lemon/graph_utils.h
author Balazs Dezso <deba@inf.elte.hu>
Wed, 23 Apr 2008 15:33:53 +0200
changeset 147 7c39a090cfc3
parent 140 356930927a71
child 148 4e2581021300
permissions -rw-r--r--
Fix missing semicolon in GRAPH_TYPEDEFS (ticket #89)
     1 /* -*- C++ -*-
     2  *
     3  * This file is a part of LEMON, a generic C++ optimization library
     4  *
     5  * Copyright (C) 2003-2008
     6  * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
     7  * (Egervary Research Group on Combinatorial Optimization, EGRES).
     8  *
     9  * Permission to use, modify and distribute this software is granted
    10  * provided that this copyright notice appears in all copies. For
    11  * precise terms see the accompanying LICENSE file.
    12  *
    13  * This software is provided "AS IS" with no warranty of any kind,
    14  * express or implied, and with no claim as to its suitability for any
    15  * purpose.
    16  *
    17  */
    18 
    19 #ifndef LEMON_GRAPH_UTILS_H
    20 #define LEMON_GRAPH_UTILS_H
    21 
    22 #include <iterator>
    23 #include <vector>
    24 #include <map>
    25 #include <cmath>
    26 #include <algorithm>
    27 
    28 #include <lemon/bits/invalid.h>
    29 #include <lemon/bits/utility.h>
    30 #include <lemon/maps.h>
    31 #include <lemon/bits/traits.h>
    32 
    33 #include <lemon/bits/alteration_notifier.h>
    34 #include <lemon/bits/default_map.h>
    35 
    36 ///\ingroup gutils
    37 ///\file
    38 ///\brief Graph utilities.
    39 
    40 namespace lemon {
    41 
    42   /// \addtogroup gutils
    43   /// @{
    44 
    45   namespace _graph_utils_bits {
    46     template <typename Graph>
    47     struct Node { typedef typename Graph::Node type; };
    48 
    49     template <typename Graph>
    50     struct NodeIt { typedef typename Graph::NodeIt type; };
    51 
    52     template <typename Graph>
    53     struct Arc { typedef typename Graph::Arc type; };
    54 
    55     template <typename Graph>
    56     struct ArcIt { typedef typename Graph::ArcIt type; };
    57 
    58     template <typename Graph>
    59     struct Edge { typedef typename Graph::Edge type; };
    60 
    61     template <typename Graph>
    62     struct EdgeIt { typedef typename Graph::EdgeIt type; };
    63 
    64     template <typename Graph>
    65     struct OutArcIt { typedef typename Graph::OutArcIt type; };
    66 
    67     template <typename Graph>
    68     struct InArcIt { typedef typename Graph::InArcIt type; };
    69 
    70     template <typename Graph>
    71     struct IncEdgeIt { typedef typename Graph::IncEdgeIt type; };
    72 
    73     template <typename Graph>
    74     struct BoolNodeMap { 
    75       typedef typename Graph::template NodeMap<bool> type; 
    76     };
    77 
    78     template <typename Graph>
    79     struct IntNodeMap { 
    80       typedef typename Graph::template NodeMap<int> type; 
    81     };
    82 
    83     template <typename Graph>
    84     struct DoubleNodeMap { 
    85       typedef typename Graph::template NodeMap<double> type; 
    86     };
    87 
    88     template <typename Graph>
    89     struct BoolArcMap { 
    90       typedef typename Graph::template ArcMap<bool> type; 
    91     };
    92 
    93     template <typename Graph>
    94     struct IntArcMap { 
    95       typedef typename Graph::template ArcMap<int> type; 
    96     };
    97 
    98     template <typename Graph>
    99     struct DoubleArcMap { 
   100       typedef typename Graph::template ArcMap<double> type; 
   101     };
   102 
   103     template <typename Graph>
   104     struct BoolEdgeMap { 
   105       typedef typename Graph::template EdgeMap<bool> type; 
   106     };
   107 
   108     template <typename Graph>
   109     struct IntEdgeMap { 
   110       typedef typename Graph::template EdgeMap<int> type; 
   111     };
   112 
   113     template <typename Graph>
   114     struct DoubleEdgeMap { 
   115       typedef typename Graph::template EdgeMap<double> type; 
   116     };
   117 
   118     
   119   }
   120 
   121   ///Creates convenience typedefs for the digraph types and iterators
   122 
   123   ///This \c \#define creates convenience typedefs for the following types
   124   ///of \c Digraph: \c Node,  \c NodeIt, \c Arc, \c ArcIt, \c InArcIt,
   125   ///\c OutArcIt, \c BoolNodeMap, \c IntNodeMap, \c DoubleNodeMap, 
   126   ///\c BoolArcMap, \c IntArcMap, \c DoubleArcMap. 
   127 #define DIGRAPH_TYPEDEFS(Digraph)					\
   128   typedef typename ::lemon::_graph_utils_bits::				\
   129   Node<Digraph>::type Node;						\
   130   typedef typename ::lemon::_graph_utils_bits::				\
   131   NodeIt<Digraph>::type	NodeIt;						\
   132   typedef typename ::lemon::_graph_utils_bits::				\
   133   Arc<Digraph>::type Arc;						\
   134   typedef typename ::lemon::_graph_utils_bits::				\
   135   ArcIt<Digraph>::type ArcIt;						\
   136   typedef typename ::lemon::_graph_utils_bits::				\
   137   OutArcIt<Digraph>::type OutArcIt;					\
   138   typedef typename ::lemon::_graph_utils_bits::				\
   139   InArcIt<Digraph>::type InArcIt;					\
   140   typedef typename ::lemon::_graph_utils_bits::				\
   141   BoolNodeMap<Digraph>::type BoolNodeMap;				\
   142   typedef typename ::lemon::_graph_utils_bits::				\
   143   IntNodeMap<Digraph>::type IntNodeMap;					\
   144   typedef typename ::lemon::_graph_utils_bits::				\
   145   DoubleNodeMap<Digraph>::type DoubleNodeMap;				\
   146   typedef typename ::lemon::_graph_utils_bits::				\
   147   BoolArcMap<Digraph>::type BoolArcMap;					\
   148   typedef typename ::lemon::_graph_utils_bits::				\
   149   IntArcMap<Digraph>::type IntArcMap;					\
   150   typedef typename ::lemon::_graph_utils_bits::				\
   151   DoubleArcMap<Digraph>::type DoubleArcMap
   152 
   153 
   154   ///Creates convenience typedefs for the graph types and iterators
   155 
   156   ///This \c \#define creates the same convenience typedefs as defined
   157   ///by \ref DIGRAPH_TYPEDEFS(Graph) and six more, namely it creates
   158   ///\c Edge, \c EdgeIt, \c IncEdgeIt, \c BoolEdgeMap, \c IntEdgeMap,
   159   ///\c DoubleEdgeMap.
   160 #define GRAPH_TYPEDEFS(Graph)						\
   161   DIGRAPH_TYPEDEFS(Graph);						\
   162   typedef typename ::lemon::_graph_utils_bits::				\
   163   Edge<Graph>::type Edge;						\
   164   typedef typename ::lemon::_graph_utils_bits::				\
   165   EdgeIt<Graph>::type EdgeIt;						\
   166   typedef typename ::lemon::_graph_utils_bits::				\
   167   IncEdgeIt<Graph>::type IncEdgeIt;					\
   168   typedef typename ::lemon::_graph_utils_bits::				\
   169   BoolEdgeMap<Graph>::type BoolEdgeMap;					\
   170   typedef typename ::lemon::_graph_utils_bits::				\
   171   IntEdgeMap<Graph>::type IntEdgeMap;					\
   172   typedef typename ::lemon::_graph_utils_bits::				\
   173   DoubleEdgeMap<Graph>::type DoubleEdgeMap
   174 
   175 
   176   /// \brief Function to count the items in the graph.
   177   ///
   178   /// This function counts the items (nodes, arcs etc) in the graph.
   179   /// The complexity of the function is O(n) because
   180   /// it iterates on all of the items.
   181   template <typename Graph, typename Item>
   182   inline int countItems(const Graph& g) {
   183     typedef typename ItemSetTraits<Graph, Item>::ItemIt ItemIt;
   184     int num = 0;
   185     for (ItemIt it(g); it != INVALID; ++it) {
   186       ++num;
   187     }
   188     return num;
   189   }
   190 
   191   // Node counting:
   192 
   193   namespace _graph_utils_bits {
   194     
   195     template <typename Graph, typename Enable = void>
   196     struct CountNodesSelector {
   197       static int count(const Graph &g) {
   198         return countItems<Graph, typename Graph::Node>(g);
   199       }
   200     };
   201 
   202     template <typename Graph>
   203     struct CountNodesSelector<
   204       Graph, typename 
   205       enable_if<typename Graph::NodeNumTag, void>::type> 
   206     {
   207       static int count(const Graph &g) {
   208         return g.nodeNum();
   209       }
   210     };    
   211   }
   212 
   213   /// \brief Function to count the nodes in the graph.
   214   ///
   215   /// This function counts the nodes in the graph.
   216   /// The complexity of the function is O(n) but for some
   217   /// graph structures it is specialized to run in O(1).
   218   ///
   219   /// If the graph contains a \e nodeNum() member function and a 
   220   /// \e NodeNumTag tag then this function calls directly the member
   221   /// function to query the cardinality of the node set.
   222   template <typename Graph>
   223   inline int countNodes(const Graph& g) {
   224     return _graph_utils_bits::CountNodesSelector<Graph>::count(g);
   225   }
   226 
   227   // Arc counting:
   228 
   229   namespace _graph_utils_bits {
   230     
   231     template <typename Graph, typename Enable = void>
   232     struct CountArcsSelector {
   233       static int count(const Graph &g) {
   234         return countItems<Graph, typename Graph::Arc>(g);
   235       }
   236     };
   237 
   238     template <typename Graph>
   239     struct CountArcsSelector<
   240       Graph, 
   241       typename enable_if<typename Graph::ArcNumTag, void>::type> 
   242     {
   243       static int count(const Graph &g) {
   244         return g.arcNum();
   245       }
   246     };    
   247   }
   248 
   249   /// \brief Function to count the arcs in the graph.
   250   ///
   251   /// This function counts the arcs in the graph.
   252   /// The complexity of the function is O(e) but for some
   253   /// graph structures it is specialized to run in O(1).
   254   ///
   255   /// If the graph contains a \e arcNum() member function and a 
   256   /// \e EdgeNumTag tag then this function calls directly the member
   257   /// function to query the cardinality of the arc set.
   258   template <typename Graph>
   259   inline int countArcs(const Graph& g) {
   260     return _graph_utils_bits::CountArcsSelector<Graph>::count(g);
   261   }
   262 
   263   // Edge counting:
   264   namespace _graph_utils_bits {
   265     
   266     template <typename Graph, typename Enable = void>
   267     struct CountEdgesSelector {
   268       static int count(const Graph &g) {
   269         return countItems<Graph, typename Graph::Edge>(g);
   270       }
   271     };
   272 
   273     template <typename Graph>
   274     struct CountEdgesSelector<
   275       Graph, 
   276       typename enable_if<typename Graph::EdgeNumTag, void>::type> 
   277     {
   278       static int count(const Graph &g) {
   279         return g.edgeNum();
   280       }
   281     };    
   282   }
   283 
   284   /// \brief Function to count the edges in the graph.
   285   ///
   286   /// This function counts the edges in the graph.
   287   /// The complexity of the function is O(m) but for some
   288   /// graph structures it is specialized to run in O(1).
   289   ///
   290   /// If the graph contains a \e edgeNum() member function and a 
   291   /// \e EdgeNumTag tag then this function calls directly the member
   292   /// function to query the cardinality of the edge set.
   293   template <typename Graph>
   294   inline int countEdges(const Graph& g) {
   295     return _graph_utils_bits::CountEdgesSelector<Graph>::count(g);
   296 
   297   }
   298 
   299 
   300   template <typename Graph, typename DegIt>
   301   inline int countNodeDegree(const Graph& _g, const typename Graph::Node& _n) {
   302     int num = 0;
   303     for (DegIt it(_g, _n); it != INVALID; ++it) {
   304       ++num;
   305     }
   306     return num;
   307   }
   308 
   309   /// \brief Function to count the number of the out-arcs from node \c n.
   310   ///
   311   /// This function counts the number of the out-arcs from node \c n
   312   /// in the graph.  
   313   template <typename Graph>
   314   inline int countOutArcs(const Graph& _g,  const typename Graph::Node& _n) {
   315     return countNodeDegree<Graph, typename Graph::OutArcIt>(_g, _n);
   316   }
   317 
   318   /// \brief Function to count the number of the in-arcs to node \c n.
   319   ///
   320   /// This function counts the number of the in-arcs to node \c n
   321   /// in the graph.  
   322   template <typename Graph>
   323   inline int countInArcs(const Graph& _g,  const typename Graph::Node& _n) {
   324     return countNodeDegree<Graph, typename Graph::InArcIt>(_g, _n);
   325   }
   326 
   327   /// \brief Function to count the number of the inc-edges to node \c n.
   328   ///
   329   /// This function counts the number of the inc-edges to node \c n
   330   /// in the graph.  
   331   template <typename Graph>
   332   inline int countIncEdges(const Graph& _g,  const typename Graph::Node& _n) {
   333     return countNodeDegree<Graph, typename Graph::IncEdgeIt>(_g, _n);
   334   }
   335 
   336   namespace _graph_utils_bits {
   337     
   338     template <typename Graph, typename Enable = void>
   339     struct FindArcSelector {
   340       typedef typename Graph::Node Node;
   341       typedef typename Graph::Arc Arc;
   342       static Arc find(const Graph &g, Node u, Node v, Arc e) {
   343         if (e == INVALID) {
   344           g.firstOut(e, u);
   345         } else {
   346           g.nextOut(e);
   347         }
   348         while (e != INVALID && g.target(e) != v) {
   349           g.nextOut(e);
   350         }
   351         return e;
   352       }
   353     };
   354 
   355     template <typename Graph>
   356     struct FindArcSelector<
   357       Graph, 
   358       typename enable_if<typename Graph::FindEdgeTag, void>::type> 
   359     {
   360       typedef typename Graph::Node Node;
   361       typedef typename Graph::Arc Arc;
   362       static Arc find(const Graph &g, Node u, Node v, Arc prev) {
   363         return g.findArc(u, v, prev);
   364       }
   365     };    
   366   }
   367 
   368   /// \brief Finds an arc between two nodes of a graph.
   369   ///
   370   /// Finds an arc from node \c u to node \c v in graph \c g.
   371   ///
   372   /// If \c prev is \ref INVALID (this is the default value), then
   373   /// it finds the first arc from \c u to \c v. Otherwise it looks for
   374   /// the next arc from \c u to \c v after \c prev.
   375   /// \return The found arc or \ref INVALID if there is no such an arc.
   376   ///
   377   /// Thus you can iterate through each arc from \c u to \c v as it follows.
   378   ///\code
   379   /// for(Arc e=findArc(g,u,v);e!=INVALID;e=findArc(g,u,v,e)) {
   380   ///   ...
   381   /// }
   382   ///\endcode
   383   ///
   384   ///\sa ArcLookUp
   385   ///\sa AllArcLookUp
   386   ///\sa DynArcLookUp
   387   ///\sa ConArcIt
   388   template <typename Graph>
   389   inline typename Graph::Arc 
   390   findArc(const Graph &g, typename Graph::Node u, typename Graph::Node v,
   391            typename Graph::Arc prev = INVALID) {
   392     return _graph_utils_bits::FindArcSelector<Graph>::find(g, u, v, prev);
   393   }
   394 
   395   /// \brief Iterator for iterating on arcs connected the same nodes.
   396   ///
   397   /// Iterator for iterating on arcs connected the same nodes. It is 
   398   /// higher level interface for the findArc() function. You can
   399   /// use it the following way:
   400   ///\code
   401   /// for (ConArcIt<Graph> it(g, src, trg); it != INVALID; ++it) {
   402   ///   ...
   403   /// }
   404   ///\endcode
   405   /// 
   406   ///\sa findArc()
   407   ///\sa ArcLookUp
   408   ///\sa AllArcLookUp
   409   ///\sa DynArcLookUp
   410   ///
   411   /// \author Balazs Dezso 
   412   template <typename _Graph>
   413   class ConArcIt : public _Graph::Arc {
   414   public:
   415 
   416     typedef _Graph Graph;
   417     typedef typename Graph::Arc Parent;
   418 
   419     typedef typename Graph::Arc Arc;
   420     typedef typename Graph::Node Node;
   421 
   422     /// \brief Constructor.
   423     ///
   424     /// Construct a new ConArcIt iterating on the arcs which
   425     /// connects the \c u and \c v node.
   426     ConArcIt(const Graph& g, Node u, Node v) : _graph(g) {
   427       Parent::operator=(findArc(_graph, u, v));
   428     }
   429 
   430     /// \brief Constructor.
   431     ///
   432     /// Construct a new ConArcIt which continues the iterating from 
   433     /// the \c e arc.
   434     ConArcIt(const Graph& g, Arc a) : Parent(a), _graph(g) {}
   435     
   436     /// \brief Increment operator.
   437     ///
   438     /// It increments the iterator and gives back the next arc.
   439     ConArcIt& operator++() {
   440       Parent::operator=(findArc(_graph, _graph.source(*this), 
   441 				_graph.target(*this), *this));
   442       return *this;
   443     }
   444   private:
   445     const Graph& _graph;
   446   };
   447 
   448   namespace _graph_utils_bits {
   449     
   450     template <typename Graph, typename Enable = void>
   451     struct FindEdgeSelector {
   452       typedef typename Graph::Node Node;
   453       typedef typename Graph::Edge Edge;
   454       static Edge find(const Graph &g, Node u, Node v, Edge e) {
   455         bool b;
   456         if (u != v) {
   457           if (e == INVALID) {
   458             g.firstInc(e, b, u);
   459           } else {
   460             b = g.source(e) == u;
   461             g.nextInc(e, b);
   462           }
   463           while (e != INVALID && (b ? g.target(e) : g.source(e)) != v) {
   464             g.nextInc(e, b);
   465           }
   466         } else {
   467           if (e == INVALID) {
   468             g.firstInc(e, b, u);
   469           } else {
   470             b = true;
   471             g.nextInc(e, b);
   472           }
   473           while (e != INVALID && (!b || g.target(e) != v)) {
   474             g.nextInc(e, b);
   475           }
   476         }
   477         return e;
   478       }
   479     };
   480 
   481     template <typename Graph>
   482     struct FindEdgeSelector<
   483       Graph, 
   484       typename enable_if<typename Graph::FindEdgeTag, void>::type> 
   485     {
   486       typedef typename Graph::Node Node;
   487       typedef typename Graph::Edge Edge;
   488       static Edge find(const Graph &g, Node u, Node v, Edge prev) {
   489         return g.findEdge(u, v, prev);
   490       }
   491     };    
   492   }
   493 
   494   /// \brief Finds an edge between two nodes of a graph.
   495   ///
   496   /// Finds an edge from node \c u to node \c v in graph \c g.
   497   /// If the node \c u and node \c v is equal then each loop edge
   498   /// will be enumerated once.
   499   ///
   500   /// If \c prev is \ref INVALID (this is the default value), then
   501   /// it finds the first arc from \c u to \c v. Otherwise it looks for
   502   /// the next arc from \c u to \c v after \c prev.
   503   /// \return The found arc or \ref INVALID if there is no such an arc.
   504   ///
   505   /// Thus you can iterate through each arc from \c u to \c v as it follows.
   506   ///\code
   507   /// for(Edge e = findEdge(g,u,v); e != INVALID; 
   508   ///     e = findEdge(g,u,v,e)) {
   509   ///   ...
   510   /// }
   511   ///\endcode
   512   ///
   513   ///\sa ConArcIt
   514 
   515   template <typename Graph>
   516   inline typename Graph::Edge 
   517   findEdge(const Graph &g, typename Graph::Node u, typename Graph::Node v,
   518             typename Graph::Edge p = INVALID) {
   519     return _graph_utils_bits::FindEdgeSelector<Graph>::find(g, u, v, p);
   520   }
   521 
   522   /// \brief Iterator for iterating on edges connected the same nodes.
   523   ///
   524   /// Iterator for iterating on edges connected the same nodes. It is 
   525   /// higher level interface for the findEdge() function. You can
   526   /// use it the following way:
   527   ///\code
   528   /// for (ConEdgeIt<Graph> it(g, src, trg); it != INVALID; ++it) {
   529   ///   ...
   530   /// }
   531   ///\endcode
   532   ///
   533   ///\sa findEdge()
   534   ///
   535   /// \author Balazs Dezso 
   536   template <typename _Graph>
   537   class ConEdgeIt : public _Graph::Edge {
   538   public:
   539 
   540     typedef _Graph Graph;
   541     typedef typename Graph::Edge Parent;
   542 
   543     typedef typename Graph::Edge Edge;
   544     typedef typename Graph::Node Node;
   545 
   546     /// \brief Constructor.
   547     ///
   548     /// Construct a new ConEdgeIt iterating on the edges which
   549     /// connects the \c u and \c v node.
   550     ConEdgeIt(const Graph& g, Node u, Node v) : _graph(g) {
   551       Parent::operator=(findEdge(_graph, u, v));
   552     }
   553 
   554     /// \brief Constructor.
   555     ///
   556     /// Construct a new ConEdgeIt which continues the iterating from 
   557     /// the \c e edge.
   558     ConEdgeIt(const Graph& g, Edge e) : Parent(e), _graph(g) {}
   559     
   560     /// \brief Increment operator.
   561     ///
   562     /// It increments the iterator and gives back the next edge.
   563     ConEdgeIt& operator++() {
   564       Parent::operator=(findEdge(_graph, _graph.source(*this), 
   565 				 _graph.target(*this), *this));
   566       return *this;
   567     }
   568   private:
   569     const Graph& _graph;
   570   };
   571 
   572   namespace _graph_utils_bits {
   573 
   574     template <typename Digraph, typename Item, typename RefMap>
   575     class MapCopyBase {
   576     public:
   577       virtual void copy(const Digraph& from, const RefMap& refMap) = 0;
   578       
   579       virtual ~MapCopyBase() {}
   580     };
   581 
   582     template <typename Digraph, typename Item, typename RefMap, 
   583               typename ToMap, typename FromMap>
   584     class MapCopy : public MapCopyBase<Digraph, Item, RefMap> {
   585     public:
   586 
   587       MapCopy(ToMap& tmap, const FromMap& map) 
   588         : _tmap(tmap), _map(map) {}
   589       
   590       virtual void copy(const Digraph& digraph, const RefMap& refMap) {
   591         typedef typename ItemSetTraits<Digraph, Item>::ItemIt ItemIt;
   592         for (ItemIt it(digraph); it != INVALID; ++it) {
   593           _tmap.set(refMap[it], _map[it]);
   594         }
   595       }
   596 
   597     private:
   598       ToMap& _tmap;
   599       const FromMap& _map;
   600     };
   601 
   602     template <typename Digraph, typename Item, typename RefMap, typename It>
   603     class ItemCopy : public MapCopyBase<Digraph, Item, RefMap> {
   604     public:
   605 
   606       ItemCopy(It& it, const Item& item) : _it(it), _item(item) {}
   607       
   608       virtual void copy(const Digraph&, const RefMap& refMap) {
   609         _it = refMap[_item];
   610       }
   611 
   612     private:
   613       It& _it;
   614       Item _item;
   615     };
   616 
   617     template <typename Digraph, typename Item, typename RefMap, typename Ref>
   618     class RefCopy : public MapCopyBase<Digraph, Item, RefMap> {
   619     public:
   620 
   621       RefCopy(Ref& map) : _map(map) {}
   622       
   623       virtual void copy(const Digraph& digraph, const RefMap& refMap) {
   624         typedef typename ItemSetTraits<Digraph, Item>::ItemIt ItemIt;
   625         for (ItemIt it(digraph); it != INVALID; ++it) {
   626           _map.set(it, refMap[it]);
   627         }
   628       }
   629 
   630     private:
   631       Ref& _map;
   632     };
   633 
   634     template <typename Digraph, typename Item, typename RefMap, 
   635               typename CrossRef>
   636     class CrossRefCopy : public MapCopyBase<Digraph, Item, RefMap> {
   637     public:
   638 
   639       CrossRefCopy(CrossRef& cmap) : _cmap(cmap) {}
   640       
   641       virtual void copy(const Digraph& digraph, const RefMap& refMap) {
   642         typedef typename ItemSetTraits<Digraph, Item>::ItemIt ItemIt;
   643         for (ItemIt it(digraph); it != INVALID; ++it) {
   644           _cmap.set(refMap[it], it);
   645         }
   646       }
   647 
   648     private:
   649       CrossRef& _cmap;
   650     };
   651 
   652     template <typename Digraph, typename Enable = void>
   653     struct DigraphCopySelector {
   654       template <typename From, typename NodeRefMap, typename ArcRefMap>
   655       static void copy(Digraph &to, const From& from,
   656                        NodeRefMap& nodeRefMap, ArcRefMap& arcRefMap) {
   657         for (typename From::NodeIt it(from); it != INVALID; ++it) {
   658           nodeRefMap[it] = to.addNode();
   659         }
   660         for (typename From::ArcIt it(from); it != INVALID; ++it) {
   661           arcRefMap[it] = to.addArc(nodeRefMap[from.source(it)], 
   662                                           nodeRefMap[from.target(it)]);
   663         }
   664       }
   665     };
   666 
   667     template <typename Digraph>
   668     struct DigraphCopySelector<
   669       Digraph, 
   670       typename enable_if<typename Digraph::BuildTag, void>::type> 
   671     {
   672       template <typename From, typename NodeRefMap, typename ArcRefMap>
   673       static void copy(Digraph &to, const From& from,
   674                        NodeRefMap& nodeRefMap, ArcRefMap& arcRefMap) {
   675         to.build(from, nodeRefMap, arcRefMap);
   676       }
   677     };
   678 
   679     template <typename Graph, typename Enable = void>
   680     struct GraphCopySelector {
   681       template <typename From, typename NodeRefMap, typename EdgeRefMap>
   682       static void copy(Graph &to, const From& from,
   683                        NodeRefMap& nodeRefMap, EdgeRefMap& edgeRefMap) {
   684         for (typename From::NodeIt it(from); it != INVALID; ++it) {
   685           nodeRefMap[it] = to.addNode();
   686         }
   687         for (typename From::EdgeIt it(from); it != INVALID; ++it) {
   688           edgeRefMap[it] = to.addArc(nodeRefMap[from.source(it)], 
   689 				       nodeRefMap[from.target(it)]);
   690         }
   691       }
   692     };
   693 
   694     template <typename Graph>
   695     struct GraphCopySelector<
   696       Graph, 
   697       typename enable_if<typename Graph::BuildTag, void>::type> 
   698     {
   699       template <typename From, typename NodeRefMap, typename EdgeRefMap>
   700       static void copy(Graph &to, const From& from,
   701                        NodeRefMap& nodeRefMap, EdgeRefMap& edgeRefMap) {
   702         to.build(from, nodeRefMap, edgeRefMap);
   703       }
   704     };
   705 
   706   }
   707 
   708   /// \brief Class to copy a digraph.
   709   ///
   710   /// Class to copy a digraph to another digraph (duplicate a digraph). The
   711   /// simplest way of using it is through the \c copyDigraph() function.
   712   ///
   713   /// This class not just make a copy of a graph, but it can create
   714   /// references and cross references between the nodes and arcs of
   715   /// the two graphs, it can copy maps for use with the newly created
   716   /// graph and copy nodes and arcs.
   717   ///
   718   /// To make a copy from a graph, first an instance of DigraphCopy
   719   /// should be created, then the data belongs to the graph should
   720   /// assigned to copy. In the end, the \c run() member should be
   721   /// called.
   722   ///
   723   /// The next code copies a graph with several data:
   724   ///\code
   725   ///  DigraphCopy<NewGraph, OrigGraph> dc(new_graph, orig_graph);
   726   ///  // create a reference for the nodes
   727   ///  OrigGraph::NodeMap<NewGraph::Node> nr(orig_graph);
   728   ///  dc.nodeRef(nr);
   729   ///  // create a cross reference (inverse) for the arcs
   730   ///  NewGraph::ArcMap<OrigGraph::Arc> acr(new_graph);
   731   ///  dc.arcCrossRef(acr);
   732   ///  // copy an arc map
   733   ///  OrigGraph::ArcMap<double> oamap(orig_graph);
   734   ///  NewGraph::ArcMap<double> namap(new_graph);
   735   ///  dc.arcMap(namap, oamap);
   736   ///  // copy a node
   737   ///  OrigGraph::Node on;
   738   ///  NewGraph::Node nn;
   739   ///  dc.node(nn, on);
   740   ///  // Executions of copy
   741   ///  dc.run();
   742   ///\endcode
   743   template <typename To, typename From>
   744   class DigraphCopy {
   745   private:
   746 
   747     typedef typename From::Node Node;
   748     typedef typename From::NodeIt NodeIt;
   749     typedef typename From::Arc Arc;
   750     typedef typename From::ArcIt ArcIt;
   751 
   752     typedef typename To::Node TNode;
   753     typedef typename To::Arc TArc;
   754 
   755     typedef typename From::template NodeMap<TNode> NodeRefMap;
   756     typedef typename From::template ArcMap<TArc> ArcRefMap;
   757     
   758     
   759   public: 
   760 
   761 
   762     /// \brief Constructor for the DigraphCopy.
   763     ///
   764     /// It copies the content of the \c _from digraph into the
   765     /// \c _to digraph.
   766     DigraphCopy(To& to, const From& from) 
   767       : _from(from), _to(to) {}
   768 
   769     /// \brief Destructor of the DigraphCopy
   770     ///
   771     /// Destructor of the DigraphCopy
   772     ~DigraphCopy() {
   773       for (int i = 0; i < int(_node_maps.size()); ++i) {
   774         delete _node_maps[i];
   775       }
   776       for (int i = 0; i < int(_arc_maps.size()); ++i) {
   777         delete _arc_maps[i];
   778       }
   779 
   780     }
   781 
   782     /// \brief Copies the node references into the given map.
   783     ///
   784     /// Copies the node references into the given map. The parameter
   785     /// should be a map, which key type is the Node type of the source
   786     /// graph, while the value type is the Node type of the
   787     /// destination graph.
   788     template <typename NodeRef>
   789     DigraphCopy& nodeRef(NodeRef& map) {
   790       _node_maps.push_back(new _graph_utils_bits::RefCopy<From, Node, 
   791 			   NodeRefMap, NodeRef>(map));
   792       return *this;
   793     }
   794 
   795     /// \brief Copies the node cross references into the given map.
   796     ///
   797     ///  Copies the node cross references (reverse references) into
   798     ///  the given map. The parameter should be a map, which key type
   799     ///  is the Node type of the destination graph, while the value type is
   800     ///  the Node type of the source graph.
   801     template <typename NodeCrossRef>
   802     DigraphCopy& nodeCrossRef(NodeCrossRef& map) {
   803       _node_maps.push_back(new _graph_utils_bits::CrossRefCopy<From, Node,
   804 			   NodeRefMap, NodeCrossRef>(map));
   805       return *this;
   806     }
   807 
   808     /// \brief Make copy of the given map.
   809     ///
   810     /// Makes copy of the given map for the newly created digraph.
   811     /// The new map's key type is the destination graph's node type,
   812     /// and the copied map's key type is the source graph's node type.
   813     template <typename ToMap, typename FromMap>
   814     DigraphCopy& nodeMap(ToMap& tmap, const FromMap& map) {
   815       _node_maps.push_back(new _graph_utils_bits::MapCopy<From, Node, 
   816 			   NodeRefMap, ToMap, FromMap>(tmap, map));
   817       return *this;
   818     }
   819 
   820     /// \brief Make a copy of the given node.
   821     ///
   822     /// Make a copy of the given node.
   823     DigraphCopy& node(TNode& tnode, const Node& snode) {
   824       _node_maps.push_back(new _graph_utils_bits::ItemCopy<From, Node, 
   825 			   NodeRefMap, TNode>(tnode, snode));
   826       return *this;
   827     }
   828 
   829     /// \brief Copies the arc references into the given map.
   830     ///
   831     /// Copies the arc references into the given map.
   832     template <typename ArcRef>
   833     DigraphCopy& arcRef(ArcRef& map) {
   834       _arc_maps.push_back(new _graph_utils_bits::RefCopy<From, Arc, 
   835 			  ArcRefMap, ArcRef>(map));
   836       return *this;
   837     }
   838 
   839     /// \brief Copies the arc cross references into the given map.
   840     ///
   841     ///  Copies the arc cross references (reverse references) into
   842     ///  the given map.
   843     template <typename ArcCrossRef>
   844     DigraphCopy& arcCrossRef(ArcCrossRef& map) {
   845       _arc_maps.push_back(new _graph_utils_bits::CrossRefCopy<From, Arc,
   846 			  ArcRefMap, ArcCrossRef>(map));
   847       return *this;
   848     }
   849 
   850     /// \brief Make copy of the given map.
   851     ///
   852     /// Makes copy of the given map for the newly created digraph. 
   853     /// The new map's key type is the to digraph's arc type,
   854     /// and the copied map's key type is the from digraph's arc
   855     /// type.  
   856     template <typename ToMap, typename FromMap>
   857     DigraphCopy& arcMap(ToMap& tmap, const FromMap& map) {
   858       _arc_maps.push_back(new _graph_utils_bits::MapCopy<From, Arc, 
   859 			  ArcRefMap, ToMap, FromMap>(tmap, map));
   860       return *this;
   861     }
   862 
   863     /// \brief Make a copy of the given arc.
   864     ///
   865     /// Make a copy of the given arc.
   866     DigraphCopy& arc(TArc& tarc, const Arc& sarc) {
   867       _arc_maps.push_back(new _graph_utils_bits::ItemCopy<From, Arc, 
   868 			  ArcRefMap, TArc>(tarc, sarc));
   869       return *this;
   870     }
   871 
   872     /// \brief Executes the copies.
   873     ///
   874     /// Executes the copies.
   875     void run() {
   876       NodeRefMap nodeRefMap(_from);
   877       ArcRefMap arcRefMap(_from);
   878       _graph_utils_bits::DigraphCopySelector<To>::
   879         copy(_to, _from, nodeRefMap, arcRefMap);
   880       for (int i = 0; i < int(_node_maps.size()); ++i) {
   881         _node_maps[i]->copy(_from, nodeRefMap);
   882       }
   883       for (int i = 0; i < int(_arc_maps.size()); ++i) {
   884         _arc_maps[i]->copy(_from, arcRefMap);
   885       }      
   886     }
   887 
   888   protected:
   889 
   890 
   891     const From& _from;
   892     To& _to;
   893 
   894     std::vector<_graph_utils_bits::MapCopyBase<From, Node, NodeRefMap>* > 
   895     _node_maps;
   896 
   897     std::vector<_graph_utils_bits::MapCopyBase<From, Arc, ArcRefMap>* > 
   898     _arc_maps;
   899 
   900   };
   901 
   902   /// \brief Copy a digraph to another digraph.
   903   ///
   904   /// Copy a digraph to another digraph. The complete usage of the
   905   /// function is detailed in the DigraphCopy class, but a short
   906   /// example shows a basic work:
   907   ///\code
   908   /// copyDigraph(trg, src).nodeRef(nr).arcCrossRef(ecr).run();
   909   ///\endcode
   910   /// 
   911   /// After the copy the \c nr map will contain the mapping from the
   912   /// nodes of the \c from digraph to the nodes of the \c to digraph and
   913   /// \c ecr will contain the mapping from the arcs of the \c to digraph
   914   /// to the arcs of the \c from digraph.
   915   ///
   916   /// \see DigraphCopy 
   917   template <typename To, typename From>
   918   DigraphCopy<To, From> copyDigraph(To& to, const From& from) {
   919     return DigraphCopy<To, From>(to, from);
   920   }
   921 
   922   /// \brief Class to copy a graph.
   923   ///
   924   /// Class to copy a graph to another graph (duplicate a graph). The
   925   /// simplest way of using it is through the \c copyGraph() function.
   926   ///
   927   /// This class not just make a copy of a graph, but it can create
   928   /// references and cross references between the nodes, edges and arcs of
   929   /// the two graphs, it can copy maps for use with the newly created
   930   /// graph and copy nodes, edges and arcs.
   931   ///
   932   /// To make a copy from a graph, first an instance of GraphCopy
   933   /// should be created, then the data belongs to the graph should
   934   /// assigned to copy. In the end, the \c run() member should be
   935   /// called.
   936   ///
   937   /// The next code copies a graph with several data:
   938   ///\code
   939   ///  GraphCopy<NewGraph, OrigGraph> dc(new_graph, orig_graph);
   940   ///  // create a reference for the nodes
   941   ///  OrigGraph::NodeMap<NewGraph::Node> nr(orig_graph);
   942   ///  dc.nodeRef(nr);
   943   ///  // create a cross reference (inverse) for the edges
   944   ///  NewGraph::EdgeMap<OrigGraph::Arc> ecr(new_graph);
   945   ///  dc.edgeCrossRef(ecr);
   946   ///  // copy an arc map
   947   ///  OrigGraph::ArcMap<double> oamap(orig_graph);
   948   ///  NewGraph::ArcMap<double> namap(new_graph);
   949   ///  dc.arcMap(namap, oamap);
   950   ///  // copy a node
   951   ///  OrigGraph::Node on;
   952   ///  NewGraph::Node nn;
   953   ///  dc.node(nn, on);
   954   ///  // Executions of copy
   955   ///  dc.run();
   956   ///\endcode
   957   template <typename To, typename From>
   958   class GraphCopy {
   959   private:
   960 
   961     typedef typename From::Node Node;
   962     typedef typename From::NodeIt NodeIt;
   963     typedef typename From::Arc Arc;
   964     typedef typename From::ArcIt ArcIt;
   965     typedef typename From::Edge Edge;
   966     typedef typename From::EdgeIt EdgeIt;
   967 
   968     typedef typename To::Node TNode;
   969     typedef typename To::Arc TArc;
   970     typedef typename To::Edge TEdge;
   971 
   972     typedef typename From::template NodeMap<TNode> NodeRefMap;
   973     typedef typename From::template EdgeMap<TEdge> EdgeRefMap;
   974 
   975     struct ArcRefMap {
   976       ArcRefMap(const To& to, const From& from,
   977 		const EdgeRefMap& edge_ref, const NodeRefMap& node_ref) 
   978         : _to(to), _from(from), 
   979           _edge_ref(edge_ref), _node_ref(node_ref) {}
   980 
   981       typedef typename From::Arc Key;
   982       typedef typename To::Arc Value;
   983 
   984       Value operator[](const Key& key) const {
   985         bool forward = 
   986           (_from.direction(key) == 
   987 	   (_node_ref[_from.source(key)] == _to.source(_edge_ref[key])));
   988 	return _to.direct(_edge_ref[key], forward); 
   989       }
   990       
   991       const To& _to;
   992       const From& _from;
   993       const EdgeRefMap& _edge_ref;
   994       const NodeRefMap& _node_ref;
   995     };
   996 
   997     
   998   public: 
   999 
  1000 
  1001     /// \brief Constructor for the GraphCopy.
  1002     ///
  1003     /// It copies the content of the \c _from graph into the
  1004     /// \c _to graph.
  1005     GraphCopy(To& to, const From& from) 
  1006       : _from(from), _to(to) {}
  1007 
  1008     /// \brief Destructor of the GraphCopy
  1009     ///
  1010     /// Destructor of the GraphCopy
  1011     ~GraphCopy() {
  1012       for (int i = 0; i < int(_node_maps.size()); ++i) {
  1013         delete _node_maps[i];
  1014       }
  1015       for (int i = 0; i < int(_arc_maps.size()); ++i) {
  1016         delete _arc_maps[i];
  1017       }
  1018       for (int i = 0; i < int(_edge_maps.size()); ++i) {
  1019         delete _edge_maps[i];
  1020       }
  1021 
  1022     }
  1023 
  1024     /// \brief Copies the node references into the given map.
  1025     ///
  1026     /// Copies the node references into the given map.
  1027     template <typename NodeRef>
  1028     GraphCopy& nodeRef(NodeRef& map) {
  1029       _node_maps.push_back(new _graph_utils_bits::RefCopy<From, Node, 
  1030 			   NodeRefMap, NodeRef>(map));
  1031       return *this;
  1032     }
  1033 
  1034     /// \brief Copies the node cross references into the given map.
  1035     ///
  1036     ///  Copies the node cross references (reverse references) into
  1037     ///  the given map.
  1038     template <typename NodeCrossRef>
  1039     GraphCopy& nodeCrossRef(NodeCrossRef& map) {
  1040       _node_maps.push_back(new _graph_utils_bits::CrossRefCopy<From, Node,
  1041 			   NodeRefMap, NodeCrossRef>(map));
  1042       return *this;
  1043     }
  1044 
  1045     /// \brief Make copy of the given map.
  1046     ///
  1047     /// Makes copy of the given map for the newly created graph. 
  1048     /// The new map's key type is the to graph's node type,
  1049     /// and the copied map's key type is the from graph's node
  1050     /// type.  
  1051     template <typename ToMap, typename FromMap>
  1052     GraphCopy& nodeMap(ToMap& tmap, const FromMap& map) {
  1053       _node_maps.push_back(new _graph_utils_bits::MapCopy<From, Node, 
  1054 			   NodeRefMap, ToMap, FromMap>(tmap, map));
  1055       return *this;
  1056     }
  1057 
  1058     /// \brief Make a copy of the given node.
  1059     ///
  1060     /// Make a copy of the given node.
  1061     GraphCopy& node(TNode& tnode, const Node& snode) {
  1062       _node_maps.push_back(new _graph_utils_bits::ItemCopy<From, Node, 
  1063 			   NodeRefMap, TNode>(tnode, snode));
  1064       return *this;
  1065     }
  1066 
  1067     /// \brief Copies the arc references into the given map.
  1068     ///
  1069     /// Copies the arc references into the given map.
  1070     template <typename ArcRef>
  1071     GraphCopy& arcRef(ArcRef& map) {
  1072       _arc_maps.push_back(new _graph_utils_bits::RefCopy<From, Arc, 
  1073 			  ArcRefMap, ArcRef>(map));
  1074       return *this;
  1075     }
  1076 
  1077     /// \brief Copies the arc cross references into the given map.
  1078     ///
  1079     ///  Copies the arc cross references (reverse references) into
  1080     ///  the given map.
  1081     template <typename ArcCrossRef>
  1082     GraphCopy& arcCrossRef(ArcCrossRef& map) {
  1083       _arc_maps.push_back(new _graph_utils_bits::CrossRefCopy<From, Arc,
  1084 			  ArcRefMap, ArcCrossRef>(map));
  1085       return *this;
  1086     }
  1087 
  1088     /// \brief Make copy of the given map.
  1089     ///
  1090     /// Makes copy of the given map for the newly created graph. 
  1091     /// The new map's key type is the to graph's arc type,
  1092     /// and the copied map's key type is the from graph's arc
  1093     /// type.  
  1094     template <typename ToMap, typename FromMap>
  1095     GraphCopy& arcMap(ToMap& tmap, const FromMap& map) {
  1096       _arc_maps.push_back(new _graph_utils_bits::MapCopy<From, Arc, 
  1097 			  ArcRefMap, ToMap, FromMap>(tmap, map));
  1098       return *this;
  1099     }
  1100 
  1101     /// \brief Make a copy of the given arc.
  1102     ///
  1103     /// Make a copy of the given arc.
  1104     GraphCopy& arc(TArc& tarc, const Arc& sarc) {
  1105       _arc_maps.push_back(new _graph_utils_bits::ItemCopy<From, Arc, 
  1106 			  ArcRefMap, TArc>(tarc, sarc));
  1107       return *this;
  1108     }
  1109 
  1110     /// \brief Copies the edge references into the given map.
  1111     ///
  1112     /// Copies the edge references into the given map.
  1113     template <typename EdgeRef>
  1114     GraphCopy& edgeRef(EdgeRef& map) {
  1115       _edge_maps.push_back(new _graph_utils_bits::RefCopy<From, Edge, 
  1116 			   EdgeRefMap, EdgeRef>(map));
  1117       return *this;
  1118     }
  1119 
  1120     /// \brief Copies the edge cross references into the given map.
  1121     ///
  1122     /// Copies the edge cross references (reverse
  1123     /// references) into the given map.
  1124     template <typename EdgeCrossRef>
  1125     GraphCopy& edgeCrossRef(EdgeCrossRef& map) {
  1126       _edge_maps.push_back(new _graph_utils_bits::CrossRefCopy<From, 
  1127 			   Edge, EdgeRefMap, EdgeCrossRef>(map));
  1128       return *this;
  1129     }
  1130 
  1131     /// \brief Make copy of the given map.
  1132     ///
  1133     /// Makes copy of the given map for the newly created graph. 
  1134     /// The new map's key type is the to graph's edge type,
  1135     /// and the copied map's key type is the from graph's edge
  1136     /// type.  
  1137     template <typename ToMap, typename FromMap>
  1138     GraphCopy& edgeMap(ToMap& tmap, const FromMap& map) {
  1139       _edge_maps.push_back(new _graph_utils_bits::MapCopy<From, Edge, 
  1140 			   EdgeRefMap, ToMap, FromMap>(tmap, map));
  1141       return *this;
  1142     }
  1143 
  1144     /// \brief Make a copy of the given edge.
  1145     ///
  1146     /// Make a copy of the given edge.
  1147     GraphCopy& edge(TEdge& tedge, const Edge& sedge) {
  1148       _edge_maps.push_back(new _graph_utils_bits::ItemCopy<From, Edge, 
  1149 			   EdgeRefMap, TEdge>(tedge, sedge));
  1150       return *this;
  1151     }
  1152 
  1153     /// \brief Executes the copies.
  1154     ///
  1155     /// Executes the copies.
  1156     void run() {
  1157       NodeRefMap nodeRefMap(_from);
  1158       EdgeRefMap edgeRefMap(_from);
  1159       ArcRefMap arcRefMap(_to, _from, edgeRefMap, nodeRefMap);
  1160       _graph_utils_bits::GraphCopySelector<To>::
  1161         copy(_to, _from, nodeRefMap, edgeRefMap);
  1162       for (int i = 0; i < int(_node_maps.size()); ++i) {
  1163         _node_maps[i]->copy(_from, nodeRefMap);
  1164       }
  1165       for (int i = 0; i < int(_edge_maps.size()); ++i) {
  1166         _edge_maps[i]->copy(_from, edgeRefMap);
  1167       }
  1168       for (int i = 0; i < int(_arc_maps.size()); ++i) {
  1169         _arc_maps[i]->copy(_from, arcRefMap);
  1170       }
  1171     }
  1172 
  1173   private:
  1174     
  1175     const From& _from;
  1176     To& _to;
  1177 
  1178     std::vector<_graph_utils_bits::MapCopyBase<From, Node, NodeRefMap>* > 
  1179     _node_maps;
  1180 
  1181     std::vector<_graph_utils_bits::MapCopyBase<From, Arc, ArcRefMap>* > 
  1182     _arc_maps;
  1183 
  1184     std::vector<_graph_utils_bits::MapCopyBase<From, Edge, EdgeRefMap>* > 
  1185     _edge_maps;
  1186 
  1187   };
  1188 
  1189   /// \brief Copy a graph to another graph.
  1190   ///
  1191   /// Copy a graph to another graph. The complete usage of the
  1192   /// function is detailed in the GraphCopy class, but a short
  1193   /// example shows a basic work:
  1194   ///\code
  1195   /// copyGraph(trg, src).nodeRef(nr).arcCrossRef(ecr).run();
  1196   ///\endcode
  1197   /// 
  1198   /// After the copy the \c nr map will contain the mapping from the
  1199   /// nodes of the \c from graph to the nodes of the \c to graph and
  1200   /// \c ecr will contain the mapping from the arcs of the \c to graph
  1201   /// to the arcs of the \c from graph.
  1202   ///
  1203   /// \see GraphCopy 
  1204   template <typename To, typename From>
  1205   GraphCopy<To, From> 
  1206   copyGraph(To& to, const From& from) {
  1207     return GraphCopy<To, From>(to, from);
  1208   }
  1209 
  1210   /// @}
  1211 
  1212   /// \addtogroup graph_maps
  1213   /// @{
  1214 
  1215   /// Provides an immutable and unique id for each item in the graph.
  1216 
  1217   /// The IdMap class provides a unique and immutable id for each item of the
  1218   /// same type (e.g. node) in the graph. This id is <ul><li>\b unique:
  1219   /// different items (nodes) get different ids <li>\b immutable: the id of an
  1220   /// item (node) does not change (even if you delete other nodes).  </ul>
  1221   /// Through this map you get access (i.e. can read) the inner id values of
  1222   /// the items stored in the graph. This map can be inverted with its member
  1223   /// class \c InverseMap or with the \c operator() member.
  1224   ///
  1225   template <typename _Graph, typename _Item>
  1226   class IdMap {
  1227   public:
  1228     typedef _Graph Graph;
  1229     typedef int Value;
  1230     typedef _Item Item;
  1231     typedef _Item Key;
  1232 
  1233     /// \brief Constructor.
  1234     ///
  1235     /// Constructor of the map.
  1236     explicit IdMap(const Graph& graph) : _graph(&graph) {}
  1237 
  1238     /// \brief Gives back the \e id of the item.
  1239     ///
  1240     /// Gives back the immutable and unique \e id of the item.
  1241     int operator[](const Item& item) const { return _graph->id(item);}
  1242 
  1243     /// \brief Gives back the item by its id.
  1244     ///
  1245     /// Gives back the item by its id.
  1246     Item operator()(int id) { return _graph->fromId(id, Item()); }
  1247 
  1248   private:
  1249     const Graph* _graph;
  1250 
  1251   public:
  1252 
  1253     /// \brief The class represents the inverse of its owner (IdMap).
  1254     ///
  1255     /// The class represents the inverse of its owner (IdMap).
  1256     /// \see inverse()
  1257     class InverseMap {
  1258     public:
  1259 
  1260       /// \brief Constructor.
  1261       ///
  1262       /// Constructor for creating an id-to-item map.
  1263       explicit InverseMap(const Graph& graph) : _graph(&graph) {}
  1264 
  1265       /// \brief Constructor.
  1266       ///
  1267       /// Constructor for creating an id-to-item map.
  1268       explicit InverseMap(const IdMap& map) : _graph(map._graph) {}
  1269 
  1270       /// \brief Gives back the given item from its id.
  1271       ///
  1272       /// Gives back the given item from its id.
  1273       /// 
  1274       Item operator[](int id) const { return _graph->fromId(id, Item());}
  1275 
  1276     private:
  1277       const Graph* _graph;
  1278     };
  1279 
  1280     /// \brief Gives back the inverse of the map.
  1281     ///
  1282     /// Gives back the inverse of the IdMap.
  1283     InverseMap inverse() const { return InverseMap(*_graph);} 
  1284 
  1285   };
  1286 
  1287   
  1288   /// \brief General invertable graph-map type.
  1289 
  1290   /// This type provides simple invertable graph-maps. 
  1291   /// The InvertableMap wraps an arbitrary ReadWriteMap 
  1292   /// and if a key is set to a new value then store it
  1293   /// in the inverse map.
  1294   ///
  1295   /// The values of the map can be accessed
  1296   /// with stl compatible forward iterator.
  1297   ///
  1298   /// \param _Graph The graph type.
  1299   /// \param _Item The item type of the graph.
  1300   /// \param _Value The value type of the map.
  1301   ///
  1302   /// \see IterableValueMap
  1303   template <typename _Graph, typename _Item, typename _Value>
  1304   class InvertableMap : protected DefaultMap<_Graph, _Item, _Value> {
  1305   private:
  1306     
  1307     typedef DefaultMap<_Graph, _Item, _Value> Map;
  1308     typedef _Graph Graph;
  1309 
  1310     typedef std::map<_Value, _Item> Container;
  1311     Container _inv_map;    
  1312 
  1313   public:
  1314  
  1315     /// The key type of InvertableMap (Node, Arc, Edge).
  1316     typedef typename Map::Key Key;
  1317     /// The value type of the InvertableMap.
  1318     typedef typename Map::Value Value;
  1319 
  1320 
  1321 
  1322     /// \brief Constructor.
  1323     ///
  1324     /// Construct a new InvertableMap for the graph.
  1325     ///
  1326     explicit InvertableMap(const Graph& graph) : Map(graph) {} 
  1327 
  1328     /// \brief Forward iterator for values.
  1329     ///
  1330     /// This iterator is an stl compatible forward
  1331     /// iterator on the values of the map. The values can
  1332     /// be accessed in the [beginValue, endValue) range.
  1333     ///
  1334     class ValueIterator 
  1335       : public std::iterator<std::forward_iterator_tag, Value> {
  1336       friend class InvertableMap;
  1337     private:
  1338       ValueIterator(typename Container::const_iterator _it) 
  1339         : it(_it) {}
  1340     public:
  1341       
  1342       ValueIterator() {}
  1343 
  1344       ValueIterator& operator++() { ++it; return *this; }
  1345       ValueIterator operator++(int) { 
  1346         ValueIterator tmp(*this); 
  1347         operator++();
  1348         return tmp; 
  1349       }
  1350 
  1351       const Value& operator*() const { return it->first; }
  1352       const Value* operator->() const { return &(it->first); }
  1353 
  1354       bool operator==(ValueIterator jt) const { return it == jt.it; }
  1355       bool operator!=(ValueIterator jt) const { return it != jt.it; }
  1356       
  1357     private:
  1358       typename Container::const_iterator it;
  1359     };
  1360 
  1361     /// \brief Returns an iterator to the first value.
  1362     ///
  1363     /// Returns an stl compatible iterator to the 
  1364     /// first value of the map. The values of the
  1365     /// map can be accessed in the [beginValue, endValue)
  1366     /// range.
  1367     ValueIterator beginValue() const {
  1368       return ValueIterator(_inv_map.begin());
  1369     }
  1370 
  1371     /// \brief Returns an iterator after the last value.
  1372     ///
  1373     /// Returns an stl compatible iterator after the 
  1374     /// last value of the map. The values of the
  1375     /// map can be accessed in the [beginValue, endValue)
  1376     /// range.
  1377     ValueIterator endValue() const {
  1378       return ValueIterator(_inv_map.end());
  1379     }
  1380     
  1381     /// \brief The setter function of the map.
  1382     ///
  1383     /// Sets the mapped value.
  1384     void set(const Key& key, const Value& val) {
  1385       Value oldval = Map::operator[](key);
  1386       typename Container::iterator it = _inv_map.find(oldval);
  1387       if (it != _inv_map.end() && it->second == key) {
  1388 	_inv_map.erase(it);
  1389       }      
  1390       _inv_map.insert(make_pair(val, key));
  1391       Map::set(key, val);
  1392     }
  1393 
  1394     /// \brief The getter function of the map.
  1395     ///
  1396     /// It gives back the value associated with the key.
  1397     typename MapTraits<Map>::ConstReturnValue 
  1398     operator[](const Key& key) const {
  1399       return Map::operator[](key);
  1400     }
  1401 
  1402     /// \brief Gives back the item by its value.
  1403     ///
  1404     /// Gives back the item by its value.
  1405     Key operator()(const Value& key) const {
  1406       typename Container::const_iterator it = _inv_map.find(key);
  1407       return it != _inv_map.end() ? it->second : INVALID;
  1408     }
  1409 
  1410   protected:
  1411 
  1412     /// \brief Erase the key from the map.
  1413     ///
  1414     /// Erase the key to the map. It is called by the
  1415     /// \c AlterationNotifier.
  1416     virtual void erase(const Key& key) {
  1417       Value val = Map::operator[](key);
  1418       typename Container::iterator it = _inv_map.find(val);
  1419       if (it != _inv_map.end() && it->second == key) {
  1420 	_inv_map.erase(it);
  1421       }
  1422       Map::erase(key);
  1423     }
  1424 
  1425     /// \brief Erase more keys from the map.
  1426     ///
  1427     /// Erase more keys from the map. It is called by the
  1428     /// \c AlterationNotifier.
  1429     virtual void erase(const std::vector<Key>& keys) {
  1430       for (int i = 0; i < int(keys.size()); ++i) {
  1431 	Value val = Map::operator[](keys[i]);
  1432 	typename Container::iterator it = _inv_map.find(val);
  1433 	if (it != _inv_map.end() && it->second == keys[i]) {
  1434 	  _inv_map.erase(it);
  1435 	}
  1436       }
  1437       Map::erase(keys);
  1438     }
  1439 
  1440     /// \brief Clear the keys from the map and inverse map.
  1441     ///
  1442     /// Clear the keys from the map and inverse map. It is called by the
  1443     /// \c AlterationNotifier.
  1444     virtual void clear() {
  1445       _inv_map.clear();
  1446       Map::clear();
  1447     }
  1448 
  1449   public:
  1450 
  1451     /// \brief The inverse map type.
  1452     ///
  1453     /// The inverse of this map. The subscript operator of the map
  1454     /// gives back always the item what was last assigned to the value. 
  1455     class InverseMap {
  1456     public:
  1457       /// \brief Constructor of the InverseMap.
  1458       ///
  1459       /// Constructor of the InverseMap.
  1460       explicit InverseMap(const InvertableMap& inverted) 
  1461         : _inverted(inverted) {}
  1462 
  1463       /// The value type of the InverseMap.
  1464       typedef typename InvertableMap::Key Value;
  1465       /// The key type of the InverseMap.
  1466       typedef typename InvertableMap::Value Key; 
  1467 
  1468       /// \brief Subscript operator. 
  1469       ///
  1470       /// Subscript operator. It gives back always the item 
  1471       /// what was last assigned to the value.
  1472       Value operator[](const Key& key) const {
  1473 	return _inverted(key);
  1474       }
  1475       
  1476     private:
  1477       const InvertableMap& _inverted;
  1478     };
  1479 
  1480     /// \brief It gives back the just readable inverse map.
  1481     ///
  1482     /// It gives back the just readable inverse map.
  1483     InverseMap inverse() const {
  1484       return InverseMap(*this);
  1485     } 
  1486 
  1487 
  1488     
  1489   };
  1490 
  1491   /// \brief Provides a mutable, continuous and unique descriptor for each 
  1492   /// item in the graph.
  1493   ///
  1494   /// The DescriptorMap class provides a unique and continuous (but mutable)
  1495   /// descriptor (id) for each item of the same type (e.g. node) in the
  1496   /// graph. This id is <ul><li>\b unique: different items (nodes) get
  1497   /// different ids <li>\b continuous: the range of the ids is the set of
  1498   /// integers between 0 and \c n-1, where \c n is the number of the items of
  1499   /// this type (e.g. nodes) (so the id of a node can change if you delete an
  1500   /// other node, i.e. this id is mutable).  </ul> This map can be inverted
  1501   /// with its member class \c InverseMap, or with the \c operator() member.
  1502   ///
  1503   /// \param _Graph The graph class the \c DescriptorMap belongs to.
  1504   /// \param _Item The Item is the Key of the Map. It may be Node, Arc or 
  1505   /// Edge.
  1506   template <typename _Graph, typename _Item>
  1507   class DescriptorMap : protected DefaultMap<_Graph, _Item, int> {
  1508 
  1509     typedef _Item Item;
  1510     typedef DefaultMap<_Graph, _Item, int> Map;
  1511 
  1512   public:
  1513     /// The graph class of DescriptorMap.
  1514     typedef _Graph Graph;
  1515 
  1516     /// The key type of DescriptorMap (Node, Arc, Edge).
  1517     typedef typename Map::Key Key;
  1518     /// The value type of DescriptorMap.
  1519     typedef typename Map::Value Value;
  1520 
  1521     /// \brief Constructor.
  1522     ///
  1523     /// Constructor for descriptor map.
  1524     explicit DescriptorMap(const Graph& _graph) : Map(_graph) {
  1525       Item it;
  1526       const typename Map::Notifier* nf = Map::notifier(); 
  1527       for (nf->first(it); it != INVALID; nf->next(it)) {
  1528 	Map::set(it, _inv_map.size());
  1529 	_inv_map.push_back(it);	
  1530       }      
  1531     }
  1532 
  1533   protected:
  1534 
  1535     /// \brief Add a new key to the map.
  1536     ///
  1537     /// Add a new key to the map. It is called by the
  1538     /// \c AlterationNotifier.
  1539     virtual void add(const Item& item) {
  1540       Map::add(item);
  1541       Map::set(item, _inv_map.size());
  1542       _inv_map.push_back(item);
  1543     }
  1544 
  1545     /// \brief Add more new keys to the map.
  1546     ///
  1547     /// Add more new keys to the map. It is called by the
  1548     /// \c AlterationNotifier.
  1549     virtual void add(const std::vector<Item>& items) {
  1550       Map::add(items);
  1551       for (int i = 0; i < int(items.size()); ++i) {
  1552 	Map::set(items[i], _inv_map.size());
  1553 	_inv_map.push_back(items[i]);
  1554       }
  1555     }
  1556 
  1557     /// \brief Erase the key from the map.
  1558     ///
  1559     /// Erase the key from the map. It is called by the
  1560     /// \c AlterationNotifier.
  1561     virtual void erase(const Item& item) {
  1562       Map::set(_inv_map.back(), Map::operator[](item));
  1563       _inv_map[Map::operator[](item)] = _inv_map.back();
  1564       _inv_map.pop_back();
  1565       Map::erase(item);
  1566     }
  1567 
  1568     /// \brief Erase more keys from the map.
  1569     ///
  1570     /// Erase more keys from the map. It is called by the
  1571     /// \c AlterationNotifier.
  1572     virtual void erase(const std::vector<Item>& items) {
  1573       for (int i = 0; i < int(items.size()); ++i) {
  1574 	Map::set(_inv_map.back(), Map::operator[](items[i]));
  1575 	_inv_map[Map::operator[](items[i])] = _inv_map.back();
  1576 	_inv_map.pop_back();
  1577       }
  1578       Map::erase(items);
  1579     }
  1580 
  1581     /// \brief Build the unique map.
  1582     ///
  1583     /// Build the unique map. It is called by the
  1584     /// \c AlterationNotifier.
  1585     virtual void build() {
  1586       Map::build();
  1587       Item it;
  1588       const typename Map::Notifier* nf = Map::notifier(); 
  1589       for (nf->first(it); it != INVALID; nf->next(it)) {
  1590 	Map::set(it, _inv_map.size());
  1591 	_inv_map.push_back(it);	
  1592       }      
  1593     }
  1594     
  1595     /// \brief Clear the keys from the map.
  1596     ///
  1597     /// Clear the keys from the map. It is called by the
  1598     /// \c AlterationNotifier.
  1599     virtual void clear() {
  1600       _inv_map.clear();
  1601       Map::clear();
  1602     }
  1603 
  1604   public:
  1605 
  1606     /// \brief Returns the maximal value plus one.
  1607     ///
  1608     /// Returns the maximal value plus one in the map.
  1609     unsigned int size() const {
  1610       return _inv_map.size();
  1611     }
  1612 
  1613     /// \brief Swaps the position of the two items in the map.
  1614     ///
  1615     /// Swaps the position of the two items in the map.
  1616     void swap(const Item& p, const Item& q) {
  1617       int pi = Map::operator[](p);
  1618       int qi = Map::operator[](q);
  1619       Map::set(p, qi);
  1620       _inv_map[qi] = p;
  1621       Map::set(q, pi);
  1622       _inv_map[pi] = q;
  1623     }
  1624 
  1625     /// \brief Gives back the \e descriptor of the item.
  1626     ///
  1627     /// Gives back the mutable and unique \e descriptor of the map.
  1628     int operator[](const Item& item) const {
  1629       return Map::operator[](item);
  1630     }
  1631 
  1632     /// \brief Gives back the item by its descriptor.
  1633     ///
  1634     /// Gives back th item by its descriptor.
  1635     Item operator()(int id) const {
  1636       return _inv_map[id];
  1637     }
  1638     
  1639   private:
  1640 
  1641     typedef std::vector<Item> Container;
  1642     Container _inv_map;
  1643 
  1644   public:
  1645     /// \brief The inverse map type of DescriptorMap.
  1646     ///
  1647     /// The inverse map type of DescriptorMap.
  1648     class InverseMap {
  1649     public:
  1650       /// \brief Constructor of the InverseMap.
  1651       ///
  1652       /// Constructor of the InverseMap.
  1653       explicit InverseMap(const DescriptorMap& inverted) 
  1654 	: _inverted(inverted) {}
  1655 
  1656 
  1657       /// The value type of the InverseMap.
  1658       typedef typename DescriptorMap::Key Value;
  1659       /// The key type of the InverseMap.
  1660       typedef typename DescriptorMap::Value Key; 
  1661 
  1662       /// \brief Subscript operator. 
  1663       ///
  1664       /// Subscript operator. It gives back the item 
  1665       /// that the descriptor belongs to currently.
  1666       Value operator[](const Key& key) const {
  1667 	return _inverted(key);
  1668       }
  1669 
  1670       /// \brief Size of the map.
  1671       ///
  1672       /// Returns the size of the map.
  1673       unsigned int size() const {
  1674 	return _inverted.size();
  1675       }
  1676       
  1677     private:
  1678       const DescriptorMap& _inverted;
  1679     };
  1680 
  1681     /// \brief Gives back the inverse of the map.
  1682     ///
  1683     /// Gives back the inverse of the map.
  1684     const InverseMap inverse() const {
  1685       return InverseMap(*this);
  1686     }
  1687   };
  1688 
  1689   /// \brief Returns the source of the given arc.
  1690   ///
  1691   /// The SourceMap gives back the source Node of the given arc. 
  1692   /// \see TargetMap
  1693   /// \author Balazs Dezso
  1694   template <typename Digraph>
  1695   class SourceMap {
  1696   public:
  1697 
  1698     typedef typename Digraph::Node Value;
  1699     typedef typename Digraph::Arc Key;
  1700 
  1701     /// \brief Constructor
  1702     ///
  1703     /// Constructor
  1704     /// \param _digraph The digraph that the map belongs to.
  1705     explicit SourceMap(const Digraph& digraph) : _digraph(digraph) {}
  1706 
  1707     /// \brief The subscript operator.
  1708     ///
  1709     /// The subscript operator.
  1710     /// \param arc The arc 
  1711     /// \return The source of the arc 
  1712     Value operator[](const Key& arc) const {
  1713       return _digraph.source(arc);
  1714     }
  1715 
  1716   private:
  1717     const Digraph& _digraph;
  1718   };
  1719 
  1720   /// \brief Returns a \ref SourceMap class.
  1721   ///
  1722   /// This function just returns an \ref SourceMap class.
  1723   /// \relates SourceMap
  1724   template <typename Digraph>
  1725   inline SourceMap<Digraph> sourceMap(const Digraph& digraph) {
  1726     return SourceMap<Digraph>(digraph);
  1727   } 
  1728 
  1729   /// \brief Returns the target of the given arc.
  1730   ///
  1731   /// The TargetMap gives back the target Node of the given arc. 
  1732   /// \see SourceMap
  1733   /// \author Balazs Dezso
  1734   template <typename Digraph>
  1735   class TargetMap {
  1736   public:
  1737 
  1738     typedef typename Digraph::Node Value;
  1739     typedef typename Digraph::Arc Key;
  1740 
  1741     /// \brief Constructor
  1742     ///
  1743     /// Constructor
  1744     /// \param _digraph The digraph that the map belongs to.
  1745     explicit TargetMap(const Digraph& digraph) : _digraph(digraph) {}
  1746 
  1747     /// \brief The subscript operator.
  1748     ///
  1749     /// The subscript operator.
  1750     /// \param e The arc 
  1751     /// \return The target of the arc 
  1752     Value operator[](const Key& e) const {
  1753       return _digraph.target(e);
  1754     }
  1755 
  1756   private:
  1757     const Digraph& _digraph;
  1758   };
  1759 
  1760   /// \brief Returns a \ref TargetMap class.
  1761   ///
  1762   /// This function just returns a \ref TargetMap class.
  1763   /// \relates TargetMap
  1764   template <typename Digraph>
  1765   inline TargetMap<Digraph> targetMap(const Digraph& digraph) {
  1766     return TargetMap<Digraph>(digraph);
  1767   }
  1768 
  1769   /// \brief Returns the "forward" directed arc view of an edge.
  1770   ///
  1771   /// Returns the "forward" directed arc view of an edge.
  1772   /// \see BackwardMap
  1773   /// \author Balazs Dezso
  1774   template <typename Graph>
  1775   class ForwardMap {
  1776   public:
  1777 
  1778     typedef typename Graph::Arc Value;
  1779     typedef typename Graph::Edge Key;
  1780 
  1781     /// \brief Constructor
  1782     ///
  1783     /// Constructor
  1784     /// \param _graph The graph that the map belongs to.
  1785     explicit ForwardMap(const Graph& graph) : _graph(graph) {}
  1786 
  1787     /// \brief The subscript operator.
  1788     ///
  1789     /// The subscript operator.
  1790     /// \param key An edge 
  1791     /// \return The "forward" directed arc view of edge 
  1792     Value operator[](const Key& key) const {
  1793       return _graph.direct(key, true);
  1794     }
  1795 
  1796   private:
  1797     const Graph& _graph;
  1798   };
  1799 
  1800   /// \brief Returns a \ref ForwardMap class.
  1801   ///
  1802   /// This function just returns an \ref ForwardMap class.
  1803   /// \relates ForwardMap
  1804   template <typename Graph>
  1805   inline ForwardMap<Graph> forwardMap(const Graph& graph) {
  1806     return ForwardMap<Graph>(graph);
  1807   }
  1808 
  1809   /// \brief Returns the "backward" directed arc view of an edge.
  1810   ///
  1811   /// Returns the "backward" directed arc view of an edge.
  1812   /// \see ForwardMap
  1813   /// \author Balazs Dezso
  1814   template <typename Graph>
  1815   class BackwardMap {
  1816   public:
  1817 
  1818     typedef typename Graph::Arc Value;
  1819     typedef typename Graph::Edge Key;
  1820 
  1821     /// \brief Constructor
  1822     ///
  1823     /// Constructor
  1824     /// \param _graph The graph that the map belongs to.
  1825     explicit BackwardMap(const Graph& graph) : _graph(graph) {}
  1826 
  1827     /// \brief The subscript operator.
  1828     ///
  1829     /// The subscript operator.
  1830     /// \param key An edge 
  1831     /// \return The "backward" directed arc view of edge 
  1832     Value operator[](const Key& key) const {
  1833       return _graph.direct(key, false);
  1834     }
  1835 
  1836   private:
  1837     const Graph& _graph;
  1838   };
  1839 
  1840   /// \brief Returns a \ref BackwardMap class
  1841 
  1842   /// This function just returns a \ref BackwardMap class.
  1843   /// \relates BackwardMap
  1844   template <typename Graph>
  1845   inline BackwardMap<Graph> backwardMap(const Graph& graph) {
  1846     return BackwardMap<Graph>(graph);
  1847   }
  1848 
  1849   /// \brief Potential difference map
  1850   ///
  1851   /// If there is an potential map on the nodes then we
  1852   /// can get an arc map as we get the substraction of the
  1853   /// values of the target and source.
  1854   template <typename Digraph, typename NodeMap>
  1855   class PotentialDifferenceMap {
  1856   public:
  1857     typedef typename Digraph::Arc Key;
  1858     typedef typename NodeMap::Value Value;
  1859 
  1860     /// \brief Constructor
  1861     ///
  1862     /// Contructor of the map
  1863     explicit PotentialDifferenceMap(const Digraph& digraph, 
  1864                                     const NodeMap& potential) 
  1865       : _digraph(digraph), _potential(potential) {}
  1866 
  1867     /// \brief Const subscription operator
  1868     ///
  1869     /// Const subscription operator
  1870     Value operator[](const Key& arc) const {
  1871       return _potential[_digraph.target(arc)] - 
  1872 	_potential[_digraph.source(arc)];
  1873     }
  1874 
  1875   private:
  1876     const Digraph& _digraph;
  1877     const NodeMap& _potential;
  1878   };
  1879 
  1880   /// \brief Returns a PotentialDifferenceMap.
  1881   ///
  1882   /// This function just returns a PotentialDifferenceMap.
  1883   /// \relates PotentialDifferenceMap
  1884   template <typename Digraph, typename NodeMap>
  1885   PotentialDifferenceMap<Digraph, NodeMap> 
  1886   potentialDifferenceMap(const Digraph& digraph, const NodeMap& potential) {
  1887     return PotentialDifferenceMap<Digraph, NodeMap>(digraph, potential);
  1888   }
  1889 
  1890   /// \brief Map of the node in-degrees.
  1891   ///
  1892   /// This map returns the in-degree of a node. Once it is constructed,
  1893   /// the degrees are stored in a standard NodeMap, so each query is done
  1894   /// in constant time. On the other hand, the values are updated automatically
  1895   /// whenever the digraph changes.
  1896   ///
  1897   /// \warning Besides addNode() and addArc(), a digraph structure may provide
  1898   /// alternative ways to modify the digraph. The correct behavior of InDegMap
  1899   /// is not guarantied if these additional features are used. For example
  1900   /// the functions \ref ListDigraph::changeSource() "changeSource()",
  1901   /// \ref ListDigraph::changeTarget() "changeTarget()" and
  1902   /// \ref ListDigraph::reverseArc() "reverseArc()"
  1903   /// of \ref ListDigraph will \e not update the degree values correctly.
  1904   ///
  1905   /// \sa OutDegMap
  1906 
  1907   template <typename _Digraph>
  1908   class InDegMap  
  1909     : protected ItemSetTraits<_Digraph, typename _Digraph::Arc>
  1910       ::ItemNotifier::ObserverBase {
  1911 
  1912   public:
  1913     
  1914     typedef _Digraph Digraph;
  1915     typedef int Value;
  1916     typedef typename Digraph::Node Key;
  1917 
  1918     typedef typename ItemSetTraits<Digraph, typename Digraph::Arc>
  1919     ::ItemNotifier::ObserverBase Parent;
  1920 
  1921   private:
  1922 
  1923     class AutoNodeMap : public DefaultMap<Digraph, Key, int> {
  1924     public:
  1925 
  1926       typedef DefaultMap<Digraph, Key, int> Parent;
  1927 
  1928       AutoNodeMap(const Digraph& digraph) : Parent(digraph, 0) {}
  1929       
  1930       virtual void add(const Key& key) {
  1931 	Parent::add(key);
  1932 	Parent::set(key, 0);
  1933       }
  1934 
  1935       virtual void add(const std::vector<Key>& keys) {
  1936 	Parent::add(keys);
  1937 	for (int i = 0; i < int(keys.size()); ++i) {
  1938 	  Parent::set(keys[i], 0);
  1939 	}
  1940       }
  1941 
  1942       virtual void build() {
  1943 	Parent::build();
  1944 	Key it;
  1945 	typename Parent::Notifier* nf = Parent::notifier();
  1946 	for (nf->first(it); it != INVALID; nf->next(it)) {
  1947 	  Parent::set(it, 0);
  1948 	}
  1949       }
  1950     };
  1951 
  1952   public:
  1953 
  1954     /// \brief Constructor.
  1955     ///
  1956     /// Constructor for creating in-degree map.
  1957     explicit InDegMap(const Digraph& digraph) 
  1958       : _digraph(digraph), _deg(digraph) {
  1959       Parent::attach(_digraph.notifier(typename Digraph::Arc()));
  1960       
  1961       for(typename Digraph::NodeIt it(_digraph); it != INVALID; ++it) {
  1962 	_deg[it] = countInArcs(_digraph, it);
  1963       }
  1964     }
  1965     
  1966     /// Gives back the in-degree of a Node.
  1967     int operator[](const Key& key) const {
  1968       return _deg[key];
  1969     }
  1970 
  1971   protected:
  1972     
  1973     typedef typename Digraph::Arc Arc;
  1974 
  1975     virtual void add(const Arc& arc) {
  1976       ++_deg[_digraph.target(arc)];
  1977     }
  1978 
  1979     virtual void add(const std::vector<Arc>& arcs) {
  1980       for (int i = 0; i < int(arcs.size()); ++i) {
  1981         ++_deg[_digraph.target(arcs[i])];
  1982       }
  1983     }
  1984 
  1985     virtual void erase(const Arc& arc) {
  1986       --_deg[_digraph.target(arc)];
  1987     }
  1988 
  1989     virtual void erase(const std::vector<Arc>& arcs) {
  1990       for (int i = 0; i < int(arcs.size()); ++i) {
  1991         --_deg[_digraph.target(arcs[i])];
  1992       }
  1993     }
  1994 
  1995     virtual void build() {
  1996       for(typename Digraph::NodeIt it(_digraph); it != INVALID; ++it) {
  1997 	_deg[it] = countInArcs(_digraph, it);
  1998       }      
  1999     }
  2000 
  2001     virtual void clear() {
  2002       for(typename Digraph::NodeIt it(_digraph); it != INVALID; ++it) {
  2003 	_deg[it] = 0;
  2004       }
  2005     }
  2006   private:
  2007     
  2008     const Digraph& _digraph;
  2009     AutoNodeMap _deg;
  2010   };
  2011 
  2012   /// \brief Map of the node out-degrees.
  2013   ///
  2014   /// This map returns the out-degree of a node. Once it is constructed,
  2015   /// the degrees are stored in a standard NodeMap, so each query is done
  2016   /// in constant time. On the other hand, the values are updated automatically
  2017   /// whenever the digraph changes.
  2018   ///
  2019   /// \warning Besides addNode() and addArc(), a digraph structure may provide
  2020   /// alternative ways to modify the digraph. The correct behavior of OutDegMap
  2021   /// is not guarantied if these additional features are used. For example
  2022   /// the functions \ref ListDigraph::changeSource() "changeSource()",
  2023   /// \ref ListDigraph::changeTarget() "changeTarget()" and
  2024   /// \ref ListDigraph::reverseArc() "reverseArc()"
  2025   /// of \ref ListDigraph will \e not update the degree values correctly.
  2026   ///
  2027   /// \sa InDegMap
  2028 
  2029   template <typename _Digraph>
  2030   class OutDegMap  
  2031     : protected ItemSetTraits<_Digraph, typename _Digraph::Arc>
  2032       ::ItemNotifier::ObserverBase {
  2033 
  2034   public:
  2035     
  2036     typedef _Digraph Digraph;
  2037     typedef int Value;
  2038     typedef typename Digraph::Node Key;
  2039 
  2040     typedef typename ItemSetTraits<Digraph, typename Digraph::Arc>
  2041     ::ItemNotifier::ObserverBase Parent;
  2042 
  2043   private:
  2044 
  2045     class AutoNodeMap : public DefaultMap<Digraph, Key, int> {
  2046     public:
  2047 
  2048       typedef DefaultMap<Digraph, Key, int> Parent;
  2049 
  2050       AutoNodeMap(const Digraph& digraph) : Parent(digraph, 0) {}
  2051       
  2052       virtual void add(const Key& key) {
  2053 	Parent::add(key);
  2054 	Parent::set(key, 0);
  2055       }
  2056       virtual void add(const std::vector<Key>& keys) {
  2057 	Parent::add(keys);
  2058 	for (int i = 0; i < int(keys.size()); ++i) {
  2059 	  Parent::set(keys[i], 0);
  2060 	}
  2061       }
  2062       virtual void build() {
  2063 	Parent::build();
  2064 	Key it;
  2065 	typename Parent::Notifier* nf = Parent::notifier();
  2066 	for (nf->first(it); it != INVALID; nf->next(it)) {
  2067 	  Parent::set(it, 0);
  2068 	}
  2069       }
  2070     };
  2071 
  2072   public:
  2073 
  2074     /// \brief Constructor.
  2075     ///
  2076     /// Constructor for creating out-degree map.
  2077     explicit OutDegMap(const Digraph& digraph) 
  2078       : _digraph(digraph), _deg(digraph) {
  2079       Parent::attach(_digraph.notifier(typename Digraph::Arc()));
  2080       
  2081       for(typename Digraph::NodeIt it(_digraph); it != INVALID; ++it) {
  2082 	_deg[it] = countOutArcs(_digraph, it);
  2083       }
  2084     }
  2085 
  2086     /// Gives back the out-degree of a Node.
  2087     int operator[](const Key& key) const {
  2088       return _deg[key];
  2089     }
  2090 
  2091   protected:
  2092     
  2093     typedef typename Digraph::Arc Arc;
  2094 
  2095     virtual void add(const Arc& arc) {
  2096       ++_deg[_digraph.source(arc)];
  2097     }
  2098 
  2099     virtual void add(const std::vector<Arc>& arcs) {
  2100       for (int i = 0; i < int(arcs.size()); ++i) {
  2101         ++_deg[_digraph.source(arcs[i])];
  2102       }
  2103     }
  2104 
  2105     virtual void erase(const Arc& arc) {
  2106       --_deg[_digraph.source(arc)];
  2107     }
  2108 
  2109     virtual void erase(const std::vector<Arc>& arcs) {
  2110       for (int i = 0; i < int(arcs.size()); ++i) {
  2111         --_deg[_digraph.source(arcs[i])];
  2112       }
  2113     }
  2114 
  2115     virtual void build() {
  2116       for(typename Digraph::NodeIt it(_digraph); it != INVALID; ++it) {
  2117 	_deg[it] = countOutArcs(_digraph, it);
  2118       }      
  2119     }
  2120 
  2121     virtual void clear() {
  2122       for(typename Digraph::NodeIt it(_digraph); it != INVALID; ++it) {
  2123 	_deg[it] = 0;
  2124       }
  2125     }
  2126   private:
  2127     
  2128     const Digraph& _digraph;
  2129     AutoNodeMap _deg;
  2130   };
  2131 
  2132 
  2133   ///Dynamic arc look up between given endpoints.
  2134   
  2135   ///\ingroup gutils
  2136   ///Using this class, you can find an arc in a digraph from a given
  2137   ///source to a given target in amortized time <em>O(log d)</em>,
  2138   ///where <em>d</em> is the out-degree of the source node.
  2139   ///
  2140   ///It is possible to find \e all parallel arcs between two nodes with
  2141   ///the \c findFirst() and \c findNext() members.
  2142   ///
  2143   ///See the \ref ArcLookUp and \ref AllArcLookUp classes if your
  2144   ///digraph is not changed so frequently.
  2145   ///
  2146   ///This class uses a self-adjusting binary search tree, Sleator's
  2147   ///and Tarjan's Splay tree for guarantee the logarithmic amortized
  2148   ///time bound for arc lookups. This class also guarantees the
  2149   ///optimal time bound in a constant factor for any distribution of
  2150   ///queries.
  2151   ///
  2152   ///\param G The type of the underlying digraph.  
  2153   ///
  2154   ///\sa ArcLookUp  
  2155   ///\sa AllArcLookUp  
  2156   template<class G>
  2157   class DynArcLookUp 
  2158     : protected ItemSetTraits<G, typename G::Arc>::ItemNotifier::ObserverBase
  2159   {
  2160   public:
  2161     typedef typename ItemSetTraits<G, typename G::Arc>
  2162     ::ItemNotifier::ObserverBase Parent;
  2163 
  2164     DIGRAPH_TYPEDEFS(G);
  2165     typedef G Digraph;
  2166 
  2167   protected:
  2168 
  2169     class AutoNodeMap : public DefaultMap<G, Node, Arc> {
  2170     public:
  2171 
  2172       typedef DefaultMap<G, Node, Arc> Parent;
  2173 
  2174       AutoNodeMap(const G& digraph) : Parent(digraph, INVALID) {}
  2175       
  2176       virtual void add(const Node& node) {
  2177 	Parent::add(node);
  2178 	Parent::set(node, INVALID);
  2179       }
  2180 
  2181       virtual void add(const std::vector<Node>& nodes) {
  2182 	Parent::add(nodes);
  2183 	for (int i = 0; i < int(nodes.size()); ++i) {
  2184 	  Parent::set(nodes[i], INVALID);
  2185 	}
  2186       }
  2187 
  2188       virtual void build() {
  2189 	Parent::build();
  2190 	Node it;
  2191 	typename Parent::Notifier* nf = Parent::notifier();
  2192 	for (nf->first(it); it != INVALID; nf->next(it)) {
  2193 	  Parent::set(it, INVALID);
  2194 	}
  2195       }
  2196     };
  2197 
  2198     const Digraph &_g;
  2199     AutoNodeMap _head;
  2200     typename Digraph::template ArcMap<Arc> _parent;
  2201     typename Digraph::template ArcMap<Arc> _left;
  2202     typename Digraph::template ArcMap<Arc> _right;
  2203     
  2204     class ArcLess {
  2205       const Digraph &g;
  2206     public:
  2207       ArcLess(const Digraph &_g) : g(_g) {}
  2208       bool operator()(Arc a,Arc b) const 
  2209       {
  2210 	return g.target(a)<g.target(b);
  2211       }
  2212     };
  2213     
  2214   public:
  2215     
  2216     ///Constructor
  2217 
  2218     ///Constructor.
  2219     ///
  2220     ///It builds up the search database.
  2221     DynArcLookUp(const Digraph &g) 
  2222       : _g(g),_head(g),_parent(g),_left(g),_right(g) 
  2223     { 
  2224       Parent::attach(_g.notifier(typename Digraph::Arc()));
  2225       refresh(); 
  2226     }
  2227     
  2228   protected:
  2229 
  2230     virtual void add(const Arc& arc) {
  2231       insert(arc);
  2232     }
  2233 
  2234     virtual void add(const std::vector<Arc>& arcs) {
  2235       for (int i = 0; i < int(arcs.size()); ++i) {
  2236 	insert(arcs[i]);
  2237       }
  2238     }
  2239 
  2240     virtual void erase(const Arc& arc) {
  2241       remove(arc);
  2242     }
  2243 
  2244     virtual void erase(const std::vector<Arc>& arcs) {
  2245       for (int i = 0; i < int(arcs.size()); ++i) {
  2246 	remove(arcs[i]);
  2247       }     
  2248     }
  2249 
  2250     virtual void build() {
  2251       refresh();
  2252     }
  2253 
  2254     virtual void clear() {
  2255       for(NodeIt n(_g);n!=INVALID;++n) {
  2256 	_head.set(n, INVALID);
  2257       }
  2258     }
  2259 
  2260     void insert(Arc arc) {
  2261       Node s = _g.source(arc);
  2262       Node t = _g.target(arc);
  2263       _left.set(arc, INVALID);
  2264       _right.set(arc, INVALID);
  2265       
  2266       Arc e = _head[s];
  2267       if (e == INVALID) {
  2268 	_head.set(s, arc);
  2269 	_parent.set(arc, INVALID);
  2270 	return;
  2271       }
  2272       while (true) {
  2273 	if (t < _g.target(e)) {
  2274 	  if (_left[e] == INVALID) {
  2275 	    _left.set(e, arc);
  2276 	    _parent.set(arc, e);
  2277 	    splay(arc);
  2278 	    return;
  2279 	  } else {
  2280 	    e = _left[e];
  2281 	  }
  2282 	} else {
  2283 	  if (_right[e] == INVALID) {
  2284 	    _right.set(e, arc);
  2285 	    _parent.set(arc, e);
  2286 	    splay(arc);
  2287 	    return;
  2288 	  } else {
  2289 	    e = _right[e];
  2290 	  }
  2291 	}
  2292       }
  2293     }
  2294 
  2295     void remove(Arc arc) {
  2296       if (_left[arc] == INVALID) {
  2297 	if (_right[arc] != INVALID) {
  2298 	  _parent.set(_right[arc], _parent[arc]);
  2299 	}
  2300 	if (_parent[arc] != INVALID) {
  2301 	  if (_left[_parent[arc]] == arc) {
  2302 	    _left.set(_parent[arc], _right[arc]);
  2303 	  } else {
  2304 	    _right.set(_parent[arc], _right[arc]);
  2305 	  }
  2306 	} else {
  2307 	  _head.set(_g.source(arc), _right[arc]);
  2308 	}
  2309       } else if (_right[arc] == INVALID) {
  2310 	_parent.set(_left[arc], _parent[arc]);
  2311 	if (_parent[arc] != INVALID) {
  2312 	  if (_left[_parent[arc]] == arc) {
  2313 	    _left.set(_parent[arc], _left[arc]);
  2314 	  } else {
  2315 	    _right.set(_parent[arc], _left[arc]);
  2316 	  }
  2317 	} else {
  2318 	  _head.set(_g.source(arc), _left[arc]);
  2319 	}
  2320       } else {
  2321 	Arc e = _left[arc];
  2322 	if (_right[e] != INVALID) {
  2323 	  e = _right[e];	  
  2324 	  while (_right[e] != INVALID) {
  2325 	    e = _right[e];
  2326 	  }
  2327 	  Arc s = _parent[e];
  2328 	  _right.set(_parent[e], _left[e]);
  2329 	  if (_left[e] != INVALID) {
  2330 	    _parent.set(_left[e], _parent[e]);
  2331 	  }
  2332 	  
  2333 	  _left.set(e, _left[arc]);
  2334 	  _parent.set(_left[arc], e);
  2335 	  _right.set(e, _right[arc]);
  2336 	  _parent.set(_right[arc], e);
  2337 
  2338 	  _parent.set(e, _parent[arc]);
  2339 	  if (_parent[arc] != INVALID) {
  2340 	    if (_left[_parent[arc]] == arc) {
  2341 	      _left.set(_parent[arc], e);
  2342 	    } else {
  2343 	      _right.set(_parent[arc], e);
  2344 	    }
  2345 	  }
  2346 	  splay(s);
  2347 	} else {
  2348 	  _right.set(e, _right[arc]);
  2349 	  _parent.set(_right[arc], e);
  2350 
  2351 	  if (_parent[arc] != INVALID) {
  2352 	    if (_left[_parent[arc]] == arc) {
  2353 	      _left.set(_parent[arc], e);
  2354 	    } else {
  2355 	      _right.set(_parent[arc], e);
  2356 	    }
  2357 	  } else {
  2358 	    _head.set(_g.source(arc), e);
  2359 	  }
  2360 	}
  2361       }
  2362     }
  2363 
  2364     Arc refreshRec(std::vector<Arc> &v,int a,int b) 
  2365     {
  2366       int m=(a+b)/2;
  2367       Arc me=v[m];
  2368       if (a < m) {
  2369 	Arc left = refreshRec(v,a,m-1);
  2370 	_left.set(me, left);
  2371 	_parent.set(left, me);
  2372       } else {
  2373 	_left.set(me, INVALID);
  2374       }
  2375       if (m < b) {
  2376 	Arc right = refreshRec(v,m+1,b);
  2377 	_right.set(me, right);
  2378 	_parent.set(right, me);
  2379       } else {
  2380 	_right.set(me, INVALID);
  2381       }
  2382       return me;
  2383     }
  2384 
  2385     void refresh() {
  2386       for(NodeIt n(_g);n!=INVALID;++n) {
  2387 	std::vector<Arc> v;
  2388 	for(OutArcIt e(_g,n);e!=INVALID;++e) v.push_back(e);
  2389 	if(v.size()) {
  2390 	  std::sort(v.begin(),v.end(),ArcLess(_g));
  2391 	  Arc head = refreshRec(v,0,v.size()-1);
  2392 	  _head.set(n, head);
  2393 	  _parent.set(head, INVALID);
  2394 	}
  2395 	else _head.set(n, INVALID);
  2396       }
  2397     }
  2398 
  2399     void zig(Arc v) {        
  2400       Arc w = _parent[v];
  2401       _parent.set(v, _parent[w]);
  2402       _parent.set(w, v);
  2403       _left.set(w, _right[v]);
  2404       _right.set(v, w);
  2405       if (_parent[v] != INVALID) {
  2406 	if (_right[_parent[v]] == w) {
  2407 	  _right.set(_parent[v], v);
  2408 	} else {
  2409 	  _left.set(_parent[v], v);
  2410 	}
  2411       }
  2412       if (_left[w] != INVALID){
  2413 	_parent.set(_left[w], w);
  2414       }
  2415     }
  2416 
  2417     void zag(Arc v) {        
  2418       Arc w = _parent[v];
  2419       _parent.set(v, _parent[w]);
  2420       _parent.set(w, v);
  2421       _right.set(w, _left[v]);
  2422       _left.set(v, w);
  2423       if (_parent[v] != INVALID){
  2424 	if (_left[_parent[v]] == w) {
  2425 	  _left.set(_parent[v], v);
  2426 	} else {
  2427 	  _right.set(_parent[v], v);
  2428 	}
  2429       }
  2430       if (_right[w] != INVALID){
  2431 	_parent.set(_right[w], w);
  2432       }
  2433     }
  2434 
  2435     void splay(Arc v) {
  2436       while (_parent[v] != INVALID) {
  2437 	if (v == _left[_parent[v]]) {
  2438 	  if (_parent[_parent[v]] == INVALID) {
  2439 	    zig(v);
  2440 	  } else {
  2441 	    if (_parent[v] == _left[_parent[_parent[v]]]) {
  2442 	      zig(_parent[v]);
  2443 	      zig(v);
  2444 	    } else {
  2445 	      zig(v);
  2446 	      zag(v);
  2447 	    }
  2448 	  }
  2449 	} else {
  2450 	  if (_parent[_parent[v]] == INVALID) {
  2451 	    zag(v);
  2452 	  } else {
  2453 	    if (_parent[v] == _left[_parent[_parent[v]]]) {
  2454 	      zag(v);
  2455 	      zig(v);
  2456 	    } else {
  2457 	      zag(_parent[v]);
  2458 	      zag(v);
  2459 	    }
  2460 	  }
  2461 	}
  2462       }
  2463       _head[_g.source(v)] = v;
  2464     }
  2465 
  2466 
  2467   public:
  2468     
  2469     ///Find an arc between two nodes.
  2470     
  2471     ///Find an arc between two nodes in time <em>O(</em>log<em>d)</em>, where
  2472     /// <em>d</em> is the number of outgoing arcs of \c s.
  2473     ///\param s The source node
  2474     ///\param t The target node
  2475     ///\return An arc from \c s to \c t if there exists,
  2476     ///\ref INVALID otherwise.
  2477     Arc operator()(Node s, Node t) const
  2478     {
  2479       Arc a = _head[s];
  2480       while (true) {
  2481 	if (_g.target(a) == t) {
  2482 	  const_cast<DynArcLookUp&>(*this).splay(a);
  2483 	  return a;
  2484 	} else if (t < _g.target(a)) {
  2485 	  if (_left[a] == INVALID) {
  2486 	    const_cast<DynArcLookUp&>(*this).splay(a);
  2487 	    return INVALID;
  2488 	  } else {
  2489 	    a = _left[a];
  2490 	  }
  2491 	} else  {
  2492 	  if (_right[a] == INVALID) {
  2493 	    const_cast<DynArcLookUp&>(*this).splay(a);
  2494 	    return INVALID;
  2495 	  } else {
  2496 	    a = _right[a];
  2497 	  }
  2498 	}
  2499       }
  2500     }
  2501 
  2502     ///Find the first arc between two nodes.
  2503     
  2504     ///Find the first arc between two nodes in time
  2505     /// <em>O(</em>log<em>d)</em>, where <em>d</em> is the number of
  2506     /// outgoing arcs of \c s.  
  2507     ///\param s The source node 
  2508     ///\param t The target node
  2509     ///\return An arc from \c s to \c t if there exists, \ref INVALID
  2510     /// otherwise.
  2511     Arc findFirst(Node s, Node t) const
  2512     {
  2513       Arc a = _head[s];
  2514       Arc r = INVALID;
  2515       while (true) {
  2516 	if (_g.target(a) < t) {
  2517 	  if (_right[a] == INVALID) {
  2518 	    const_cast<DynArcLookUp&>(*this).splay(a);
  2519 	    return r;
  2520 	  } else {
  2521 	    a = _right[a];
  2522 	  }
  2523 	} else {
  2524 	  if (_g.target(a) == t) {
  2525 	    r = a;
  2526 	  }
  2527 	  if (_left[a] == INVALID) {
  2528 	    const_cast<DynArcLookUp&>(*this).splay(a);
  2529 	    return r;
  2530 	  } else {
  2531 	    a = _left[a];
  2532 	  }
  2533 	}
  2534       }
  2535     }
  2536 
  2537     ///Find the next arc between two nodes.
  2538     
  2539     ///Find the next arc between two nodes in time
  2540     /// <em>O(</em>log<em>d)</em>, where <em>d</em> is the number of
  2541     /// outgoing arcs of \c s.  
  2542     ///\param s The source node 
  2543     ///\param t The target node
  2544     ///\return An arc from \c s to \c t if there exists, \ref INVALID
  2545     /// otherwise.
  2546 
  2547     ///\note If \c e is not the result of the previous \c findFirst()
  2548     ///operation then the amorized time bound can not be guaranteed.
  2549 #ifdef DOXYGEN
  2550     Arc findNext(Node s, Node t, Arc a) const
  2551 #else
  2552     Arc findNext(Node, Node t, Arc a) const
  2553 #endif
  2554     {
  2555       if (_right[a] != INVALID) {
  2556 	a = _right[a];
  2557 	while (_left[a] != INVALID) {
  2558 	  a = _left[a];
  2559 	}
  2560 	const_cast<DynArcLookUp&>(*this).splay(a);
  2561       } else {
  2562 	while (_parent[a] != INVALID && _right[_parent[a]] ==  a) {
  2563 	  a = _parent[a];
  2564 	}
  2565 	if (_parent[a] == INVALID) {
  2566 	  return INVALID;
  2567 	} else {
  2568 	  a = _parent[a];
  2569 	  const_cast<DynArcLookUp&>(*this).splay(a);
  2570 	}
  2571       }
  2572       if (_g.target(a) == t) return a;
  2573       else return INVALID;    
  2574     }
  2575 
  2576   };
  2577 
  2578   ///Fast arc look up between given endpoints.
  2579   
  2580   ///\ingroup gutils
  2581   ///Using this class, you can find an arc in a digraph from a given
  2582   ///source to a given target in time <em>O(log d)</em>,
  2583   ///where <em>d</em> is the out-degree of the source node.
  2584   ///
  2585   ///It is not possible to find \e all parallel arcs between two nodes.
  2586   ///Use \ref AllArcLookUp for this purpose.
  2587   ///
  2588   ///\warning This class is static, so you should refresh() (or at least
  2589   ///refresh(Node)) this data structure
  2590   ///whenever the digraph changes. This is a time consuming (superlinearly
  2591   ///proportional (<em>O(m</em>log<em>m)</em>) to the number of arcs).
  2592   ///
  2593   ///\param G The type of the underlying digraph.
  2594   ///
  2595   ///\sa DynArcLookUp
  2596   ///\sa AllArcLookUp  
  2597   template<class G>
  2598   class ArcLookUp 
  2599   {
  2600   public:
  2601     DIGRAPH_TYPEDEFS(G);
  2602     typedef G Digraph;
  2603 
  2604   protected:
  2605     const Digraph &_g;
  2606     typename Digraph::template NodeMap<Arc> _head;
  2607     typename Digraph::template ArcMap<Arc> _left;
  2608     typename Digraph::template ArcMap<Arc> _right;
  2609     
  2610     class ArcLess {
  2611       const Digraph &g;
  2612     public:
  2613       ArcLess(const Digraph &_g) : g(_g) {}
  2614       bool operator()(Arc a,Arc b) const 
  2615       {
  2616 	return g.target(a)<g.target(b);
  2617       }
  2618     };
  2619     
  2620   public:
  2621     
  2622     ///Constructor
  2623 
  2624     ///Constructor.
  2625     ///
  2626     ///It builds up the search database, which remains valid until the digraph
  2627     ///changes.
  2628     ArcLookUp(const Digraph &g) :_g(g),_head(g),_left(g),_right(g) {refresh();}
  2629     
  2630   private:
  2631     Arc refreshRec(std::vector<Arc> &v,int a,int b) 
  2632     {
  2633       int m=(a+b)/2;
  2634       Arc me=v[m];
  2635       _left[me] = a<m?refreshRec(v,a,m-1):INVALID;
  2636       _right[me] = m<b?refreshRec(v,m+1,b):INVALID;
  2637       return me;
  2638     }
  2639   public:
  2640     ///Refresh the data structure at a node.
  2641 
  2642     ///Build up the search database of node \c n.
  2643     ///
  2644     ///It runs in time <em>O(d</em>log<em>d)</em>, where <em>d</em> is
  2645     ///the number of the outgoing arcs of \c n.
  2646     void refresh(Node n) 
  2647     {
  2648       std::vector<Arc> v;
  2649       for(OutArcIt e(_g,n);e!=INVALID;++e) v.push_back(e);
  2650       if(v.size()) {
  2651 	std::sort(v.begin(),v.end(),ArcLess(_g));
  2652 	_head[n]=refreshRec(v,0,v.size()-1);
  2653       }
  2654       else _head[n]=INVALID;
  2655     }
  2656     ///Refresh the full data structure.
  2657 
  2658     ///Build up the full search database. In fact, it simply calls
  2659     ///\ref refresh(Node) "refresh(n)" for each node \c n.
  2660     ///
  2661     ///It runs in time <em>O(m</em>log<em>D)</em>, where <em>m</em> is
  2662     ///the number of the arcs of \c n and <em>D</em> is the maximum
  2663     ///out-degree of the digraph.
  2664 
  2665     void refresh() 
  2666     {
  2667       for(NodeIt n(_g);n!=INVALID;++n) refresh(n);
  2668     }
  2669     
  2670     ///Find an arc between two nodes.
  2671     
  2672     ///Find an arc between two nodes in time <em>O(</em>log<em>d)</em>, where
  2673     /// <em>d</em> is the number of outgoing arcs of \c s.
  2674     ///\param s The source node
  2675     ///\param t The target node
  2676     ///\return An arc from \c s to \c t if there exists,
  2677     ///\ref INVALID otherwise.
  2678     ///
  2679     ///\warning If you change the digraph, refresh() must be called before using
  2680     ///this operator. If you change the outgoing arcs of
  2681     ///a single node \c n, then
  2682     ///\ref refresh(Node) "refresh(n)" is enough.
  2683     ///
  2684     Arc operator()(Node s, Node t) const
  2685     {
  2686       Arc e;
  2687       for(e=_head[s];
  2688 	  e!=INVALID&&_g.target(e)!=t;
  2689 	  e = t < _g.target(e)?_left[e]:_right[e]) ;
  2690       return e;
  2691     }
  2692 
  2693   };
  2694 
  2695   ///Fast look up of all arcs between given endpoints.
  2696   
  2697   ///\ingroup gutils
  2698   ///This class is the same as \ref ArcLookUp, with the addition
  2699   ///that it makes it possible to find all arcs between given endpoints.
  2700   ///
  2701   ///\warning This class is static, so you should refresh() (or at least
  2702   ///refresh(Node)) this data structure
  2703   ///whenever the digraph changes. This is a time consuming (superlinearly
  2704   ///proportional (<em>O(m</em>log<em>m)</em>) to the number of arcs).
  2705   ///
  2706   ///\param G The type of the underlying digraph.
  2707   ///
  2708   ///\sa DynArcLookUp
  2709   ///\sa ArcLookUp  
  2710   template<class G>
  2711   class AllArcLookUp : public ArcLookUp<G>
  2712   {
  2713     using ArcLookUp<G>::_g;
  2714     using ArcLookUp<G>::_right;
  2715     using ArcLookUp<G>::_left;
  2716     using ArcLookUp<G>::_head;
  2717 
  2718     DIGRAPH_TYPEDEFS(G);
  2719     typedef G Digraph;
  2720     
  2721     typename Digraph::template ArcMap<Arc> _next;
  2722     
  2723     Arc refreshNext(Arc head,Arc next=INVALID)
  2724     {
  2725       if(head==INVALID) return next;
  2726       else {
  2727 	next=refreshNext(_right[head],next);
  2728 // 	_next[head]=next;
  2729 	_next[head]=( next!=INVALID && _g.target(next)==_g.target(head))
  2730 	  ? next : INVALID;
  2731 	return refreshNext(_left[head],head);
  2732       }
  2733     }
  2734     
  2735     void refreshNext()
  2736     {
  2737       for(NodeIt n(_g);n!=INVALID;++n) refreshNext(_head[n]);
  2738     }
  2739     
  2740   public:
  2741     ///Constructor
  2742 
  2743     ///Constructor.
  2744     ///
  2745     ///It builds up the search database, which remains valid until the digraph
  2746     ///changes.
  2747     AllArcLookUp(const Digraph &g) : ArcLookUp<G>(g), _next(g) {refreshNext();}
  2748 
  2749     ///Refresh the data structure at a node.
  2750 
  2751     ///Build up the search database of node \c n.
  2752     ///
  2753     ///It runs in time <em>O(d</em>log<em>d)</em>, where <em>d</em> is
  2754     ///the number of the outgoing arcs of \c n.
  2755     
  2756     void refresh(Node n) 
  2757     {
  2758       ArcLookUp<G>::refresh(n);
  2759       refreshNext(_head[n]);
  2760     }
  2761     
  2762     ///Refresh the full data structure.
  2763 
  2764     ///Build up the full search database. In fact, it simply calls
  2765     ///\ref refresh(Node) "refresh(n)" for each node \c n.
  2766     ///
  2767     ///It runs in time <em>O(m</em>log<em>D)</em>, where <em>m</em> is
  2768     ///the number of the arcs of \c n and <em>D</em> is the maximum
  2769     ///out-degree of the digraph.
  2770 
  2771     void refresh() 
  2772     {
  2773       for(NodeIt n(_g);n!=INVALID;++n) refresh(_head[n]);
  2774     }
  2775     
  2776     ///Find an arc between two nodes.
  2777     
  2778     ///Find an arc between two nodes.
  2779     ///\param s The source node
  2780     ///\param t The target node
  2781     ///\param prev The previous arc between \c s and \c t. It it is INVALID or
  2782     ///not given, the operator finds the first appropriate arc.
  2783     ///\return An arc from \c s to \c t after \c prev or
  2784     ///\ref INVALID if there is no more.
  2785     ///
  2786     ///For example, you can count the number of arcs from \c u to \c v in the
  2787     ///following way.
  2788     ///\code
  2789     ///AllArcLookUp<ListDigraph> ae(g);
  2790     ///...
  2791     ///int n=0;
  2792     ///for(Arc e=ae(u,v);e!=INVALID;e=ae(u,v,e)) n++;
  2793     ///\endcode
  2794     ///
  2795     ///Finding the first arc take <em>O(</em>log<em>d)</em> time, where
  2796     /// <em>d</em> is the number of outgoing arcs of \c s. Then, the
  2797     ///consecutive arcs are found in constant time.
  2798     ///
  2799     ///\warning If you change the digraph, refresh() must be called before using
  2800     ///this operator. If you change the outgoing arcs of
  2801     ///a single node \c n, then
  2802     ///\ref refresh(Node) "refresh(n)" is enough.
  2803     ///
  2804 #ifdef DOXYGEN
  2805     Arc operator()(Node s, Node t, Arc prev=INVALID) const {}
  2806 #else
  2807     using ArcLookUp<G>::operator() ;
  2808     Arc operator()(Node s, Node t, Arc prev) const
  2809     {
  2810       return prev==INVALID?(*this)(s,t):_next[prev];
  2811     }
  2812 #endif
  2813       
  2814   };
  2815 
  2816   /// @}
  2817 
  2818 } //END OF NAMESPACE LEMON
  2819 
  2820 #endif