if (d) {
  1126 	Node s = _digraph->source(e);
  1127 	_digraph->nextOut(e);
  1128 	if (e != INVALID) return;
  1129 	d = false;
  1130 	_digraph->firstIn(e, s);
  1131       } else {
  1132 	_digraph->nextIn(e);
  1133       }
  1134     }
  1135 
  1136     Node u(const Edge& e) const {
  1137       return _digraph->source(e);
  1138     }
  1139 
  1140     Node v(const Edge& e) const {
  1141       return _digraph->target(e);
  1142     }
  1143 
  1144     Node source(const Arc &a) const {
  1145       return a._forward ? _digraph->source(a) : _digraph->target(a);
  1146     }
  1147 
  1148     Node target(const Arc &a) const {
  1149       return a._forward ? _digraph->target(a) : _digraph->source(a);
  1150     }
  1151 
  1152     static Arc direct(const Edge &e, bool d) {
  1153       return Arc(e, d);
  1154     }
  1155     Arc direct(const Edge &e, const Node& n) const {
  1156       return Arc(e, _digraph->source(e) == n);
  1157     }
  1158 
  1159     static bool direction(const Arc &a) { return a._forward; }
  1160 
  1161     Node nodeFromId(int ix) const { return _digraph->nodeFromId(ix); }
  1162     Arc arcFromId(int ix) const {
  1163       return direct(_digraph->arcFromId(ix >> 1), bool(ix & 1));
  1164     }
  1165     Edge edgeFromId(int ix) const { return _digraph->arcFromId(ix); }
  1166 
  1167     int id(const Node &n) const { return _digraph->id(n); }
  1168     int id(const Arc &a) const {
  1169       return  (_digraph->id(a) << 1) | (a._forward ? 1 : 0);
  1170     }
  1171     int id(const Edge &e) const { return _digraph->id(e); }
  1172 
  1173     int maxNodeId() const { return _digraph->maxNodeId(); }
  1174     int maxArcId() const { return (_digraph->maxArcId() << 1) | 1; }
  1175     int maxEdgeId() const { return _digraph->maxArcId(); }
  1176 
  1177     Node addNode() { return _digraph->addNode(); }
  1178     Edge addEdge(const Node& u, const Node& v) { 
  1179       return _digraph->addArc(u, v); 
  1180     }
  1181 
  1182     void erase(const Node& i) { _digraph->erase(i); }
  1183     void erase(const Edge& i) { _digraph->erase(i); }
  1184   
  1185     void clear() { _digraph->clear(); }
  1186 
  1187     typedef NodeNumTagIndicator<Digraph> NodeNumTag;
  1188     int nodeNum() const { return 2 * _digraph->arcNum(); }
  1189     typedef EdgeNumTagIndicator<Digraph> EdgeNumTag;
  1190     int arcNum() const { return 2 * _digraph->arcNum(); }
  1191     int edgeNum() const { return _digraph->arcNum(); }
  1192 
  1193     typedef FindEdgeTagIndicator<Digraph> FindEdgeTag;
  1194     Arc findArc(Node s, Node t, Arc p = INVALID) const {
  1195       if (p == INVALID) {
  1196 	Edge arc = _digraph->findArc(s, t);
  1197 	if (arc != INVALID) return direct(arc, true);
  1198 	arc = _digraph->findArc(t, s);
  1199 	if (arc != INVALID) return direct(arc, false);
  1200       } else if (direction(p)) {
  1201 	Edge arc = _digraph->findArc(s, t, p);
  1202 	if (arc != INVALID) return direct(arc, true);
  1203 	arc = _digraph->findArc(t, s);
  1204 	if (arc != INVALID) return direct(arc, false);	
  1205       } else {
  1206 	Edge arc = _digraph->findArc(t, s, p);
  1207 	if (arc != INVALID) return direct(arc, false);	      
  1208       }
  1209       return INVALID;
  1210     }
  1211 
  1212     Edge findEdge(Node s, Node t, Edge p = INVALID) const {
  1213       if (s != t) {
  1214         if (p == INVALID) {
  1215           Edge arc = _digraph->findArc(s, t);
  1216           if (arc != INVALID) return arc;
  1217           arc = _digraph->findArc(t, s);
  1218           if (arc != INVALID) return arc;
  1219         } else if (_digraph->s(p) == s) {
  1220           Edge arc = _digraph->findArc(s, t, p);
  1221           if (arc != INVALID) return arc;
  1222           arc = _digraph->findArc(t, s);
  1223           if (arc != INVALID) return arc;	
  1224         } else {
  1225           Edge arc = _digraph->findArc(t, s, p);
  1226           if (arc != INVALID) return arc;	      
  1227         }
  1228       } else {
  1229         return _digraph->findArc(s, t, p);
  1230       }
  1231       return INVALID;
  1232     }
  1233 
  1234   private:
  1235     
  1236     template <typename _Value>
  1237     class ArcMapBase {
  1238     private:
  1239       
  1240       typedef typename Digraph::template ArcMap<_Value> MapImpl;
  1241       
  1242     public:
  1243 
  1244       typedef typename MapTraits<MapImpl>::ReferenceMapTag ReferenceMapTag;
  1245 
  1246       typedef _Value Value;
  1247       typedef Arc Key;
  1248       
  1249       ArcMapBase(const Adaptor& adaptor) :
  1250 	_forward(*adaptor._digraph), _backward(*adaptor._digraph) {}
  1251 
  1252       ArcMapBase(const Adaptor& adaptor, const Value& v) 
  1253         : _forward(*adaptor._digraph, v), _backward(*adaptor._digraph, v) {}
  1254       
  1255       void set(const Arc& a, const Value& v) { 
  1256 	if (direction(a)) {
  1257 	  _forward.set(a, v); 
  1258         } else { 
  1259 	  _backward.set(a, v);
  1260         } 
  1261       }
  1262 
  1263       typename MapTraits<MapImpl>::ConstReturnValue 
  1264       operator[](const Arc& a) const { 
  1265 	if (direction(a)) {
  1266 	  return _forward[a]; 
  1267 	} else { 
  1268 	  return _backward[a]; 
  1269         }
  1270       }
  1271 
  1272       typename MapTraits<MapImpl>::ReturnValue 
  1273       operator[](const Arc& a) { 
  1274 	if (direction(a)) {
  1275 	  return _forward[a]; 
  1276 	} else { 
  1277 	  return _backward[a]; 
  1278         }
  1279       }
  1280 
  1281     protected:
  1282 
  1283       MapImpl _forward, _backward; 
  1284 
  1285     };
  1286 
  1287   public:
  1288 
  1289     template <typename _Value>
  1290     class NodeMap : public Digraph::template NodeMap<_Value> {
  1291     public:
  1292 
  1293       typedef _Value Value;
  1294       typedef typename Digraph::template NodeMap<Value> Parent;
  1295 
  1296       explicit NodeMap(const Adaptor& adaptor) 
  1297 	: Parent(*adaptor._digraph) {}
  1298 
  1299       NodeMap(const Adaptor& adaptor, const _Value& value)
  1300 	: Parent(*adaptor._digraph, value) { }
  1301 
  1302     private:
  1303       NodeMap& operator=(const NodeMap& cmap) {
  1304         return operator=<NodeMap>(cmap);
  1305       }
  1306 
  1307       template <typename CMap>
  1308       NodeMap& operator=(const CMap& cmap) {
  1309         Parent::operator=(cmap);
  1310         return *this;
  1311       }
  1312       
  1313     };
  1314 
  1315     template <typename _Value>
  1316     class ArcMap 
  1317       : public SubMapExtender<Adaptor, ArcMapBase<_Value> > 
  1318     {
  1319     public:
  1320       typedef _Value Value;
  1321       typedef SubMapExtender<Adaptor, ArcMapBase<Value> > Parent;
  1322     
  1323       ArcMap(const Adaptor& adaptor) 
  1324 	: Parent(adaptor) {}
  1325 
  1326       ArcMap(const Adaptor& adaptor, const Value& value) 
  1327 	: Parent(adaptor, value) {}
  1328     
  1329     private:
  1330       ArcMap& operator=(const ArcMap& cmap) {
  1331 	return operator=<ArcMap>(cmap);
  1332       }
  1333     
  1334       template <typename CMap>
  1335       ArcMap& operator=(const CMap& cmap) {
  1336         Parent::operator=(cmap);
  1337 	return *this;
  1338       }
  1339     };
  1340         
  1341     template <typename _Value>
  1342     class EdgeMap : public Digraph::template ArcMap<_Value> {
  1343     public:
  1344       
  1345       typedef _Value Value;
  1346       typedef typename Digraph::template ArcMap<Value> Parent;
  1347       
  1348       explicit EdgeMap(const Adaptor& adaptor) 
  1349 	: Parent(*adaptor._digraph) {}
  1350 
  1351       EdgeMap(const Adaptor& adaptor, const Value& value)
  1352 	: Parent(*adaptor._digraph, value) {}
  1353 
  1354     private:
  1355       EdgeMap& operator=(const EdgeMap& cmap) {
  1356         return operator=<EdgeMap>(cmap);
  1357       }
  1358 
  1359       template <typename CMap>
  1360       EdgeMap& operator=(const CMap& cmap) {
  1361         Parent::operator=(cmap);
  1362         return *this;
  1363       }
  1364 
  1365     };
  1366 
  1367     typedef typename ItemSetTraits<Digraph, Node>::ItemNotifier NodeNotifier;
  1368     NodeNotifier& notifier(Node) const { return _digraph->notifier(Node()); } 
  1369 
  1370   protected:
  1371 
  1372     UndirDigraphAdaptorBase() : _digraph(0) {}
  1373 
  1374     Digraph* _digraph;
  1375 
  1376     void setDigraph(Digraph& digraph) {
  1377       _digraph = &digraph;
  1378     }
  1379     
  1380   };
  1381 
  1382   ///\ingroup graph_adaptors
  1383   ///
  1384   /// \brief A graph is made from a directed digraph by an adaptor
  1385   ///
  1386   /// This adaptor makes an undirected graph from a directed
  1387   /// graph. All arc of the underlying digraph will be showed in the
  1388   /// adaptor as an edge. Let's see an informal example about using
  1389   /// this adaptor.
  1390   ///
  1391   /// There is a network of the streets of a town. Of course there are
  1392   /// some one-way street in the town hence the network is a directed
  1393   /// one. There is a crazy driver who go oppositely in the one-way
  1394   /// street without moral sense. Of course he can pass this streets
  1395   /// slower than the regular way, in fact his speed is half of the
  1396   /// normal speed. How long should he drive to get from a source
  1397   /// point to the target? Let see the example code which calculate it:
  1398   ///
  1399   /// \todo BadCode, SimpleMap does no exists
  1400   ///\code
  1401   /// typedef UndirDigraphAdaptor<Digraph> Graph;
  1402   /// Graph graph(digraph);
  1403   ///
  1404   /// typedef SimpleMap<LengthMap> FLengthMap;
  1405   /// FLengthMap flength(length);
  1406   ///
  1407   /// typedef ScaleMap<LengthMap> RLengthMap;
  1408   /// RLengthMap rlength(length, 2.0);
  1409   ///
  1410   /// typedef Graph::CombinedArcMap<FLengthMap, RLengthMap > ULengthMap;
  1411   /// ULengthMap ulength(flength, rlength);
  1412   /// 
  1413   /// Dijkstra<Graph, ULengthMap> dijkstra(graph, ulength);
  1414   /// std::cout << "Driving time : " << dijkstra.run(src, trg) << std::endl;
  1415   ///\endcode
  1416   ///
  1417   /// The combined arc map makes the length map for the undirected
  1418   /// graph. It is created from a forward and reverse map. The forward
  1419   /// map is created from the original length map with a SimpleMap
  1420   /// adaptor which just makes a read-write map from the reference map
  1421   /// i.e. it forgets that it can be return reference to values. The
  1422   /// reverse map is just the scaled original map with the ScaleMap
  1423   /// adaptor. The combination solves that passing the reverse way
  1424   /// takes double time than the original. To get the driving time we
  1425   /// run the dijkstra algorithm on the graph.
  1426   template<typename _Digraph>
  1427   class UndirDigraphAdaptor 
  1428     : public GraphAdaptorExtender<UndirDigraphAdaptorBase<_Digraph> > {
  1429   public:
  1430     typedef _Digraph Digraph;
  1431     typedef GraphAdaptorExtender<UndirDigraphAdaptorBase<Digraph> > Parent;
  1432   protected:
  1433     UndirDigraphAdaptor() { }
  1434   public:
  1435 
  1436     /// \brief Constructor
  1437     ///
  1438     /// Constructor
  1439     UndirDigraphAdaptor(_Digraph& _digraph) { 
  1440       setDigraph(_digraph);
  1441     }
  1442 
  1443     /// \brief ArcMap combined from two original ArcMap
  1444     ///
  1445     /// This class adapts two original digraph ArcMap to
  1446     /// get an arc map on the adaptor.
  1447     template <typename _ForwardMap, typename _BackwardMap>
  1448     class CombinedArcMap {
  1449     public:
  1450       
  1451       typedef _ForwardMap ForwardMap;
  1452       typedef _BackwardMap BackwardMap;
  1453 
  1454       typedef typename MapTraits<ForwardMap>::ReferenceMapTag ReferenceMapTag;
  1455 
  1456       typedef typename ForwardMap::Value Value;
  1457       typedef typename Parent::Arc Key;
  1458 
  1459       /// \brief Constructor      
  1460       ///
  1461       /// Constructor      
  1462       CombinedArcMap() : _forward(0), _backward(0) {}
  1463 
  1464       /// \brief Constructor      
  1465       ///
  1466       /// Constructor      
  1467       CombinedArcMap(ForwardMap& forward, BackwardMap& backward) 
  1468         : _forward(&forward), _backward(&backward) {}
  1469       
  1470 
  1471       /// \brief Sets the value associated with a key.
  1472       ///
  1473       /// Sets the value associated with a key.
  1474       void set(const Key& e, const Value& a) { 
  1475 	if (Parent::direction(e)) {
  1476 	  _forward->set(e, a); 
  1477         } else { 
  1478 	  _backward->set(e, a);
  1479         } 
  1480       }
  1481 
  1482       /// \brief Returns the value associated with a key.
  1483       ///
  1484       /// Returns the value associated with a key.
  1485       typename MapTraits<ForwardMap>::ConstReturnValue 
  1486       operator[](const Key& e) const { 
  1487 	if (Parent::direction(e)) {
  1488 	  return (*_forward)[e]; 
  1489 	} else { 
  1490 	  return (*_backward)[e]; 
  1491         }
  1492       }
  1493 
  1494       /// \brief Returns the value associated with a key.
  1495       ///
  1496       /// Returns the value associated with a key.
  1497       typename MapTraits<ForwardMap>::ReturnValue 
  1498       operator[](const Key& e) { 
  1499 	if (Parent::direction(e)) {
  1500 	  return (*_forward)[e]; 
  1501 	} else { 
  1502 	  return (*_backward)[e]; 
  1503         }
  1504       }
  1505 
  1506       /// \brief Sets the forward map
  1507       ///
  1508       /// Sets the forward map
  1509       void setForwardMap(ForwardMap& forward) {
  1510         _forward = &forward;
  1511       }
  1512 
  1513       /// \brief Sets the backward map
  1514       ///
  1515       /// Sets the backward map
  1516       void setBackwardMap(BackwardMap& backward) {
  1517         _backward = &backward;
  1518       }
  1519 
  1520     protected:
  1521 
  1522       ForwardMap* _forward;
  1523       BackwardMap* _backward; 
  1524 
  1525     };
  1526 
  1527   };
  1528 
  1529   /// \brief Just gives back an undir digraph adaptor
  1530   ///
  1531   /// Just gives back an undir digraph adaptor
  1532   template<typename Digraph>
  1533   UndirDigraphAdaptor<const Digraph>
  1534   undirDigraphAdaptor(const Digraph& digraph) {
  1535     return UndirDigraphAdaptor<const Digraph>(digraph);
  1536   }
  1537 
  1538   template<typename _Digraph, 
  1539 	   typename _CapacityMap = typename _Digraph::template ArcMap<int>, 
  1540 	   typename _FlowMap = _CapacityMap, 
  1541            typename _Tolerance = Tolerance<typename _CapacityMap::Value> >
  1542   class ResForwardFilter {
  1543   public:
  1544 
  1545     typedef _Digraph Digraph;
  1546     typedef _CapacityMap CapacityMap;
  1547     typedef _FlowMap FlowMap;
  1548     typedef _Tolerance Tolerance;
  1549 
  1550     typedef typename Digraph::Arc Key;
  1551     typedef bool Value;
  1552 
  1553   private:
  1554 
  1555     const CapacityMap* _capacity;
  1556     const FlowMap* _flow;
  1557     Tolerance _tolerance;
  1558   public:
  1559 
  1560     ResForwardFilter(const CapacityMap& capacity, const FlowMap& flow,
  1561                      const Tolerance& tolerance = Tolerance()) 
  1562       : _capacity(&capacity), _flow(&flow), _tolerance(tolerance) { }
  1563 
  1564     ResForwardFilter(const Tolerance& tolerance = Tolerance()) 
  1565       : _capacity(0), _flow(0), _tolerance(tolerance)  { }
  1566 
  1567     void setCapacity(const CapacityMap& capacity) { _capacity = &capacity; }
  1568     void setFlow(const FlowMap& flow) { _flow = &flow; }
  1569 
  1570     bool operator[](const typename Digraph::Arc& a) const {
  1571       return _tolerance.positive((*_capacity)[a] - (*_flow)[a]);
  1572     }
  1573   };
  1574 
  1575   template<typename _Digraph, 
  1576 	   typename _CapacityMap = typename _Digraph::template ArcMap<int>, 
  1577 	   typename _FlowMap = _CapacityMap, 
  1578            typename _Tolerance = Tolerance<typename _CapacityMap::Value> >
  1579   class ResBackwardFilter {
  1580   public:
  1581 
  1582     typedef _Digraph Digraph;
  1583     typedef _CapacityMap CapacityMap;
  1584     typedef _FlowMap FlowMap;
  1585     typedef _Tolerance Tolerance;
  1586 
  1587     typedef typename Digraph::Arc Key;
  1588     typedef bool Value;
  1589 
  1590   private:
  1591 
  1592     const CapacityMap* _capacity;
  1593     const FlowMap* _flow;
  1594     Tolerance _tolerance;
  1595 
  1596   public:
  1597 
  1598     ResBackwardFilter(const CapacityMap& capacity, const FlowMap& flow,
  1599                       const Tolerance& tolerance = Tolerance())
  1600       : _capacity(&capacity), _flow(&flow), _tolerance(tolerance) { }
  1601     ResBackwardFilter(const Tolerance& tolerance = Tolerance())
  1602       : _capacity(0), _flow(0), _tolerance(tolerance) { }
  1603 
  1604     void setCapacity(const CapacityMap& capacity) { _capacity = &capacity; }
  1605     void setFlow(const FlowMap& flow) { _flow = &flow; }
  1606 
  1607     bool operator[](const typename Digraph::Arc& a) const {
  1608       return _tolerance.positive((*_flow)[a]);
  1609     }
  1610   };
  1611 
  1612   
  1613   ///\ingroup graph_adaptors
  1614   ///
  1615   ///\brief An adaptor for composing the residual graph for directed
  1616   ///flow and circulation problems.
  1617   ///
  1618   ///An adaptor for composing the residual graph for directed flow and
  1619   ///circulation problems.  Let \f$ G=(V, A) \f$ be a directed digraph
  1620   ///and let \f$ F \f$ be a number type. Let moreover \f$ f,c:A\to F
  1621   ///\f$, be functions on the arc-set.
  1622   ///
  1623   ///In the appications of ResDigraphAdaptor, \f$ f \f$ usually stands
  1624   ///for a flow and \f$ c \f$ for a capacity function.  Suppose that a
  1625   ///graph instance \c g of type \c ListDigraph implements \f$ G \f$.
  1626   ///
  1627   ///\code 
  1628   ///  ListDigraph g;
  1629   ///\endcode 
  1630   ///
  1631   ///Then ResDigraphAdaptor implements the digraph structure with
  1632   /// node-set \f$ V \f$ and arc-set \f$ A_{forward}\cup A_{backward}
  1633   /// \f$, where \f$ A_{forward}=\{uv : uv\in A, f(uv)<c(uv)\} \f$ and
  1634   /// \f$ A_{backward}=\{vu : uv\in A, f(uv)>0\} \f$, i.e. the so
  1635   /// called residual graph.  When we take the union \f$
  1636   /// A_{forward}\cup A_{backward} \f$, multilicities are counted,
  1637   /// i.e.  if an arc is in both \f$ A_{forward} \f$ and \f$
  1638   /// A_{backward} \f$, then in the adaptor it appears twice. The
  1639   /// following code shows how such an instance can be constructed.
  1640   ///
  1641   ///\code 
  1642   ///  typedef ListDigraph Digraph; 
  1643   ///  IntArcMap f(g), c(g);
  1644   ///  ResDigraphAdaptor<Digraph, int, IntArcMap, IntArcMap> ga(g); 
  1645   ///\endcode
  1646   template<typename _Digraph, 
  1647 	   typename _CapacityMap = typename _Digraph::template ArcMap<int>, 
  1648 	   typename _FlowMap = _CapacityMap,
  1649            typename _Tolerance = Tolerance<typename _CapacityMap::Value> >
  1650   class ResDigraphAdaptor : 
  1651     public ArcSubDigraphAdaptor< 
  1652     UndirDigraphAdaptor<const _Digraph>, 
  1653     typename UndirDigraphAdaptor<const _Digraph>::template CombinedArcMap<
  1654       ResForwardFilter<const _Digraph, _CapacityMap, _FlowMap>,  
  1655       ResBackwardFilter<const _Digraph, _CapacityMap, _FlowMap> > > {
  1656   public:
  1657 
  1658     typedef _Digraph Digraph;
  1659     typedef _CapacityMap CapacityMap;
  1660     typedef _FlowMap FlowMap;
  1661     typedef _Tolerance Tolerance;
  1662 
  1663     typedef typename CapacityMap::Value Value;
  1664     typedef ResDigraphAdaptor Adaptor;
  1665 
  1666   protected:
  1667 
  1668     typedef UndirDigraphAdaptor<const Digraph> UndirDigraph;
  1669 
  1670     typedef ResForwardFilter<const Digraph, CapacityMap, FlowMap> 
  1671     ForwardFilter;
  1672 
  1673     typedef ResBackwardFilter<const Digraph, CapacityMap, FlowMap> 
  1674     BackwardFilter;
  1675 
  1676     typedef typename UndirDigraph::
  1677     template CombinedArcMap<ForwardFilter, BackwardFilter> ArcFilter;
  1678 
  1679     typedef ArcSubDigraphAdaptor<UndirDigraph, ArcFilter> Parent;
  1680 
  1681     const CapacityMap* _capacity;
  1682     FlowMap* _flow;
  1683 
  1684     UndirDigraph _graph;
  1685     ForwardFilter _forward_filter;
  1686     BackwardFilter _backward_filter;
  1687     ArcFilter _arc_filter;
  1688 
  1689     void setCapacityMap(const CapacityMap& capacity) {
  1690       _capacity = &capacity;
  1691       _forward_filter.setCapacity(capacity);
  1692       _backward_filter.setCapacity(capacity);
  1693     }
  1694 
  1695     void setFlowMap(FlowMap& flow) {
  1696       _flow = &flow;
  1697       _forward_filter.setFlow(flow);
  1698       _backward_filter.setFlow(flow);
  1699     }
  1700 
  1701   public:
  1702 
  1703     /// \brief Constructor of the residual digraph.
  1704     ///
  1705     /// Constructor of the residual graph. The parameters are the digraph type,
  1706     /// the flow map, the capacity map and a tolerance object.
  1707     ResDigraphAdaptor(const Digraph& digraph, const CapacityMap& capacity, 
  1708                     FlowMap& flow, const Tolerance& tolerance = Tolerance()) 
  1709       : Parent(), _capacity(&capacity), _flow(&flow), _graph(digraph),
  1710         _forward_filter(capacity, flow, tolerance), 
  1711         _backward_filter(capacity, flow, tolerance),
  1712         _arc_filter(_forward_filter, _backward_filter)
  1713     {
  1714       Parent::setDigraph(_graph);
  1715       Parent::setArcFilterMap(_arc_filter);
  1716     }
  1717 
  1718     typedef typename Parent::Arc Arc;
  1719 
  1720     /// \brief Gives back the residual capacity of the arc.
  1721     ///
  1722     /// Gives back the residual capacity of the arc.
  1723     Value rescap(const Arc& arc) const {
  1724       if (UndirDigraph::direction(arc)) {
  1725         return (*_capacity)[arc] - (*_flow)[arc]; 
  1726       } else {
  1727         return (*_flow)[arc];
  1728       }
  1729     } 
  1730 
  1731     /// \brief Augment on the given arc in the residual digraph.
  1732     ///
  1733     /// Augment on the given arc in the residual digraph. It increase
  1734     /// or decrease the flow on the original arc depend on the direction
  1735     /// of the residual arc.
  1736     void augment(const Arc& e, const Value& a) const {
  1737       if (UndirDigraph::direction(e)) {
  1738         _flow->set(e, (*_flow)[e] + a);
  1739       } else {  
  1740         _flow->set(e, (*_flow)[e] - a);
  1741       }
  1742     }
  1743 
  1744     /// \brief Returns the direction of the arc.
  1745     ///
  1746     /// Returns true when the arc is same oriented as the original arc.
  1747     static bool forward(const Arc& e) {
  1748       return UndirDigraph::direction(e);
  1749     }
  1750 
  1751     /// \brief Returns the direction of the arc.
  1752     ///
  1753     /// Returns true when the arc is opposite oriented as the original arc.
  1754     static bool backward(const Arc& e) {
  1755       return !UndirDigraph::direction(e);
  1756     }
  1757 
  1758     /// \brief Gives back the forward oriented residual arc.
  1759     ///
  1760     /// Gives back the forward oriented residual arc.
  1761     static Arc forward(const typename Digraph::Arc& e) {
  1762       return UndirDigraph::direct(e, true);
  1763     }
  1764 
  1765     /// \brief Gives back the backward oriented residual arc.
  1766     ///
  1767     /// Gives back the backward oriented residual arc.
  1768     static Arc backward(const typename Digraph::Arc& e) {
  1769       return UndirDigraph::direct(e, false);
  1770     }
  1771 
  1772     /// \brief Residual capacity map.
  1773     ///
  1774     /// In generic residual digraphs the residual capacity can be obtained 
  1775     /// as a map. 
  1776     class ResCap {
  1777     protected:
  1778       const Adaptor* _adaptor;
  1779     public:
  1780       typedef Arc Key;
  1781       typedef typename _CapacityMap::Value Value;
  1782 
  1783       ResCap(const Adaptor& adaptor) : _adaptor(&adaptor) {}
  1784       
  1785       Value operator[](const Arc& e) const {
  1786         return _adaptor->rescap(e);
  1787       }
  1788       
  1789     };
  1790 
  1791   };
  1792 
  1793   template <typename _Digraph>
  1794   class SplitDigraphAdaptorBase {
  1795   public:
  1796 
  1797     typedef _Digraph Digraph;
  1798     typedef DigraphAdaptorBase<const _Digraph> Parent;
  1799     typedef SplitDigraphAdaptorBase Adaptor;
  1800 
  1801     typedef typename Digraph::Node DigraphNode;
  1802     typedef typename Digraph::Arc DigraphArc;
  1803 
  1804     class Node;
  1805     class Arc;
  1806 
  1807   private:
  1808 
  1809     template <typename T> class NodeMapBase;
  1810     template <typename T> class ArcMapBase;
  1811 
  1812   public:
  1813     
  1814     class Node : public DigraphNode {
  1815       friend class SplitDigraphAdaptorBase;
  1816       template <typename T> friend class NodeMapBase;
  1817     private:
  1818 
  1819       bool _in;
  1820       Node(DigraphNode node, bool in)
  1821 	: DigraphNode(node), _in(in) {}
  1822       
  1823     public:
  1824 
  1825       Node() {}
  1826       Node(Invalid) : DigraphNode(INVALID), _in(true) {}
  1827 
  1828       bool operator==(const Node& node) const {
  1829 	return DigraphNode::operator==(node) && _in == node._in;
  1830       }
  1831       
  1832       bool operator!=(const Node& node) const {
  1833 	return !(*this == node);
  1834       }
  1835       
  1836       bool operator<(const Node& node) const {
  1837 	return DigraphNode::operator<(node) || 
  1838 	  (DigraphNode::operator==(node) && _in < node._in);
  1839       }
  1840     };
  1841 
  1842     class Arc {
  1843       friend class SplitDigraphAdaptorBase;
  1844       template <typename T> friend class ArcMapBase;
  1845     private:
  1846       typedef BiVariant<DigraphArc, DigraphNode> ArcImpl;
  1847 
  1848       explicit Arc(const DigraphArc& arc) : _item(arc) {}
  1849       explicit Arc(const DigraphNode& node) : _item(node) {}
  1850       
  1851       ArcImpl _item;
  1852 
  1853     public:
  1854       Arc() {}
  1855       Arc(Invalid) : _item(DigraphArc(INVALID)) {}
  1856 
  1857       bool operator==(const Arc& arc) const {
  1858         if (_item.firstState()) {
  1859           if (arc._item.firstState()) {
  1860             return _item.first() == arc._item.first();
  1861           }
  1862         } else {
  1863           if (arc._item.secondState()) {
  1864             return _item.second() == arc._item.second();
  1865           }
  1866         }
  1867         return false;
  1868       }
  1869       
  1870       bool operator!=(const Arc& arc) const {
  1871 	return !(*this == arc);
  1872       }
  1873       
  1874       bool operator<(const Arc& arc) const {
  1875         if (_item.firstState()) {
  1876           if (arc._item.firstState()) {
  1877             return _item.first() < arc._item.first();
  1878           }
  1879           return false;
  1880         } else {
  1881           if (arc._item.secondState()) {
  1882             return _item.second() < arc._item.second();
  1883           }
  1884           return true;
  1885         }
  1886       }
  1887 
  1888       operator DigraphArc() const { return _item.first(); }
  1889       operator DigraphNode() const { return _item.second(); }
  1890 
  1891     };
  1892 
  1893     void first(Node& n) const {
  1894       _digraph->first(n);
  1895       n._in = true;
  1896     }
  1897 
  1898     void next(Node& n) const {
  1899       if (n._in) {
  1900 	n._in = false;
  1901       } else {
  1902 	n._in = true;
  1903 	_digraph->next(n);
  1904       }
  1905     }
  1906 
  1907     void first(Arc& e) const {
  1908       e._item.setSecond();
  1909       _digraph->first(e._item.second());
  1910       if (e._item.second() == INVALID) {
  1911         e._item.setFirst();
  1912 	_digraph->first(e._item.first());
  1913       }
  1914     }
  1915 
  1916     void next(Arc& e) const {
  1917       if (e._item.secondState()) {
  1918 	_digraph->next(e._item.second());
  1919         if (e._item.second() == INVALID) {
  1920           e._item.setFirst();
  1921           _digraph->first(e._item.first());
  1922         }
  1923       } else {
  1924 	_digraph->next(e._item.first());
  1925       }      
  1926     }
  1927 
  1928     void firstOut(Arc& e, const Node& n) const {
  1929       if (n._in) {
  1930         e._item.setSecond(n);
  1931       } else {
  1932         e._item.setFirst();
  1933 	_digraph->firstOut(e._item.first(), n);
  1934       }
  1935     }
  1936 
  1937     void nextOut(Arc& e) const {
  1938       if (!e._item.firstState()) {
  1939 	e._item.setFirst(INVALID);
  1940       } else {
  1941 	_digraph->nextOut(e._item.first());
  1942       }      
  1943     }
  1944 
  1945     void firstIn(Arc& e, const Node& n) const {
  1946       if (!n._in) {
  1947         e._item.setSecond(n);        
  1948       } else {
  1949         e._item.setFirst();
  1950 	_digraph->firstIn(e._item.first(), n);
  1951       }
  1952     }
  1953 
  1954     void nextIn(Arc& e) const {
  1955       if (!e._item.firstState()) {
  1956 	e._item.setFirst(INVALID);
  1957       } else {
  1958 	_digraph->nextIn(e._item.first());
  1959       }
  1960     }
  1961 
  1962     Node source(const Arc& e) const {
  1963       if (e._item.firstState()) {
  1964 	return Node(_digraph->source(e._item.first()), false);
  1965       } else {
  1966 	return Node(e._item.second(), true);
  1967       }
  1968     }
  1969 
  1970     Node target(const Arc& e) const {
  1971       if (e._item.firstState()) {
  1972 	return Node(_digraph->target(e._item.first()), true);
  1973       } else {
  1974 	return Node(e._item.second(), false);
  1975       }
  1976     }
  1977 
  1978     int id(const Node& n) const {
  1979       return (_digraph->id(n) << 1) | (n._in ? 0 : 1);
  1980     }
  1981     Node nodeFromId(int ix) const {
  1982       return Node(_digraph->nodeFromId(ix >> 1), (ix & 1) == 0);
  1983     }
  1984     int maxNodeId() const {
  1985       return 2 * _digraph->maxNodeId() + 1;
  1986     }
  1987 
  1988     int id(const Arc& e) const {
  1989       if (e._item.firstState()) {
  1990         return _digraph->id(e._item.first()) << 1;
  1991       } else {
  1992         return (_digraph->id(e._item.second()) << 1) | 1;
  1993       }
  1994     }
  1995     Arc arcFromId(int ix) const {
  1996       if ((ix & 1) == 0) {
  1997         return Arc(_digraph->arcFromId(ix >> 1));
  1998       } else {
  1999         return Arc(_digraph->nodeFromId(ix >> 1));
  2000       }
  2001     }
  2002     int maxArcId() const {
  2003       return std::max(_digraph->maxNodeId() << 1, 
  2004                       (_digraph->maxArcId() << 1) | 1);
  2005     }
  2006 
  2007     static bool inNode(const Node& n) {
  2008       return n._in;
  2009     }
  2010 
  2011     static bool outNode(const Node& n) {
  2012       return !n._in;
  2013     }
  2014 
  2015     static bool origArc(const Arc& e) {
  2016       return e._item.firstState();
  2017     }
  2018 
  2019     static bool bindArc(const Arc& e) {
  2020       return e._item.secondState();
  2021     }
  2022 
  2023     static Node inNode(const DigraphNode& n) {
  2024       return Node(n, true);
  2025     }
  2026 
  2027     static Node outNode(const DigraphNode& n) {
  2028       return Node(n, false);
  2029     }
  2030 
  2031     static Arc arc(const DigraphNode& n) {
  2032       return Arc(n);
  2033     }
  2034 
  2035     static Arc arc(const DigraphArc& e) {
  2036       return Arc(e);
  2037     }
  2038 
  2039     typedef True NodeNumTag;
  2040 
  2041     int nodeNum() const {
  2042       return  2 * countNodes(*_digraph);
  2043     }
  2044 
  2045     typedef True EdgeNumTag;
  2046     int arcNum() const {
  2047       return countArcs(*_digraph) + countNodes(*_digraph);
  2048     }
  2049 
  2050     typedef True FindEdgeTag;
  2051     Arc findArc(const Node& u, const Node& v, 
  2052 		const Arc& prev = INVALID) const {
  2053       if (inNode(u)) {
  2054         if (outNode(v)) {
  2055           if (static_cast<const DigraphNode&>(u) == 
  2056               static_cast<const DigraphNode&>(v) && prev == INVALID) {
  2057             return Arc(u);
  2058           }
  2059         }
  2060       } else {
  2061         if (inNode(v)) {
  2062           return Arc(::lemon::findArc(*_digraph, u, v, prev));
  2063         }
  2064       }
  2065       return INVALID;
  2066     }
  2067 
  2068   private:
  2069     
  2070     template <typename _Value>
  2071     class NodeMapBase 
  2072       : public MapTraits<typename Parent::template NodeMap<_Value> > {
  2073       typedef typename Parent::template NodeMap<_Value> NodeImpl;
  2074     public:
  2075       typedef Node Key;
  2076       typedef _Value Value;
  2077       
  2078       NodeMapBase(const Adaptor& adaptor) 
  2079 	: _in_map(*adaptor._digraph), _out_map(*adaptor._digraph) {}
  2080       NodeMapBase(const Adaptor& adaptor, const Value& value) 
  2081 	: _in_map(*adaptor._digraph, value), 
  2082 	  _out_map(*adaptor._digraph, value) {}
  2083 
  2084       void set(const Node& key, const Value& val) {
  2085 	if (Adaptor::inNode(key)) { _in_map.set(key, val); }
  2086 	else {_out_map.set(key, val); }
  2087       }
  2088       
  2089       typename MapTraits<NodeImpl>::ReturnValue 
  2090       operator[](const Node& key) {
  2091 	if (Adaptor::inNode(key)) { return _in_map[key]; }
  2092 	else { return _out_map[key]; }
  2093       }
  2094 
  2095       typename MapTraits<NodeImpl>::ConstReturnValue
  2096       operator[](const Node& key) const {
  2097 	if (Adaptor::inNode(key)) { return _in_map[key]; }
  2098 	else { return _out_map[key]; }
  2099       }
  2100 
  2101     private:
  2102       NodeImpl _in_map, _out_map;
  2103     };
  2104 
  2105     template <typename _Value>
  2106     class ArcMapBase 
  2107       : public MapTraits<typename Parent::template ArcMap<_Value> > {
  2108       typedef typename Parent::template ArcMap<_Value> ArcImpl;
  2109       typedef typename Parent::template NodeMap<_Value> NodeImpl;
  2110     public:
  2111       typedef Arc Key;
  2112       typedef _Value Value;
  2113 
  2114       ArcMapBase(const Adaptor& adaptor) 
  2115 	: _arc_map(*adaptor._digraph), _node_map(*adaptor._digraph) {}
  2116       ArcMapBase(const Adaptor& adaptor, const Value& value) 
  2117 	: _arc_map(*adaptor._digraph, value), 
  2118 	  _node_map(*adaptor._digraph, value) {}
  2119 
  2120       void set(const Arc& key, const Value& val) {
  2121 	if (Adaptor::origArc(key)) { 
  2122           _arc_map.set(key._item.first(), val); 
  2123         } else {
  2124           _node_map.set(key._item.second(), val); 
  2125         }
  2126       }
  2127       
  2128       typename MapTraits<ArcImpl>::ReturnValue
  2129       operator[](const Arc& key) {
  2130 	if (Adaptor::origArc(key)) { 
  2131           return _arc_map[key._item.first()];
  2132         } else {
  2133           return _node_map[key._item.second()];
  2134         }
  2135       }
  2136 
  2137       typename MapTraits<ArcImpl>::ConstReturnValue
  2138       operator[](const Arc& key) const {
  2139 	if (Adaptor::origArc(key)) { 
  2140           return _arc_map[key._item.first()];
  2141         } else {
  2142           return _node_map[key._item.second()];
  2143         }
  2144       }
  2145 
  2146     private:
  2147       ArcImpl _arc_map;
  2148       NodeImpl _node_map;
  2149     };
  2150 
  2151   public:
  2152 
  2153     template <typename _Value>
  2154     class NodeMap 
  2155       : public SubMapExtender<Adaptor, NodeMapBase<_Value> > 
  2156     {
  2157     public:
  2158       typedef _Value Value;
  2159       typedef SubMapExtender<Adaptor, NodeMapBase<Value> > Parent;
  2160     
  2161       NodeMap(const Adaptor& adaptor) 
  2162 	: Parent(adaptor) {}
  2163 
  2164       NodeMap(const Adaptor& adaptor, const Value& value) 
  2165 	: Parent(adaptor, value) {}
  2166     
  2167     private:
  2168       NodeMap& operator=(const NodeMap& cmap) {
  2169 	return operator=<NodeMap>(cmap);
  2170       }
  2171     
  2172       template <typename CMap>
  2173       NodeMap& operator=(const CMap& cmap) {
  2174         Parent::operator=(cmap);
  2175 	return *this;
  2176       }
  2177     };
  2178 
  2179     template <typename _Value>
  2180     class ArcMap 
  2181       : public SubMapExtender<Adaptor, ArcMapBase<_Value> > 
  2182     {
  2183     public:
  2184       typedef _Value Value;
  2185       typedef SubMapExtender<Adaptor, ArcMapBase<Value> > Parent;
  2186     
  2187       ArcMap(const Adaptor& adaptor) 
  2188 	: Parent(adaptor) {}
  2189 
  2190       ArcMap(const Adaptor& adaptor, const Value& value) 
  2191 	: Parent(adaptor, value) {}
  2192     
  2193     private:
  2194       ArcMap& operator=(const ArcMap& cmap) {
  2195 	return operator=<ArcMap>(cmap);
  2196       }
  2197     
  2198       template <typename CMap>
  2199       ArcMap& operator=(const CMap& cmap) {
  2200         Parent::operator=(cmap);
  2201 	return *this;
  2202       }
  2203     };
  2204 
  2205   protected:
  2206 
  2207     SplitDigraphAdaptorBase() : _digraph(0) {}
  2208 
  2209     Digraph* _digraph;
  2210 
  2211     void setDigraph(Digraph& digraph) {
  2212       _digraph = &digraph;
  2213     }
  2214     
  2215   };
  2216 
  2217   /// \ingroup graph_adaptors
  2218   ///
  2219   /// \brief Split digraph adaptor class
  2220   /// 
  2221   /// This is an digraph adaptor which splits all node into an in-node
  2222   /// and an out-node. Formaly, the adaptor replaces each \f$ u \f$
  2223   /// node in the digraph with two node, \f$ u_{in} \f$ node and 
  2224   /// \f$ u_{out} \f$ node. If there is an \f$ (v, u) \f$ arc in the 
  2225   /// original digraph the new target of the arc will be \f$ u_{in} \f$ and
  2226   /// similarly the source of the original \f$ (u, v) \f$ arc will be
  2227   /// \f$ u_{out} \f$.  The adaptor will add for each node in the 
  2228   /// original digraph an additional arc which will connect 
  2229   /// \f$ (u_{in}, u_{out}) \f$.
  2230   ///
  2231   /// The aim of this class is to run algorithm with node costs if the 
  2232   /// algorithm can use directly just arc costs. In this case we should use
  2233   /// a \c SplitDigraphAdaptor and set the node cost of the digraph to the
  2234   /// bind arc in the adapted digraph.
  2235   /// 
  2236   /// For example a maximum flow algorithm can compute how many arc
  2237   /// disjoint paths are in the digraph. But we would like to know how
  2238   /// many node disjoint paths are in the digraph. First we have to
  2239   /// adapt the digraph with the \c SplitDigraphAdaptor. Then run the flow
  2240   /// algorithm on the adapted digraph. The bottleneck of the flow will
  2241   /// be the bind arcs which bounds the flow with the count of the
  2242   /// node disjoint paths.
  2243   ///
  2244   ///\code
  2245   ///
  2246   /// typedef SplitDigraphAdaptor<SmartDigraph> SDigraph;
  2247   ///
  2248   /// SDigraph sdigraph(digraph);
  2249   ///
  2250   /// typedef ConstMap<SDigraph::Arc, int> SCapacity;
  2251   /// SCapacity scapacity(1);
  2252   ///
  2253   /// SDigraph::ArcMap<int> sflow(sdigraph);
  2254   ///
  2255   /// Preflow<SDigraph, SCapacity> 
  2256   ///   spreflow(sdigraph, scapacity, 
  2257   ///            SDigraph::outNode(source), SDigraph::inNode(target));
  2258   ///                                            
  2259   /// spreflow.run();
  2260   ///
  2261   ///\endcode
  2262   ///
  2263   /// The result of the mamixum flow on the original digraph
  2264   /// shows the next figure:
  2265   ///
  2266   /// \image html arc_disjoint.png
  2267   /// \image latex arc_disjoint.eps "Arc disjoint paths" width=\textwidth
  2268   /// 
  2269   /// And the maximum flow on the adapted digraph:
  2270   ///
  2271   /// \image html node_disjoint.png
  2272   /// \image latex node_disjoint.eps "Node disjoint paths" width=\textwidth
  2273   ///
  2274   /// The second solution contains just 3 disjoint paths while the first 4.
  2275   /// The full code can be found in the \ref disjoint_paths_demo.cc demo file.
  2276   ///
  2277   /// This digraph adaptor is fully conform to the 
  2278   /// \ref concepts::Digraph "Digraph" concept and
  2279   /// contains some additional member functions and types. The 
  2280   /// documentation of some member functions may be found just in the
  2281   /// SplitDigraphAdaptorBase class.
  2282   ///
  2283   /// \sa SplitDigraphAdaptorBase
  2284   template <typename _Digraph>
  2285   class SplitDigraphAdaptor 
  2286     : public DigraphAdaptorExtender<SplitDigraphAdaptorBase<_Digraph> > {
  2287   public:
  2288     typedef _Digraph Digraph;
  2289     typedef DigraphAdaptorExtender<SplitDigraphAdaptorBase<Digraph> > Parent;
  2290 
  2291     typedef typename Digraph::Node DigraphNode;
  2292     typedef typename Digraph::Arc DigraphArc;
  2293 
  2294     typedef typename Parent::Node Node;
  2295     typedef typename Parent::Arc Arc;
  2296 
  2297     /// \brief Constructor of the adaptor.
  2298     ///
  2299     /// Constructor of the adaptor.
  2300     SplitDigraphAdaptor(Digraph& g) {
  2301       Parent::setDigraph(g);
  2302     }
  2303 
  2304     /// \brief Returns true when the node is in-node.
  2305     ///
  2306     /// Returns true when the node is in-node.
  2307     static bool inNode(const Node& n) {
  2308       return Parent::inNode(n);
  2309     }
  2310 
  2311     /// \brief Returns true when the node is out-node.
  2312     ///
  2313     /// Returns true when the node is out-node.
  2314     static bool outNode(const Node& n) {
  2315       return Parent::outNode(n);
  2316     }
  2317 
  2318     /// \brief Returns true when the arc is arc in the original digraph.
  2319     ///
  2320     /// Returns true when the arc is arc in the original digraph.
  2321     static bool origArc(const Arc& a) {
  2322       return Parent::origArc(a);
  2323     }
  2324 
  2325     /// \brief Returns true when the arc binds an in-node and an out-node.
  2326     ///
  2327     /// Returns true when the arc binds an in-node and an out-node.
  2328     static bool bindArc(const Arc& a) {
  2329       return Parent::bindArc(a);
  2330     }
  2331 
  2332     /// \brief Gives back the in-node created from the \c node.
  2333     ///
  2334     /// Gives back the in-node created from the \c node.
  2335     static Node inNode(const DigraphNode& n) {
  2336       return Parent::inNode(n);
  2337     }
  2338 
  2339     /// \brief Gives back the out-node created from the \c node.
  2340     ///
  2341     /// Gives back the out-node created from the \c node.
  2342     static Node outNode(const DigraphNode& n) {
  2343       return Parent::outNode(n);
  2344     }
  2345 
  2346     /// \brief Gives back the arc binds the two part of the node.
  2347     /// 
  2348     /// Gives back the arc binds the two part of the node.
  2349     static Arc arc(const DigraphNode& n) {
  2350       return Parent::arc(n);
  2351     }
  2352 
  2353     /// \brief Gives back the arc of the original arc.
  2354     /// 
  2355     /// Gives back the arc of the original arc.
  2356     static Arc arc(const DigraphArc& a) {
  2357       return Parent::arc(a);
  2358     }
  2359 
  2360     /// \brief NodeMap combined from two original NodeMap
  2361     ///
  2362     /// This class adapt two of the original digraph NodeMap to
  2363     /// get a node map on the adapted digraph.
  2364     template <typename InNodeMap, typename OutNodeMap>
  2365     class CombinedNodeMap {
  2366     public:
  2367 
  2368       typedef Node Key;
  2369       typedef typename InNodeMap::Value Value;
  2370 
  2371       /// \brief Constructor
  2372       ///
  2373       /// Constructor.
  2374       CombinedNodeMap(InNodeMap& in_map, OutNodeMap& out_map) 
  2375 	: _in_map(in_map), _out_map(out_map) {}
  2376 
  2377       /// \brief The subscript operator.
  2378       ///
  2379       /// The subscript operator.
  2380       Value& operator[](const Key& key) {
  2381 	if (Parent::inNode(key)) {
  2382 	  return _in_map[key];
  2383 	} else {
  2384 	  return _out_map[key];
  2385 	}
  2386       }
  2387 
  2388       /// \brief The const subscript operator.
  2389       ///
  2390       /// The const subscript operator.
  2391       Value operator[](const Key& key) const {
  2392 	if (Parent::inNode(key)) {
  2393 	  return _in_map[key];
  2394 	} else {
  2395 	  return _out_map[key];
  2396 	}
  2397       }
  2398 
  2399       /// \brief The setter function of the map.
  2400       /// 
  2401       /// The setter function of the map.
  2402       void set(const Key& key, const Value& value) {
  2403 	if (Parent::inNode(key)) {
  2404 	  _in_map.set(key, value);
  2405 	} else {
  2406 	  _out_map.set(key, value);
  2407 	}
  2408       }
  2409       
  2410     private:
  2411       
  2412       InNodeMap& _in_map;
  2413       OutNodeMap& _out_map;
  2414       
  2415     };
  2416 
  2417 
  2418     /// \brief Just gives back a combined node map.
  2419     /// 
  2420     /// Just gives back a combined node map.
  2421     template <typename InNodeMap, typename OutNodeMap>
  2422     static CombinedNodeMap<InNodeMap, OutNodeMap> 
  2423     combinedNodeMap(InNodeMap& in_map, OutNodeMap& out_map) {
  2424       return CombinedNodeMap<InNodeMap, OutNodeMap>(in_map, out_map);
  2425     }
  2426 
  2427     template <typename InNodeMap, typename OutNodeMap>
  2428     static CombinedNodeMap<const InNodeMap, OutNodeMap> 
  2429     combinedNodeMap(const InNodeMap& in_map, OutNodeMap& out_map) {
  2430       return CombinedNodeMap<const InNodeMap, OutNodeMap>(in_map, out_map);
  2431     }
  2432 
  2433     template <typename InNodeMap, typename OutNodeMap>
  2434     static CombinedNodeMap<InNodeMap, const OutNodeMap> 
  2435     combinedNodeMap(InNodeMap& in_map, const OutNodeMap& out_map) {
  2436       return CombinedNodeMap<InNodeMap, const OutNodeMap>(in_map, out_map);
  2437     }
  2438 
  2439     template <typename InNodeMap, typename OutNodeMap>
  2440     static CombinedNodeMap<const InNodeMap, const OutNodeMap> 
  2441     combinedNodeMap(const InNodeMap& in_map, const OutNodeMap& out_map) {
  2442       return CombinedNodeMap<const InNodeMap, 
  2443         const OutNodeMap>(in_map, out_map);
  2444     }
  2445 
  2446     /// \brief ArcMap combined from an original ArcMap and NodeMap
  2447     ///
  2448     /// This class adapt an original digraph ArcMap and NodeMap to
  2449     /// get an arc map on the adapted digraph.
  2450     template <typename DigraphArcMap, typename DigraphNodeMap>
  2451     class CombinedArcMap {
  2452     public:
  2453       
  2454       typedef Arc Key;
  2455       typedef typename DigraphArcMap::Value Value;
  2456       
  2457       /// \brief Constructor
  2458       ///
  2459       /// Constructor.
  2460       CombinedArcMap(DigraphArcMap& arc_map, DigraphNodeMap& node_map) 
  2461 	: _arc_map(arc_map), _node_map(node_map) {}
  2462 
  2463       /// \brief The subscript operator.
  2464       ///
  2465       /// The subscript operator.
  2466       void set(const Arc& arc, const Value& val) {
  2467 	if (Parent::origArc(arc)) {
  2468 	  _arc_map.set(arc, val);
  2469 	} else {
  2470 	  _node_map.set(arc, val);
  2471 	}
  2472       }
  2473 
  2474       /// \brief The const subscript operator.
  2475       ///
  2476       /// The const subscript operator.
  2477       Value operator[](const Key& arc) const {
  2478 	if (Parent::origArc(arc)) {
  2479 	  return _arc_map[arc];
  2480 	} else {
  2481 	  return _node_map[arc];
  2482 	}
  2483       }      
  2484 
  2485       /// \brief The const subscript operator.
  2486       ///
  2487       /// The const subscript operator.
  2488       Value& operator[](const Key& arc) {
  2489 	if (Parent::origArc(arc)) {
  2490 	  return _arc_map[arc];
  2491 	} else {
  2492 	  return _node_map[arc];
  2493 	}
  2494       }      
  2495       
  2496     private:
  2497       DigraphArcMap& _arc_map;
  2498       DigraphNodeMap& _node_map;
  2499     };
  2500                     
  2501     /// \brief Just gives back a combined arc map.
  2502     /// 
  2503     /// Just gives back a combined arc map.
  2504     template <typename DigraphArcMap, typename DigraphNodeMap>
  2505     static CombinedArcMap<DigraphArcMap, DigraphNodeMap> 
  2506     combinedArcMap(DigraphArcMap& arc_map, DigraphNodeMap& node_map) {
  2507       return CombinedArcMap<DigraphArcMap, DigraphNodeMap>(arc_map, node_map);
  2508     }
  2509 
  2510     template <typename DigraphArcMap, typename DigraphNodeMap>
  2511     static CombinedArcMap<const DigraphArcMap, DigraphNodeMap> 
  2512     combinedArcMap(const DigraphArcMap& arc_map, DigraphNodeMap& node_map) {
  2513       return CombinedArcMap<const DigraphArcMap, 
  2514         DigraphNodeMap>(arc_map, node_map);
  2515     }
  2516 
  2517     template <typename DigraphArcMap, typename DigraphNodeMap>
  2518     static CombinedArcMap<DigraphArcMap, const DigraphNodeMap> 
  2519     combinedArcMap(DigraphArcMap& arc_map, const DigraphNodeMap& node_map) {
  2520       return CombinedArcMap<DigraphArcMap, 
  2521         const DigraphNodeMap>(arc_map, node_map);
  2522     }
  2523 
  2524     template <typename DigraphArcMap, typename DigraphNodeMap>
  2525     static CombinedArcMap<const DigraphArcMap, const DigraphNodeMap> 
  2526     combinedArcMap(const DigraphArcMap& arc_map, 
  2527                     const DigraphNodeMap& node_map) {
  2528       return CombinedArcMap<const DigraphArcMap, 
  2529         const DigraphNodeMap>(arc_map, node_map);
  2530     }
  2531 
  2532   };
  2533 
  2534   /// \brief Just gives back a split digraph adaptor
  2535   ///
  2536   /// Just gives back a split digraph adaptor
  2537   template<typename Digraph>
  2538   SplitDigraphAdaptor<Digraph>
  2539   splitDigraphAdaptor(const Digraph& digraph) {
  2540     return SplitDigraphAdaptor<Digraph>(digraph);
  2541   }
  2542 
  2543 
  2544 } //namespace lemon
  2545 
  2546 #endif //LEMON_DIGRAPH_ADAPTOR_H
  2547