lemon/cost_scaling.h
author Peter Kovacs <kpeter@inf.elte.hu>
Tue, 15 Mar 2011 19:16:20 +0100
changeset 1046 6ea176638264
parent 1045 fe283caf6414
child 1047 ddd3c0d3d9bf
permissions -rw-r--r--
Fix and improve refine methods in CostScaling (#417)
     1 /* -*- mode: C++; indent-tabs-mode: nil; -*-
     2  *
     3  * This file is a part of LEMON, a generic C++ optimization library.
     4  *
     5  * Copyright (C) 2003-2010
     6  * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
     7  * (Egervary Research Group on Combinatorial Optimization, EGRES).
     8  *
     9  * Permission to use, modify and distribute this software is granted
    10  * provided that this copyright notice appears in all copies. For
    11  * precise terms see the accompanying LICENSE file.
    12  *
    13  * This software is provided "AS IS" with no warranty of any kind,
    14  * express or implied, and with no claim as to its suitability for any
    15  * purpose.
    16  *
    17  */
    18 
    19 #ifndef LEMON_COST_SCALING_H
    20 #define LEMON_COST_SCALING_H
    21 
    22 /// \ingroup min_cost_flow_algs
    23 /// \file
    24 /// \brief Cost scaling algorithm for finding a minimum cost flow.
    25 
    26 #include <vector>
    27 #include <deque>
    28 #include <limits>
    29 
    30 #include <lemon/core.h>
    31 #include <lemon/maps.h>
    32 #include <lemon/math.h>
    33 #include <lemon/static_graph.h>
    34 #include <lemon/circulation.h>
    35 #include <lemon/bellman_ford.h>
    36 
    37 namespace lemon {
    38 
    39   /// \brief Default traits class of CostScaling algorithm.
    40   ///
    41   /// Default traits class of CostScaling algorithm.
    42   /// \tparam GR Digraph type.
    43   /// \tparam V The number type used for flow amounts, capacity bounds
    44   /// and supply values. By default it is \c int.
    45   /// \tparam C The number type used for costs and potentials.
    46   /// By default it is the same as \c V.
    47 #ifdef DOXYGEN
    48   template <typename GR, typename V = int, typename C = V>
    49 #else
    50   template < typename GR, typename V = int, typename C = V,
    51              bool integer = std::numeric_limits<C>::is_integer >
    52 #endif
    53   struct CostScalingDefaultTraits
    54   {
    55     /// The type of the digraph
    56     typedef GR Digraph;
    57     /// The type of the flow amounts, capacity bounds and supply values
    58     typedef V Value;
    59     /// The type of the arc costs
    60     typedef C Cost;
    61 
    62     /// \brief The large cost type used for internal computations
    63     ///
    64     /// The large cost type used for internal computations.
    65     /// It is \c long \c long if the \c Cost type is integer,
    66     /// otherwise it is \c double.
    67     /// \c Cost must be convertible to \c LargeCost.
    68     typedef double LargeCost;
    69   };
    70 
    71   // Default traits class for integer cost types
    72   template <typename GR, typename V, typename C>
    73   struct CostScalingDefaultTraits<GR, V, C, true>
    74   {
    75     typedef GR Digraph;
    76     typedef V Value;
    77     typedef C Cost;
    78 #ifdef LEMON_HAVE_LONG_LONG
    79     typedef long long LargeCost;
    80 #else
    81     typedef long LargeCost;
    82 #endif
    83   };
    84 
    85 
    86   /// \addtogroup min_cost_flow_algs
    87   /// @{
    88 
    89   /// \brief Implementation of the Cost Scaling algorithm for
    90   /// finding a \ref min_cost_flow "minimum cost flow".
    91   ///
    92   /// \ref CostScaling implements a cost scaling algorithm that performs
    93   /// push/augment and relabel operations for finding a \ref min_cost_flow
    94   /// "minimum cost flow" \ref amo93networkflows, \ref goldberg90approximation,
    95   /// \ref goldberg97efficient, \ref bunnagel98efficient.
    96   /// It is a highly efficient primal-dual solution method, which
    97   /// can be viewed as the generalization of the \ref Preflow
    98   /// "preflow push-relabel" algorithm for the maximum flow problem.
    99   ///
   100   /// In general, \ref NetworkSimplex and \ref CostScaling are the fastest
   101   /// implementations available in LEMON for this problem.
   102   ///
   103   /// Most of the parameters of the problem (except for the digraph)
   104   /// can be given using separate functions, and the algorithm can be
   105   /// executed using the \ref run() function. If some parameters are not
   106   /// specified, then default values will be used.
   107   ///
   108   /// \tparam GR The digraph type the algorithm runs on.
   109   /// \tparam V The number type used for flow amounts, capacity bounds
   110   /// and supply values in the algorithm. By default, it is \c int.
   111   /// \tparam C The number type used for costs and potentials in the
   112   /// algorithm. By default, it is the same as \c V.
   113   /// \tparam TR The traits class that defines various types used by the
   114   /// algorithm. By default, it is \ref CostScalingDefaultTraits
   115   /// "CostScalingDefaultTraits<GR, V, C>".
   116   /// In most cases, this parameter should not be set directly,
   117   /// consider to use the named template parameters instead.
   118   ///
   119   /// \warning Both \c V and \c C must be signed number types.
   120   /// \warning All input data (capacities, supply values, and costs) must
   121   /// be integer.
   122   /// \warning This algorithm does not support negative costs for
   123   /// arcs having infinite upper bound.
   124   ///
   125   /// \note %CostScaling provides three different internal methods,
   126   /// from which the most efficient one is used by default.
   127   /// For more information, see \ref Method.
   128 #ifdef DOXYGEN
   129   template <typename GR, typename V, typename C, typename TR>
   130 #else
   131   template < typename GR, typename V = int, typename C = V,
   132              typename TR = CostScalingDefaultTraits<GR, V, C> >
   133 #endif
   134   class CostScaling
   135   {
   136   public:
   137 
   138     /// The type of the digraph
   139     typedef typename TR::Digraph Digraph;
   140     /// The type of the flow amounts, capacity bounds and supply values
   141     typedef typename TR::Value Value;
   142     /// The type of the arc costs
   143     typedef typename TR::Cost Cost;
   144 
   145     /// \brief The large cost type
   146     ///
   147     /// The large cost type used for internal computations.
   148     /// By default, it is \c long \c long if the \c Cost type is integer,
   149     /// otherwise it is \c double.
   150     typedef typename TR::LargeCost LargeCost;
   151 
   152     /// The \ref CostScalingDefaultTraits "traits class" of the algorithm
   153     typedef TR Traits;
   154 
   155   public:
   156 
   157     /// \brief Problem type constants for the \c run() function.
   158     ///
   159     /// Enum type containing the problem type constants that can be
   160     /// returned by the \ref run() function of the algorithm.
   161     enum ProblemType {
   162       /// The problem has no feasible solution (flow).
   163       INFEASIBLE,
   164       /// The problem has optimal solution (i.e. it is feasible and
   165       /// bounded), and the algorithm has found optimal flow and node
   166       /// potentials (primal and dual solutions).
   167       OPTIMAL,
   168       /// The digraph contains an arc of negative cost and infinite
   169       /// upper bound. It means that the objective function is unbounded
   170       /// on that arc, however, note that it could actually be bounded
   171       /// over the feasible flows, but this algroithm cannot handle
   172       /// these cases.
   173       UNBOUNDED
   174     };
   175 
   176     /// \brief Constants for selecting the internal method.
   177     ///
   178     /// Enum type containing constants for selecting the internal method
   179     /// for the \ref run() function.
   180     ///
   181     /// \ref CostScaling provides three internal methods that differ mainly
   182     /// in their base operations, which are used in conjunction with the
   183     /// relabel operation.
   184     /// By default, the so called \ref PARTIAL_AUGMENT
   185     /// "Partial Augment-Relabel" method is used, which turned out to be
   186     /// the most efficient and the most robust on various test inputs.
   187     /// However, the other methods can be selected using the \ref run()
   188     /// function with the proper parameter.
   189     enum Method {
   190       /// Local push operations are used, i.e. flow is moved only on one
   191       /// admissible arc at once.
   192       PUSH,
   193       /// Augment operations are used, i.e. flow is moved on admissible
   194       /// paths from a node with excess to a node with deficit.
   195       AUGMENT,
   196       /// Partial augment operations are used, i.e. flow is moved on
   197       /// admissible paths started from a node with excess, but the
   198       /// lengths of these paths are limited. This method can be viewed
   199       /// as a combined version of the previous two operations.
   200       PARTIAL_AUGMENT
   201     };
   202 
   203   private:
   204 
   205     TEMPLATE_DIGRAPH_TYPEDEFS(GR);
   206 
   207     typedef std::vector<int> IntVector;
   208     typedef std::vector<Value> ValueVector;
   209     typedef std::vector<Cost> CostVector;
   210     typedef std::vector<LargeCost> LargeCostVector;
   211     typedef std::vector<char> BoolVector;
   212     // Note: vector<char> is used instead of vector<bool> for efficiency reasons
   213 
   214   private:
   215 
   216     template <typename KT, typename VT>
   217     class StaticVectorMap {
   218     public:
   219       typedef KT Key;
   220       typedef VT Value;
   221 
   222       StaticVectorMap(std::vector<Value>& v) : _v(v) {}
   223 
   224       const Value& operator[](const Key& key) const {
   225         return _v[StaticDigraph::id(key)];
   226       }
   227 
   228       Value& operator[](const Key& key) {
   229         return _v[StaticDigraph::id(key)];
   230       }
   231 
   232       void set(const Key& key, const Value& val) {
   233         _v[StaticDigraph::id(key)] = val;
   234       }
   235 
   236     private:
   237       std::vector<Value>& _v;
   238     };
   239 
   240     typedef StaticVectorMap<StaticDigraph::Node, LargeCost> LargeCostNodeMap;
   241     typedef StaticVectorMap<StaticDigraph::Arc, LargeCost> LargeCostArcMap;
   242 
   243   private:
   244 
   245     // Data related to the underlying digraph
   246     const GR &_graph;
   247     int _node_num;
   248     int _arc_num;
   249     int _res_node_num;
   250     int _res_arc_num;
   251     int _root;
   252 
   253     // Parameters of the problem
   254     bool _have_lower;
   255     Value _sum_supply;
   256     int _sup_node_num;
   257 
   258     // Data structures for storing the digraph
   259     IntNodeMap _node_id;
   260     IntArcMap _arc_idf;
   261     IntArcMap _arc_idb;
   262     IntVector _first_out;
   263     BoolVector _forward;
   264     IntVector _source;
   265     IntVector _target;
   266     IntVector _reverse;
   267 
   268     // Node and arc data
   269     ValueVector _lower;
   270     ValueVector _upper;
   271     CostVector _scost;
   272     ValueVector _supply;
   273 
   274     ValueVector _res_cap;
   275     LargeCostVector _cost;
   276     LargeCostVector _pi;
   277     ValueVector _excess;
   278     IntVector _next_out;
   279     std::deque<int> _active_nodes;
   280 
   281     // Data for scaling
   282     LargeCost _epsilon;
   283     int _alpha;
   284 
   285     IntVector _buckets;
   286     IntVector _bucket_next;
   287     IntVector _bucket_prev;
   288     IntVector _rank;
   289     int _max_rank;
   290 
   291     // Data for a StaticDigraph structure
   292     typedef std::pair<int, int> IntPair;
   293     StaticDigraph _sgr;
   294     std::vector<IntPair> _arc_vec;
   295     std::vector<LargeCost> _cost_vec;
   296     LargeCostArcMap _cost_map;
   297     LargeCostNodeMap _pi_map;
   298 
   299   public:
   300 
   301     /// \brief Constant for infinite upper bounds (capacities).
   302     ///
   303     /// Constant for infinite upper bounds (capacities).
   304     /// It is \c std::numeric_limits<Value>::infinity() if available,
   305     /// \c std::numeric_limits<Value>::max() otherwise.
   306     const Value INF;
   307 
   308   public:
   309 
   310     /// \name Named Template Parameters
   311     /// @{
   312 
   313     template <typename T>
   314     struct SetLargeCostTraits : public Traits {
   315       typedef T LargeCost;
   316     };
   317 
   318     /// \brief \ref named-templ-param "Named parameter" for setting
   319     /// \c LargeCost type.
   320     ///
   321     /// \ref named-templ-param "Named parameter" for setting \c LargeCost
   322     /// type, which is used for internal computations in the algorithm.
   323     /// \c Cost must be convertible to \c LargeCost.
   324     template <typename T>
   325     struct SetLargeCost
   326       : public CostScaling<GR, V, C, SetLargeCostTraits<T> > {
   327       typedef  CostScaling<GR, V, C, SetLargeCostTraits<T> > Create;
   328     };
   329 
   330     /// @}
   331 
   332   protected:
   333 
   334     CostScaling() {}
   335 
   336   public:
   337 
   338     /// \brief Constructor.
   339     ///
   340     /// The constructor of the class.
   341     ///
   342     /// \param graph The digraph the algorithm runs on.
   343     CostScaling(const GR& graph) :
   344       _graph(graph), _node_id(graph), _arc_idf(graph), _arc_idb(graph),
   345       _cost_map(_cost_vec), _pi_map(_pi),
   346       INF(std::numeric_limits<Value>::has_infinity ?
   347           std::numeric_limits<Value>::infinity() :
   348           std::numeric_limits<Value>::max())
   349     {
   350       // Check the number types
   351       LEMON_ASSERT(std::numeric_limits<Value>::is_signed,
   352         "The flow type of CostScaling must be signed");
   353       LEMON_ASSERT(std::numeric_limits<Cost>::is_signed,
   354         "The cost type of CostScaling must be signed");
   355 
   356       // Reset data structures
   357       reset();
   358     }
   359 
   360     /// \name Parameters
   361     /// The parameters of the algorithm can be specified using these
   362     /// functions.
   363 
   364     /// @{
   365 
   366     /// \brief Set the lower bounds on the arcs.
   367     ///
   368     /// This function sets the lower bounds on the arcs.
   369     /// If it is not used before calling \ref run(), the lower bounds
   370     /// will be set to zero on all arcs.
   371     ///
   372     /// \param map An arc map storing the lower bounds.
   373     /// Its \c Value type must be convertible to the \c Value type
   374     /// of the algorithm.
   375     ///
   376     /// \return <tt>(*this)</tt>
   377     template <typename LowerMap>
   378     CostScaling& lowerMap(const LowerMap& map) {
   379       _have_lower = true;
   380       for (ArcIt a(_graph); a != INVALID; ++a) {
   381         _lower[_arc_idf[a]] = map[a];
   382         _lower[_arc_idb[a]] = map[a];
   383       }
   384       return *this;
   385     }
   386 
   387     /// \brief Set the upper bounds (capacities) on the arcs.
   388     ///
   389     /// This function sets the upper bounds (capacities) on the arcs.
   390     /// If it is not used before calling \ref run(), the upper bounds
   391     /// will be set to \ref INF on all arcs (i.e. the flow value will be
   392     /// unbounded from above).
   393     ///
   394     /// \param map An arc map storing the upper bounds.
   395     /// Its \c Value type must be convertible to the \c Value type
   396     /// of the algorithm.
   397     ///
   398     /// \return <tt>(*this)</tt>
   399     template<typename UpperMap>
   400     CostScaling& upperMap(const UpperMap& map) {
   401       for (ArcIt a(_graph); a != INVALID; ++a) {
   402         _upper[_arc_idf[a]] = map[a];
   403       }
   404       return *this;
   405     }
   406 
   407     /// \brief Set the costs of the arcs.
   408     ///
   409     /// This function sets the costs of the arcs.
   410     /// If it is not used before calling \ref run(), the costs
   411     /// will be set to \c 1 on all arcs.
   412     ///
   413     /// \param map An arc map storing the costs.
   414     /// Its \c Value type must be convertible to the \c Cost type
   415     /// of the algorithm.
   416     ///
   417     /// \return <tt>(*this)</tt>
   418     template<typename CostMap>
   419     CostScaling& costMap(const CostMap& map) {
   420       for (ArcIt a(_graph); a != INVALID; ++a) {
   421         _scost[_arc_idf[a]] =  map[a];
   422         _scost[_arc_idb[a]] = -map[a];
   423       }
   424       return *this;
   425     }
   426 
   427     /// \brief Set the supply values of the nodes.
   428     ///
   429     /// This function sets the supply values of the nodes.
   430     /// If neither this function nor \ref stSupply() is used before
   431     /// calling \ref run(), the supply of each node will be set to zero.
   432     ///
   433     /// \param map A node map storing the supply values.
   434     /// Its \c Value type must be convertible to the \c Value type
   435     /// of the algorithm.
   436     ///
   437     /// \return <tt>(*this)</tt>
   438     template<typename SupplyMap>
   439     CostScaling& supplyMap(const SupplyMap& map) {
   440       for (NodeIt n(_graph); n != INVALID; ++n) {
   441         _supply[_node_id[n]] = map[n];
   442       }
   443       return *this;
   444     }
   445 
   446     /// \brief Set single source and target nodes and a supply value.
   447     ///
   448     /// This function sets a single source node and a single target node
   449     /// and the required flow value.
   450     /// If neither this function nor \ref supplyMap() is used before
   451     /// calling \ref run(), the supply of each node will be set to zero.
   452     ///
   453     /// Using this function has the same effect as using \ref supplyMap()
   454     /// with a map in which \c k is assigned to \c s, \c -k is
   455     /// assigned to \c t and all other nodes have zero supply value.
   456     ///
   457     /// \param s The source node.
   458     /// \param t The target node.
   459     /// \param k The required amount of flow from node \c s to node \c t
   460     /// (i.e. the supply of \c s and the demand of \c t).
   461     ///
   462     /// \return <tt>(*this)</tt>
   463     CostScaling& stSupply(const Node& s, const Node& t, Value k) {
   464       for (int i = 0; i != _res_node_num; ++i) {
   465         _supply[i] = 0;
   466       }
   467       _supply[_node_id[s]] =  k;
   468       _supply[_node_id[t]] = -k;
   469       return *this;
   470     }
   471 
   472     /// @}
   473 
   474     /// \name Execution control
   475     /// The algorithm can be executed using \ref run().
   476 
   477     /// @{
   478 
   479     /// \brief Run the algorithm.
   480     ///
   481     /// This function runs the algorithm.
   482     /// The paramters can be specified using functions \ref lowerMap(),
   483     /// \ref upperMap(), \ref costMap(), \ref supplyMap(), \ref stSupply().
   484     /// For example,
   485     /// \code
   486     ///   CostScaling<ListDigraph> cs(graph);
   487     ///   cs.lowerMap(lower).upperMap(upper).costMap(cost)
   488     ///     .supplyMap(sup).run();
   489     /// \endcode
   490     ///
   491     /// This function can be called more than once. All the given parameters
   492     /// are kept for the next call, unless \ref resetParams() or \ref reset()
   493     /// is used, thus only the modified parameters have to be set again.
   494     /// If the underlying digraph was also modified after the construction
   495     /// of the class (or the last \ref reset() call), then the \ref reset()
   496     /// function must be called.
   497     ///
   498     /// \param method The internal method that will be used in the
   499     /// algorithm. For more information, see \ref Method.
   500     /// \param factor The cost scaling factor. It must be larger than one.
   501     ///
   502     /// \return \c INFEASIBLE if no feasible flow exists,
   503     /// \n \c OPTIMAL if the problem has optimal solution
   504     /// (i.e. it is feasible and bounded), and the algorithm has found
   505     /// optimal flow and node potentials (primal and dual solutions),
   506     /// \n \c UNBOUNDED if the digraph contains an arc of negative cost
   507     /// and infinite upper bound. It means that the objective function
   508     /// is unbounded on that arc, however, note that it could actually be
   509     /// bounded over the feasible flows, but this algroithm cannot handle
   510     /// these cases.
   511     ///
   512     /// \see ProblemType, Method
   513     /// \see resetParams(), reset()
   514     ProblemType run(Method method = PARTIAL_AUGMENT, int factor = 8) {
   515       _alpha = factor;
   516       ProblemType pt = init();
   517       if (pt != OPTIMAL) return pt;
   518       start(method);
   519       return OPTIMAL;
   520     }
   521 
   522     /// \brief Reset all the parameters that have been given before.
   523     ///
   524     /// This function resets all the paramaters that have been given
   525     /// before using functions \ref lowerMap(), \ref upperMap(),
   526     /// \ref costMap(), \ref supplyMap(), \ref stSupply().
   527     ///
   528     /// It is useful for multiple \ref run() calls. Basically, all the given
   529     /// parameters are kept for the next \ref run() call, unless
   530     /// \ref resetParams() or \ref reset() is used.
   531     /// If the underlying digraph was also modified after the construction
   532     /// of the class or the last \ref reset() call, then the \ref reset()
   533     /// function must be used, otherwise \ref resetParams() is sufficient.
   534     ///
   535     /// For example,
   536     /// \code
   537     ///   CostScaling<ListDigraph> cs(graph);
   538     ///
   539     ///   // First run
   540     ///   cs.lowerMap(lower).upperMap(upper).costMap(cost)
   541     ///     .supplyMap(sup).run();
   542     ///
   543     ///   // Run again with modified cost map (resetParams() is not called,
   544     ///   // so only the cost map have to be set again)
   545     ///   cost[e] += 100;
   546     ///   cs.costMap(cost).run();
   547     ///
   548     ///   // Run again from scratch using resetParams()
   549     ///   // (the lower bounds will be set to zero on all arcs)
   550     ///   cs.resetParams();
   551     ///   cs.upperMap(capacity).costMap(cost)
   552     ///     .supplyMap(sup).run();
   553     /// \endcode
   554     ///
   555     /// \return <tt>(*this)</tt>
   556     ///
   557     /// \see reset(), run()
   558     CostScaling& resetParams() {
   559       for (int i = 0; i != _res_node_num; ++i) {
   560         _supply[i] = 0;
   561       }
   562       int limit = _first_out[_root];
   563       for (int j = 0; j != limit; ++j) {
   564         _lower[j] = 0;
   565         _upper[j] = INF;
   566         _scost[j] = _forward[j] ? 1 : -1;
   567       }
   568       for (int j = limit; j != _res_arc_num; ++j) {
   569         _lower[j] = 0;
   570         _upper[j] = INF;
   571         _scost[j] = 0;
   572         _scost[_reverse[j]] = 0;
   573       }
   574       _have_lower = false;
   575       return *this;
   576     }
   577 
   578     /// \brief Reset the internal data structures and all the parameters
   579     /// that have been given before.
   580     ///
   581     /// This function resets the internal data structures and all the
   582     /// paramaters that have been given before using functions \ref lowerMap(),
   583     /// \ref upperMap(), \ref costMap(), \ref supplyMap(), \ref stSupply().
   584     ///
   585     /// It is useful for multiple \ref run() calls. By default, all the given
   586     /// parameters are kept for the next \ref run() call, unless
   587     /// \ref resetParams() or \ref reset() is used.
   588     /// If the underlying digraph was also modified after the construction
   589     /// of the class or the last \ref reset() call, then the \ref reset()
   590     /// function must be used, otherwise \ref resetParams() is sufficient.
   591     ///
   592     /// See \ref resetParams() for examples.
   593     ///
   594     /// \return <tt>(*this)</tt>
   595     ///
   596     /// \see resetParams(), run()
   597     CostScaling& reset() {
   598       // Resize vectors
   599       _node_num = countNodes(_graph);
   600       _arc_num = countArcs(_graph);
   601       _res_node_num = _node_num + 1;
   602       _res_arc_num = 2 * (_arc_num + _node_num);
   603       _root = _node_num;
   604 
   605       _first_out.resize(_res_node_num + 1);
   606       _forward.resize(_res_arc_num);
   607       _source.resize(_res_arc_num);
   608       _target.resize(_res_arc_num);
   609       _reverse.resize(_res_arc_num);
   610 
   611       _lower.resize(_res_arc_num);
   612       _upper.resize(_res_arc_num);
   613       _scost.resize(_res_arc_num);
   614       _supply.resize(_res_node_num);
   615 
   616       _res_cap.resize(_res_arc_num);
   617       _cost.resize(_res_arc_num);
   618       _pi.resize(_res_node_num);
   619       _excess.resize(_res_node_num);
   620       _next_out.resize(_res_node_num);
   621 
   622       _arc_vec.reserve(_res_arc_num);
   623       _cost_vec.reserve(_res_arc_num);
   624 
   625       // Copy the graph
   626       int i = 0, j = 0, k = 2 * _arc_num + _node_num;
   627       for (NodeIt n(_graph); n != INVALID; ++n, ++i) {
   628         _node_id[n] = i;
   629       }
   630       i = 0;
   631       for (NodeIt n(_graph); n != INVALID; ++n, ++i) {
   632         _first_out[i] = j;
   633         for (OutArcIt a(_graph, n); a != INVALID; ++a, ++j) {
   634           _arc_idf[a] = j;
   635           _forward[j] = true;
   636           _source[j] = i;
   637           _target[j] = _node_id[_graph.runningNode(a)];
   638         }
   639         for (InArcIt a(_graph, n); a != INVALID; ++a, ++j) {
   640           _arc_idb[a] = j;
   641           _forward[j] = false;
   642           _source[j] = i;
   643           _target[j] = _node_id[_graph.runningNode(a)];
   644         }
   645         _forward[j] = false;
   646         _source[j] = i;
   647         _target[j] = _root;
   648         _reverse[j] = k;
   649         _forward[k] = true;
   650         _source[k] = _root;
   651         _target[k] = i;
   652         _reverse[k] = j;
   653         ++j; ++k;
   654       }
   655       _first_out[i] = j;
   656       _first_out[_res_node_num] = k;
   657       for (ArcIt a(_graph); a != INVALID; ++a) {
   658         int fi = _arc_idf[a];
   659         int bi = _arc_idb[a];
   660         _reverse[fi] = bi;
   661         _reverse[bi] = fi;
   662       }
   663 
   664       // Reset parameters
   665       resetParams();
   666       return *this;
   667     }
   668 
   669     /// @}
   670 
   671     /// \name Query Functions
   672     /// The results of the algorithm can be obtained using these
   673     /// functions.\n
   674     /// The \ref run() function must be called before using them.
   675 
   676     /// @{
   677 
   678     /// \brief Return the total cost of the found flow.
   679     ///
   680     /// This function returns the total cost of the found flow.
   681     /// Its complexity is O(e).
   682     ///
   683     /// \note The return type of the function can be specified as a
   684     /// template parameter. For example,
   685     /// \code
   686     ///   cs.totalCost<double>();
   687     /// \endcode
   688     /// It is useful if the total cost cannot be stored in the \c Cost
   689     /// type of the algorithm, which is the default return type of the
   690     /// function.
   691     ///
   692     /// \pre \ref run() must be called before using this function.
   693     template <typename Number>
   694     Number totalCost() const {
   695       Number c = 0;
   696       for (ArcIt a(_graph); a != INVALID; ++a) {
   697         int i = _arc_idb[a];
   698         c += static_cast<Number>(_res_cap[i]) *
   699              (-static_cast<Number>(_scost[i]));
   700       }
   701       return c;
   702     }
   703 
   704 #ifndef DOXYGEN
   705     Cost totalCost() const {
   706       return totalCost<Cost>();
   707     }
   708 #endif
   709 
   710     /// \brief Return the flow on the given arc.
   711     ///
   712     /// This function returns the flow on the given arc.
   713     ///
   714     /// \pre \ref run() must be called before using this function.
   715     Value flow(const Arc& a) const {
   716       return _res_cap[_arc_idb[a]];
   717     }
   718 
   719     /// \brief Return the flow map (the primal solution).
   720     ///
   721     /// This function copies the flow value on each arc into the given
   722     /// map. The \c Value type of the algorithm must be convertible to
   723     /// the \c Value type of the map.
   724     ///
   725     /// \pre \ref run() must be called before using this function.
   726     template <typename FlowMap>
   727     void flowMap(FlowMap &map) const {
   728       for (ArcIt a(_graph); a != INVALID; ++a) {
   729         map.set(a, _res_cap[_arc_idb[a]]);
   730       }
   731     }
   732 
   733     /// \brief Return the potential (dual value) of the given node.
   734     ///
   735     /// This function returns the potential (dual value) of the
   736     /// given node.
   737     ///
   738     /// \pre \ref run() must be called before using this function.
   739     Cost potential(const Node& n) const {
   740       return static_cast<Cost>(_pi[_node_id[n]]);
   741     }
   742 
   743     /// \brief Return the potential map (the dual solution).
   744     ///
   745     /// This function copies the potential (dual value) of each node
   746     /// into the given map.
   747     /// The \c Cost type of the algorithm must be convertible to the
   748     /// \c Value type of the map.
   749     ///
   750     /// \pre \ref run() must be called before using this function.
   751     template <typename PotentialMap>
   752     void potentialMap(PotentialMap &map) const {
   753       for (NodeIt n(_graph); n != INVALID; ++n) {
   754         map.set(n, static_cast<Cost>(_pi[_node_id[n]]));
   755       }
   756     }
   757 
   758     /// @}
   759 
   760   private:
   761 
   762     // Initialize the algorithm
   763     ProblemType init() {
   764       if (_res_node_num <= 1) return INFEASIBLE;
   765 
   766       // Check the sum of supply values
   767       _sum_supply = 0;
   768       for (int i = 0; i != _root; ++i) {
   769         _sum_supply += _supply[i];
   770       }
   771       if (_sum_supply > 0) return INFEASIBLE;
   772 
   773 
   774       // Initialize vectors
   775       for (int i = 0; i != _res_node_num; ++i) {
   776         _pi[i] = 0;
   777         _excess[i] = _supply[i];
   778       }
   779 
   780       // Remove infinite upper bounds and check negative arcs
   781       const Value MAX = std::numeric_limits<Value>::max();
   782       int last_out;
   783       if (_have_lower) {
   784         for (int i = 0; i != _root; ++i) {
   785           last_out = _first_out[i+1];
   786           for (int j = _first_out[i]; j != last_out; ++j) {
   787             if (_forward[j]) {
   788               Value c = _scost[j] < 0 ? _upper[j] : _lower[j];
   789               if (c >= MAX) return UNBOUNDED;
   790               _excess[i] -= c;
   791               _excess[_target[j]] += c;
   792             }
   793           }
   794         }
   795       } else {
   796         for (int i = 0; i != _root; ++i) {
   797           last_out = _first_out[i+1];
   798           for (int j = _first_out[i]; j != last_out; ++j) {
   799             if (_forward[j] && _scost[j] < 0) {
   800               Value c = _upper[j];
   801               if (c >= MAX) return UNBOUNDED;
   802               _excess[i] -= c;
   803               _excess[_target[j]] += c;
   804             }
   805           }
   806         }
   807       }
   808       Value ex, max_cap = 0;
   809       for (int i = 0; i != _res_node_num; ++i) {
   810         ex = _excess[i];
   811         _excess[i] = 0;
   812         if (ex < 0) max_cap -= ex;
   813       }
   814       for (int j = 0; j != _res_arc_num; ++j) {
   815         if (_upper[j] >= MAX) _upper[j] = max_cap;
   816       }
   817 
   818       // Initialize the large cost vector and the epsilon parameter
   819       _epsilon = 0;
   820       LargeCost lc;
   821       for (int i = 0; i != _root; ++i) {
   822         last_out = _first_out[i+1];
   823         for (int j = _first_out[i]; j != last_out; ++j) {
   824           lc = static_cast<LargeCost>(_scost[j]) * _res_node_num * _alpha;
   825           _cost[j] = lc;
   826           if (lc > _epsilon) _epsilon = lc;
   827         }
   828       }
   829       _epsilon /= _alpha;
   830 
   831       // Initialize maps for Circulation and remove non-zero lower bounds
   832       ConstMap<Arc, Value> low(0);
   833       typedef typename Digraph::template ArcMap<Value> ValueArcMap;
   834       typedef typename Digraph::template NodeMap<Value> ValueNodeMap;
   835       ValueArcMap cap(_graph), flow(_graph);
   836       ValueNodeMap sup(_graph);
   837       for (NodeIt n(_graph); n != INVALID; ++n) {
   838         sup[n] = _supply[_node_id[n]];
   839       }
   840       if (_have_lower) {
   841         for (ArcIt a(_graph); a != INVALID; ++a) {
   842           int j = _arc_idf[a];
   843           Value c = _lower[j];
   844           cap[a] = _upper[j] - c;
   845           sup[_graph.source(a)] -= c;
   846           sup[_graph.target(a)] += c;
   847         }
   848       } else {
   849         for (ArcIt a(_graph); a != INVALID; ++a) {
   850           cap[a] = _upper[_arc_idf[a]];
   851         }
   852       }
   853 
   854       _sup_node_num = 0;
   855       for (NodeIt n(_graph); n != INVALID; ++n) {
   856         if (sup[n] > 0) ++_sup_node_num;
   857       }
   858 
   859       // Find a feasible flow using Circulation
   860       Circulation<Digraph, ConstMap<Arc, Value>, ValueArcMap, ValueNodeMap>
   861         circ(_graph, low, cap, sup);
   862       if (!circ.flowMap(flow).run()) return INFEASIBLE;
   863 
   864       // Set residual capacities and handle GEQ supply type
   865       if (_sum_supply < 0) {
   866         for (ArcIt a(_graph); a != INVALID; ++a) {
   867           Value fa = flow[a];
   868           _res_cap[_arc_idf[a]] = cap[a] - fa;
   869           _res_cap[_arc_idb[a]] = fa;
   870           sup[_graph.source(a)] -= fa;
   871           sup[_graph.target(a)] += fa;
   872         }
   873         for (NodeIt n(_graph); n != INVALID; ++n) {
   874           _excess[_node_id[n]] = sup[n];
   875         }
   876         for (int a = _first_out[_root]; a != _res_arc_num; ++a) {
   877           int u = _target[a];
   878           int ra = _reverse[a];
   879           _res_cap[a] = -_sum_supply + 1;
   880           _res_cap[ra] = -_excess[u];
   881           _cost[a] = 0;
   882           _cost[ra] = 0;
   883           _excess[u] = 0;
   884         }
   885       } else {
   886         for (ArcIt a(_graph); a != INVALID; ++a) {
   887           Value fa = flow[a];
   888           _res_cap[_arc_idf[a]] = cap[a] - fa;
   889           _res_cap[_arc_idb[a]] = fa;
   890         }
   891         for (int a = _first_out[_root]; a != _res_arc_num; ++a) {
   892           int ra = _reverse[a];
   893           _res_cap[a] = 0;
   894           _res_cap[ra] = 0;
   895           _cost[a] = 0;
   896           _cost[ra] = 0;
   897         }
   898       }
   899 
   900       // Initialize data structures for buckets
   901       _max_rank = _alpha * _res_node_num;
   902       _buckets.resize(_max_rank);
   903       _bucket_next.resize(_res_node_num + 1);
   904       _bucket_prev.resize(_res_node_num + 1);
   905       _rank.resize(_res_node_num + 1);
   906 
   907       return OPTIMAL;
   908     }
   909 
   910     // Execute the algorithm and transform the results
   911     void start(Method method) {
   912       const int MAX_PARTIAL_PATH_LENGTH = 4;
   913 
   914       switch (method) {
   915         case PUSH:
   916           startPush();
   917           break;
   918         case AUGMENT:
   919           startAugment(_res_node_num - 1);
   920           break;
   921         case PARTIAL_AUGMENT:
   922           startAugment(MAX_PARTIAL_PATH_LENGTH);
   923           break;
   924       }
   925 
   926       // Compute node potentials for the original costs
   927       _arc_vec.clear();
   928       _cost_vec.clear();
   929       for (int j = 0; j != _res_arc_num; ++j) {
   930         if (_res_cap[j] > 0) {
   931           _arc_vec.push_back(IntPair(_source[j], _target[j]));
   932           _cost_vec.push_back(_scost[j]);
   933         }
   934       }
   935       _sgr.build(_res_node_num, _arc_vec.begin(), _arc_vec.end());
   936 
   937       typename BellmanFord<StaticDigraph, LargeCostArcMap>
   938         ::template SetDistMap<LargeCostNodeMap>::Create bf(_sgr, _cost_map);
   939       bf.distMap(_pi_map);
   940       bf.init(0);
   941       bf.start();
   942 
   943       // Handle non-zero lower bounds
   944       if (_have_lower) {
   945         int limit = _first_out[_root];
   946         for (int j = 0; j != limit; ++j) {
   947           if (!_forward[j]) _res_cap[j] += _lower[j];
   948         }
   949       }
   950     }
   951 
   952     // Initialize a cost scaling phase
   953     void initPhase() {
   954       // Saturate arcs not satisfying the optimality condition
   955       for (int u = 0; u != _res_node_num; ++u) {
   956         int last_out = _first_out[u+1];
   957         LargeCost pi_u = _pi[u];
   958         for (int a = _first_out[u]; a != last_out; ++a) {
   959           Value delta = _res_cap[a];
   960           if (delta > 0) {
   961             int v = _target[a];
   962             if (_cost[a] + pi_u - _pi[v] < 0) {
   963               _excess[u] -= delta;
   964               _excess[v] += delta;
   965               _res_cap[a] = 0;
   966               _res_cap[_reverse[a]] += delta;
   967             }
   968           }
   969         }
   970       }
   971 
   972       // Find active nodes (i.e. nodes with positive excess)
   973       for (int u = 0; u != _res_node_num; ++u) {
   974         if (_excess[u] > 0) _active_nodes.push_back(u);
   975       }
   976 
   977       // Initialize the next arcs
   978       for (int u = 0; u != _res_node_num; ++u) {
   979         _next_out[u] = _first_out[u];
   980       }
   981     }
   982 
   983     // Early termination heuristic
   984     bool earlyTermination() {
   985       const double EARLY_TERM_FACTOR = 3.0;
   986 
   987       // Build a static residual graph
   988       _arc_vec.clear();
   989       _cost_vec.clear();
   990       for (int j = 0; j != _res_arc_num; ++j) {
   991         if (_res_cap[j] > 0) {
   992           _arc_vec.push_back(IntPair(_source[j], _target[j]));
   993           _cost_vec.push_back(_cost[j] + 1);
   994         }
   995       }
   996       _sgr.build(_res_node_num, _arc_vec.begin(), _arc_vec.end());
   997 
   998       // Run Bellman-Ford algorithm to check if the current flow is optimal
   999       BellmanFord<StaticDigraph, LargeCostArcMap> bf(_sgr, _cost_map);
  1000       bf.init(0);
  1001       bool done = false;
  1002       int K = int(EARLY_TERM_FACTOR * std::sqrt(double(_res_node_num)));
  1003       for (int i = 0; i < K && !done; ++i) {
  1004         done = bf.processNextWeakRound();
  1005       }
  1006       return done;
  1007     }
  1008 
  1009     // Global potential update heuristic
  1010     void globalUpdate() {
  1011       const int bucket_end = _root + 1;
  1012 
  1013       // Initialize buckets
  1014       for (int r = 0; r != _max_rank; ++r) {
  1015         _buckets[r] = bucket_end;
  1016       }
  1017       Value total_excess = 0;
  1018       int b0 = bucket_end;
  1019       for (int i = 0; i != _res_node_num; ++i) {
  1020         if (_excess[i] < 0) {
  1021           _rank[i] = 0;
  1022           _bucket_next[i] = b0;
  1023           _bucket_prev[b0] = i;
  1024           b0 = i;
  1025         } else {
  1026           total_excess += _excess[i];
  1027           _rank[i] = _max_rank;
  1028         }
  1029       }
  1030       if (total_excess == 0) return;
  1031       _buckets[0] = b0;
  1032 
  1033       // Search the buckets
  1034       int r = 0;
  1035       for ( ; r != _max_rank; ++r) {
  1036         while (_buckets[r] != bucket_end) {
  1037           // Remove the first node from the current bucket
  1038           int u = _buckets[r];
  1039           _buckets[r] = _bucket_next[u];
  1040 
  1041           // Search the incomming arcs of u
  1042           LargeCost pi_u = _pi[u];
  1043           int last_out = _first_out[u+1];
  1044           for (int a = _first_out[u]; a != last_out; ++a) {
  1045             int ra = _reverse[a];
  1046             if (_res_cap[ra] > 0) {
  1047               int v = _source[ra];
  1048               int old_rank_v = _rank[v];
  1049               if (r < old_rank_v) {
  1050                 // Compute the new rank of v
  1051                 LargeCost nrc = (_cost[ra] + _pi[v] - pi_u) / _epsilon;
  1052                 int new_rank_v = old_rank_v;
  1053                 if (nrc < LargeCost(_max_rank)) {
  1054                   new_rank_v = r + 1 + static_cast<int>(nrc);
  1055                 }
  1056 
  1057                 // Change the rank of v
  1058                 if (new_rank_v < old_rank_v) {
  1059                   _rank[v] = new_rank_v;
  1060                   _next_out[v] = _first_out[v];
  1061 
  1062                   // Remove v from its old bucket
  1063                   if (old_rank_v < _max_rank) {
  1064                     if (_buckets[old_rank_v] == v) {
  1065                       _buckets[old_rank_v] = _bucket_next[v];
  1066                     } else {
  1067                       int pv = _bucket_prev[v], nv = _bucket_next[v];
  1068                       _bucket_next[pv] = nv;
  1069                       _bucket_prev[nv] = pv;
  1070                     }
  1071                   }
  1072 
  1073                   // Insert v into its new bucket
  1074                   int nv = _buckets[new_rank_v];
  1075                   _bucket_next[v] = nv;
  1076                   _bucket_prev[nv] = v;
  1077                   _buckets[new_rank_v] = v;
  1078                 }
  1079               }
  1080             }
  1081           }
  1082 
  1083           // Finish search if there are no more active nodes
  1084           if (_excess[u] > 0) {
  1085             total_excess -= _excess[u];
  1086             if (total_excess <= 0) break;
  1087           }
  1088         }
  1089         if (total_excess <= 0) break;
  1090       }
  1091 
  1092       // Relabel nodes
  1093       for (int u = 0; u != _res_node_num; ++u) {
  1094         int k = std::min(_rank[u], r);
  1095         if (k > 0) {
  1096           _pi[u] -= _epsilon * k;
  1097           _next_out[u] = _first_out[u];
  1098         }
  1099       }
  1100     }
  1101 
  1102     /// Execute the algorithm performing augment and relabel operations
  1103     void startAugment(int max_length) {
  1104       // Paramters for heuristics
  1105       const int EARLY_TERM_EPSILON_LIMIT = 1000;
  1106       const double GLOBAL_UPDATE_FACTOR = 1.0;
  1107       const int global_update_skip = static_cast<int>(GLOBAL_UPDATE_FACTOR *
  1108         (_res_node_num + _sup_node_num * _sup_node_num));
  1109       int next_global_update_limit = global_update_skip;
  1110 
  1111       // Perform cost scaling phases
  1112       IntVector path;
  1113       BoolVector path_arc(_res_arc_num, false);
  1114       int relabel_cnt = 0;
  1115       for ( ; _epsilon >= 1; _epsilon = _epsilon < _alpha && _epsilon > 1 ?
  1116                                         1 : _epsilon / _alpha )
  1117       {
  1118         // Early termination heuristic
  1119         if (_epsilon <= EARLY_TERM_EPSILON_LIMIT) {
  1120           if (earlyTermination()) break;
  1121         }
  1122 
  1123         // Initialize current phase
  1124         initPhase();
  1125 
  1126         // Perform partial augment and relabel operations
  1127         while (true) {
  1128           // Select an active node (FIFO selection)
  1129           while (_active_nodes.size() > 0 &&
  1130                  _excess[_active_nodes.front()] <= 0) {
  1131             _active_nodes.pop_front();
  1132           }
  1133           if (_active_nodes.size() == 0) break;
  1134           int start = _active_nodes.front();
  1135 
  1136           // Find an augmenting path from the start node
  1137           int tip = start;
  1138           while (int(path.size()) < max_length && _excess[tip] >= 0) {
  1139             int u;
  1140             LargeCost rc, min_red_cost = std::numeric_limits<LargeCost>::max();
  1141             LargeCost pi_tip = _pi[tip];
  1142             int last_out = _first_out[tip+1];
  1143             for (int a = _next_out[tip]; a != last_out; ++a) {
  1144               if (_res_cap[a] > 0) {
  1145                 u = _target[a];
  1146                 rc = _cost[a] + pi_tip - _pi[u];
  1147                 if (rc < 0) {
  1148                   path.push_back(a);
  1149                   _next_out[tip] = a;
  1150                   if (path_arc[a]) {
  1151                     goto augment;   // a cycle is found, stop path search
  1152                   }
  1153                   tip = u;
  1154                   path_arc[a] = true;
  1155                   goto next_step;
  1156                 }
  1157                 else if (rc < min_red_cost) {
  1158                   min_red_cost = rc;
  1159                 }
  1160               }
  1161             }
  1162 
  1163             // Relabel tip node
  1164             if (tip != start) {
  1165               int ra = _reverse[path.back()];
  1166               min_red_cost =
  1167                 std::min(min_red_cost, _cost[ra] + pi_tip - _pi[_target[ra]]);
  1168             }
  1169             last_out = _next_out[tip];
  1170             for (int a = _first_out[tip]; a != last_out; ++a) {
  1171               if (_res_cap[a] > 0) {
  1172                 rc = _cost[a] + pi_tip - _pi[_target[a]];
  1173                 if (rc < min_red_cost) {
  1174                   min_red_cost = rc;
  1175                 }
  1176               }
  1177             }
  1178             _pi[tip] -= min_red_cost + _epsilon;
  1179             _next_out[tip] = _first_out[tip];
  1180             ++relabel_cnt;
  1181 
  1182             // Step back
  1183             if (tip != start) {
  1184               int pa = path.back();
  1185               path_arc[pa] = false;
  1186               tip = _source[pa];
  1187               path.pop_back();
  1188             }
  1189 
  1190           next_step: ;
  1191           }
  1192 
  1193           // Augment along the found path (as much flow as possible)
  1194         augment:
  1195           Value delta;
  1196           int pa, u, v = start;
  1197           for (int i = 0; i != int(path.size()); ++i) {
  1198             pa = path[i];
  1199             u = v;
  1200             v = _target[pa];
  1201             path_arc[pa] = false;
  1202             delta = std::min(_res_cap[pa], _excess[u]);
  1203             _res_cap[pa] -= delta;
  1204             _res_cap[_reverse[pa]] += delta;
  1205             _excess[u] -= delta;
  1206             _excess[v] += delta;
  1207             if (_excess[v] > 0 && _excess[v] <= delta) {
  1208               _active_nodes.push_back(v);
  1209             }
  1210           }
  1211           path.clear();
  1212 
  1213           // Global update heuristic
  1214           if (relabel_cnt >= next_global_update_limit) {
  1215             globalUpdate();
  1216             next_global_update_limit += global_update_skip;
  1217           }
  1218         }
  1219 
  1220       }
  1221 
  1222     }
  1223 
  1224     /// Execute the algorithm performing push and relabel operations
  1225     void startPush() {
  1226       // Paramters for heuristics
  1227       const int EARLY_TERM_EPSILON_LIMIT = 1000;
  1228       const double GLOBAL_UPDATE_FACTOR = 2.0;
  1229 
  1230       const int global_update_skip = static_cast<int>(GLOBAL_UPDATE_FACTOR *
  1231         (_res_node_num + _sup_node_num * _sup_node_num));
  1232       int next_global_update_limit = global_update_skip;
  1233 
  1234       // Perform cost scaling phases
  1235       BoolVector hyper(_res_node_num, false);
  1236       LargeCostVector hyper_cost(_res_node_num);
  1237       int relabel_cnt = 0;
  1238       for ( ; _epsilon >= 1; _epsilon = _epsilon < _alpha && _epsilon > 1 ?
  1239                                         1 : _epsilon / _alpha )
  1240       {
  1241         // Early termination heuristic
  1242         if (_epsilon <= EARLY_TERM_EPSILON_LIMIT) {
  1243           if (earlyTermination()) break;
  1244         }
  1245 
  1246         // Initialize current phase
  1247         initPhase();
  1248 
  1249         // Perform push and relabel operations
  1250         while (_active_nodes.size() > 0) {
  1251           LargeCost min_red_cost, rc, pi_n;
  1252           Value delta;
  1253           int n, t, a, last_out = _res_arc_num;
  1254 
  1255         next_node:
  1256           // Select an active node (FIFO selection)
  1257           n = _active_nodes.front();
  1258           last_out = _first_out[n+1];
  1259           pi_n = _pi[n];
  1260 
  1261           // Perform push operations if there are admissible arcs
  1262           if (_excess[n] > 0) {
  1263             for (a = _next_out[n]; a != last_out; ++a) {
  1264               if (_res_cap[a] > 0 &&
  1265                   _cost[a] + pi_n - _pi[_target[a]] < 0) {
  1266                 delta = std::min(_res_cap[a], _excess[n]);
  1267                 t = _target[a];
  1268 
  1269                 // Push-look-ahead heuristic
  1270                 Value ahead = -_excess[t];
  1271                 int last_out_t = _first_out[t+1];
  1272                 LargeCost pi_t = _pi[t];
  1273                 for (int ta = _next_out[t]; ta != last_out_t; ++ta) {
  1274                   if (_res_cap[ta] > 0 &&
  1275                       _cost[ta] + pi_t - _pi[_target[ta]] < 0)
  1276                     ahead += _res_cap[ta];
  1277                   if (ahead >= delta) break;
  1278                 }
  1279                 if (ahead < 0) ahead = 0;
  1280 
  1281                 // Push flow along the arc
  1282                 if (ahead < delta && !hyper[t]) {
  1283                   _res_cap[a] -= ahead;
  1284                   _res_cap[_reverse[a]] += ahead;
  1285                   _excess[n] -= ahead;
  1286                   _excess[t] += ahead;
  1287                   _active_nodes.push_front(t);
  1288                   hyper[t] = true;
  1289                   hyper_cost[t] = _cost[a] + pi_n - pi_t;
  1290                   _next_out[n] = a;
  1291                   goto next_node;
  1292                 } else {
  1293                   _res_cap[a] -= delta;
  1294                   _res_cap[_reverse[a]] += delta;
  1295                   _excess[n] -= delta;
  1296                   _excess[t] += delta;
  1297                   if (_excess[t] > 0 && _excess[t] <= delta)
  1298                     _active_nodes.push_back(t);
  1299                 }
  1300 
  1301                 if (_excess[n] == 0) {
  1302                   _next_out[n] = a;
  1303                   goto remove_nodes;
  1304                 }
  1305               }
  1306             }
  1307             _next_out[n] = a;
  1308           }
  1309 
  1310           // Relabel the node if it is still active (or hyper)
  1311           if (_excess[n] > 0 || hyper[n]) {
  1312              min_red_cost = hyper[n] ? -hyper_cost[n] :
  1313                std::numeric_limits<LargeCost>::max();
  1314             for (int a = _first_out[n]; a != last_out; ++a) {
  1315               if (_res_cap[a] > 0) {
  1316                 rc = _cost[a] + pi_n - _pi[_target[a]];
  1317                 if (rc < min_red_cost) {
  1318                   min_red_cost = rc;
  1319                 }
  1320               }
  1321             }
  1322             _pi[n] -= min_red_cost + _epsilon;
  1323             _next_out[n] = _first_out[n];
  1324             hyper[n] = false;
  1325             ++relabel_cnt;
  1326           }
  1327 
  1328           // Remove nodes that are not active nor hyper
  1329         remove_nodes:
  1330           while ( _active_nodes.size() > 0 &&
  1331                   _excess[_active_nodes.front()] <= 0 &&
  1332                   !hyper[_active_nodes.front()] ) {
  1333             _active_nodes.pop_front();
  1334           }
  1335 
  1336           // Global update heuristic
  1337           if (relabel_cnt >= next_global_update_limit) {
  1338             globalUpdate();
  1339             for (int u = 0; u != _res_node_num; ++u)
  1340               hyper[u] = false;
  1341             next_global_update_limit += global_update_skip;
  1342           }
  1343         }
  1344       }
  1345     }
  1346 
  1347   }; //class CostScaling
  1348 
  1349   ///@}
  1350 
  1351 } //namespace lemon
  1352 
  1353 #endif //LEMON_COST_SCALING_H