1 /* -*- mode: C++; indent-tabs-mode: nil; -*-
 
     3  * This file is a part of LEMON, a generic C++ optimization library.
 
     5  * Copyright (C) 2003-2009
 
     6  * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
 
     7  * (Egervary Research Group on Combinatorial Optimization, EGRES).
 
     9  * Permission to use, modify and distribute this software is granted
 
    10  * provided that this copyright notice appears in all copies. For
 
    11  * precise terms see the accompanying LICENSE file.
 
    13  * This software is provided "AS IS" with no warranty of any kind,
 
    14  * express or implied, and with no claim as to its suitability for any
 
    19 #ifndef HYPERCUBE_GRAPH_H
 
    20 #define HYPERCUBE_GRAPH_H
 
    23 #include <lemon/core.h>
 
    24 #include <lemon/assert.h>
 
    25 #include <lemon/bits/graph_extender.h>
 
    29 ///\brief HypercubeGraph class.
 
    33   class HypercubeGraphBase {
 
    37     typedef HypercubeGraphBase Graph;
 
    45     HypercubeGraphBase() {}
 
    49     void construct(int dim) {
 
    50       LEMON_ASSERT(dim >= 1, "The number of dimensions must be at least 1.");
 
    53       _edge_num = dim * (1 << (dim-1));
 
    58     typedef True NodeNumTag;
 
    59     typedef True EdgeNumTag;
 
    60     typedef True ArcNumTag;
 
    62     int nodeNum() const { return _node_num; }
 
    63     int edgeNum() const { return _edge_num; }
 
    64     int arcNum() const { return 2 * _edge_num; }
 
    66     int maxNodeId() const { return _node_num - 1; }
 
    67     int maxEdgeId() const { return _edge_num - 1; }
 
    68     int maxArcId() const { return 2 * _edge_num - 1; }
 
    70     static Node nodeFromId(int id) { return Node(id); }
 
    71     static Edge edgeFromId(int id) { return Edge(id); }
 
    72     static Arc arcFromId(int id) { return Arc(id); }
 
    74     static int id(Node node) { return node._id; }
 
    75     static int id(Edge edge) { return edge._id; }
 
    76     static int id(Arc arc) { return arc._id; }
 
    78     Node u(Edge edge) const {
 
    79       int base = edge._id & ((1 << (_dim-1)) - 1);
 
    80       int k = edge._id >> (_dim-1);
 
    81       return ((base >> k) << (k+1)) | (base & ((1 << k) - 1));
 
    84     Node v(Edge edge) const {
 
    85       int base = edge._id & ((1 << (_dim-1)) - 1);
 
    86       int k = edge._id >> (_dim-1);
 
    87       return ((base >> k) << (k+1)) | (base & ((1 << k) - 1)) | (1 << k);
 
    90     Node source(Arc arc) const {
 
    91       return (arc._id & 1) == 1 ? u(arc) : v(arc);
 
    94     Node target(Arc arc) const {
 
    95       return (arc._id & 1) == 1 ? v(arc) : u(arc);
 
    98     typedef True FindEdgeTag;
 
    99     typedef True FindArcTag;
 
   101     Edge findEdge(Node u, Node v, Edge prev = INVALID) const {
 
   102       if (prev != INVALID) return INVALID;
 
   103       int d = u._id ^ v._id;
 
   105       if (d == 0) return INVALID;
 
   106       for ( ; (d & 1) == 0; d >>= 1) ++k;
 
   107       if (d >> 1 != 0) return INVALID;
 
   108       return (k << (_dim-1)) | ((u._id >> (k+1)) << k) |
 
   109         (u._id & ((1 << k) - 1));
 
   112     Arc findArc(Node u, Node v, Arc prev = INVALID) const {
 
   113       Edge edge = findEdge(u, v, prev);
 
   114       if (edge == INVALID) return INVALID;
 
   115       int k = edge._id >> (_dim-1);
 
   116       return ((u._id >> k) & 1) == 1 ? edge._id << 1 : (edge._id << 1) | 1;
 
   120       friend class HypercubeGraphBase;
 
   124       Node(int id) : _id(id) {}
 
   127       Node (Invalid) : _id(-1) {}
 
   128       bool operator==(const Node node) const {return _id == node._id;}
 
   129       bool operator!=(const Node node) const {return _id != node._id;}
 
   130       bool operator<(const Node node) const {return _id < node._id;}
 
   134       friend class HypercubeGraphBase;
 
   140       Edge(int id) : _id(id) {}
 
   144       Edge (Invalid) : _id(-1) {}
 
   145       bool operator==(const Edge edge) const {return _id == edge._id;}
 
   146       bool operator!=(const Edge edge) const {return _id != edge._id;}
 
   147       bool operator<(const Edge edge) const {return _id < edge._id;}
 
   151       friend class HypercubeGraphBase;
 
   156       Arc(int id) : _id(id) {}
 
   160       Arc (Invalid) : _id(-1) {}
 
   161       operator Edge() const { return _id != -1 ? Edge(_id >> 1) : INVALID; }
 
   162       bool operator==(const Arc arc) const {return _id == arc._id;}
 
   163       bool operator!=(const Arc arc) const {return _id != arc._id;}
 
   164       bool operator<(const Arc arc) const {return _id < arc._id;}
 
   167     void first(Node& node) const {
 
   168       node._id = _node_num - 1;
 
   171     static void next(Node& node) {
 
   175     void first(Edge& edge) const {
 
   176       edge._id = _edge_num - 1;
 
   179     static void next(Edge& edge) {
 
   183     void first(Arc& arc) const {
 
   184       arc._id = 2 * _edge_num - 1;
 
   187     static void next(Arc& arc) {
 
   191     void firstInc(Edge& edge, bool& dir, const Node& node) const {
 
   192       edge._id = node._id >> 1;
 
   193       dir = (node._id & 1) == 0;
 
   196     void nextInc(Edge& edge, bool& dir) const {
 
   197       Node n = dir ? u(edge) : v(edge);
 
   198       int k = (edge._id >> (_dim-1)) + 1;
 
   200         edge._id = (k << (_dim-1)) |
 
   201           ((n._id >> (k+1)) << k) | (n._id & ((1 << k) - 1));
 
   202         dir = ((n._id >> k) & 1) == 0;
 
   209     void firstOut(Arc& arc, const Node& node) const {
 
   210       arc._id = ((node._id >> 1) << 1) | (~node._id & 1);
 
   213     void nextOut(Arc& arc) const {
 
   214       Node n = (arc._id & 1) == 1 ? u(arc) : v(arc);
 
   215       int k = (arc._id >> _dim) + 1;
 
   217         arc._id = (k << (_dim-1)) |
 
   218           ((n._id >> (k+1)) << k) | (n._id & ((1 << k) - 1));
 
   219         arc._id = (arc._id << 1) | (~(n._id >> k) & 1);
 
   225     void firstIn(Arc& arc, const Node& node) const {
 
   226       arc._id = ((node._id >> 1) << 1) | (node._id & 1);
 
   229     void nextIn(Arc& arc) const {
 
   230       Node n = (arc._id & 1) == 1 ? v(arc) : u(arc);
 
   231       int k = (arc._id >> _dim) + 1;
 
   233         arc._id = (k << (_dim-1)) |
 
   234           ((n._id >> (k+1)) << k) | (n._id & ((1 << k) - 1));
 
   235         arc._id = (arc._id << 1) | ((n._id >> k) & 1);
 
   241     static bool direction(Arc arc) {
 
   242       return (arc._id & 1) == 1;
 
   245     static Arc direct(Edge edge, bool dir) {
 
   246       return Arc((edge._id << 1) | (dir ? 1 : 0));
 
   249     int dimension() const {
 
   253     bool projection(Node node, int n) const {
 
   254       return static_cast<bool>(node._id & (1 << n));
 
   257     int dimension(Edge edge) const {
 
   258       return edge._id >> (_dim-1);
 
   261     int dimension(Arc arc) const {
 
   262       return arc._id >> _dim;
 
   265     int index(Node node) const {
 
   269     Node operator()(int ix) const {
 
   275     int _node_num, _edge_num;
 
   279   typedef GraphExtender<HypercubeGraphBase> ExtendedHypercubeGraphBase;
 
   283   /// \brief Hypercube graph class
 
   285   /// This class implements a special graph type. The nodes of the graph
 
   286   /// are indiced with integers with at most \c dim binary digits.
 
   287   /// Two nodes are connected in the graph if and only if their indices
 
   288   /// differ only on one position in the binary form.
 
   290   /// \note The type of the indices is chosen to \c int for efficiency
 
   291   /// reasons. Thus the maximum dimension of this implementation is 26
 
   292   /// (assuming that the size of \c int is 32 bit).
 
   294   /// This graph type fully conforms to the \ref concepts::Graph
 
   296   class HypercubeGraph : public ExtendedHypercubeGraphBase {
 
   297     typedef ExtendedHypercubeGraphBase Parent;
 
   301     /// \brief Constructs a hypercube graph with \c dim dimensions.
 
   303     /// Constructs a hypercube graph with \c dim dimensions.
 
   304     HypercubeGraph(int dim) { construct(dim); }
 
   306     /// \brief The number of dimensions.
 
   308     /// Gives back the number of dimensions.
 
   309     int dimension() const {
 
   310       return Parent::dimension();
 
   313     /// \brief Returns \c true if the n'th bit of the node is one.
 
   315     /// Returns \c true if the n'th bit of the node is one.
 
   316     bool projection(Node node, int n) const {
 
   317       return Parent::projection(node, n);
 
   320     /// \brief The dimension id of an edge.
 
   322     /// Gives back the dimension id of the given edge.
 
   323     /// It is in the [0..dim-1] range.
 
   324     int dimension(Edge edge) const {
 
   325       return Parent::dimension(edge);
 
   328     /// \brief The dimension id of an arc.
 
   330     /// Gives back the dimension id of the given arc.
 
   331     /// It is in the [0..dim-1] range.
 
   332     int dimension(Arc arc) const {
 
   333       return Parent::dimension(arc);
 
   336     /// \brief The index of a node.
 
   338     /// Gives back the index of the given node.
 
   339     /// The lower bits of the integer describes the node.
 
   340     int index(Node node) const {
 
   341       return Parent::index(node);
 
   344     /// \brief Gives back a node by its index.
 
   346     /// Gives back a node by its index.
 
   347     Node operator()(int ix) const {
 
   348       return Parent::operator()(ix);
 
   351     /// \brief Number of nodes.
 
   352     int nodeNum() const { return Parent::nodeNum(); }
 
   353     /// \brief Number of edges.
 
   354     int edgeNum() const { return Parent::edgeNum(); }
 
   355     /// \brief Number of arcs.
 
   356     int arcNum() const { return Parent::arcNum(); }
 
   358     /// \brief Linear combination map.
 
   360     /// This map makes possible to give back a linear combination
 
   361     /// for each node. It works like the \c std::accumulate function,
 
   362     /// so it accumulates the \c bf binary function with the \c fv first
 
   363     /// value. The map accumulates only on that positions (dimensions)
 
   364     /// where the index of the node is one. The values that have to be
 
   365     /// accumulated should be given by the \c begin and \c end iterators
 
   366     /// and the length of this range should be equal to the dimension
 
   367     /// number of the graph.
 
   370     /// const int DIM = 3;
 
   371     /// HypercubeGraph graph(DIM);
 
   372     /// dim2::Point<double> base[DIM];
 
   373     /// for (int k = 0; k < DIM; ++k) {
 
   374     ///   base[k].x = rnd();
 
   375     ///   base[k].y = rnd();
 
   377     /// HypercubeGraph::HyperMap<dim2::Point<double> >
 
   378     ///   pos(graph, base, base + DIM, dim2::Point<double>(0.0, 0.0));
 
   381     /// \see HypercubeGraph
 
   382     template <typename T, typename BF = std::plus<T> >
 
   386       /// \brief The key type of the map
 
   388       /// \brief The value type of the map
 
   391       /// \brief Constructor for HyperMap.
 
   393       /// Construct a HyperMap for the given graph. The values that have
 
   394       /// to be accumulated should be given by the \c begin and \c end
 
   395       /// iterators and the length of this range should be equal to the
 
   396       /// dimension number of the graph.
 
   398       /// This map accumulates the \c bf binary function with the \c fv
 
   399       /// first value on that positions (dimensions) where the index of
 
   401       template <typename It>
 
   402       HyperMap(const Graph& graph, It begin, It end,
 
   403                T fv = 0, const BF& bf = BF())
 
   404         : _graph(graph), _values(begin, end), _first_value(fv), _bin_func(bf)
 
   406         LEMON_ASSERT(_values.size() == graph.dimension(),
 
   407                      "Wrong size of range");
 
   410       /// \brief The partial accumulated value.
 
   412       /// Gives back the partial accumulated value.
 
   413       Value operator[](const Key& k) const {
 
   414         Value val = _first_value;
 
   415         int id = _graph.index(k);
 
   419             val = _bin_func(val, _values[n]);
 
   429       std::vector<T> _values;