lemon/network_simplex.h
author Peter Kovacs <kpeter@inf.elte.hu>
Wed, 29 Apr 2009 14:25:51 +0200
changeset 688 756a5ec551c8
parent 687 6c408d864fa1
child 689 111698359429
permissions -rw-r--r--
Rename Flow to Value in the flow algorithms (#266)

We agreed that using Flow for the value type is misleading, since
a flow should be rather a function on the arcs, not a single value.

This patch reverts the changes of [dacc2cee2b4c] for Preflow and
Circulation.
     1 /* -*- mode: C++; indent-tabs-mode: nil; -*-
     2  *
     3  * This file is a part of LEMON, a generic C++ optimization library.
     4  *
     5  * Copyright (C) 2003-2009
     6  * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
     7  * (Egervary Research Group on Combinatorial Optimization, EGRES).
     8  *
     9  * Permission to use, modify and distribute this software is granted
    10  * provided that this copyright notice appears in all copies. For
    11  * precise terms see the accompanying LICENSE file.
    12  *
    13  * This software is provided "AS IS" with no warranty of any kind,
    14  * express or implied, and with no claim as to its suitability for any
    15  * purpose.
    16  *
    17  */
    18 
    19 #ifndef LEMON_NETWORK_SIMPLEX_H
    20 #define LEMON_NETWORK_SIMPLEX_H
    21 
    22 /// \ingroup min_cost_flow
    23 ///
    24 /// \file
    25 /// \brief Network Simplex algorithm for finding a minimum cost flow.
    26 
    27 #include <vector>
    28 #include <limits>
    29 #include <algorithm>
    30 
    31 #include <lemon/core.h>
    32 #include <lemon/math.h>
    33 
    34 namespace lemon {
    35 
    36   /// \addtogroup min_cost_flow
    37   /// @{
    38 
    39   /// \brief Implementation of the primal Network Simplex algorithm
    40   /// for finding a \ref min_cost_flow "minimum cost flow".
    41   ///
    42   /// \ref NetworkSimplex implements the primal Network Simplex algorithm
    43   /// for finding a \ref min_cost_flow "minimum cost flow".
    44   /// This algorithm is a specialized version of the linear programming
    45   /// simplex method directly for the minimum cost flow problem.
    46   /// It is one of the most efficient solution methods.
    47   ///
    48   /// In general this class is the fastest implementation available
    49   /// in LEMON for the minimum cost flow problem.
    50   /// Moreover it supports both directions of the supply/demand inequality
    51   /// constraints. For more information see \ref SupplyType.
    52   ///
    53   /// Most of the parameters of the problem (except for the digraph)
    54   /// can be given using separate functions, and the algorithm can be
    55   /// executed using the \ref run() function. If some parameters are not
    56   /// specified, then default values will be used.
    57   ///
    58   /// \tparam GR The digraph type the algorithm runs on.
    59   /// \tparam V The value type used for flow amounts, capacity bounds
    60   /// and supply values in the algorithm. By default it is \c int.
    61   /// \tparam C The value type used for costs and potentials in the
    62   /// algorithm. By default it is the same as \c V.
    63   ///
    64   /// \warning Both value types must be signed and all input data must
    65   /// be integer.
    66   ///
    67   /// \note %NetworkSimplex provides five different pivot rule
    68   /// implementations, from which the most efficient one is used
    69   /// by default. For more information see \ref PivotRule.
    70   template <typename GR, typename V = int, typename C = V>
    71   class NetworkSimplex
    72   {
    73   public:
    74 
    75     /// The flow type of the algorithm
    76     typedef V Value;
    77     /// The cost type of the algorithm
    78     typedef C Cost;
    79 #ifdef DOXYGEN
    80     /// The type of the flow map
    81     typedef GR::ArcMap<Value> FlowMap;
    82     /// The type of the potential map
    83     typedef GR::NodeMap<Cost> PotentialMap;
    84 #else
    85     /// The type of the flow map
    86     typedef typename GR::template ArcMap<Value> FlowMap;
    87     /// The type of the potential map
    88     typedef typename GR::template NodeMap<Cost> PotentialMap;
    89 #endif
    90 
    91   public:
    92 
    93     /// \brief Problem type constants for the \c run() function.
    94     ///
    95     /// Enum type containing the problem type constants that can be
    96     /// returned by the \ref run() function of the algorithm.
    97     enum ProblemType {
    98       /// The problem has no feasible solution (flow).
    99       INFEASIBLE,
   100       /// The problem has optimal solution (i.e. it is feasible and
   101       /// bounded), and the algorithm has found optimal flow and node
   102       /// potentials (primal and dual solutions).
   103       OPTIMAL,
   104       /// The objective function of the problem is unbounded, i.e.
   105       /// there is a directed cycle having negative total cost and
   106       /// infinite upper bound.
   107       UNBOUNDED
   108     };
   109     
   110     /// \brief Constants for selecting the type of the supply constraints.
   111     ///
   112     /// Enum type containing constants for selecting the supply type,
   113     /// i.e. the direction of the inequalities in the supply/demand
   114     /// constraints of the \ref min_cost_flow "minimum cost flow problem".
   115     ///
   116     /// The default supply type is \c GEQ, since this form is supported
   117     /// by other minimum cost flow algorithms and the \ref Circulation
   118     /// algorithm, as well.
   119     /// The \c LEQ problem type can be selected using the \ref supplyType()
   120     /// function.
   121     ///
   122     /// Note that the equality form is a special case of both supply types.
   123     enum SupplyType {
   124 
   125       /// This option means that there are <em>"greater or equal"</em>
   126       /// supply/demand constraints in the definition, i.e. the exact
   127       /// formulation of the problem is the following.
   128       /**
   129           \f[ \min\sum_{uv\in A} f(uv) \cdot cost(uv) \f]
   130           \f[ \sum_{uv\in A} f(uv) - \sum_{vu\in A} f(vu) \geq
   131               sup(u) \quad \forall u\in V \f]
   132           \f[ lower(uv) \leq f(uv) \leq upper(uv) \quad \forall uv\in A \f]
   133       */
   134       /// It means that the total demand must be greater or equal to the 
   135       /// total supply (i.e. \f$\sum_{u\in V} sup(u)\f$ must be zero or
   136       /// negative) and all the supplies have to be carried out from 
   137       /// the supply nodes, but there could be demands that are not 
   138       /// satisfied.
   139       GEQ,
   140       /// It is just an alias for the \c GEQ option.
   141       CARRY_SUPPLIES = GEQ,
   142 
   143       /// This option means that there are <em>"less or equal"</em>
   144       /// supply/demand constraints in the definition, i.e. the exact
   145       /// formulation of the problem is the following.
   146       /**
   147           \f[ \min\sum_{uv\in A} f(uv) \cdot cost(uv) \f]
   148           \f[ \sum_{uv\in A} f(uv) - \sum_{vu\in A} f(vu) \leq
   149               sup(u) \quad \forall u\in V \f]
   150           \f[ lower(uv) \leq f(uv) \leq upper(uv) \quad \forall uv\in A \f]
   151       */
   152       /// It means that the total demand must be less or equal to the 
   153       /// total supply (i.e. \f$\sum_{u\in V} sup(u)\f$ must be zero or
   154       /// positive) and all the demands have to be satisfied, but there
   155       /// could be supplies that are not carried out from the supply
   156       /// nodes.
   157       LEQ,
   158       /// It is just an alias for the \c LEQ option.
   159       SATISFY_DEMANDS = LEQ
   160     };
   161     
   162     /// \brief Constants for selecting the pivot rule.
   163     ///
   164     /// Enum type containing constants for selecting the pivot rule for
   165     /// the \ref run() function.
   166     ///
   167     /// \ref NetworkSimplex provides five different pivot rule
   168     /// implementations that significantly affect the running time
   169     /// of the algorithm.
   170     /// By default \ref BLOCK_SEARCH "Block Search" is used, which
   171     /// proved to be the most efficient and the most robust on various
   172     /// test inputs according to our benchmark tests.
   173     /// However another pivot rule can be selected using the \ref run()
   174     /// function with the proper parameter.
   175     enum PivotRule {
   176 
   177       /// The First Eligible pivot rule.
   178       /// The next eligible arc is selected in a wraparound fashion
   179       /// in every iteration.
   180       FIRST_ELIGIBLE,
   181 
   182       /// The Best Eligible pivot rule.
   183       /// The best eligible arc is selected in every iteration.
   184       BEST_ELIGIBLE,
   185 
   186       /// The Block Search pivot rule.
   187       /// A specified number of arcs are examined in every iteration
   188       /// in a wraparound fashion and the best eligible arc is selected
   189       /// from this block.
   190       BLOCK_SEARCH,
   191 
   192       /// The Candidate List pivot rule.
   193       /// In a major iteration a candidate list is built from eligible arcs
   194       /// in a wraparound fashion and in the following minor iterations
   195       /// the best eligible arc is selected from this list.
   196       CANDIDATE_LIST,
   197 
   198       /// The Altering Candidate List pivot rule.
   199       /// It is a modified version of the Candidate List method.
   200       /// It keeps only the several best eligible arcs from the former
   201       /// candidate list and extends this list in every iteration.
   202       ALTERING_LIST
   203     };
   204     
   205   private:
   206 
   207     TEMPLATE_DIGRAPH_TYPEDEFS(GR);
   208 
   209     typedef typename GR::template ArcMap<Value> ValueArcMap;
   210     typedef typename GR::template ArcMap<Cost> CostArcMap;
   211     typedef typename GR::template NodeMap<Value> ValueNodeMap;
   212 
   213     typedef std::vector<Arc> ArcVector;
   214     typedef std::vector<Node> NodeVector;
   215     typedef std::vector<int> IntVector;
   216     typedef std::vector<bool> BoolVector;
   217     typedef std::vector<Value> FlowVector;
   218     typedef std::vector<Cost> CostVector;
   219 
   220     // State constants for arcs
   221     enum ArcStateEnum {
   222       STATE_UPPER = -1,
   223       STATE_TREE  =  0,
   224       STATE_LOWER =  1
   225     };
   226 
   227   private:
   228 
   229     // Data related to the underlying digraph
   230     const GR &_graph;
   231     int _node_num;
   232     int _arc_num;
   233 
   234     // Parameters of the problem
   235     ValueArcMap *_plower;
   236     ValueArcMap *_pupper;
   237     CostArcMap *_pcost;
   238     ValueNodeMap *_psupply;
   239     bool _pstsup;
   240     Node _psource, _ptarget;
   241     Value _pstflow;
   242     SupplyType _stype;
   243     
   244     Value _sum_supply;
   245 
   246     // Result maps
   247     FlowMap *_flow_map;
   248     PotentialMap *_potential_map;
   249     bool _local_flow;
   250     bool _local_potential;
   251 
   252     // Data structures for storing the digraph
   253     IntNodeMap _node_id;
   254     ArcVector _arc_ref;
   255     IntVector _source;
   256     IntVector _target;
   257 
   258     // Node and arc data
   259     FlowVector _cap;
   260     CostVector _cost;
   261     FlowVector _supply;
   262     FlowVector _flow;
   263     CostVector _pi;
   264 
   265     // Data for storing the spanning tree structure
   266     IntVector _parent;
   267     IntVector _pred;
   268     IntVector _thread;
   269     IntVector _rev_thread;
   270     IntVector _succ_num;
   271     IntVector _last_succ;
   272     IntVector _dirty_revs;
   273     BoolVector _forward;
   274     IntVector _state;
   275     int _root;
   276 
   277     // Temporary data used in the current pivot iteration
   278     int in_arc, join, u_in, v_in, u_out, v_out;
   279     int first, second, right, last;
   280     int stem, par_stem, new_stem;
   281     Value delta;
   282 
   283   public:
   284   
   285     /// \brief Constant for infinite upper bounds (capacities).
   286     ///
   287     /// Constant for infinite upper bounds (capacities).
   288     /// It is \c std::numeric_limits<Value>::infinity() if available,
   289     /// \c std::numeric_limits<Value>::max() otherwise.
   290     const Value INF;
   291 
   292   private:
   293 
   294     // Implementation of the First Eligible pivot rule
   295     class FirstEligiblePivotRule
   296     {
   297     private:
   298 
   299       // References to the NetworkSimplex class
   300       const IntVector  &_source;
   301       const IntVector  &_target;
   302       const CostVector &_cost;
   303       const IntVector  &_state;
   304       const CostVector &_pi;
   305       int &_in_arc;
   306       int _arc_num;
   307 
   308       // Pivot rule data
   309       int _next_arc;
   310 
   311     public:
   312 
   313       // Constructor
   314       FirstEligiblePivotRule(NetworkSimplex &ns) :
   315         _source(ns._source), _target(ns._target),
   316         _cost(ns._cost), _state(ns._state), _pi(ns._pi),
   317         _in_arc(ns.in_arc), _arc_num(ns._arc_num), _next_arc(0)
   318       {}
   319 
   320       // Find next entering arc
   321       bool findEnteringArc() {
   322         Cost c;
   323         for (int e = _next_arc; e < _arc_num; ++e) {
   324           c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]);
   325           if (c < 0) {
   326             _in_arc = e;
   327             _next_arc = e + 1;
   328             return true;
   329           }
   330         }
   331         for (int e = 0; e < _next_arc; ++e) {
   332           c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]);
   333           if (c < 0) {
   334             _in_arc = e;
   335             _next_arc = e + 1;
   336             return true;
   337           }
   338         }
   339         return false;
   340       }
   341 
   342     }; //class FirstEligiblePivotRule
   343 
   344 
   345     // Implementation of the Best Eligible pivot rule
   346     class BestEligiblePivotRule
   347     {
   348     private:
   349 
   350       // References to the NetworkSimplex class
   351       const IntVector  &_source;
   352       const IntVector  &_target;
   353       const CostVector &_cost;
   354       const IntVector  &_state;
   355       const CostVector &_pi;
   356       int &_in_arc;
   357       int _arc_num;
   358 
   359     public:
   360 
   361       // Constructor
   362       BestEligiblePivotRule(NetworkSimplex &ns) :
   363         _source(ns._source), _target(ns._target),
   364         _cost(ns._cost), _state(ns._state), _pi(ns._pi),
   365         _in_arc(ns.in_arc), _arc_num(ns._arc_num)
   366       {}
   367 
   368       // Find next entering arc
   369       bool findEnteringArc() {
   370         Cost c, min = 0;
   371         for (int e = 0; e < _arc_num; ++e) {
   372           c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]);
   373           if (c < min) {
   374             min = c;
   375             _in_arc = e;
   376           }
   377         }
   378         return min < 0;
   379       }
   380 
   381     }; //class BestEligiblePivotRule
   382 
   383 
   384     // Implementation of the Block Search pivot rule
   385     class BlockSearchPivotRule
   386     {
   387     private:
   388 
   389       // References to the NetworkSimplex class
   390       const IntVector  &_source;
   391       const IntVector  &_target;
   392       const CostVector &_cost;
   393       const IntVector  &_state;
   394       const CostVector &_pi;
   395       int &_in_arc;
   396       int _arc_num;
   397 
   398       // Pivot rule data
   399       int _block_size;
   400       int _next_arc;
   401 
   402     public:
   403 
   404       // Constructor
   405       BlockSearchPivotRule(NetworkSimplex &ns) :
   406         _source(ns._source), _target(ns._target),
   407         _cost(ns._cost), _state(ns._state), _pi(ns._pi),
   408         _in_arc(ns.in_arc), _arc_num(ns._arc_num), _next_arc(0)
   409       {
   410         // The main parameters of the pivot rule
   411         const double BLOCK_SIZE_FACTOR = 2.0;
   412         const int MIN_BLOCK_SIZE = 10;
   413 
   414         _block_size = std::max( int(BLOCK_SIZE_FACTOR *
   415                                     std::sqrt(double(_arc_num))),
   416                                 MIN_BLOCK_SIZE );
   417       }
   418 
   419       // Find next entering arc
   420       bool findEnteringArc() {
   421         Cost c, min = 0;
   422         int cnt = _block_size;
   423         int e, min_arc = _next_arc;
   424         for (e = _next_arc; e < _arc_num; ++e) {
   425           c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]);
   426           if (c < min) {
   427             min = c;
   428             min_arc = e;
   429           }
   430           if (--cnt == 0) {
   431             if (min < 0) break;
   432             cnt = _block_size;
   433           }
   434         }
   435         if (min == 0 || cnt > 0) {
   436           for (e = 0; e < _next_arc; ++e) {
   437             c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]);
   438             if (c < min) {
   439               min = c;
   440               min_arc = e;
   441             }
   442             if (--cnt == 0) {
   443               if (min < 0) break;
   444               cnt = _block_size;
   445             }
   446           }
   447         }
   448         if (min >= 0) return false;
   449         _in_arc = min_arc;
   450         _next_arc = e;
   451         return true;
   452       }
   453 
   454     }; //class BlockSearchPivotRule
   455 
   456 
   457     // Implementation of the Candidate List pivot rule
   458     class CandidateListPivotRule
   459     {
   460     private:
   461 
   462       // References to the NetworkSimplex class
   463       const IntVector  &_source;
   464       const IntVector  &_target;
   465       const CostVector &_cost;
   466       const IntVector  &_state;
   467       const CostVector &_pi;
   468       int &_in_arc;
   469       int _arc_num;
   470 
   471       // Pivot rule data
   472       IntVector _candidates;
   473       int _list_length, _minor_limit;
   474       int _curr_length, _minor_count;
   475       int _next_arc;
   476 
   477     public:
   478 
   479       /// Constructor
   480       CandidateListPivotRule(NetworkSimplex &ns) :
   481         _source(ns._source), _target(ns._target),
   482         _cost(ns._cost), _state(ns._state), _pi(ns._pi),
   483         _in_arc(ns.in_arc), _arc_num(ns._arc_num), _next_arc(0)
   484       {
   485         // The main parameters of the pivot rule
   486         const double LIST_LENGTH_FACTOR = 1.0;
   487         const int MIN_LIST_LENGTH = 10;
   488         const double MINOR_LIMIT_FACTOR = 0.1;
   489         const int MIN_MINOR_LIMIT = 3;
   490 
   491         _list_length = std::max( int(LIST_LENGTH_FACTOR *
   492                                      std::sqrt(double(_arc_num))),
   493                                  MIN_LIST_LENGTH );
   494         _minor_limit = std::max( int(MINOR_LIMIT_FACTOR * _list_length),
   495                                  MIN_MINOR_LIMIT );
   496         _curr_length = _minor_count = 0;
   497         _candidates.resize(_list_length);
   498       }
   499 
   500       /// Find next entering arc
   501       bool findEnteringArc() {
   502         Cost min, c;
   503         int e, min_arc = _next_arc;
   504         if (_curr_length > 0 && _minor_count < _minor_limit) {
   505           // Minor iteration: select the best eligible arc from the
   506           // current candidate list
   507           ++_minor_count;
   508           min = 0;
   509           for (int i = 0; i < _curr_length; ++i) {
   510             e = _candidates[i];
   511             c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]);
   512             if (c < min) {
   513               min = c;
   514               min_arc = e;
   515             }
   516             if (c >= 0) {
   517               _candidates[i--] = _candidates[--_curr_length];
   518             }
   519           }
   520           if (min < 0) {
   521             _in_arc = min_arc;
   522             return true;
   523           }
   524         }
   525 
   526         // Major iteration: build a new candidate list
   527         min = 0;
   528         _curr_length = 0;
   529         for (e = _next_arc; e < _arc_num; ++e) {
   530           c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]);
   531           if (c < 0) {
   532             _candidates[_curr_length++] = e;
   533             if (c < min) {
   534               min = c;
   535               min_arc = e;
   536             }
   537             if (_curr_length == _list_length) break;
   538           }
   539         }
   540         if (_curr_length < _list_length) {
   541           for (e = 0; e < _next_arc; ++e) {
   542             c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]);
   543             if (c < 0) {
   544               _candidates[_curr_length++] = e;
   545               if (c < min) {
   546                 min = c;
   547                 min_arc = e;
   548               }
   549               if (_curr_length == _list_length) break;
   550             }
   551           }
   552         }
   553         if (_curr_length == 0) return false;
   554         _minor_count = 1;
   555         _in_arc = min_arc;
   556         _next_arc = e;
   557         return true;
   558       }
   559 
   560     }; //class CandidateListPivotRule
   561 
   562 
   563     // Implementation of the Altering Candidate List pivot rule
   564     class AlteringListPivotRule
   565     {
   566     private:
   567 
   568       // References to the NetworkSimplex class
   569       const IntVector  &_source;
   570       const IntVector  &_target;
   571       const CostVector &_cost;
   572       const IntVector  &_state;
   573       const CostVector &_pi;
   574       int &_in_arc;
   575       int _arc_num;
   576 
   577       // Pivot rule data
   578       int _block_size, _head_length, _curr_length;
   579       int _next_arc;
   580       IntVector _candidates;
   581       CostVector _cand_cost;
   582 
   583       // Functor class to compare arcs during sort of the candidate list
   584       class SortFunc
   585       {
   586       private:
   587         const CostVector &_map;
   588       public:
   589         SortFunc(const CostVector &map) : _map(map) {}
   590         bool operator()(int left, int right) {
   591           return _map[left] > _map[right];
   592         }
   593       };
   594 
   595       SortFunc _sort_func;
   596 
   597     public:
   598 
   599       // Constructor
   600       AlteringListPivotRule(NetworkSimplex &ns) :
   601         _source(ns._source), _target(ns._target),
   602         _cost(ns._cost), _state(ns._state), _pi(ns._pi),
   603         _in_arc(ns.in_arc), _arc_num(ns._arc_num),
   604         _next_arc(0), _cand_cost(ns._arc_num), _sort_func(_cand_cost)
   605       {
   606         // The main parameters of the pivot rule
   607         const double BLOCK_SIZE_FACTOR = 1.5;
   608         const int MIN_BLOCK_SIZE = 10;
   609         const double HEAD_LENGTH_FACTOR = 0.1;
   610         const int MIN_HEAD_LENGTH = 3;
   611 
   612         _block_size = std::max( int(BLOCK_SIZE_FACTOR *
   613                                     std::sqrt(double(_arc_num))),
   614                                 MIN_BLOCK_SIZE );
   615         _head_length = std::max( int(HEAD_LENGTH_FACTOR * _block_size),
   616                                  MIN_HEAD_LENGTH );
   617         _candidates.resize(_head_length + _block_size);
   618         _curr_length = 0;
   619       }
   620 
   621       // Find next entering arc
   622       bool findEnteringArc() {
   623         // Check the current candidate list
   624         int e;
   625         for (int i = 0; i < _curr_length; ++i) {
   626           e = _candidates[i];
   627           _cand_cost[e] = _state[e] *
   628             (_cost[e] + _pi[_source[e]] - _pi[_target[e]]);
   629           if (_cand_cost[e] >= 0) {
   630             _candidates[i--] = _candidates[--_curr_length];
   631           }
   632         }
   633 
   634         // Extend the list
   635         int cnt = _block_size;
   636         int last_arc = 0;
   637         int limit = _head_length;
   638 
   639         for (int e = _next_arc; e < _arc_num; ++e) {
   640           _cand_cost[e] = _state[e] *
   641             (_cost[e] + _pi[_source[e]] - _pi[_target[e]]);
   642           if (_cand_cost[e] < 0) {
   643             _candidates[_curr_length++] = e;
   644             last_arc = e;
   645           }
   646           if (--cnt == 0) {
   647             if (_curr_length > limit) break;
   648             limit = 0;
   649             cnt = _block_size;
   650           }
   651         }
   652         if (_curr_length <= limit) {
   653           for (int e = 0; e < _next_arc; ++e) {
   654             _cand_cost[e] = _state[e] *
   655               (_cost[e] + _pi[_source[e]] - _pi[_target[e]]);
   656             if (_cand_cost[e] < 0) {
   657               _candidates[_curr_length++] = e;
   658               last_arc = e;
   659             }
   660             if (--cnt == 0) {
   661               if (_curr_length > limit) break;
   662               limit = 0;
   663               cnt = _block_size;
   664             }
   665           }
   666         }
   667         if (_curr_length == 0) return false;
   668         _next_arc = last_arc + 1;
   669 
   670         // Make heap of the candidate list (approximating a partial sort)
   671         make_heap( _candidates.begin(), _candidates.begin() + _curr_length,
   672                    _sort_func );
   673 
   674         // Pop the first element of the heap
   675         _in_arc = _candidates[0];
   676         pop_heap( _candidates.begin(), _candidates.begin() + _curr_length,
   677                   _sort_func );
   678         _curr_length = std::min(_head_length, _curr_length - 1);
   679         return true;
   680       }
   681 
   682     }; //class AlteringListPivotRule
   683 
   684   public:
   685 
   686     /// \brief Constructor.
   687     ///
   688     /// The constructor of the class.
   689     ///
   690     /// \param graph The digraph the algorithm runs on.
   691     NetworkSimplex(const GR& graph) :
   692       _graph(graph),
   693       _plower(NULL), _pupper(NULL), _pcost(NULL),
   694       _psupply(NULL), _pstsup(false), _stype(GEQ),
   695       _flow_map(NULL), _potential_map(NULL),
   696       _local_flow(false), _local_potential(false),
   697       _node_id(graph),
   698       INF(std::numeric_limits<Value>::has_infinity ?
   699           std::numeric_limits<Value>::infinity() :
   700           std::numeric_limits<Value>::max())
   701     {
   702       // Check the value types
   703       LEMON_ASSERT(std::numeric_limits<Value>::is_signed,
   704         "The flow type of NetworkSimplex must be signed");
   705       LEMON_ASSERT(std::numeric_limits<Cost>::is_signed,
   706         "The cost type of NetworkSimplex must be signed");
   707     }
   708 
   709     /// Destructor.
   710     ~NetworkSimplex() {
   711       if (_local_flow) delete _flow_map;
   712       if (_local_potential) delete _potential_map;
   713     }
   714 
   715     /// \name Parameters
   716     /// The parameters of the algorithm can be specified using these
   717     /// functions.
   718 
   719     /// @{
   720 
   721     /// \brief Set the lower bounds on the arcs.
   722     ///
   723     /// This function sets the lower bounds on the arcs.
   724     /// If it is not used before calling \ref run(), the lower bounds
   725     /// will be set to zero on all arcs.
   726     ///
   727     /// \param map An arc map storing the lower bounds.
   728     /// Its \c Value type must be convertible to the \c Value type
   729     /// of the algorithm.
   730     ///
   731     /// \return <tt>(*this)</tt>
   732     template <typename LowerMap>
   733     NetworkSimplex& lowerMap(const LowerMap& map) {
   734       delete _plower;
   735       _plower = new ValueArcMap(_graph);
   736       for (ArcIt a(_graph); a != INVALID; ++a) {
   737         (*_plower)[a] = map[a];
   738       }
   739       return *this;
   740     }
   741 
   742     /// \brief Set the upper bounds (capacities) on the arcs.
   743     ///
   744     /// This function sets the upper bounds (capacities) on the arcs.
   745     /// If it is not used before calling \ref run(), the upper bounds
   746     /// will be set to \ref INF on all arcs (i.e. the flow value will be
   747     /// unbounded from above on each arc).
   748     ///
   749     /// \param map An arc map storing the upper bounds.
   750     /// Its \c Value type must be convertible to the \c Value type
   751     /// of the algorithm.
   752     ///
   753     /// \return <tt>(*this)</tt>
   754     template<typename UpperMap>
   755     NetworkSimplex& upperMap(const UpperMap& map) {
   756       delete _pupper;
   757       _pupper = new ValueArcMap(_graph);
   758       for (ArcIt a(_graph); a != INVALID; ++a) {
   759         (*_pupper)[a] = map[a];
   760       }
   761       return *this;
   762     }
   763 
   764     /// \brief Set the costs of the arcs.
   765     ///
   766     /// This function sets the costs of the arcs.
   767     /// If it is not used before calling \ref run(), the costs
   768     /// will be set to \c 1 on all arcs.
   769     ///
   770     /// \param map An arc map storing the costs.
   771     /// Its \c Value type must be convertible to the \c Cost type
   772     /// of the algorithm.
   773     ///
   774     /// \return <tt>(*this)</tt>
   775     template<typename CostMap>
   776     NetworkSimplex& costMap(const CostMap& map) {
   777       delete _pcost;
   778       _pcost = new CostArcMap(_graph);
   779       for (ArcIt a(_graph); a != INVALID; ++a) {
   780         (*_pcost)[a] = map[a];
   781       }
   782       return *this;
   783     }
   784 
   785     /// \brief Set the supply values of the nodes.
   786     ///
   787     /// This function sets the supply values of the nodes.
   788     /// If neither this function nor \ref stSupply() is used before
   789     /// calling \ref run(), the supply of each node will be set to zero.
   790     /// (It makes sense only if non-zero lower bounds are given.)
   791     ///
   792     /// \param map A node map storing the supply values.
   793     /// Its \c Value type must be convertible to the \c Value type
   794     /// of the algorithm.
   795     ///
   796     /// \return <tt>(*this)</tt>
   797     template<typename SupplyMap>
   798     NetworkSimplex& supplyMap(const SupplyMap& map) {
   799       delete _psupply;
   800       _pstsup = false;
   801       _psupply = new ValueNodeMap(_graph);
   802       for (NodeIt n(_graph); n != INVALID; ++n) {
   803         (*_psupply)[n] = map[n];
   804       }
   805       return *this;
   806     }
   807 
   808     /// \brief Set single source and target nodes and a supply value.
   809     ///
   810     /// This function sets a single source node and a single target node
   811     /// and the required flow value.
   812     /// If neither this function nor \ref supplyMap() is used before
   813     /// calling \ref run(), the supply of each node will be set to zero.
   814     /// (It makes sense only if non-zero lower bounds are given.)
   815     ///
   816     /// Using this function has the same effect as using \ref supplyMap()
   817     /// with such a map in which \c k is assigned to \c s, \c -k is
   818     /// assigned to \c t and all other nodes have zero supply value.
   819     ///
   820     /// \param s The source node.
   821     /// \param t The target node.
   822     /// \param k The required amount of flow from node \c s to node \c t
   823     /// (i.e. the supply of \c s and the demand of \c t).
   824     ///
   825     /// \return <tt>(*this)</tt>
   826     NetworkSimplex& stSupply(const Node& s, const Node& t, Value k) {
   827       delete _psupply;
   828       _psupply = NULL;
   829       _pstsup = true;
   830       _psource = s;
   831       _ptarget = t;
   832       _pstflow = k;
   833       return *this;
   834     }
   835     
   836     /// \brief Set the type of the supply constraints.
   837     ///
   838     /// This function sets the type of the supply/demand constraints.
   839     /// If it is not used before calling \ref run(), the \ref GEQ supply
   840     /// type will be used.
   841     ///
   842     /// For more information see \ref SupplyType.
   843     ///
   844     /// \return <tt>(*this)</tt>
   845     NetworkSimplex& supplyType(SupplyType supply_type) {
   846       _stype = supply_type;
   847       return *this;
   848     }
   849 
   850     /// \brief Set the flow map.
   851     ///
   852     /// This function sets the flow map.
   853     /// If it is not used before calling \ref run(), an instance will
   854     /// be allocated automatically. The destructor deallocates this
   855     /// automatically allocated map, of course.
   856     ///
   857     /// \return <tt>(*this)</tt>
   858     NetworkSimplex& flowMap(FlowMap& map) {
   859       if (_local_flow) {
   860         delete _flow_map;
   861         _local_flow = false;
   862       }
   863       _flow_map = &map;
   864       return *this;
   865     }
   866 
   867     /// \brief Set the potential map.
   868     ///
   869     /// This function sets the potential map, which is used for storing
   870     /// the dual solution.
   871     /// If it is not used before calling \ref run(), an instance will
   872     /// be allocated automatically. The destructor deallocates this
   873     /// automatically allocated map, of course.
   874     ///
   875     /// \return <tt>(*this)</tt>
   876     NetworkSimplex& potentialMap(PotentialMap& map) {
   877       if (_local_potential) {
   878         delete _potential_map;
   879         _local_potential = false;
   880       }
   881       _potential_map = &map;
   882       return *this;
   883     }
   884     
   885     /// @}
   886 
   887     /// \name Execution Control
   888     /// The algorithm can be executed using \ref run().
   889 
   890     /// @{
   891 
   892     /// \brief Run the algorithm.
   893     ///
   894     /// This function runs the algorithm.
   895     /// The paramters can be specified using functions \ref lowerMap(),
   896     /// \ref upperMap(), \ref costMap(), \ref supplyMap(), \ref stSupply(), 
   897     /// \ref supplyType(), \ref flowMap() and \ref potentialMap().
   898     /// For example,
   899     /// \code
   900     ///   NetworkSimplex<ListDigraph> ns(graph);
   901     ///   ns.lowerMap(lower).upperMap(upper).costMap(cost)
   902     ///     .supplyMap(sup).run();
   903     /// \endcode
   904     ///
   905     /// This function can be called more than once. All the parameters
   906     /// that have been given are kept for the next call, unless
   907     /// \ref reset() is called, thus only the modified parameters
   908     /// have to be set again. See \ref reset() for examples.
   909     ///
   910     /// \param pivot_rule The pivot rule that will be used during the
   911     /// algorithm. For more information see \ref PivotRule.
   912     ///
   913     /// \return \c INFEASIBLE if no feasible flow exists,
   914     /// \n \c OPTIMAL if the problem has optimal solution
   915     /// (i.e. it is feasible and bounded), and the algorithm has found
   916     /// optimal flow and node potentials (primal and dual solutions),
   917     /// \n \c UNBOUNDED if the objective function of the problem is
   918     /// unbounded, i.e. there is a directed cycle having negative total
   919     /// cost and infinite upper bound.
   920     ///
   921     /// \see ProblemType, PivotRule
   922     ProblemType run(PivotRule pivot_rule = BLOCK_SEARCH) {
   923       if (!init()) return INFEASIBLE;
   924       return start(pivot_rule);
   925     }
   926 
   927     /// \brief Reset all the parameters that have been given before.
   928     ///
   929     /// This function resets all the paramaters that have been given
   930     /// before using functions \ref lowerMap(), \ref upperMap(),
   931     /// \ref costMap(), \ref supplyMap(), \ref stSupply(), \ref supplyType(),
   932     /// \ref flowMap() and \ref potentialMap().
   933     ///
   934     /// It is useful for multiple run() calls. If this function is not
   935     /// used, all the parameters given before are kept for the next
   936     /// \ref run() call.
   937     ///
   938     /// For example,
   939     /// \code
   940     ///   NetworkSimplex<ListDigraph> ns(graph);
   941     ///
   942     ///   // First run
   943     ///   ns.lowerMap(lower).upperMap(upper).costMap(cost)
   944     ///     .supplyMap(sup).run();
   945     ///
   946     ///   // Run again with modified cost map (reset() is not called,
   947     ///   // so only the cost map have to be set again)
   948     ///   cost[e] += 100;
   949     ///   ns.costMap(cost).run();
   950     ///
   951     ///   // Run again from scratch using reset()
   952     ///   // (the lower bounds will be set to zero on all arcs)
   953     ///   ns.reset();
   954     ///   ns.upperMap(capacity).costMap(cost)
   955     ///     .supplyMap(sup).run();
   956     /// \endcode
   957     ///
   958     /// \return <tt>(*this)</tt>
   959     NetworkSimplex& reset() {
   960       delete _plower;
   961       delete _pupper;
   962       delete _pcost;
   963       delete _psupply;
   964       _plower = NULL;
   965       _pupper = NULL;
   966       _pcost = NULL;
   967       _psupply = NULL;
   968       _pstsup = false;
   969       _stype = GEQ;
   970       if (_local_flow) delete _flow_map;
   971       if (_local_potential) delete _potential_map;
   972       _flow_map = NULL;
   973       _potential_map = NULL;
   974       _local_flow = false;
   975       _local_potential = false;
   976 
   977       return *this;
   978     }
   979 
   980     /// @}
   981 
   982     /// \name Query Functions
   983     /// The results of the algorithm can be obtained using these
   984     /// functions.\n
   985     /// The \ref run() function must be called before using them.
   986 
   987     /// @{
   988 
   989     /// \brief Return the total cost of the found flow.
   990     ///
   991     /// This function returns the total cost of the found flow.
   992     /// Its complexity is O(e).
   993     ///
   994     /// \note The return type of the function can be specified as a
   995     /// template parameter. For example,
   996     /// \code
   997     ///   ns.totalCost<double>();
   998     /// \endcode
   999     /// It is useful if the total cost cannot be stored in the \c Cost
  1000     /// type of the algorithm, which is the default return type of the
  1001     /// function.
  1002     ///
  1003     /// \pre \ref run() must be called before using this function.
  1004     template <typename Value>
  1005     Value totalCost() const {
  1006       Value c = 0;
  1007       if (_pcost) {
  1008         for (ArcIt e(_graph); e != INVALID; ++e)
  1009           c += (*_flow_map)[e] * (*_pcost)[e];
  1010       } else {
  1011         for (ArcIt e(_graph); e != INVALID; ++e)
  1012           c += (*_flow_map)[e];
  1013       }
  1014       return c;
  1015     }
  1016 
  1017 #ifndef DOXYGEN
  1018     Cost totalCost() const {
  1019       return totalCost<Cost>();
  1020     }
  1021 #endif
  1022 
  1023     /// \brief Return the flow on the given arc.
  1024     ///
  1025     /// This function returns the flow on the given arc.
  1026     ///
  1027     /// \pre \ref run() must be called before using this function.
  1028     Value flow(const Arc& a) const {
  1029       return (*_flow_map)[a];
  1030     }
  1031 
  1032     /// \brief Return a const reference to the flow map.
  1033     ///
  1034     /// This function returns a const reference to an arc map storing
  1035     /// the found flow.
  1036     ///
  1037     /// \pre \ref run() must be called before using this function.
  1038     const FlowMap& flowMap() const {
  1039       return *_flow_map;
  1040     }
  1041 
  1042     /// \brief Return the potential (dual value) of the given node.
  1043     ///
  1044     /// This function returns the potential (dual value) of the
  1045     /// given node.
  1046     ///
  1047     /// \pre \ref run() must be called before using this function.
  1048     Cost potential(const Node& n) const {
  1049       return (*_potential_map)[n];
  1050     }
  1051 
  1052     /// \brief Return a const reference to the potential map
  1053     /// (the dual solution).
  1054     ///
  1055     /// This function returns a const reference to a node map storing
  1056     /// the found potentials, which form the dual solution of the
  1057     /// \ref min_cost_flow "minimum cost flow problem".
  1058     ///
  1059     /// \pre \ref run() must be called before using this function.
  1060     const PotentialMap& potentialMap() const {
  1061       return *_potential_map;
  1062     }
  1063 
  1064     /// @}
  1065 
  1066   private:
  1067 
  1068     // Initialize internal data structures
  1069     bool init() {
  1070       // Initialize result maps
  1071       if (!_flow_map) {
  1072         _flow_map = new FlowMap(_graph);
  1073         _local_flow = true;
  1074       }
  1075       if (!_potential_map) {
  1076         _potential_map = new PotentialMap(_graph);
  1077         _local_potential = true;
  1078       }
  1079 
  1080       // Initialize vectors
  1081       _node_num = countNodes(_graph);
  1082       _arc_num = countArcs(_graph);
  1083       int all_node_num = _node_num + 1;
  1084       int all_arc_num = _arc_num + _node_num;
  1085       if (_node_num == 0) return false;
  1086 
  1087       _arc_ref.resize(_arc_num);
  1088       _source.resize(all_arc_num);
  1089       _target.resize(all_arc_num);
  1090 
  1091       _cap.resize(all_arc_num);
  1092       _cost.resize(all_arc_num);
  1093       _supply.resize(all_node_num);
  1094       _flow.resize(all_arc_num);
  1095       _pi.resize(all_node_num);
  1096 
  1097       _parent.resize(all_node_num);
  1098       _pred.resize(all_node_num);
  1099       _forward.resize(all_node_num);
  1100       _thread.resize(all_node_num);
  1101       _rev_thread.resize(all_node_num);
  1102       _succ_num.resize(all_node_num);
  1103       _last_succ.resize(all_node_num);
  1104       _state.resize(all_arc_num);
  1105 
  1106       // Initialize node related data
  1107       bool valid_supply = true;
  1108       _sum_supply = 0;
  1109       if (!_pstsup && !_psupply) {
  1110         _pstsup = true;
  1111         _psource = _ptarget = NodeIt(_graph);
  1112         _pstflow = 0;
  1113       }
  1114       if (_psupply) {
  1115         int i = 0;
  1116         for (NodeIt n(_graph); n != INVALID; ++n, ++i) {
  1117           _node_id[n] = i;
  1118           _supply[i] = (*_psupply)[n];
  1119           _sum_supply += _supply[i];
  1120         }
  1121         valid_supply = (_stype == GEQ && _sum_supply <= 0) ||
  1122                        (_stype == LEQ && _sum_supply >= 0);
  1123       } else {
  1124         int i = 0;
  1125         for (NodeIt n(_graph); n != INVALID; ++n, ++i) {
  1126           _node_id[n] = i;
  1127           _supply[i] = 0;
  1128         }
  1129         _supply[_node_id[_psource]] =  _pstflow;
  1130         _supply[_node_id[_ptarget]] = -_pstflow;
  1131       }
  1132       if (!valid_supply) return false;
  1133 
  1134       // Initialize artifical cost
  1135       Cost ART_COST;
  1136       if (std::numeric_limits<Cost>::is_exact) {
  1137         ART_COST = std::numeric_limits<Cost>::max() / 4 + 1;
  1138       } else {
  1139         ART_COST = std::numeric_limits<Cost>::min();
  1140         for (int i = 0; i != _arc_num; ++i) {
  1141           if (_cost[i] > ART_COST) ART_COST = _cost[i];
  1142         }
  1143         ART_COST = (ART_COST + 1) * _node_num;
  1144       }
  1145 
  1146       // Set data for the artificial root node
  1147       _root = _node_num;
  1148       _parent[_root] = -1;
  1149       _pred[_root] = -1;
  1150       _thread[_root] = 0;
  1151       _rev_thread[0] = _root;
  1152       _succ_num[_root] = all_node_num;
  1153       _last_succ[_root] = _root - 1;
  1154       _supply[_root] = -_sum_supply;
  1155       if (_sum_supply < 0) {
  1156         _pi[_root] = -ART_COST;
  1157       } else {
  1158         _pi[_root] = ART_COST;
  1159       }
  1160 
  1161       // Store the arcs in a mixed order
  1162       int k = std::max(int(std::sqrt(double(_arc_num))), 10);
  1163       int i = 0;
  1164       for (ArcIt e(_graph); e != INVALID; ++e) {
  1165         _arc_ref[i] = e;
  1166         if ((i += k) >= _arc_num) i = (i % k) + 1;
  1167       }
  1168 
  1169       // Initialize arc maps
  1170       if (_pupper && _pcost) {
  1171         for (int i = 0; i != _arc_num; ++i) {
  1172           Arc e = _arc_ref[i];
  1173           _source[i] = _node_id[_graph.source(e)];
  1174           _target[i] = _node_id[_graph.target(e)];
  1175           _cap[i] = (*_pupper)[e];
  1176           _cost[i] = (*_pcost)[e];
  1177           _flow[i] = 0;
  1178           _state[i] = STATE_LOWER;
  1179         }
  1180       } else {
  1181         for (int i = 0; i != _arc_num; ++i) {
  1182           Arc e = _arc_ref[i];
  1183           _source[i] = _node_id[_graph.source(e)];
  1184           _target[i] = _node_id[_graph.target(e)];
  1185           _flow[i] = 0;
  1186           _state[i] = STATE_LOWER;
  1187         }
  1188         if (_pupper) {
  1189           for (int i = 0; i != _arc_num; ++i)
  1190             _cap[i] = (*_pupper)[_arc_ref[i]];
  1191         } else {
  1192           for (int i = 0; i != _arc_num; ++i)
  1193             _cap[i] = INF;
  1194         }
  1195         if (_pcost) {
  1196           for (int i = 0; i != _arc_num; ++i)
  1197             _cost[i] = (*_pcost)[_arc_ref[i]];
  1198         } else {
  1199           for (int i = 0; i != _arc_num; ++i)
  1200             _cost[i] = 1;
  1201         }
  1202       }
  1203       
  1204       // Remove non-zero lower bounds
  1205       if (_plower) {
  1206         for (int i = 0; i != _arc_num; ++i) {
  1207           Value c = (*_plower)[_arc_ref[i]];
  1208           if (c > 0) {
  1209             if (_cap[i] < INF) _cap[i] -= c;
  1210             _supply[_source[i]] -= c;
  1211             _supply[_target[i]] += c;
  1212           }
  1213           else if (c < 0) {
  1214             if (_cap[i] < INF + c) {
  1215               _cap[i] -= c;
  1216             } else {
  1217               _cap[i] = INF;
  1218             }
  1219             _supply[_source[i]] -= c;
  1220             _supply[_target[i]] += c;
  1221           }
  1222         }
  1223       }
  1224 
  1225       // Add artificial arcs and initialize the spanning tree data structure
  1226       for (int u = 0, e = _arc_num; u != _node_num; ++u, ++e) {
  1227         _thread[u] = u + 1;
  1228         _rev_thread[u + 1] = u;
  1229         _succ_num[u] = 1;
  1230         _last_succ[u] = u;
  1231         _parent[u] = _root;
  1232         _pred[u] = e;
  1233         _cost[e] = ART_COST;
  1234         _cap[e] = INF;
  1235         _state[e] = STATE_TREE;
  1236         if (_supply[u] > 0 || (_supply[u] == 0 && _sum_supply <= 0)) {
  1237           _flow[e] = _supply[u];
  1238           _forward[u] = true;
  1239           _pi[u] = -ART_COST + _pi[_root];
  1240         } else {
  1241           _flow[e] = -_supply[u];
  1242           _forward[u] = false;
  1243           _pi[u] = ART_COST + _pi[_root];
  1244         }
  1245       }
  1246 
  1247       return true;
  1248     }
  1249 
  1250     // Find the join node
  1251     void findJoinNode() {
  1252       int u = _source[in_arc];
  1253       int v = _target[in_arc];
  1254       while (u != v) {
  1255         if (_succ_num[u] < _succ_num[v]) {
  1256           u = _parent[u];
  1257         } else {
  1258           v = _parent[v];
  1259         }
  1260       }
  1261       join = u;
  1262     }
  1263 
  1264     // Find the leaving arc of the cycle and returns true if the
  1265     // leaving arc is not the same as the entering arc
  1266     bool findLeavingArc() {
  1267       // Initialize first and second nodes according to the direction
  1268       // of the cycle
  1269       if (_state[in_arc] == STATE_LOWER) {
  1270         first  = _source[in_arc];
  1271         second = _target[in_arc];
  1272       } else {
  1273         first  = _target[in_arc];
  1274         second = _source[in_arc];
  1275       }
  1276       delta = _cap[in_arc];
  1277       int result = 0;
  1278       Value d;
  1279       int e;
  1280 
  1281       // Search the cycle along the path form the first node to the root
  1282       for (int u = first; u != join; u = _parent[u]) {
  1283         e = _pred[u];
  1284         d = _forward[u] ?
  1285           _flow[e] : (_cap[e] == INF ? INF : _cap[e] - _flow[e]);
  1286         if (d < delta) {
  1287           delta = d;
  1288           u_out = u;
  1289           result = 1;
  1290         }
  1291       }
  1292       // Search the cycle along the path form the second node to the root
  1293       for (int u = second; u != join; u = _parent[u]) {
  1294         e = _pred[u];
  1295         d = _forward[u] ? 
  1296           (_cap[e] == INF ? INF : _cap[e] - _flow[e]) : _flow[e];
  1297         if (d <= delta) {
  1298           delta = d;
  1299           u_out = u;
  1300           result = 2;
  1301         }
  1302       }
  1303 
  1304       if (result == 1) {
  1305         u_in = first;
  1306         v_in = second;
  1307       } else {
  1308         u_in = second;
  1309         v_in = first;
  1310       }
  1311       return result != 0;
  1312     }
  1313 
  1314     // Change _flow and _state vectors
  1315     void changeFlow(bool change) {
  1316       // Augment along the cycle
  1317       if (delta > 0) {
  1318         Value val = _state[in_arc] * delta;
  1319         _flow[in_arc] += val;
  1320         for (int u = _source[in_arc]; u != join; u = _parent[u]) {
  1321           _flow[_pred[u]] += _forward[u] ? -val : val;
  1322         }
  1323         for (int u = _target[in_arc]; u != join; u = _parent[u]) {
  1324           _flow[_pred[u]] += _forward[u] ? val : -val;
  1325         }
  1326       }
  1327       // Update the state of the entering and leaving arcs
  1328       if (change) {
  1329         _state[in_arc] = STATE_TREE;
  1330         _state[_pred[u_out]] =
  1331           (_flow[_pred[u_out]] == 0) ? STATE_LOWER : STATE_UPPER;
  1332       } else {
  1333         _state[in_arc] = -_state[in_arc];
  1334       }
  1335     }
  1336 
  1337     // Update the tree structure
  1338     void updateTreeStructure() {
  1339       int u, w;
  1340       int old_rev_thread = _rev_thread[u_out];
  1341       int old_succ_num = _succ_num[u_out];
  1342       int old_last_succ = _last_succ[u_out];
  1343       v_out = _parent[u_out];
  1344 
  1345       u = _last_succ[u_in];  // the last successor of u_in
  1346       right = _thread[u];    // the node after it
  1347 
  1348       // Handle the case when old_rev_thread equals to v_in
  1349       // (it also means that join and v_out coincide)
  1350       if (old_rev_thread == v_in) {
  1351         last = _thread[_last_succ[u_out]];
  1352       } else {
  1353         last = _thread[v_in];
  1354       }
  1355 
  1356       // Update _thread and _parent along the stem nodes (i.e. the nodes
  1357       // between u_in and u_out, whose parent have to be changed)
  1358       _thread[v_in] = stem = u_in;
  1359       _dirty_revs.clear();
  1360       _dirty_revs.push_back(v_in);
  1361       par_stem = v_in;
  1362       while (stem != u_out) {
  1363         // Insert the next stem node into the thread list
  1364         new_stem = _parent[stem];
  1365         _thread[u] = new_stem;
  1366         _dirty_revs.push_back(u);
  1367 
  1368         // Remove the subtree of stem from the thread list
  1369         w = _rev_thread[stem];
  1370         _thread[w] = right;
  1371         _rev_thread[right] = w;
  1372 
  1373         // Change the parent node and shift stem nodes
  1374         _parent[stem] = par_stem;
  1375         par_stem = stem;
  1376         stem = new_stem;
  1377 
  1378         // Update u and right
  1379         u = _last_succ[stem] == _last_succ[par_stem] ?
  1380           _rev_thread[par_stem] : _last_succ[stem];
  1381         right = _thread[u];
  1382       }
  1383       _parent[u_out] = par_stem;
  1384       _thread[u] = last;
  1385       _rev_thread[last] = u;
  1386       _last_succ[u_out] = u;
  1387 
  1388       // Remove the subtree of u_out from the thread list except for
  1389       // the case when old_rev_thread equals to v_in
  1390       // (it also means that join and v_out coincide)
  1391       if (old_rev_thread != v_in) {
  1392         _thread[old_rev_thread] = right;
  1393         _rev_thread[right] = old_rev_thread;
  1394       }
  1395 
  1396       // Update _rev_thread using the new _thread values
  1397       for (int i = 0; i < int(_dirty_revs.size()); ++i) {
  1398         u = _dirty_revs[i];
  1399         _rev_thread[_thread[u]] = u;
  1400       }
  1401 
  1402       // Update _pred, _forward, _last_succ and _succ_num for the
  1403       // stem nodes from u_out to u_in
  1404       int tmp_sc = 0, tmp_ls = _last_succ[u_out];
  1405       u = u_out;
  1406       while (u != u_in) {
  1407         w = _parent[u];
  1408         _pred[u] = _pred[w];
  1409         _forward[u] = !_forward[w];
  1410         tmp_sc += _succ_num[u] - _succ_num[w];
  1411         _succ_num[u] = tmp_sc;
  1412         _last_succ[w] = tmp_ls;
  1413         u = w;
  1414       }
  1415       _pred[u_in] = in_arc;
  1416       _forward[u_in] = (u_in == _source[in_arc]);
  1417       _succ_num[u_in] = old_succ_num;
  1418 
  1419       // Set limits for updating _last_succ form v_in and v_out
  1420       // towards the root
  1421       int up_limit_in = -1;
  1422       int up_limit_out = -1;
  1423       if (_last_succ[join] == v_in) {
  1424         up_limit_out = join;
  1425       } else {
  1426         up_limit_in = join;
  1427       }
  1428 
  1429       // Update _last_succ from v_in towards the root
  1430       for (u = v_in; u != up_limit_in && _last_succ[u] == v_in;
  1431            u = _parent[u]) {
  1432         _last_succ[u] = _last_succ[u_out];
  1433       }
  1434       // Update _last_succ from v_out towards the root
  1435       if (join != old_rev_thread && v_in != old_rev_thread) {
  1436         for (u = v_out; u != up_limit_out && _last_succ[u] == old_last_succ;
  1437              u = _parent[u]) {
  1438           _last_succ[u] = old_rev_thread;
  1439         }
  1440       } else {
  1441         for (u = v_out; u != up_limit_out && _last_succ[u] == old_last_succ;
  1442              u = _parent[u]) {
  1443           _last_succ[u] = _last_succ[u_out];
  1444         }
  1445       }
  1446 
  1447       // Update _succ_num from v_in to join
  1448       for (u = v_in; u != join; u = _parent[u]) {
  1449         _succ_num[u] += old_succ_num;
  1450       }
  1451       // Update _succ_num from v_out to join
  1452       for (u = v_out; u != join; u = _parent[u]) {
  1453         _succ_num[u] -= old_succ_num;
  1454       }
  1455     }
  1456 
  1457     // Update potentials
  1458     void updatePotential() {
  1459       Cost sigma = _forward[u_in] ?
  1460         _pi[v_in] - _pi[u_in] - _cost[_pred[u_in]] :
  1461         _pi[v_in] - _pi[u_in] + _cost[_pred[u_in]];
  1462       // Update potentials in the subtree, which has been moved
  1463       int end = _thread[_last_succ[u_in]];
  1464       for (int u = u_in; u != end; u = _thread[u]) {
  1465         _pi[u] += sigma;
  1466       }
  1467     }
  1468 
  1469     // Execute the algorithm
  1470     ProblemType start(PivotRule pivot_rule) {
  1471       // Select the pivot rule implementation
  1472       switch (pivot_rule) {
  1473         case FIRST_ELIGIBLE:
  1474           return start<FirstEligiblePivotRule>();
  1475         case BEST_ELIGIBLE:
  1476           return start<BestEligiblePivotRule>();
  1477         case BLOCK_SEARCH:
  1478           return start<BlockSearchPivotRule>();
  1479         case CANDIDATE_LIST:
  1480           return start<CandidateListPivotRule>();
  1481         case ALTERING_LIST:
  1482           return start<AlteringListPivotRule>();
  1483       }
  1484       return INFEASIBLE; // avoid warning
  1485     }
  1486 
  1487     template <typename PivotRuleImpl>
  1488     ProblemType start() {
  1489       PivotRuleImpl pivot(*this);
  1490 
  1491       // Execute the Network Simplex algorithm
  1492       while (pivot.findEnteringArc()) {
  1493         findJoinNode();
  1494         bool change = findLeavingArc();
  1495         if (delta >= INF) return UNBOUNDED;
  1496         changeFlow(change);
  1497         if (change) {
  1498           updateTreeStructure();
  1499           updatePotential();
  1500         }
  1501       }
  1502       
  1503       // Check feasibility
  1504       if (_sum_supply < 0) {
  1505         for (int u = 0, e = _arc_num; u != _node_num; ++u, ++e) {
  1506           if (_supply[u] >= 0 && _flow[e] != 0) return INFEASIBLE;
  1507         }
  1508       }
  1509       else if (_sum_supply > 0) {
  1510         for (int u = 0, e = _arc_num; u != _node_num; ++u, ++e) {
  1511           if (_supply[u] <= 0 && _flow[e] != 0) return INFEASIBLE;
  1512         }
  1513       }
  1514       else {
  1515         for (int u = 0, e = _arc_num; u != _node_num; ++u, ++e) {
  1516           if (_flow[e] != 0) return INFEASIBLE;
  1517         }
  1518       }
  1519 
  1520       // Copy flow values to _flow_map
  1521       if (_plower) {
  1522         for (int i = 0; i != _arc_num; ++i) {
  1523           Arc e = _arc_ref[i];
  1524           _flow_map->set(e, (*_plower)[e] + _flow[i]);
  1525         }
  1526       } else {
  1527         for (int i = 0; i != _arc_num; ++i) {
  1528           _flow_map->set(_arc_ref[i], _flow[i]);
  1529         }
  1530       }
  1531       // Copy potential values to _potential_map
  1532       for (NodeIt n(_graph); n != INVALID; ++n) {
  1533         _potential_map->set(n, _pi[_node_id[n]]);
  1534       }
  1535 
  1536       return OPTIMAL;
  1537     }
  1538 
  1539   }; //class NetworkSimplex
  1540 
  1541   ///@}
  1542 
  1543 } //namespace lemon
  1544 
  1545 #endif //LEMON_NETWORK_SIMPLEX_H