lemon/network_simplex.h
author Peter Kovacs <kpeter@inf.elte.hu>
Fri, 03 Apr 2009 13:46:16 +0200
changeset 654 9ad8d2122b50
parent 653 c7d160f73d52
child 655 6ac5d9ae1d3d
permissions -rw-r--r--
Separate types for flow and cost values in NetworkSimplex (#234)
     1 /* -*- mode: C++; indent-tabs-mode: nil; -*-
     2  *
     3  * This file is a part of LEMON, a generic C++ optimization library.
     4  *
     5  * Copyright (C) 2003-2009
     6  * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
     7  * (Egervary Research Group on Combinatorial Optimization, EGRES).
     8  *
     9  * Permission to use, modify and distribute this software is granted
    10  * provided that this copyright notice appears in all copies. For
    11  * precise terms see the accompanying LICENSE file.
    12  *
    13  * This software is provided "AS IS" with no warranty of any kind,
    14  * express or implied, and with no claim as to its suitability for any
    15  * purpose.
    16  *
    17  */
    18 
    19 #ifndef LEMON_NETWORK_SIMPLEX_H
    20 #define LEMON_NETWORK_SIMPLEX_H
    21 
    22 /// \ingroup min_cost_flow
    23 ///
    24 /// \file
    25 /// \brief Network Simplex algorithm for finding a minimum cost flow.
    26 
    27 #include <vector>
    28 #include <limits>
    29 #include <algorithm>
    30 
    31 #include <lemon/core.h>
    32 #include <lemon/math.h>
    33 
    34 namespace lemon {
    35 
    36   /// \addtogroup min_cost_flow
    37   /// @{
    38 
    39   /// \brief Implementation of the primal Network Simplex algorithm
    40   /// for finding a \ref min_cost_flow "minimum cost flow".
    41   ///
    42   /// \ref NetworkSimplex implements the primal Network Simplex algorithm
    43   /// for finding a \ref min_cost_flow "minimum cost flow".
    44   /// This algorithm is a specialized version of the linear programming
    45   /// simplex method directly for the minimum cost flow problem.
    46   /// It is one of the most efficient solution methods.
    47   ///
    48   /// In general this class is the fastest implementation available
    49   /// in LEMON for the minimum cost flow problem.
    50   ///
    51   /// \tparam GR The digraph type the algorithm runs on.
    52   /// \tparam F The value type used for flow amounts, capacity bounds
    53   /// and supply values in the algorithm. By default it is \c int.
    54   /// \tparam C The value type used for costs and potentials in the
    55   /// algorithm. By default it is the same as \c F.
    56   ///
    57   /// \warning Both value types must be signed integer types.
    58   ///
    59   /// \note %NetworkSimplex provides five different pivot rule
    60   /// implementations. For more information see \ref PivotRule.
    61   template <typename GR, typename F = int, typename C = F>
    62   class NetworkSimplex
    63   {
    64   public:
    65 
    66     /// The flow type of the algorithm
    67     typedef F Flow;
    68     /// The cost type of the algorithm
    69     typedef C Cost;
    70     /// The type of the flow map
    71     typedef typename GR::template ArcMap<Flow> FlowMap;
    72     /// The type of the potential map
    73     typedef typename GR::template NodeMap<Cost> PotentialMap;
    74 
    75   public:
    76 
    77     /// \brief Enum type for selecting the pivot rule.
    78     ///
    79     /// Enum type for selecting the pivot rule for the \ref run()
    80     /// function.
    81     ///
    82     /// \ref NetworkSimplex provides five different pivot rule
    83     /// implementations that significantly affect the running time
    84     /// of the algorithm.
    85     /// By default \ref BLOCK_SEARCH "Block Search" is used, which
    86     /// proved to be the most efficient and the most robust on various
    87     /// test inputs according to our benchmark tests.
    88     /// However another pivot rule can be selected using the \ref run()
    89     /// function with the proper parameter.
    90     enum PivotRule {
    91 
    92       /// The First Eligible pivot rule.
    93       /// The next eligible arc is selected in a wraparound fashion
    94       /// in every iteration.
    95       FIRST_ELIGIBLE,
    96 
    97       /// The Best Eligible pivot rule.
    98       /// The best eligible arc is selected in every iteration.
    99       BEST_ELIGIBLE,
   100 
   101       /// The Block Search pivot rule.
   102       /// A specified number of arcs are examined in every iteration
   103       /// in a wraparound fashion and the best eligible arc is selected
   104       /// from this block.
   105       BLOCK_SEARCH,
   106 
   107       /// The Candidate List pivot rule.
   108       /// In a major iteration a candidate list is built from eligible arcs
   109       /// in a wraparound fashion and in the following minor iterations
   110       /// the best eligible arc is selected from this list.
   111       CANDIDATE_LIST,
   112 
   113       /// The Altering Candidate List pivot rule.
   114       /// It is a modified version of the Candidate List method.
   115       /// It keeps only the several best eligible arcs from the former
   116       /// candidate list and extends this list in every iteration.
   117       ALTERING_LIST
   118     };
   119 
   120   private:
   121 
   122     TEMPLATE_DIGRAPH_TYPEDEFS(GR);
   123 
   124     typedef typename GR::template ArcMap<Flow> FlowArcMap;
   125     typedef typename GR::template ArcMap<Cost> CostArcMap;
   126     typedef typename GR::template NodeMap<Flow> FlowNodeMap;
   127 
   128     typedef std::vector<Arc> ArcVector;
   129     typedef std::vector<Node> NodeVector;
   130     typedef std::vector<int> IntVector;
   131     typedef std::vector<bool> BoolVector;
   132     typedef std::vector<Flow> FlowVector;
   133     typedef std::vector<Cost> CostVector;
   134 
   135     // State constants for arcs
   136     enum ArcStateEnum {
   137       STATE_UPPER = -1,
   138       STATE_TREE  =  0,
   139       STATE_LOWER =  1
   140     };
   141 
   142   private:
   143 
   144     // Data related to the underlying digraph
   145     const GR &_graph;
   146     int _node_num;
   147     int _arc_num;
   148 
   149     // Parameters of the problem
   150     FlowArcMap *_plower;
   151     FlowArcMap *_pupper;
   152     CostArcMap *_pcost;
   153     FlowNodeMap *_psupply;
   154     bool _pstsup;
   155     Node _psource, _ptarget;
   156     Flow _pstflow;
   157 
   158     // Result maps
   159     FlowMap *_flow_map;
   160     PotentialMap *_potential_map;
   161     bool _local_flow;
   162     bool _local_potential;
   163 
   164     // Data structures for storing the digraph
   165     IntNodeMap _node_id;
   166     ArcVector _arc_ref;
   167     IntVector _source;
   168     IntVector _target;
   169 
   170     // Node and arc data
   171     FlowVector _cap;
   172     CostVector _cost;
   173     FlowVector _supply;
   174     FlowVector _flow;
   175     CostVector _pi;
   176 
   177     // Data for storing the spanning tree structure
   178     IntVector _parent;
   179     IntVector _pred;
   180     IntVector _thread;
   181     IntVector _rev_thread;
   182     IntVector _succ_num;
   183     IntVector _last_succ;
   184     IntVector _dirty_revs;
   185     BoolVector _forward;
   186     IntVector _state;
   187     int _root;
   188 
   189     // Temporary data used in the current pivot iteration
   190     int in_arc, join, u_in, v_in, u_out, v_out;
   191     int first, second, right, last;
   192     int stem, par_stem, new_stem;
   193     Flow delta;
   194 
   195   private:
   196 
   197     // Implementation of the First Eligible pivot rule
   198     class FirstEligiblePivotRule
   199     {
   200     private:
   201 
   202       // References to the NetworkSimplex class
   203       const IntVector  &_source;
   204       const IntVector  &_target;
   205       const CostVector &_cost;
   206       const IntVector  &_state;
   207       const CostVector &_pi;
   208       int &_in_arc;
   209       int _arc_num;
   210 
   211       // Pivot rule data
   212       int _next_arc;
   213 
   214     public:
   215 
   216       // Constructor
   217       FirstEligiblePivotRule(NetworkSimplex &ns) :
   218         _source(ns._source), _target(ns._target),
   219         _cost(ns._cost), _state(ns._state), _pi(ns._pi),
   220         _in_arc(ns.in_arc), _arc_num(ns._arc_num), _next_arc(0)
   221       {}
   222 
   223       // Find next entering arc
   224       bool findEnteringArc() {
   225         Cost c;
   226         for (int e = _next_arc; e < _arc_num; ++e) {
   227           c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]);
   228           if (c < 0) {
   229             _in_arc = e;
   230             _next_arc = e + 1;
   231             return true;
   232           }
   233         }
   234         for (int e = 0; e < _next_arc; ++e) {
   235           c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]);
   236           if (c < 0) {
   237             _in_arc = e;
   238             _next_arc = e + 1;
   239             return true;
   240           }
   241         }
   242         return false;
   243       }
   244 
   245     }; //class FirstEligiblePivotRule
   246 
   247 
   248     // Implementation of the Best Eligible pivot rule
   249     class BestEligiblePivotRule
   250     {
   251     private:
   252 
   253       // References to the NetworkSimplex class
   254       const IntVector  &_source;
   255       const IntVector  &_target;
   256       const CostVector &_cost;
   257       const IntVector  &_state;
   258       const CostVector &_pi;
   259       int &_in_arc;
   260       int _arc_num;
   261 
   262     public:
   263 
   264       // Constructor
   265       BestEligiblePivotRule(NetworkSimplex &ns) :
   266         _source(ns._source), _target(ns._target),
   267         _cost(ns._cost), _state(ns._state), _pi(ns._pi),
   268         _in_arc(ns.in_arc), _arc_num(ns._arc_num)
   269       {}
   270 
   271       // Find next entering arc
   272       bool findEnteringArc() {
   273         Cost c, min = 0;
   274         for (int e = 0; e < _arc_num; ++e) {
   275           c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]);
   276           if (c < min) {
   277             min = c;
   278             _in_arc = e;
   279           }
   280         }
   281         return min < 0;
   282       }
   283 
   284     }; //class BestEligiblePivotRule
   285 
   286 
   287     // Implementation of the Block Search pivot rule
   288     class BlockSearchPivotRule
   289     {
   290     private:
   291 
   292       // References to the NetworkSimplex class
   293       const IntVector  &_source;
   294       const IntVector  &_target;
   295       const CostVector &_cost;
   296       const IntVector  &_state;
   297       const CostVector &_pi;
   298       int &_in_arc;
   299       int _arc_num;
   300 
   301       // Pivot rule data
   302       int _block_size;
   303       int _next_arc;
   304 
   305     public:
   306 
   307       // Constructor
   308       BlockSearchPivotRule(NetworkSimplex &ns) :
   309         _source(ns._source), _target(ns._target),
   310         _cost(ns._cost), _state(ns._state), _pi(ns._pi),
   311         _in_arc(ns.in_arc), _arc_num(ns._arc_num), _next_arc(0)
   312       {
   313         // The main parameters of the pivot rule
   314         const double BLOCK_SIZE_FACTOR = 2.0;
   315         const int MIN_BLOCK_SIZE = 10;
   316 
   317         _block_size = std::max( int(BLOCK_SIZE_FACTOR * sqrt(_arc_num)),
   318                                 MIN_BLOCK_SIZE );
   319       }
   320 
   321       // Find next entering arc
   322       bool findEnteringArc() {
   323         Cost c, min = 0;
   324         int cnt = _block_size;
   325         int e, min_arc = _next_arc;
   326         for (e = _next_arc; e < _arc_num; ++e) {
   327           c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]);
   328           if (c < min) {
   329             min = c;
   330             min_arc = e;
   331           }
   332           if (--cnt == 0) {
   333             if (min < 0) break;
   334             cnt = _block_size;
   335           }
   336         }
   337         if (min == 0 || cnt > 0) {
   338           for (e = 0; e < _next_arc; ++e) {
   339             c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]);
   340             if (c < min) {
   341               min = c;
   342               min_arc = e;
   343             }
   344             if (--cnt == 0) {
   345               if (min < 0) break;
   346               cnt = _block_size;
   347             }
   348           }
   349         }
   350         if (min >= 0) return false;
   351         _in_arc = min_arc;
   352         _next_arc = e;
   353         return true;
   354       }
   355 
   356     }; //class BlockSearchPivotRule
   357 
   358 
   359     // Implementation of the Candidate List pivot rule
   360     class CandidateListPivotRule
   361     {
   362     private:
   363 
   364       // References to the NetworkSimplex class
   365       const IntVector  &_source;
   366       const IntVector  &_target;
   367       const CostVector &_cost;
   368       const IntVector  &_state;
   369       const CostVector &_pi;
   370       int &_in_arc;
   371       int _arc_num;
   372 
   373       // Pivot rule data
   374       IntVector _candidates;
   375       int _list_length, _minor_limit;
   376       int _curr_length, _minor_count;
   377       int _next_arc;
   378 
   379     public:
   380 
   381       /// Constructor
   382       CandidateListPivotRule(NetworkSimplex &ns) :
   383         _source(ns._source), _target(ns._target),
   384         _cost(ns._cost), _state(ns._state), _pi(ns._pi),
   385         _in_arc(ns.in_arc), _arc_num(ns._arc_num), _next_arc(0)
   386       {
   387         // The main parameters of the pivot rule
   388         const double LIST_LENGTH_FACTOR = 1.0;
   389         const int MIN_LIST_LENGTH = 10;
   390         const double MINOR_LIMIT_FACTOR = 0.1;
   391         const int MIN_MINOR_LIMIT = 3;
   392 
   393         _list_length = std::max( int(LIST_LENGTH_FACTOR * sqrt(_arc_num)),
   394                                  MIN_LIST_LENGTH );
   395         _minor_limit = std::max( int(MINOR_LIMIT_FACTOR * _list_length),
   396                                  MIN_MINOR_LIMIT );
   397         _curr_length = _minor_count = 0;
   398         _candidates.resize(_list_length);
   399       }
   400 
   401       /// Find next entering arc
   402       bool findEnteringArc() {
   403         Cost min, c;
   404         int e, min_arc = _next_arc;
   405         if (_curr_length > 0 && _minor_count < _minor_limit) {
   406           // Minor iteration: select the best eligible arc from the
   407           // current candidate list
   408           ++_minor_count;
   409           min = 0;
   410           for (int i = 0; i < _curr_length; ++i) {
   411             e = _candidates[i];
   412             c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]);
   413             if (c < min) {
   414               min = c;
   415               min_arc = e;
   416             }
   417             if (c >= 0) {
   418               _candidates[i--] = _candidates[--_curr_length];
   419             }
   420           }
   421           if (min < 0) {
   422             _in_arc = min_arc;
   423             return true;
   424           }
   425         }
   426 
   427         // Major iteration: build a new candidate list
   428         min = 0;
   429         _curr_length = 0;
   430         for (e = _next_arc; e < _arc_num; ++e) {
   431           c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]);
   432           if (c < 0) {
   433             _candidates[_curr_length++] = e;
   434             if (c < min) {
   435               min = c;
   436               min_arc = e;
   437             }
   438             if (_curr_length == _list_length) break;
   439           }
   440         }
   441         if (_curr_length < _list_length) {
   442           for (e = 0; e < _next_arc; ++e) {
   443             c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]);
   444             if (c < 0) {
   445               _candidates[_curr_length++] = e;
   446               if (c < min) {
   447                 min = c;
   448                 min_arc = e;
   449               }
   450               if (_curr_length == _list_length) break;
   451             }
   452           }
   453         }
   454         if (_curr_length == 0) return false;
   455         _minor_count = 1;
   456         _in_arc = min_arc;
   457         _next_arc = e;
   458         return true;
   459       }
   460 
   461     }; //class CandidateListPivotRule
   462 
   463 
   464     // Implementation of the Altering Candidate List pivot rule
   465     class AlteringListPivotRule
   466     {
   467     private:
   468 
   469       // References to the NetworkSimplex class
   470       const IntVector  &_source;
   471       const IntVector  &_target;
   472       const CostVector &_cost;
   473       const IntVector  &_state;
   474       const CostVector &_pi;
   475       int &_in_arc;
   476       int _arc_num;
   477 
   478       // Pivot rule data
   479       int _block_size, _head_length, _curr_length;
   480       int _next_arc;
   481       IntVector _candidates;
   482       CostVector _cand_cost;
   483 
   484       // Functor class to compare arcs during sort of the candidate list
   485       class SortFunc
   486       {
   487       private:
   488         const CostVector &_map;
   489       public:
   490         SortFunc(const CostVector &map) : _map(map) {}
   491         bool operator()(int left, int right) {
   492           return _map[left] > _map[right];
   493         }
   494       };
   495 
   496       SortFunc _sort_func;
   497 
   498     public:
   499 
   500       // Constructor
   501       AlteringListPivotRule(NetworkSimplex &ns) :
   502         _source(ns._source), _target(ns._target),
   503         _cost(ns._cost), _state(ns._state), _pi(ns._pi),
   504         _in_arc(ns.in_arc), _arc_num(ns._arc_num),
   505         _next_arc(0), _cand_cost(ns._arc_num), _sort_func(_cand_cost)
   506       {
   507         // The main parameters of the pivot rule
   508         const double BLOCK_SIZE_FACTOR = 1.5;
   509         const int MIN_BLOCK_SIZE = 10;
   510         const double HEAD_LENGTH_FACTOR = 0.1;
   511         const int MIN_HEAD_LENGTH = 3;
   512 
   513         _block_size = std::max( int(BLOCK_SIZE_FACTOR * sqrt(_arc_num)),
   514                                 MIN_BLOCK_SIZE );
   515         _head_length = std::max( int(HEAD_LENGTH_FACTOR * _block_size),
   516                                  MIN_HEAD_LENGTH );
   517         _candidates.resize(_head_length + _block_size);
   518         _curr_length = 0;
   519       }
   520 
   521       // Find next entering arc
   522       bool findEnteringArc() {
   523         // Check the current candidate list
   524         int e;
   525         for (int i = 0; i < _curr_length; ++i) {
   526           e = _candidates[i];
   527           _cand_cost[e] = _state[e] *
   528             (_cost[e] + _pi[_source[e]] - _pi[_target[e]]);
   529           if (_cand_cost[e] >= 0) {
   530             _candidates[i--] = _candidates[--_curr_length];
   531           }
   532         }
   533 
   534         // Extend the list
   535         int cnt = _block_size;
   536         int last_arc = 0;
   537         int limit = _head_length;
   538 
   539         for (int e = _next_arc; e < _arc_num; ++e) {
   540           _cand_cost[e] = _state[e] *
   541             (_cost[e] + _pi[_source[e]] - _pi[_target[e]]);
   542           if (_cand_cost[e] < 0) {
   543             _candidates[_curr_length++] = e;
   544             last_arc = e;
   545           }
   546           if (--cnt == 0) {
   547             if (_curr_length > limit) break;
   548             limit = 0;
   549             cnt = _block_size;
   550           }
   551         }
   552         if (_curr_length <= limit) {
   553           for (int e = 0; e < _next_arc; ++e) {
   554             _cand_cost[e] = _state[e] *
   555               (_cost[e] + _pi[_source[e]] - _pi[_target[e]]);
   556             if (_cand_cost[e] < 0) {
   557               _candidates[_curr_length++] = e;
   558               last_arc = e;
   559             }
   560             if (--cnt == 0) {
   561               if (_curr_length > limit) break;
   562               limit = 0;
   563               cnt = _block_size;
   564             }
   565           }
   566         }
   567         if (_curr_length == 0) return false;
   568         _next_arc = last_arc + 1;
   569 
   570         // Make heap of the candidate list (approximating a partial sort)
   571         make_heap( _candidates.begin(), _candidates.begin() + _curr_length,
   572                    _sort_func );
   573 
   574         // Pop the first element of the heap
   575         _in_arc = _candidates[0];
   576         pop_heap( _candidates.begin(), _candidates.begin() + _curr_length,
   577                   _sort_func );
   578         _curr_length = std::min(_head_length, _curr_length - 1);
   579         return true;
   580       }
   581 
   582     }; //class AlteringListPivotRule
   583 
   584   public:
   585 
   586     /// \brief Constructor.
   587     ///
   588     /// Constructor.
   589     ///
   590     /// \param graph The digraph the algorithm runs on.
   591     NetworkSimplex(const GR& graph) :
   592       _graph(graph),
   593       _plower(NULL), _pupper(NULL), _pcost(NULL),
   594       _psupply(NULL), _pstsup(false),
   595       _flow_map(NULL), _potential_map(NULL),
   596       _local_flow(false), _local_potential(false),
   597       _node_id(graph)
   598     {
   599       LEMON_ASSERT(std::numeric_limits<Flow>::is_integer &&
   600                    std::numeric_limits<Flow>::is_signed,
   601         "The flow type of NetworkSimplex must be signed integer");
   602       LEMON_ASSERT(std::numeric_limits<Cost>::is_integer &&
   603                    std::numeric_limits<Cost>::is_signed,
   604         "The cost type of NetworkSimplex must be signed integer");
   605     }
   606 
   607     /// Destructor.
   608     ~NetworkSimplex() {
   609       if (_local_flow) delete _flow_map;
   610       if (_local_potential) delete _potential_map;
   611     }
   612 
   613     /// \brief Set the lower bounds on the arcs.
   614     ///
   615     /// This function sets the lower bounds on the arcs.
   616     /// If neither this function nor \ref boundMaps() is used before
   617     /// calling \ref run(), the lower bounds will be set to zero
   618     /// on all arcs.
   619     ///
   620     /// \param map An arc map storing the lower bounds.
   621     /// Its \c Value type must be convertible to the \c Flow type
   622     /// of the algorithm.
   623     ///
   624     /// \return <tt>(*this)</tt>
   625     template <typename LOWER>
   626     NetworkSimplex& lowerMap(const LOWER& map) {
   627       delete _plower;
   628       _plower = new FlowArcMap(_graph);
   629       for (ArcIt a(_graph); a != INVALID; ++a) {
   630         (*_plower)[a] = map[a];
   631       }
   632       return *this;
   633     }
   634 
   635     /// \brief Set the upper bounds (capacities) on the arcs.
   636     ///
   637     /// This function sets the upper bounds (capacities) on the arcs.
   638     /// If none of the functions \ref upperMap(), \ref capacityMap()
   639     /// and \ref boundMaps() is used before calling \ref run(),
   640     /// the upper bounds (capacities) will be set to
   641     /// \c std::numeric_limits<Flow>::max() on all arcs.
   642     ///
   643     /// \param map An arc map storing the upper bounds.
   644     /// Its \c Value type must be convertible to the \c Flow type
   645     /// of the algorithm.
   646     ///
   647     /// \return <tt>(*this)</tt>
   648     template<typename UPPER>
   649     NetworkSimplex& upperMap(const UPPER& map) {
   650       delete _pupper;
   651       _pupper = new FlowArcMap(_graph);
   652       for (ArcIt a(_graph); a != INVALID; ++a) {
   653         (*_pupper)[a] = map[a];
   654       }
   655       return *this;
   656     }
   657 
   658     /// \brief Set the upper bounds (capacities) on the arcs.
   659     ///
   660     /// This function sets the upper bounds (capacities) on the arcs.
   661     /// It is just an alias for \ref upperMap().
   662     ///
   663     /// \return <tt>(*this)</tt>
   664     template<typename CAP>
   665     NetworkSimplex& capacityMap(const CAP& map) {
   666       return upperMap(map);
   667     }
   668 
   669     /// \brief Set the lower and upper bounds on the arcs.
   670     ///
   671     /// This function sets the lower and upper bounds on the arcs.
   672     /// If neither this function nor \ref lowerMap() is used before
   673     /// calling \ref run(), the lower bounds will be set to zero
   674     /// on all arcs.
   675     /// If none of the functions \ref upperMap(), \ref capacityMap()
   676     /// and \ref boundMaps() is used before calling \ref run(),
   677     /// the upper bounds (capacities) will be set to
   678     /// \c std::numeric_limits<Flow>::max() on all arcs.
   679     ///
   680     /// \param lower An arc map storing the lower bounds.
   681     /// \param upper An arc map storing the upper bounds.
   682     ///
   683     /// The \c Value type of the maps must be convertible to the
   684     /// \c Flow type of the algorithm.
   685     ///
   686     /// \note This function is just a shortcut of calling \ref lowerMap()
   687     /// and \ref upperMap() separately.
   688     ///
   689     /// \return <tt>(*this)</tt>
   690     template <typename LOWER, typename UPPER>
   691     NetworkSimplex& boundMaps(const LOWER& lower, const UPPER& upper) {
   692       return lowerMap(lower).upperMap(upper);
   693     }
   694 
   695     /// \brief Set the costs of the arcs.
   696     ///
   697     /// This function sets the costs of the arcs.
   698     /// If it is not used before calling \ref run(), the costs
   699     /// will be set to \c 1 on all arcs.
   700     ///
   701     /// \param map An arc map storing the costs.
   702     /// Its \c Value type must be convertible to the \c Cost type
   703     /// of the algorithm.
   704     ///
   705     /// \return <tt>(*this)</tt>
   706     template<typename COST>
   707     NetworkSimplex& costMap(const COST& map) {
   708       delete _pcost;
   709       _pcost = new CostArcMap(_graph);
   710       for (ArcIt a(_graph); a != INVALID; ++a) {
   711         (*_pcost)[a] = map[a];
   712       }
   713       return *this;
   714     }
   715 
   716     /// \brief Set the supply values of the nodes.
   717     ///
   718     /// This function sets the supply values of the nodes.
   719     /// If neither this function nor \ref stSupply() is used before
   720     /// calling \ref run(), the supply of each node will be set to zero.
   721     /// (It makes sense only if non-zero lower bounds are given.)
   722     ///
   723     /// \param map A node map storing the supply values.
   724     /// Its \c Value type must be convertible to the \c Flow type
   725     /// of the algorithm.
   726     ///
   727     /// \return <tt>(*this)</tt>
   728     template<typename SUP>
   729     NetworkSimplex& supplyMap(const SUP& map) {
   730       delete _psupply;
   731       _pstsup = false;
   732       _psupply = new FlowNodeMap(_graph);
   733       for (NodeIt n(_graph); n != INVALID; ++n) {
   734         (*_psupply)[n] = map[n];
   735       }
   736       return *this;
   737     }
   738 
   739     /// \brief Set single source and target nodes and a supply value.
   740     ///
   741     /// This function sets a single source node and a single target node
   742     /// and the required flow value.
   743     /// If neither this function nor \ref supplyMap() is used before
   744     /// calling \ref run(), the supply of each node will be set to zero.
   745     /// (It makes sense only if non-zero lower bounds are given.)
   746     ///
   747     /// \param s The source node.
   748     /// \param t The target node.
   749     /// \param k The required amount of flow from node \c s to node \c t
   750     /// (i.e. the supply of \c s and the demand of \c t).
   751     ///
   752     /// \return <tt>(*this)</tt>
   753     NetworkSimplex& stSupply(const Node& s, const Node& t, Flow k) {
   754       delete _psupply;
   755       _psupply = NULL;
   756       _pstsup = true;
   757       _psource = s;
   758       _ptarget = t;
   759       _pstflow = k;
   760       return *this;
   761     }
   762 
   763     /// \brief Set the flow map.
   764     ///
   765     /// This function sets the flow map.
   766     /// If it is not used before calling \ref run(), an instance will
   767     /// be allocated automatically. The destructor deallocates this
   768     /// automatically allocated map, of course.
   769     ///
   770     /// \return <tt>(*this)</tt>
   771     NetworkSimplex& flowMap(FlowMap& map) {
   772       if (_local_flow) {
   773         delete _flow_map;
   774         _local_flow = false;
   775       }
   776       _flow_map = &map;
   777       return *this;
   778     }
   779 
   780     /// \brief Set the potential map.
   781     ///
   782     /// This function sets the potential map, which is used for storing
   783     /// the dual solution.
   784     /// If it is not used before calling \ref run(), an instance will
   785     /// be allocated automatically. The destructor deallocates this
   786     /// automatically allocated map, of course.
   787     ///
   788     /// \return <tt>(*this)</tt>
   789     NetworkSimplex& potentialMap(PotentialMap& map) {
   790       if (_local_potential) {
   791         delete _potential_map;
   792         _local_potential = false;
   793       }
   794       _potential_map = &map;
   795       return *this;
   796     }
   797 
   798     /// \name Execution Control
   799     /// The algorithm can be executed using \ref run().
   800 
   801     /// @{
   802 
   803     /// \brief Run the algorithm.
   804     ///
   805     /// This function runs the algorithm.
   806     /// The paramters can be specified using \ref lowerMap(),
   807     /// \ref upperMap(), \ref capacityMap(), \ref boundMaps(),
   808     /// \ref costMap(), \ref supplyMap() and \ref stSupply()
   809     /// functions. For example,
   810     /// \code
   811     ///   NetworkSimplex<ListDigraph> ns(graph);
   812     ///   ns.boundMaps(lower, upper).costMap(cost)
   813     ///     .supplyMap(sup).run();
   814     /// \endcode
   815     ///
   816     /// This function can be called more than once. All the parameters
   817     /// that have been given are kept for the next call, unless
   818     /// \ref reset() is called, thus only the modified parameters
   819     /// have to be set again. See \ref reset() for examples.
   820     ///
   821     /// \param pivot_rule The pivot rule that will be used during the
   822     /// algorithm. For more information see \ref PivotRule.
   823     ///
   824     /// \return \c true if a feasible flow can be found.
   825     bool run(PivotRule pivot_rule = BLOCK_SEARCH) {
   826       return init() && start(pivot_rule);
   827     }
   828 
   829     /// \brief Reset all the parameters that have been given before.
   830     ///
   831     /// This function resets all the paramaters that have been given
   832     /// using \ref lowerMap(), \ref upperMap(), \ref capacityMap(),
   833     /// \ref boundMaps(), \ref costMap(), \ref supplyMap() and
   834     /// \ref stSupply() functions before.
   835     ///
   836     /// It is useful for multiple run() calls. If this function is not
   837     /// used, all the parameters given before are kept for the next
   838     /// \ref run() call.
   839     ///
   840     /// For example,
   841     /// \code
   842     ///   NetworkSimplex<ListDigraph> ns(graph);
   843     ///
   844     ///   // First run
   845     ///   ns.lowerMap(lower).capacityMap(cap).costMap(cost)
   846     ///     .supplyMap(sup).run();
   847     ///
   848     ///   // Run again with modified cost map (reset() is not called,
   849     ///   // so only the cost map have to be set again)
   850     ///   cost[e] += 100;
   851     ///   ns.costMap(cost).run();
   852     ///
   853     ///   // Run again from scratch using reset()
   854     ///   // (the lower bounds will be set to zero on all arcs)
   855     ///   ns.reset();
   856     ///   ns.capacityMap(cap).costMap(cost)
   857     ///     .supplyMap(sup).run();
   858     /// \endcode
   859     ///
   860     /// \return <tt>(*this)</tt>
   861     NetworkSimplex& reset() {
   862       delete _plower;
   863       delete _pupper;
   864       delete _pcost;
   865       delete _psupply;
   866       _plower = NULL;
   867       _pupper = NULL;
   868       _pcost = NULL;
   869       _psupply = NULL;
   870       _pstsup = false;
   871       return *this;
   872     }
   873 
   874     /// @}
   875 
   876     /// \name Query Functions
   877     /// The results of the algorithm can be obtained using these
   878     /// functions.\n
   879     /// The \ref run() function must be called before using them.
   880 
   881     /// @{
   882 
   883     /// \brief Return the total cost of the found flow.
   884     ///
   885     /// This function returns the total cost of the found flow.
   886     /// The complexity of the function is O(e).
   887     ///
   888     /// \note The return type of the function can be specified as a
   889     /// template parameter. For example,
   890     /// \code
   891     ///   ns.totalCost<double>();
   892     /// \endcode
   893     /// It is useful if the total cost cannot be stored in the \c Cost
   894     /// type of the algorithm, which is the default return type of the
   895     /// function.
   896     ///
   897     /// \pre \ref run() must be called before using this function.
   898     template <typename Num>
   899     Num totalCost() const {
   900       Num c = 0;
   901       if (_pcost) {
   902         for (ArcIt e(_graph); e != INVALID; ++e)
   903           c += (*_flow_map)[e] * (*_pcost)[e];
   904       } else {
   905         for (ArcIt e(_graph); e != INVALID; ++e)
   906           c += (*_flow_map)[e];
   907       }
   908       return c;
   909     }
   910 
   911 #ifndef DOXYGEN
   912     Cost totalCost() const {
   913       return totalCost<Cost>();
   914     }
   915 #endif
   916 
   917     /// \brief Return the flow on the given arc.
   918     ///
   919     /// This function returns the flow on the given arc.
   920     ///
   921     /// \pre \ref run() must be called before using this function.
   922     Flow flow(const Arc& a) const {
   923       return (*_flow_map)[a];
   924     }
   925 
   926     /// \brief Return a const reference to the flow map.
   927     ///
   928     /// This function returns a const reference to an arc map storing
   929     /// the found flow.
   930     ///
   931     /// \pre \ref run() must be called before using this function.
   932     const FlowMap& flowMap() const {
   933       return *_flow_map;
   934     }
   935 
   936     /// \brief Return the potential (dual value) of the given node.
   937     ///
   938     /// This function returns the potential (dual value) of the
   939     /// given node.
   940     ///
   941     /// \pre \ref run() must be called before using this function.
   942     Cost potential(const Node& n) const {
   943       return (*_potential_map)[n];
   944     }
   945 
   946     /// \brief Return a const reference to the potential map
   947     /// (the dual solution).
   948     ///
   949     /// This function returns a const reference to a node map storing
   950     /// the found potentials, which form the dual solution of the
   951     /// \ref min_cost_flow "minimum cost flow" problem.
   952     ///
   953     /// \pre \ref run() must be called before using this function.
   954     const PotentialMap& potentialMap() const {
   955       return *_potential_map;
   956     }
   957 
   958     /// @}
   959 
   960   private:
   961 
   962     // Initialize internal data structures
   963     bool init() {
   964       // Initialize result maps
   965       if (!_flow_map) {
   966         _flow_map = new FlowMap(_graph);
   967         _local_flow = true;
   968       }
   969       if (!_potential_map) {
   970         _potential_map = new PotentialMap(_graph);
   971         _local_potential = true;
   972       }
   973 
   974       // Initialize vectors
   975       _node_num = countNodes(_graph);
   976       _arc_num = countArcs(_graph);
   977       int all_node_num = _node_num + 1;
   978       int all_arc_num = _arc_num + _node_num;
   979       if (_node_num == 0) return false;
   980 
   981       _arc_ref.resize(_arc_num);
   982       _source.resize(all_arc_num);
   983       _target.resize(all_arc_num);
   984 
   985       _cap.resize(all_arc_num);
   986       _cost.resize(all_arc_num);
   987       _supply.resize(all_node_num);
   988       _flow.resize(all_arc_num);
   989       _pi.resize(all_node_num);
   990 
   991       _parent.resize(all_node_num);
   992       _pred.resize(all_node_num);
   993       _forward.resize(all_node_num);
   994       _thread.resize(all_node_num);
   995       _rev_thread.resize(all_node_num);
   996       _succ_num.resize(all_node_num);
   997       _last_succ.resize(all_node_num);
   998       _state.resize(all_arc_num);
   999 
  1000       // Initialize node related data
  1001       bool valid_supply = true;
  1002       if (!_pstsup && !_psupply) {
  1003         _pstsup = true;
  1004         _psource = _ptarget = NodeIt(_graph);
  1005         _pstflow = 0;
  1006       }
  1007       if (_psupply) {
  1008         Flow sum = 0;
  1009         int i = 0;
  1010         for (NodeIt n(_graph); n != INVALID; ++n, ++i) {
  1011           _node_id[n] = i;
  1012           _supply[i] = (*_psupply)[n];
  1013           sum += _supply[i];
  1014         }
  1015         valid_supply = (sum == 0);
  1016       } else {
  1017         int i = 0;
  1018         for (NodeIt n(_graph); n != INVALID; ++n, ++i) {
  1019           _node_id[n] = i;
  1020           _supply[i] = 0;
  1021         }
  1022         _supply[_node_id[_psource]] =  _pstflow;
  1023         _supply[_node_id[_ptarget]]   = -_pstflow;
  1024       }
  1025       if (!valid_supply) return false;
  1026 
  1027       // Set data for the artificial root node
  1028       _root = _node_num;
  1029       _parent[_root] = -1;
  1030       _pred[_root] = -1;
  1031       _thread[_root] = 0;
  1032       _rev_thread[0] = _root;
  1033       _succ_num[_root] = all_node_num;
  1034       _last_succ[_root] = _root - 1;
  1035       _supply[_root] = 0;
  1036       _pi[_root] = 0;
  1037 
  1038       // Store the arcs in a mixed order
  1039       int k = std::max(int(sqrt(_arc_num)), 10);
  1040       int i = 0;
  1041       for (ArcIt e(_graph); e != INVALID; ++e) {
  1042         _arc_ref[i] = e;
  1043         if ((i += k) >= _arc_num) i = (i % k) + 1;
  1044       }
  1045 
  1046       // Initialize arc maps
  1047       Flow max_cap = std::numeric_limits<Flow>::max();
  1048       Cost max_cost = std::numeric_limits<Cost>::max() / 4;
  1049       if (_pupper && _pcost) {
  1050         for (int i = 0; i != _arc_num; ++i) {
  1051           Arc e = _arc_ref[i];
  1052           _source[i] = _node_id[_graph.source(e)];
  1053           _target[i] = _node_id[_graph.target(e)];
  1054           _cap[i] = (*_pupper)[e];
  1055           _cost[i] = (*_pcost)[e];
  1056           _flow[i] = 0;
  1057           _state[i] = STATE_LOWER;
  1058         }
  1059       } else {
  1060         for (int i = 0; i != _arc_num; ++i) {
  1061           Arc e = _arc_ref[i];
  1062           _source[i] = _node_id[_graph.source(e)];
  1063           _target[i] = _node_id[_graph.target(e)];
  1064           _flow[i] = 0;
  1065           _state[i] = STATE_LOWER;
  1066         }
  1067         if (_pupper) {
  1068           for (int i = 0; i != _arc_num; ++i)
  1069             _cap[i] = (*_pupper)[_arc_ref[i]];
  1070         } else {
  1071           for (int i = 0; i != _arc_num; ++i)
  1072             _cap[i] = max_cap;
  1073         }
  1074         if (_pcost) {
  1075           for (int i = 0; i != _arc_num; ++i)
  1076             _cost[i] = (*_pcost)[_arc_ref[i]];
  1077         } else {
  1078           for (int i = 0; i != _arc_num; ++i)
  1079             _cost[i] = 1;
  1080         }
  1081       }
  1082 
  1083       // Remove non-zero lower bounds
  1084       if (_plower) {
  1085         for (int i = 0; i != _arc_num; ++i) {
  1086           Flow c = (*_plower)[_arc_ref[i]];
  1087           if (c != 0) {
  1088             _cap[i] -= c;
  1089             _supply[_source[i]] -= c;
  1090             _supply[_target[i]] += c;
  1091           }
  1092         }
  1093       }
  1094 
  1095       // Add artificial arcs and initialize the spanning tree data structure
  1096       for (int u = 0, e = _arc_num; u != _node_num; ++u, ++e) {
  1097         _thread[u] = u + 1;
  1098         _rev_thread[u + 1] = u;
  1099         _succ_num[u] = 1;
  1100         _last_succ[u] = u;
  1101         _parent[u] = _root;
  1102         _pred[u] = e;
  1103         _cost[e] = max_cost;
  1104         _cap[e] = max_cap;
  1105         _state[e] = STATE_TREE;
  1106         if (_supply[u] >= 0) {
  1107           _flow[e] = _supply[u];
  1108           _forward[u] = true;
  1109           _pi[u] = -max_cost;
  1110         } else {
  1111           _flow[e] = -_supply[u];
  1112           _forward[u] = false;
  1113           _pi[u] = max_cost;
  1114         }
  1115       }
  1116 
  1117       return true;
  1118     }
  1119 
  1120     // Find the join node
  1121     void findJoinNode() {
  1122       int u = _source[in_arc];
  1123       int v = _target[in_arc];
  1124       while (u != v) {
  1125         if (_succ_num[u] < _succ_num[v]) {
  1126           u = _parent[u];
  1127         } else {
  1128           v = _parent[v];
  1129         }
  1130       }
  1131       join = u;
  1132     }
  1133 
  1134     // Find the leaving arc of the cycle and returns true if the
  1135     // leaving arc is not the same as the entering arc
  1136     bool findLeavingArc() {
  1137       // Initialize first and second nodes according to the direction
  1138       // of the cycle
  1139       if (_state[in_arc] == STATE_LOWER) {
  1140         first  = _source[in_arc];
  1141         second = _target[in_arc];
  1142       } else {
  1143         first  = _target[in_arc];
  1144         second = _source[in_arc];
  1145       }
  1146       delta = _cap[in_arc];
  1147       int result = 0;
  1148       Flow d;
  1149       int e;
  1150 
  1151       // Search the cycle along the path form the first node to the root
  1152       for (int u = first; u != join; u = _parent[u]) {
  1153         e = _pred[u];
  1154         d = _forward[u] ? _flow[e] : _cap[e] - _flow[e];
  1155         if (d < delta) {
  1156           delta = d;
  1157           u_out = u;
  1158           result = 1;
  1159         }
  1160       }
  1161       // Search the cycle along the path form the second node to the root
  1162       for (int u = second; u != join; u = _parent[u]) {
  1163         e = _pred[u];
  1164         d = _forward[u] ? _cap[e] - _flow[e] : _flow[e];
  1165         if (d <= delta) {
  1166           delta = d;
  1167           u_out = u;
  1168           result = 2;
  1169         }
  1170       }
  1171 
  1172       if (result == 1) {
  1173         u_in = first;
  1174         v_in = second;
  1175       } else {
  1176         u_in = second;
  1177         v_in = first;
  1178       }
  1179       return result != 0;
  1180     }
  1181 
  1182     // Change _flow and _state vectors
  1183     void changeFlow(bool change) {
  1184       // Augment along the cycle
  1185       if (delta > 0) {
  1186         Flow val = _state[in_arc] * delta;
  1187         _flow[in_arc] += val;
  1188         for (int u = _source[in_arc]; u != join; u = _parent[u]) {
  1189           _flow[_pred[u]] += _forward[u] ? -val : val;
  1190         }
  1191         for (int u = _target[in_arc]; u != join; u = _parent[u]) {
  1192           _flow[_pred[u]] += _forward[u] ? val : -val;
  1193         }
  1194       }
  1195       // Update the state of the entering and leaving arcs
  1196       if (change) {
  1197         _state[in_arc] = STATE_TREE;
  1198         _state[_pred[u_out]] =
  1199           (_flow[_pred[u_out]] == 0) ? STATE_LOWER : STATE_UPPER;
  1200       } else {
  1201         _state[in_arc] = -_state[in_arc];
  1202       }
  1203     }
  1204 
  1205     // Update the tree structure
  1206     void updateTreeStructure() {
  1207       int u, w;
  1208       int old_rev_thread = _rev_thread[u_out];
  1209       int old_succ_num = _succ_num[u_out];
  1210       int old_last_succ = _last_succ[u_out];
  1211       v_out = _parent[u_out];
  1212 
  1213       u = _last_succ[u_in];  // the last successor of u_in
  1214       right = _thread[u];    // the node after it
  1215 
  1216       // Handle the case when old_rev_thread equals to v_in
  1217       // (it also means that join and v_out coincide)
  1218       if (old_rev_thread == v_in) {
  1219         last = _thread[_last_succ[u_out]];
  1220       } else {
  1221         last = _thread[v_in];
  1222       }
  1223 
  1224       // Update _thread and _parent along the stem nodes (i.e. the nodes
  1225       // between u_in and u_out, whose parent have to be changed)
  1226       _thread[v_in] = stem = u_in;
  1227       _dirty_revs.clear();
  1228       _dirty_revs.push_back(v_in);
  1229       par_stem = v_in;
  1230       while (stem != u_out) {
  1231         // Insert the next stem node into the thread list
  1232         new_stem = _parent[stem];
  1233         _thread[u] = new_stem;
  1234         _dirty_revs.push_back(u);
  1235 
  1236         // Remove the subtree of stem from the thread list
  1237         w = _rev_thread[stem];
  1238         _thread[w] = right;
  1239         _rev_thread[right] = w;
  1240 
  1241         // Change the parent node and shift stem nodes
  1242         _parent[stem] = par_stem;
  1243         par_stem = stem;
  1244         stem = new_stem;
  1245 
  1246         // Update u and right
  1247         u = _last_succ[stem] == _last_succ[par_stem] ?
  1248           _rev_thread[par_stem] : _last_succ[stem];
  1249         right = _thread[u];
  1250       }
  1251       _parent[u_out] = par_stem;
  1252       _thread[u] = last;
  1253       _rev_thread[last] = u;
  1254       _last_succ[u_out] = u;
  1255 
  1256       // Remove the subtree of u_out from the thread list except for
  1257       // the case when old_rev_thread equals to v_in
  1258       // (it also means that join and v_out coincide)
  1259       if (old_rev_thread != v_in) {
  1260         _thread[old_rev_thread] = right;
  1261         _rev_thread[right] = old_rev_thread;
  1262       }
  1263 
  1264       // Update _rev_thread using the new _thread values
  1265       for (int i = 0; i < int(_dirty_revs.size()); ++i) {
  1266         u = _dirty_revs[i];
  1267         _rev_thread[_thread[u]] = u;
  1268       }
  1269 
  1270       // Update _pred, _forward, _last_succ and _succ_num for the
  1271       // stem nodes from u_out to u_in
  1272       int tmp_sc = 0, tmp_ls = _last_succ[u_out];
  1273       u = u_out;
  1274       while (u != u_in) {
  1275         w = _parent[u];
  1276         _pred[u] = _pred[w];
  1277         _forward[u] = !_forward[w];
  1278         tmp_sc += _succ_num[u] - _succ_num[w];
  1279         _succ_num[u] = tmp_sc;
  1280         _last_succ[w] = tmp_ls;
  1281         u = w;
  1282       }
  1283       _pred[u_in] = in_arc;
  1284       _forward[u_in] = (u_in == _source[in_arc]);
  1285       _succ_num[u_in] = old_succ_num;
  1286 
  1287       // Set limits for updating _last_succ form v_in and v_out
  1288       // towards the root
  1289       int up_limit_in = -1;
  1290       int up_limit_out = -1;
  1291       if (_last_succ[join] == v_in) {
  1292         up_limit_out = join;
  1293       } else {
  1294         up_limit_in = join;
  1295       }
  1296 
  1297       // Update _last_succ from v_in towards the root
  1298       for (u = v_in; u != up_limit_in && _last_succ[u] == v_in;
  1299            u = _parent[u]) {
  1300         _last_succ[u] = _last_succ[u_out];
  1301       }
  1302       // Update _last_succ from v_out towards the root
  1303       if (join != old_rev_thread && v_in != old_rev_thread) {
  1304         for (u = v_out; u != up_limit_out && _last_succ[u] == old_last_succ;
  1305              u = _parent[u]) {
  1306           _last_succ[u] = old_rev_thread;
  1307         }
  1308       } else {
  1309         for (u = v_out; u != up_limit_out && _last_succ[u] == old_last_succ;
  1310              u = _parent[u]) {
  1311           _last_succ[u] = _last_succ[u_out];
  1312         }
  1313       }
  1314 
  1315       // Update _succ_num from v_in to join
  1316       for (u = v_in; u != join; u = _parent[u]) {
  1317         _succ_num[u] += old_succ_num;
  1318       }
  1319       // Update _succ_num from v_out to join
  1320       for (u = v_out; u != join; u = _parent[u]) {
  1321         _succ_num[u] -= old_succ_num;
  1322       }
  1323     }
  1324 
  1325     // Update potentials
  1326     void updatePotential() {
  1327       Cost sigma = _forward[u_in] ?
  1328         _pi[v_in] - _pi[u_in] - _cost[_pred[u_in]] :
  1329         _pi[v_in] - _pi[u_in] + _cost[_pred[u_in]];
  1330       if (_succ_num[u_in] > _node_num / 2) {
  1331         // Update in the upper subtree (which contains the root)
  1332         int before = _rev_thread[u_in];
  1333         int after = _thread[_last_succ[u_in]];
  1334         _thread[before] = after;
  1335         _pi[_root] -= sigma;
  1336         for (int u = _thread[_root]; u != _root; u = _thread[u]) {
  1337           _pi[u] -= sigma;
  1338         }
  1339         _thread[before] = u_in;
  1340       } else {
  1341         // Update in the lower subtree (which has been moved)
  1342         int end = _thread[_last_succ[u_in]];
  1343         for (int u = u_in; u != end; u = _thread[u]) {
  1344           _pi[u] += sigma;
  1345         }
  1346       }
  1347     }
  1348 
  1349     // Execute the algorithm
  1350     bool start(PivotRule pivot_rule) {
  1351       // Select the pivot rule implementation
  1352       switch (pivot_rule) {
  1353         case FIRST_ELIGIBLE:
  1354           return start<FirstEligiblePivotRule>();
  1355         case BEST_ELIGIBLE:
  1356           return start<BestEligiblePivotRule>();
  1357         case BLOCK_SEARCH:
  1358           return start<BlockSearchPivotRule>();
  1359         case CANDIDATE_LIST:
  1360           return start<CandidateListPivotRule>();
  1361         case ALTERING_LIST:
  1362           return start<AlteringListPivotRule>();
  1363       }
  1364       return false;
  1365     }
  1366 
  1367     template <typename PivotRuleImpl>
  1368     bool start() {
  1369       PivotRuleImpl pivot(*this);
  1370 
  1371       // Execute the Network Simplex algorithm
  1372       while (pivot.findEnteringArc()) {
  1373         findJoinNode();
  1374         bool change = findLeavingArc();
  1375         changeFlow(change);
  1376         if (change) {
  1377           updateTreeStructure();
  1378           updatePotential();
  1379         }
  1380       }
  1381 
  1382       // Check if the flow amount equals zero on all the artificial arcs
  1383       for (int e = _arc_num; e != _arc_num + _node_num; ++e) {
  1384         if (_flow[e] > 0) return false;
  1385       }
  1386 
  1387       // Copy flow values to _flow_map
  1388       if (_plower) {
  1389         for (int i = 0; i != _arc_num; ++i) {
  1390           Arc e = _arc_ref[i];
  1391           _flow_map->set(e, (*_plower)[e] + _flow[i]);
  1392         }
  1393       } else {
  1394         for (int i = 0; i != _arc_num; ++i) {
  1395           _flow_map->set(_arc_ref[i], _flow[i]);
  1396         }
  1397       }
  1398       // Copy potential values to _potential_map
  1399       for (NodeIt n(_graph); n != INVALID; ++n) {
  1400         _potential_map->set(n, _pi[_node_id[n]]);
  1401       }
  1402 
  1403       return true;
  1404     }
  1405 
  1406   }; //class NetworkSimplex
  1407 
  1408   ///@}
  1409 
  1410 } //namespace lemon
  1411 
  1412 #endif //LEMON_NETWORK_SIMPLEX_H