lemon/network_simplex.h
author Peter Kovacs <kpeter@inf.elte.hu>
Fri, 25 Sep 2009 11:58:34 +0200
changeset 776 be48a648d28f
parent 710 8b0df68370a4
child 777 4a45c8808b33
permissions -rw-r--r--
Small improvements for NetworkSimplex (#298)
     1 /* -*- mode: C++; indent-tabs-mode: nil; -*-
     2  *
     3  * This file is a part of LEMON, a generic C++ optimization library.
     4  *
     5  * Copyright (C) 2003-2009
     6  * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
     7  * (Egervary Research Group on Combinatorial Optimization, EGRES).
     8  *
     9  * Permission to use, modify and distribute this software is granted
    10  * provided that this copyright notice appears in all copies. For
    11  * precise terms see the accompanying LICENSE file.
    12  *
    13  * This software is provided "AS IS" with no warranty of any kind,
    14  * express or implied, and with no claim as to its suitability for any
    15  * purpose.
    16  *
    17  */
    18 
    19 #ifndef LEMON_NETWORK_SIMPLEX_H
    20 #define LEMON_NETWORK_SIMPLEX_H
    21 
    22 /// \ingroup min_cost_flow_algs
    23 ///
    24 /// \file
    25 /// \brief Network Simplex algorithm for finding a minimum cost flow.
    26 
    27 #include <vector>
    28 #include <limits>
    29 #include <algorithm>
    30 
    31 #include <lemon/core.h>
    32 #include <lemon/math.h>
    33 
    34 namespace lemon {
    35 
    36   /// \addtogroup min_cost_flow_algs
    37   /// @{
    38 
    39   /// \brief Implementation of the primal Network Simplex algorithm
    40   /// for finding a \ref min_cost_flow "minimum cost flow".
    41   ///
    42   /// \ref NetworkSimplex implements the primal Network Simplex algorithm
    43   /// for finding a \ref min_cost_flow "minimum cost flow".
    44   /// This algorithm is a specialized version of the linear programming
    45   /// simplex method directly for the minimum cost flow problem.
    46   /// It is one of the most efficient solution methods.
    47   ///
    48   /// In general this class is the fastest implementation available
    49   /// in LEMON for the minimum cost flow problem.
    50   /// Moreover it supports both directions of the supply/demand inequality
    51   /// constraints. For more information see \ref SupplyType.
    52   ///
    53   /// Most of the parameters of the problem (except for the digraph)
    54   /// can be given using separate functions, and the algorithm can be
    55   /// executed using the \ref run() function. If some parameters are not
    56   /// specified, then default values will be used.
    57   ///
    58   /// \tparam GR The digraph type the algorithm runs on.
    59   /// \tparam V The value type used for flow amounts, capacity bounds
    60   /// and supply values in the algorithm. By default it is \c int.
    61   /// \tparam C The value type used for costs and potentials in the
    62   /// algorithm. By default it is the same as \c V.
    63   ///
    64   /// \warning Both value types must be signed and all input data must
    65   /// be integer.
    66   ///
    67   /// \note %NetworkSimplex provides five different pivot rule
    68   /// implementations, from which the most efficient one is used
    69   /// by default. For more information see \ref PivotRule.
    70   template <typename GR, typename V = int, typename C = V>
    71   class NetworkSimplex
    72   {
    73   public:
    74 
    75     /// The type of the flow amounts, capacity bounds and supply values
    76     typedef V Value;
    77     /// The type of the arc costs
    78     typedef C Cost;
    79 
    80   public:
    81 
    82     /// \brief Problem type constants for the \c run() function.
    83     ///
    84     /// Enum type containing the problem type constants that can be
    85     /// returned by the \ref run() function of the algorithm.
    86     enum ProblemType {
    87       /// The problem has no feasible solution (flow).
    88       INFEASIBLE,
    89       /// The problem has optimal solution (i.e. it is feasible and
    90       /// bounded), and the algorithm has found optimal flow and node
    91       /// potentials (primal and dual solutions).
    92       OPTIMAL,
    93       /// The objective function of the problem is unbounded, i.e.
    94       /// there is a directed cycle having negative total cost and
    95       /// infinite upper bound.
    96       UNBOUNDED
    97     };
    98     
    99     /// \brief Constants for selecting the type of the supply constraints.
   100     ///
   101     /// Enum type containing constants for selecting the supply type,
   102     /// i.e. the direction of the inequalities in the supply/demand
   103     /// constraints of the \ref min_cost_flow "minimum cost flow problem".
   104     ///
   105     /// The default supply type is \c GEQ, the \c LEQ type can be
   106     /// selected using \ref supplyType().
   107     /// The equality form is a special case of both supply types.
   108     enum SupplyType {
   109       /// This option means that there are <em>"greater or equal"</em>
   110       /// supply/demand constraints in the definition of the problem.
   111       GEQ,
   112       /// This option means that there are <em>"less or equal"</em>
   113       /// supply/demand constraints in the definition of the problem.
   114       LEQ
   115     };
   116     
   117     /// \brief Constants for selecting the pivot rule.
   118     ///
   119     /// Enum type containing constants for selecting the pivot rule for
   120     /// the \ref run() function.
   121     ///
   122     /// \ref NetworkSimplex provides five different pivot rule
   123     /// implementations that significantly affect the running time
   124     /// of the algorithm.
   125     /// By default \ref BLOCK_SEARCH "Block Search" is used, which
   126     /// proved to be the most efficient and the most robust on various
   127     /// test inputs according to our benchmark tests.
   128     /// However another pivot rule can be selected using the \ref run()
   129     /// function with the proper parameter.
   130     enum PivotRule {
   131 
   132       /// The First Eligible pivot rule.
   133       /// The next eligible arc is selected in a wraparound fashion
   134       /// in every iteration.
   135       FIRST_ELIGIBLE,
   136 
   137       /// The Best Eligible pivot rule.
   138       /// The best eligible arc is selected in every iteration.
   139       BEST_ELIGIBLE,
   140 
   141       /// The Block Search pivot rule.
   142       /// A specified number of arcs are examined in every iteration
   143       /// in a wraparound fashion and the best eligible arc is selected
   144       /// from this block.
   145       BLOCK_SEARCH,
   146 
   147       /// The Candidate List pivot rule.
   148       /// In a major iteration a candidate list is built from eligible arcs
   149       /// in a wraparound fashion and in the following minor iterations
   150       /// the best eligible arc is selected from this list.
   151       CANDIDATE_LIST,
   152 
   153       /// The Altering Candidate List pivot rule.
   154       /// It is a modified version of the Candidate List method.
   155       /// It keeps only the several best eligible arcs from the former
   156       /// candidate list and extends this list in every iteration.
   157       ALTERING_LIST
   158     };
   159     
   160   private:
   161 
   162     TEMPLATE_DIGRAPH_TYPEDEFS(GR);
   163 
   164     typedef std::vector<int> IntVector;
   165     typedef std::vector<bool> BoolVector;
   166     typedef std::vector<Value> ValueVector;
   167     typedef std::vector<Cost> CostVector;
   168 
   169     // State constants for arcs
   170     enum ArcStateEnum {
   171       STATE_UPPER = -1,
   172       STATE_TREE  =  0,
   173       STATE_LOWER =  1
   174     };
   175 
   176   private:
   177 
   178     // Data related to the underlying digraph
   179     const GR &_graph;
   180     int _node_num;
   181     int _arc_num;
   182     int _all_arc_num;
   183     int _search_arc_num;
   184 
   185     // Parameters of the problem
   186     bool _have_lower;
   187     SupplyType _stype;
   188     Value _sum_supply;
   189 
   190     // Data structures for storing the digraph
   191     IntNodeMap _node_id;
   192     IntArcMap _arc_id;
   193     IntVector _source;
   194     IntVector _target;
   195 
   196     // Node and arc data
   197     ValueVector _lower;
   198     ValueVector _upper;
   199     ValueVector _cap;
   200     CostVector _cost;
   201     ValueVector _supply;
   202     ValueVector _flow;
   203     CostVector _pi;
   204 
   205     // Data for storing the spanning tree structure
   206     IntVector _parent;
   207     IntVector _pred;
   208     IntVector _thread;
   209     IntVector _rev_thread;
   210     IntVector _succ_num;
   211     IntVector _last_succ;
   212     IntVector _dirty_revs;
   213     BoolVector _forward;
   214     IntVector _state;
   215     int _root;
   216 
   217     // Temporary data used in the current pivot iteration
   218     int in_arc, join, u_in, v_in, u_out, v_out;
   219     int first, second, right, last;
   220     int stem, par_stem, new_stem;
   221     Value delta;
   222 
   223   public:
   224   
   225     /// \brief Constant for infinite upper bounds (capacities).
   226     ///
   227     /// Constant for infinite upper bounds (capacities).
   228     /// It is \c std::numeric_limits<Value>::infinity() if available,
   229     /// \c std::numeric_limits<Value>::max() otherwise.
   230     const Value INF;
   231 
   232   private:
   233 
   234     // Implementation of the First Eligible pivot rule
   235     class FirstEligiblePivotRule
   236     {
   237     private:
   238 
   239       // References to the NetworkSimplex class
   240       const IntVector  &_source;
   241       const IntVector  &_target;
   242       const CostVector &_cost;
   243       const IntVector  &_state;
   244       const CostVector &_pi;
   245       int &_in_arc;
   246       int _search_arc_num;
   247 
   248       // Pivot rule data
   249       int _next_arc;
   250 
   251     public:
   252 
   253       // Constructor
   254       FirstEligiblePivotRule(NetworkSimplex &ns) :
   255         _source(ns._source), _target(ns._target),
   256         _cost(ns._cost), _state(ns._state), _pi(ns._pi),
   257         _in_arc(ns.in_arc), _search_arc_num(ns._search_arc_num),
   258         _next_arc(0)
   259       {}
   260 
   261       // Find next entering arc
   262       bool findEnteringArc() {
   263         Cost c;
   264         for (int e = _next_arc; e < _search_arc_num; ++e) {
   265           c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]);
   266           if (c < 0) {
   267             _in_arc = e;
   268             _next_arc = e + 1;
   269             return true;
   270           }
   271         }
   272         for (int e = 0; e < _next_arc; ++e) {
   273           c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]);
   274           if (c < 0) {
   275             _in_arc = e;
   276             _next_arc = e + 1;
   277             return true;
   278           }
   279         }
   280         return false;
   281       }
   282 
   283     }; //class FirstEligiblePivotRule
   284 
   285 
   286     // Implementation of the Best Eligible pivot rule
   287     class BestEligiblePivotRule
   288     {
   289     private:
   290 
   291       // References to the NetworkSimplex class
   292       const IntVector  &_source;
   293       const IntVector  &_target;
   294       const CostVector &_cost;
   295       const IntVector  &_state;
   296       const CostVector &_pi;
   297       int &_in_arc;
   298       int _search_arc_num;
   299 
   300     public:
   301 
   302       // Constructor
   303       BestEligiblePivotRule(NetworkSimplex &ns) :
   304         _source(ns._source), _target(ns._target),
   305         _cost(ns._cost), _state(ns._state), _pi(ns._pi),
   306         _in_arc(ns.in_arc), _search_arc_num(ns._search_arc_num)
   307       {}
   308 
   309       // Find next entering arc
   310       bool findEnteringArc() {
   311         Cost c, min = 0;
   312         for (int e = 0; e < _search_arc_num; ++e) {
   313           c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]);
   314           if (c < min) {
   315             min = c;
   316             _in_arc = e;
   317           }
   318         }
   319         return min < 0;
   320       }
   321 
   322     }; //class BestEligiblePivotRule
   323 
   324 
   325     // Implementation of the Block Search pivot rule
   326     class BlockSearchPivotRule
   327     {
   328     private:
   329 
   330       // References to the NetworkSimplex class
   331       const IntVector  &_source;
   332       const IntVector  &_target;
   333       const CostVector &_cost;
   334       const IntVector  &_state;
   335       const CostVector &_pi;
   336       int &_in_arc;
   337       int _search_arc_num;
   338 
   339       // Pivot rule data
   340       int _block_size;
   341       int _next_arc;
   342 
   343     public:
   344 
   345       // Constructor
   346       BlockSearchPivotRule(NetworkSimplex &ns) :
   347         _source(ns._source), _target(ns._target),
   348         _cost(ns._cost), _state(ns._state), _pi(ns._pi),
   349         _in_arc(ns.in_arc), _search_arc_num(ns._search_arc_num),
   350         _next_arc(0)
   351       {
   352         // The main parameters of the pivot rule
   353         const double BLOCK_SIZE_FACTOR = 0.5;
   354         const int MIN_BLOCK_SIZE = 10;
   355 
   356         _block_size = std::max( int(BLOCK_SIZE_FACTOR *
   357                                     std::sqrt(double(_search_arc_num))),
   358                                 MIN_BLOCK_SIZE );
   359       }
   360 
   361       // Find next entering arc
   362       bool findEnteringArc() {
   363         Cost c, min = 0;
   364         int cnt = _block_size;
   365         int e, min_arc = _next_arc;
   366         for (e = _next_arc; e < _search_arc_num; ++e) {
   367           c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]);
   368           if (c < min) {
   369             min = c;
   370             min_arc = e;
   371           }
   372           if (--cnt == 0) {
   373             if (min < 0) break;
   374             cnt = _block_size;
   375           }
   376         }
   377         if (min == 0 || cnt > 0) {
   378           for (e = 0; e < _next_arc; ++e) {
   379             c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]);
   380             if (c < min) {
   381               min = c;
   382               min_arc = e;
   383             }
   384             if (--cnt == 0) {
   385               if (min < 0) break;
   386               cnt = _block_size;
   387             }
   388           }
   389         }
   390         if (min >= 0) return false;
   391         _in_arc = min_arc;
   392         _next_arc = e;
   393         return true;
   394       }
   395 
   396     }; //class BlockSearchPivotRule
   397 
   398 
   399     // Implementation of the Candidate List pivot rule
   400     class CandidateListPivotRule
   401     {
   402     private:
   403 
   404       // References to the NetworkSimplex class
   405       const IntVector  &_source;
   406       const IntVector  &_target;
   407       const CostVector &_cost;
   408       const IntVector  &_state;
   409       const CostVector &_pi;
   410       int &_in_arc;
   411       int _search_arc_num;
   412 
   413       // Pivot rule data
   414       IntVector _candidates;
   415       int _list_length, _minor_limit;
   416       int _curr_length, _minor_count;
   417       int _next_arc;
   418 
   419     public:
   420 
   421       /// Constructor
   422       CandidateListPivotRule(NetworkSimplex &ns) :
   423         _source(ns._source), _target(ns._target),
   424         _cost(ns._cost), _state(ns._state), _pi(ns._pi),
   425         _in_arc(ns.in_arc), _search_arc_num(ns._search_arc_num),
   426         _next_arc(0)
   427       {
   428         // The main parameters of the pivot rule
   429         const double LIST_LENGTH_FACTOR = 1.0;
   430         const int MIN_LIST_LENGTH = 10;
   431         const double MINOR_LIMIT_FACTOR = 0.1;
   432         const int MIN_MINOR_LIMIT = 3;
   433 
   434         _list_length = std::max( int(LIST_LENGTH_FACTOR *
   435                                      std::sqrt(double(_search_arc_num))),
   436                                  MIN_LIST_LENGTH );
   437         _minor_limit = std::max( int(MINOR_LIMIT_FACTOR * _list_length),
   438                                  MIN_MINOR_LIMIT );
   439         _curr_length = _minor_count = 0;
   440         _candidates.resize(_list_length);
   441       }
   442 
   443       /// Find next entering arc
   444       bool findEnteringArc() {
   445         Cost min, c;
   446         int e, min_arc = _next_arc;
   447         if (_curr_length > 0 && _minor_count < _minor_limit) {
   448           // Minor iteration: select the best eligible arc from the
   449           // current candidate list
   450           ++_minor_count;
   451           min = 0;
   452           for (int i = 0; i < _curr_length; ++i) {
   453             e = _candidates[i];
   454             c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]);
   455             if (c < min) {
   456               min = c;
   457               min_arc = e;
   458             }
   459             if (c >= 0) {
   460               _candidates[i--] = _candidates[--_curr_length];
   461             }
   462           }
   463           if (min < 0) {
   464             _in_arc = min_arc;
   465             return true;
   466           }
   467         }
   468 
   469         // Major iteration: build a new candidate list
   470         min = 0;
   471         _curr_length = 0;
   472         for (e = _next_arc; e < _search_arc_num; ++e) {
   473           c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]);
   474           if (c < 0) {
   475             _candidates[_curr_length++] = e;
   476             if (c < min) {
   477               min = c;
   478               min_arc = e;
   479             }
   480             if (_curr_length == _list_length) break;
   481           }
   482         }
   483         if (_curr_length < _list_length) {
   484           for (e = 0; e < _next_arc; ++e) {
   485             c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]);
   486             if (c < 0) {
   487               _candidates[_curr_length++] = e;
   488               if (c < min) {
   489                 min = c;
   490                 min_arc = e;
   491               }
   492               if (_curr_length == _list_length) break;
   493             }
   494           }
   495         }
   496         if (_curr_length == 0) return false;
   497         _minor_count = 1;
   498         _in_arc = min_arc;
   499         _next_arc = e;
   500         return true;
   501       }
   502 
   503     }; //class CandidateListPivotRule
   504 
   505 
   506     // Implementation of the Altering Candidate List pivot rule
   507     class AlteringListPivotRule
   508     {
   509     private:
   510 
   511       // References to the NetworkSimplex class
   512       const IntVector  &_source;
   513       const IntVector  &_target;
   514       const CostVector &_cost;
   515       const IntVector  &_state;
   516       const CostVector &_pi;
   517       int &_in_arc;
   518       int _search_arc_num;
   519 
   520       // Pivot rule data
   521       int _block_size, _head_length, _curr_length;
   522       int _next_arc;
   523       IntVector _candidates;
   524       CostVector _cand_cost;
   525 
   526       // Functor class to compare arcs during sort of the candidate list
   527       class SortFunc
   528       {
   529       private:
   530         const CostVector &_map;
   531       public:
   532         SortFunc(const CostVector &map) : _map(map) {}
   533         bool operator()(int left, int right) {
   534           return _map[left] > _map[right];
   535         }
   536       };
   537 
   538       SortFunc _sort_func;
   539 
   540     public:
   541 
   542       // Constructor
   543       AlteringListPivotRule(NetworkSimplex &ns) :
   544         _source(ns._source), _target(ns._target),
   545         _cost(ns._cost), _state(ns._state), _pi(ns._pi),
   546         _in_arc(ns.in_arc), _search_arc_num(ns._search_arc_num),
   547         _next_arc(0), _cand_cost(ns._search_arc_num), _sort_func(_cand_cost)
   548       {
   549         // The main parameters of the pivot rule
   550         const double BLOCK_SIZE_FACTOR = 1.5;
   551         const int MIN_BLOCK_SIZE = 10;
   552         const double HEAD_LENGTH_FACTOR = 0.1;
   553         const int MIN_HEAD_LENGTH = 3;
   554 
   555         _block_size = std::max( int(BLOCK_SIZE_FACTOR *
   556                                     std::sqrt(double(_search_arc_num))),
   557                                 MIN_BLOCK_SIZE );
   558         _head_length = std::max( int(HEAD_LENGTH_FACTOR * _block_size),
   559                                  MIN_HEAD_LENGTH );
   560         _candidates.resize(_head_length + _block_size);
   561         _curr_length = 0;
   562       }
   563 
   564       // Find next entering arc
   565       bool findEnteringArc() {
   566         // Check the current candidate list
   567         int e;
   568         for (int i = 0; i < _curr_length; ++i) {
   569           e = _candidates[i];
   570           _cand_cost[e] = _state[e] *
   571             (_cost[e] + _pi[_source[e]] - _pi[_target[e]]);
   572           if (_cand_cost[e] >= 0) {
   573             _candidates[i--] = _candidates[--_curr_length];
   574           }
   575         }
   576 
   577         // Extend the list
   578         int cnt = _block_size;
   579         int last_arc = 0;
   580         int limit = _head_length;
   581 
   582         for (int e = _next_arc; e < _search_arc_num; ++e) {
   583           _cand_cost[e] = _state[e] *
   584             (_cost[e] + _pi[_source[e]] - _pi[_target[e]]);
   585           if (_cand_cost[e] < 0) {
   586             _candidates[_curr_length++] = e;
   587             last_arc = e;
   588           }
   589           if (--cnt == 0) {
   590             if (_curr_length > limit) break;
   591             limit = 0;
   592             cnt = _block_size;
   593           }
   594         }
   595         if (_curr_length <= limit) {
   596           for (int e = 0; e < _next_arc; ++e) {
   597             _cand_cost[e] = _state[e] *
   598               (_cost[e] + _pi[_source[e]] - _pi[_target[e]]);
   599             if (_cand_cost[e] < 0) {
   600               _candidates[_curr_length++] = e;
   601               last_arc = e;
   602             }
   603             if (--cnt == 0) {
   604               if (_curr_length > limit) break;
   605               limit = 0;
   606               cnt = _block_size;
   607             }
   608           }
   609         }
   610         if (_curr_length == 0) return false;
   611         _next_arc = last_arc + 1;
   612 
   613         // Make heap of the candidate list (approximating a partial sort)
   614         make_heap( _candidates.begin(), _candidates.begin() + _curr_length,
   615                    _sort_func );
   616 
   617         // Pop the first element of the heap
   618         _in_arc = _candidates[0];
   619         pop_heap( _candidates.begin(), _candidates.begin() + _curr_length,
   620                   _sort_func );
   621         _curr_length = std::min(_head_length, _curr_length - 1);
   622         return true;
   623       }
   624 
   625     }; //class AlteringListPivotRule
   626 
   627   public:
   628 
   629     /// \brief Constructor.
   630     ///
   631     /// The constructor of the class.
   632     ///
   633     /// \param graph The digraph the algorithm runs on.
   634     NetworkSimplex(const GR& graph) :
   635       _graph(graph), _node_id(graph), _arc_id(graph),
   636       INF(std::numeric_limits<Value>::has_infinity ?
   637           std::numeric_limits<Value>::infinity() :
   638           std::numeric_limits<Value>::max())
   639     {
   640       // Check the value types
   641       LEMON_ASSERT(std::numeric_limits<Value>::is_signed,
   642         "The flow type of NetworkSimplex must be signed");
   643       LEMON_ASSERT(std::numeric_limits<Cost>::is_signed,
   644         "The cost type of NetworkSimplex must be signed");
   645         
   646       // Resize vectors
   647       _node_num = countNodes(_graph);
   648       _arc_num = countArcs(_graph);
   649       int all_node_num = _node_num + 1;
   650       int max_arc_num = _arc_num + 2 * _node_num;
   651 
   652       _source.resize(max_arc_num);
   653       _target.resize(max_arc_num);
   654 
   655       _lower.resize(_arc_num);
   656       _upper.resize(_arc_num);
   657       _cap.resize(max_arc_num);
   658       _cost.resize(max_arc_num);
   659       _supply.resize(all_node_num);
   660       _flow.resize(max_arc_num);
   661       _pi.resize(all_node_num);
   662 
   663       _parent.resize(all_node_num);
   664       _pred.resize(all_node_num);
   665       _forward.resize(all_node_num);
   666       _thread.resize(all_node_num);
   667       _rev_thread.resize(all_node_num);
   668       _succ_num.resize(all_node_num);
   669       _last_succ.resize(all_node_num);
   670       _state.resize(max_arc_num);
   671 
   672       // Copy the graph (store the arcs in a mixed order)
   673       int i = 0;
   674       for (NodeIt n(_graph); n != INVALID; ++n, ++i) {
   675         _node_id[n] = i;
   676       }
   677       int k = std::max(int(std::sqrt(double(_arc_num))), 10);
   678       i = 0;
   679       for (ArcIt a(_graph); a != INVALID; ++a) {
   680         _arc_id[a] = i;
   681         _source[i] = _node_id[_graph.source(a)];
   682         _target[i] = _node_id[_graph.target(a)];
   683         if ((i += k) >= _arc_num) i = (i % k) + 1;
   684       }
   685       
   686       // Reset parameters
   687       reset();
   688     }
   689 
   690     /// \name Parameters
   691     /// The parameters of the algorithm can be specified using these
   692     /// functions.
   693 
   694     /// @{
   695 
   696     /// \brief Set the lower bounds on the arcs.
   697     ///
   698     /// This function sets the lower bounds on the arcs.
   699     /// If it is not used before calling \ref run(), the lower bounds
   700     /// will be set to zero on all arcs.
   701     ///
   702     /// \param map An arc map storing the lower bounds.
   703     /// Its \c Value type must be convertible to the \c Value type
   704     /// of the algorithm.
   705     ///
   706     /// \return <tt>(*this)</tt>
   707     template <typename LowerMap>
   708     NetworkSimplex& lowerMap(const LowerMap& map) {
   709       _have_lower = true;
   710       for (ArcIt a(_graph); a != INVALID; ++a) {
   711         _lower[_arc_id[a]] = map[a];
   712       }
   713       return *this;
   714     }
   715 
   716     /// \brief Set the upper bounds (capacities) on the arcs.
   717     ///
   718     /// This function sets the upper bounds (capacities) on the arcs.
   719     /// If it is not used before calling \ref run(), the upper bounds
   720     /// will be set to \ref INF on all arcs (i.e. the flow value will be
   721     /// unbounded from above on each arc).
   722     ///
   723     /// \param map An arc map storing the upper bounds.
   724     /// Its \c Value type must be convertible to the \c Value type
   725     /// of the algorithm.
   726     ///
   727     /// \return <tt>(*this)</tt>
   728     template<typename UpperMap>
   729     NetworkSimplex& upperMap(const UpperMap& map) {
   730       for (ArcIt a(_graph); a != INVALID; ++a) {
   731         _upper[_arc_id[a]] = map[a];
   732       }
   733       return *this;
   734     }
   735 
   736     /// \brief Set the costs of the arcs.
   737     ///
   738     /// This function sets the costs of the arcs.
   739     /// If it is not used before calling \ref run(), the costs
   740     /// will be set to \c 1 on all arcs.
   741     ///
   742     /// \param map An arc map storing the costs.
   743     /// Its \c Value type must be convertible to the \c Cost type
   744     /// of the algorithm.
   745     ///
   746     /// \return <tt>(*this)</tt>
   747     template<typename CostMap>
   748     NetworkSimplex& costMap(const CostMap& map) {
   749       for (ArcIt a(_graph); a != INVALID; ++a) {
   750         _cost[_arc_id[a]] = map[a];
   751       }
   752       return *this;
   753     }
   754 
   755     /// \brief Set the supply values of the nodes.
   756     ///
   757     /// This function sets the supply values of the nodes.
   758     /// If neither this function nor \ref stSupply() is used before
   759     /// calling \ref run(), the supply of each node will be set to zero.
   760     ///
   761     /// \param map A node map storing the supply values.
   762     /// Its \c Value type must be convertible to the \c Value type
   763     /// of the algorithm.
   764     ///
   765     /// \return <tt>(*this)</tt>
   766     template<typename SupplyMap>
   767     NetworkSimplex& supplyMap(const SupplyMap& map) {
   768       for (NodeIt n(_graph); n != INVALID; ++n) {
   769         _supply[_node_id[n]] = map[n];
   770       }
   771       return *this;
   772     }
   773 
   774     /// \brief Set single source and target nodes and a supply value.
   775     ///
   776     /// This function sets a single source node and a single target node
   777     /// and the required flow value.
   778     /// If neither this function nor \ref supplyMap() is used before
   779     /// calling \ref run(), the supply of each node will be set to zero.
   780     ///
   781     /// Using this function has the same effect as using \ref supplyMap()
   782     /// with such a map in which \c k is assigned to \c s, \c -k is
   783     /// assigned to \c t and all other nodes have zero supply value.
   784     ///
   785     /// \param s The source node.
   786     /// \param t The target node.
   787     /// \param k The required amount of flow from node \c s to node \c t
   788     /// (i.e. the supply of \c s and the demand of \c t).
   789     ///
   790     /// \return <tt>(*this)</tt>
   791     NetworkSimplex& stSupply(const Node& s, const Node& t, Value k) {
   792       for (int i = 0; i != _node_num; ++i) {
   793         _supply[i] = 0;
   794       }
   795       _supply[_node_id[s]] =  k;
   796       _supply[_node_id[t]] = -k;
   797       return *this;
   798     }
   799     
   800     /// \brief Set the type of the supply constraints.
   801     ///
   802     /// This function sets the type of the supply/demand constraints.
   803     /// If it is not used before calling \ref run(), the \ref GEQ supply
   804     /// type will be used.
   805     ///
   806     /// For more information see \ref SupplyType.
   807     ///
   808     /// \return <tt>(*this)</tt>
   809     NetworkSimplex& supplyType(SupplyType supply_type) {
   810       _stype = supply_type;
   811       return *this;
   812     }
   813 
   814     /// @}
   815 
   816     /// \name Execution Control
   817     /// The algorithm can be executed using \ref run().
   818 
   819     /// @{
   820 
   821     /// \brief Run the algorithm.
   822     ///
   823     /// This function runs the algorithm.
   824     /// The paramters can be specified using functions \ref lowerMap(),
   825     /// \ref upperMap(), \ref costMap(), \ref supplyMap(), \ref stSupply(), 
   826     /// \ref supplyType().
   827     /// For example,
   828     /// \code
   829     ///   NetworkSimplex<ListDigraph> ns(graph);
   830     ///   ns.lowerMap(lower).upperMap(upper).costMap(cost)
   831     ///     .supplyMap(sup).run();
   832     /// \endcode
   833     ///
   834     /// This function can be called more than once. All the parameters
   835     /// that have been given are kept for the next call, unless
   836     /// \ref reset() is called, thus only the modified parameters
   837     /// have to be set again. See \ref reset() for examples.
   838     /// However the underlying digraph must not be modified after this
   839     /// class have been constructed, since it copies and extends the graph.
   840     ///
   841     /// \param pivot_rule The pivot rule that will be used during the
   842     /// algorithm. For more information see \ref PivotRule.
   843     ///
   844     /// \return \c INFEASIBLE if no feasible flow exists,
   845     /// \n \c OPTIMAL if the problem has optimal solution
   846     /// (i.e. it is feasible and bounded), and the algorithm has found
   847     /// optimal flow and node potentials (primal and dual solutions),
   848     /// \n \c UNBOUNDED if the objective function of the problem is
   849     /// unbounded, i.e. there is a directed cycle having negative total
   850     /// cost and infinite upper bound.
   851     ///
   852     /// \see ProblemType, PivotRule
   853     ProblemType run(PivotRule pivot_rule = BLOCK_SEARCH) {
   854       if (!init()) return INFEASIBLE;
   855       return start(pivot_rule);
   856     }
   857 
   858     /// \brief Reset all the parameters that have been given before.
   859     ///
   860     /// This function resets all the paramaters that have been given
   861     /// before using functions \ref lowerMap(), \ref upperMap(),
   862     /// \ref costMap(), \ref supplyMap(), \ref stSupply(), \ref supplyType().
   863     ///
   864     /// It is useful for multiple run() calls. If this function is not
   865     /// used, all the parameters given before are kept for the next
   866     /// \ref run() call.
   867     /// However the underlying digraph must not be modified after this
   868     /// class have been constructed, since it copies and extends the graph.
   869     ///
   870     /// For example,
   871     /// \code
   872     ///   NetworkSimplex<ListDigraph> ns(graph);
   873     ///
   874     ///   // First run
   875     ///   ns.lowerMap(lower).upperMap(upper).costMap(cost)
   876     ///     .supplyMap(sup).run();
   877     ///
   878     ///   // Run again with modified cost map (reset() is not called,
   879     ///   // so only the cost map have to be set again)
   880     ///   cost[e] += 100;
   881     ///   ns.costMap(cost).run();
   882     ///
   883     ///   // Run again from scratch using reset()
   884     ///   // (the lower bounds will be set to zero on all arcs)
   885     ///   ns.reset();
   886     ///   ns.upperMap(capacity).costMap(cost)
   887     ///     .supplyMap(sup).run();
   888     /// \endcode
   889     ///
   890     /// \return <tt>(*this)</tt>
   891     NetworkSimplex& reset() {
   892       for (int i = 0; i != _node_num; ++i) {
   893         _supply[i] = 0;
   894       }
   895       for (int i = 0; i != _arc_num; ++i) {
   896         _lower[i] = 0;
   897         _upper[i] = INF;
   898         _cost[i] = 1;
   899       }
   900       _have_lower = false;
   901       _stype = GEQ;
   902       return *this;
   903     }
   904 
   905     /// @}
   906 
   907     /// \name Query Functions
   908     /// The results of the algorithm can be obtained using these
   909     /// functions.\n
   910     /// The \ref run() function must be called before using them.
   911 
   912     /// @{
   913 
   914     /// \brief Return the total cost of the found flow.
   915     ///
   916     /// This function returns the total cost of the found flow.
   917     /// Its complexity is O(e).
   918     ///
   919     /// \note The return type of the function can be specified as a
   920     /// template parameter. For example,
   921     /// \code
   922     ///   ns.totalCost<double>();
   923     /// \endcode
   924     /// It is useful if the total cost cannot be stored in the \c Cost
   925     /// type of the algorithm, which is the default return type of the
   926     /// function.
   927     ///
   928     /// \pre \ref run() must be called before using this function.
   929     template <typename Number>
   930     Number totalCost() const {
   931       Number c = 0;
   932       for (ArcIt a(_graph); a != INVALID; ++a) {
   933         int i = _arc_id[a];
   934         c += Number(_flow[i]) * Number(_cost[i]);
   935       }
   936       return c;
   937     }
   938 
   939 #ifndef DOXYGEN
   940     Cost totalCost() const {
   941       return totalCost<Cost>();
   942     }
   943 #endif
   944 
   945     /// \brief Return the flow on the given arc.
   946     ///
   947     /// This function returns the flow on the given arc.
   948     ///
   949     /// \pre \ref run() must be called before using this function.
   950     Value flow(const Arc& a) const {
   951       return _flow[_arc_id[a]];
   952     }
   953 
   954     /// \brief Return the flow map (the primal solution).
   955     ///
   956     /// This function copies the flow value on each arc into the given
   957     /// map. The \c Value type of the algorithm must be convertible to
   958     /// the \c Value type of the map.
   959     ///
   960     /// \pre \ref run() must be called before using this function.
   961     template <typename FlowMap>
   962     void flowMap(FlowMap &map) const {
   963       for (ArcIt a(_graph); a != INVALID; ++a) {
   964         map.set(a, _flow[_arc_id[a]]);
   965       }
   966     }
   967 
   968     /// \brief Return the potential (dual value) of the given node.
   969     ///
   970     /// This function returns the potential (dual value) of the
   971     /// given node.
   972     ///
   973     /// \pre \ref run() must be called before using this function.
   974     Cost potential(const Node& n) const {
   975       return _pi[_node_id[n]];
   976     }
   977 
   978     /// \brief Return the potential map (the dual solution).
   979     ///
   980     /// This function copies the potential (dual value) of each node
   981     /// into the given map.
   982     /// The \c Cost type of the algorithm must be convertible to the
   983     /// \c Value type of the map.
   984     ///
   985     /// \pre \ref run() must be called before using this function.
   986     template <typename PotentialMap>
   987     void potentialMap(PotentialMap &map) const {
   988       for (NodeIt n(_graph); n != INVALID; ++n) {
   989         map.set(n, _pi[_node_id[n]]);
   990       }
   991     }
   992 
   993     /// @}
   994 
   995   private:
   996 
   997     // Initialize internal data structures
   998     bool init() {
   999       if (_node_num == 0) return false;
  1000 
  1001       // Check the sum of supply values
  1002       _sum_supply = 0;
  1003       for (int i = 0; i != _node_num; ++i) {
  1004         _sum_supply += _supply[i];
  1005       }
  1006       if ( !((_stype == GEQ && _sum_supply <= 0) ||
  1007              (_stype == LEQ && _sum_supply >= 0)) ) return false;
  1008 
  1009       // Remove non-zero lower bounds
  1010       if (_have_lower) {
  1011         for (int i = 0; i != _arc_num; ++i) {
  1012           Value c = _lower[i];
  1013           if (c >= 0) {
  1014             _cap[i] = _upper[i] < INF ? _upper[i] - c : INF;
  1015           } else {
  1016             _cap[i] = _upper[i] < INF + c ? _upper[i] - c : INF;
  1017           }
  1018           _supply[_source[i]] -= c;
  1019           _supply[_target[i]] += c;
  1020         }
  1021       } else {
  1022         for (int i = 0; i != _arc_num; ++i) {
  1023           _cap[i] = _upper[i];
  1024         }
  1025       }
  1026 
  1027       // Initialize artifical cost
  1028       Cost ART_COST;
  1029       if (std::numeric_limits<Cost>::is_exact) {
  1030         ART_COST = std::numeric_limits<Cost>::max() / 2 + 1;
  1031       } else {
  1032         ART_COST = std::numeric_limits<Cost>::min();
  1033         for (int i = 0; i != _arc_num; ++i) {
  1034           if (_cost[i] > ART_COST) ART_COST = _cost[i];
  1035         }
  1036         ART_COST = (ART_COST + 1) * _node_num;
  1037       }
  1038 
  1039       // Initialize arc maps
  1040       for (int i = 0; i != _arc_num; ++i) {
  1041         _flow[i] = 0;
  1042         _state[i] = STATE_LOWER;
  1043       }
  1044       
  1045       // Set data for the artificial root node
  1046       _root = _node_num;
  1047       _parent[_root] = -1;
  1048       _pred[_root] = -1;
  1049       _thread[_root] = 0;
  1050       _rev_thread[0] = _root;
  1051       _succ_num[_root] = _node_num + 1;
  1052       _last_succ[_root] = _root - 1;
  1053       _supply[_root] = -_sum_supply;
  1054       _pi[_root] = 0;
  1055 
  1056       // Add artificial arcs and initialize the spanning tree data structure
  1057       if (_sum_supply == 0) {
  1058         // EQ supply constraints
  1059         _search_arc_num = _arc_num;
  1060         _all_arc_num = _arc_num + _node_num;
  1061         for (int u = 0, e = _arc_num; u != _node_num; ++u, ++e) {
  1062           _parent[u] = _root;
  1063           _pred[u] = e;
  1064           _thread[u] = u + 1;
  1065           _rev_thread[u + 1] = u;
  1066           _succ_num[u] = 1;
  1067           _last_succ[u] = u;
  1068           _cap[e] = INF;
  1069           _state[e] = STATE_TREE;
  1070           if (_supply[u] >= 0) {
  1071             _forward[u] = true;
  1072             _pi[u] = 0;
  1073             _source[e] = u;
  1074             _target[e] = _root;
  1075             _flow[e] = _supply[u];
  1076             _cost[e] = 0;
  1077           } else {
  1078             _forward[u] = false;
  1079             _pi[u] = ART_COST;
  1080             _source[e] = _root;
  1081             _target[e] = u;
  1082             _flow[e] = -_supply[u];
  1083             _cost[e] = ART_COST;
  1084           }
  1085         }
  1086       }
  1087       else if (_sum_supply > 0) {
  1088         // LEQ supply constraints
  1089         _search_arc_num = _arc_num + _node_num;
  1090         int f = _arc_num + _node_num;
  1091         for (int u = 0, e = _arc_num; u != _node_num; ++u, ++e) {
  1092           _parent[u] = _root;
  1093           _thread[u] = u + 1;
  1094           _rev_thread[u + 1] = u;
  1095           _succ_num[u] = 1;
  1096           _last_succ[u] = u;
  1097           if (_supply[u] >= 0) {
  1098             _forward[u] = true;
  1099             _pi[u] = 0;
  1100             _pred[u] = e;
  1101             _source[e] = u;
  1102             _target[e] = _root;
  1103             _cap[e] = INF;
  1104             _flow[e] = _supply[u];
  1105             _cost[e] = 0;
  1106             _state[e] = STATE_TREE;
  1107           } else {
  1108             _forward[u] = false;
  1109             _pi[u] = ART_COST;
  1110             _pred[u] = f;
  1111             _source[f] = _root;
  1112             _target[f] = u;
  1113             _cap[f] = INF;
  1114             _flow[f] = -_supply[u];
  1115             _cost[f] = ART_COST;
  1116             _state[f] = STATE_TREE;
  1117             _source[e] = u;
  1118             _target[e] = _root;
  1119             _cap[e] = INF;
  1120             _flow[e] = 0;
  1121             _cost[e] = 0;
  1122             _state[e] = STATE_LOWER;
  1123             ++f;
  1124           }
  1125         }
  1126         _all_arc_num = f;
  1127       }
  1128       else {
  1129         // GEQ supply constraints
  1130         _search_arc_num = _arc_num + _node_num;
  1131         int f = _arc_num + _node_num;
  1132         for (int u = 0, e = _arc_num; u != _node_num; ++u, ++e) {
  1133           _parent[u] = _root;
  1134           _thread[u] = u + 1;
  1135           _rev_thread[u + 1] = u;
  1136           _succ_num[u] = 1;
  1137           _last_succ[u] = u;
  1138           if (_supply[u] <= 0) {
  1139             _forward[u] = false;
  1140             _pi[u] = 0;
  1141             _pred[u] = e;
  1142             _source[e] = _root;
  1143             _target[e] = u;
  1144             _cap[e] = INF;
  1145             _flow[e] = -_supply[u];
  1146             _cost[e] = 0;
  1147             _state[e] = STATE_TREE;
  1148           } else {
  1149             _forward[u] = true;
  1150             _pi[u] = -ART_COST;
  1151             _pred[u] = f;
  1152             _source[f] = u;
  1153             _target[f] = _root;
  1154             _cap[f] = INF;
  1155             _flow[f] = _supply[u];
  1156             _state[f] = STATE_TREE;
  1157             _cost[f] = ART_COST;
  1158             _source[e] = _root;
  1159             _target[e] = u;
  1160             _cap[e] = INF;
  1161             _flow[e] = 0;
  1162             _cost[e] = 0;
  1163             _state[e] = STATE_LOWER;
  1164             ++f;
  1165           }
  1166         }
  1167         _all_arc_num = f;
  1168       }
  1169 
  1170       return true;
  1171     }
  1172 
  1173     // Find the join node
  1174     void findJoinNode() {
  1175       int u = _source[in_arc];
  1176       int v = _target[in_arc];
  1177       while (u != v) {
  1178         if (_succ_num[u] < _succ_num[v]) {
  1179           u = _parent[u];
  1180         } else {
  1181           v = _parent[v];
  1182         }
  1183       }
  1184       join = u;
  1185     }
  1186 
  1187     // Find the leaving arc of the cycle and returns true if the
  1188     // leaving arc is not the same as the entering arc
  1189     bool findLeavingArc() {
  1190       // Initialize first and second nodes according to the direction
  1191       // of the cycle
  1192       if (_state[in_arc] == STATE_LOWER) {
  1193         first  = _source[in_arc];
  1194         second = _target[in_arc];
  1195       } else {
  1196         first  = _target[in_arc];
  1197         second = _source[in_arc];
  1198       }
  1199       delta = _cap[in_arc];
  1200       int result = 0;
  1201       Value d;
  1202       int e;
  1203 
  1204       // Search the cycle along the path form the first node to the root
  1205       for (int u = first; u != join; u = _parent[u]) {
  1206         e = _pred[u];
  1207         d = _forward[u] ?
  1208           _flow[e] : (_cap[e] == INF ? INF : _cap[e] - _flow[e]);
  1209         if (d < delta) {
  1210           delta = d;
  1211           u_out = u;
  1212           result = 1;
  1213         }
  1214       }
  1215       // Search the cycle along the path form the second node to the root
  1216       for (int u = second; u != join; u = _parent[u]) {
  1217         e = _pred[u];
  1218         d = _forward[u] ? 
  1219           (_cap[e] == INF ? INF : _cap[e] - _flow[e]) : _flow[e];
  1220         if (d <= delta) {
  1221           delta = d;
  1222           u_out = u;
  1223           result = 2;
  1224         }
  1225       }
  1226 
  1227       if (result == 1) {
  1228         u_in = first;
  1229         v_in = second;
  1230       } else {
  1231         u_in = second;
  1232         v_in = first;
  1233       }
  1234       return result != 0;
  1235     }
  1236 
  1237     // Change _flow and _state vectors
  1238     void changeFlow(bool change) {
  1239       // Augment along the cycle
  1240       if (delta > 0) {
  1241         Value val = _state[in_arc] * delta;
  1242         _flow[in_arc] += val;
  1243         for (int u = _source[in_arc]; u != join; u = _parent[u]) {
  1244           _flow[_pred[u]] += _forward[u] ? -val : val;
  1245         }
  1246         for (int u = _target[in_arc]; u != join; u = _parent[u]) {
  1247           _flow[_pred[u]] += _forward[u] ? val : -val;
  1248         }
  1249       }
  1250       // Update the state of the entering and leaving arcs
  1251       if (change) {
  1252         _state[in_arc] = STATE_TREE;
  1253         _state[_pred[u_out]] =
  1254           (_flow[_pred[u_out]] == 0) ? STATE_LOWER : STATE_UPPER;
  1255       } else {
  1256         _state[in_arc] = -_state[in_arc];
  1257       }
  1258     }
  1259 
  1260     // Update the tree structure
  1261     void updateTreeStructure() {
  1262       int u, w;
  1263       int old_rev_thread = _rev_thread[u_out];
  1264       int old_succ_num = _succ_num[u_out];
  1265       int old_last_succ = _last_succ[u_out];
  1266       v_out = _parent[u_out];
  1267 
  1268       u = _last_succ[u_in];  // the last successor of u_in
  1269       right = _thread[u];    // the node after it
  1270 
  1271       // Handle the case when old_rev_thread equals to v_in
  1272       // (it also means that join and v_out coincide)
  1273       if (old_rev_thread == v_in) {
  1274         last = _thread[_last_succ[u_out]];
  1275       } else {
  1276         last = _thread[v_in];
  1277       }
  1278 
  1279       // Update _thread and _parent along the stem nodes (i.e. the nodes
  1280       // between u_in and u_out, whose parent have to be changed)
  1281       _thread[v_in] = stem = u_in;
  1282       _dirty_revs.clear();
  1283       _dirty_revs.push_back(v_in);
  1284       par_stem = v_in;
  1285       while (stem != u_out) {
  1286         // Insert the next stem node into the thread list
  1287         new_stem = _parent[stem];
  1288         _thread[u] = new_stem;
  1289         _dirty_revs.push_back(u);
  1290 
  1291         // Remove the subtree of stem from the thread list
  1292         w = _rev_thread[stem];
  1293         _thread[w] = right;
  1294         _rev_thread[right] = w;
  1295 
  1296         // Change the parent node and shift stem nodes
  1297         _parent[stem] = par_stem;
  1298         par_stem = stem;
  1299         stem = new_stem;
  1300 
  1301         // Update u and right
  1302         u = _last_succ[stem] == _last_succ[par_stem] ?
  1303           _rev_thread[par_stem] : _last_succ[stem];
  1304         right = _thread[u];
  1305       }
  1306       _parent[u_out] = par_stem;
  1307       _thread[u] = last;
  1308       _rev_thread[last] = u;
  1309       _last_succ[u_out] = u;
  1310 
  1311       // Remove the subtree of u_out from the thread list except for
  1312       // the case when old_rev_thread equals to v_in
  1313       // (it also means that join and v_out coincide)
  1314       if (old_rev_thread != v_in) {
  1315         _thread[old_rev_thread] = right;
  1316         _rev_thread[right] = old_rev_thread;
  1317       }
  1318 
  1319       // Update _rev_thread using the new _thread values
  1320       for (int i = 0; i < int(_dirty_revs.size()); ++i) {
  1321         u = _dirty_revs[i];
  1322         _rev_thread[_thread[u]] = u;
  1323       }
  1324 
  1325       // Update _pred, _forward, _last_succ and _succ_num for the
  1326       // stem nodes from u_out to u_in
  1327       int tmp_sc = 0, tmp_ls = _last_succ[u_out];
  1328       u = u_out;
  1329       while (u != u_in) {
  1330         w = _parent[u];
  1331         _pred[u] = _pred[w];
  1332         _forward[u] = !_forward[w];
  1333         tmp_sc += _succ_num[u] - _succ_num[w];
  1334         _succ_num[u] = tmp_sc;
  1335         _last_succ[w] = tmp_ls;
  1336         u = w;
  1337       }
  1338       _pred[u_in] = in_arc;
  1339       _forward[u_in] = (u_in == _source[in_arc]);
  1340       _succ_num[u_in] = old_succ_num;
  1341 
  1342       // Set limits for updating _last_succ form v_in and v_out
  1343       // towards the root
  1344       int up_limit_in = -1;
  1345       int up_limit_out = -1;
  1346       if (_last_succ[join] == v_in) {
  1347         up_limit_out = join;
  1348       } else {
  1349         up_limit_in = join;
  1350       }
  1351 
  1352       // Update _last_succ from v_in towards the root
  1353       for (u = v_in; u != up_limit_in && _last_succ[u] == v_in;
  1354            u = _parent[u]) {
  1355         _last_succ[u] = _last_succ[u_out];
  1356       }
  1357       // Update _last_succ from v_out towards the root
  1358       if (join != old_rev_thread && v_in != old_rev_thread) {
  1359         for (u = v_out; u != up_limit_out && _last_succ[u] == old_last_succ;
  1360              u = _parent[u]) {
  1361           _last_succ[u] = old_rev_thread;
  1362         }
  1363       } else {
  1364         for (u = v_out; u != up_limit_out && _last_succ[u] == old_last_succ;
  1365              u = _parent[u]) {
  1366           _last_succ[u] = _last_succ[u_out];
  1367         }
  1368       }
  1369 
  1370       // Update _succ_num from v_in to join
  1371       for (u = v_in; u != join; u = _parent[u]) {
  1372         _succ_num[u] += old_succ_num;
  1373       }
  1374       // Update _succ_num from v_out to join
  1375       for (u = v_out; u != join; u = _parent[u]) {
  1376         _succ_num[u] -= old_succ_num;
  1377       }
  1378     }
  1379 
  1380     // Update potentials
  1381     void updatePotential() {
  1382       Cost sigma = _forward[u_in] ?
  1383         _pi[v_in] - _pi[u_in] - _cost[_pred[u_in]] :
  1384         _pi[v_in] - _pi[u_in] + _cost[_pred[u_in]];
  1385       // Update potentials in the subtree, which has been moved
  1386       int end = _thread[_last_succ[u_in]];
  1387       for (int u = u_in; u != end; u = _thread[u]) {
  1388         _pi[u] += sigma;
  1389       }
  1390     }
  1391 
  1392     // Execute the algorithm
  1393     ProblemType start(PivotRule pivot_rule) {
  1394       // Select the pivot rule implementation
  1395       switch (pivot_rule) {
  1396         case FIRST_ELIGIBLE:
  1397           return start<FirstEligiblePivotRule>();
  1398         case BEST_ELIGIBLE:
  1399           return start<BestEligiblePivotRule>();
  1400         case BLOCK_SEARCH:
  1401           return start<BlockSearchPivotRule>();
  1402         case CANDIDATE_LIST:
  1403           return start<CandidateListPivotRule>();
  1404         case ALTERING_LIST:
  1405           return start<AlteringListPivotRule>();
  1406       }
  1407       return INFEASIBLE; // avoid warning
  1408     }
  1409 
  1410     template <typename PivotRuleImpl>
  1411     ProblemType start() {
  1412       PivotRuleImpl pivot(*this);
  1413 
  1414       // Execute the Network Simplex algorithm
  1415       while (pivot.findEnteringArc()) {
  1416         findJoinNode();
  1417         bool change = findLeavingArc();
  1418         if (delta >= INF) return UNBOUNDED;
  1419         changeFlow(change);
  1420         if (change) {
  1421           updateTreeStructure();
  1422           updatePotential();
  1423         }
  1424       }
  1425       
  1426       // Check feasibility
  1427       for (int e = _search_arc_num; e != _all_arc_num; ++e) {
  1428         if (_flow[e] != 0) return INFEASIBLE;
  1429       }
  1430 
  1431       // Transform the solution and the supply map to the original form
  1432       if (_have_lower) {
  1433         for (int i = 0; i != _arc_num; ++i) {
  1434           Value c = _lower[i];
  1435           if (c != 0) {
  1436             _flow[i] += c;
  1437             _supply[_source[i]] += c;
  1438             _supply[_target[i]] -= c;
  1439           }
  1440         }
  1441       }
  1442       
  1443       // Shift potentials to meet the requirements of the GEQ/LEQ type
  1444       // optimality conditions
  1445       if (_sum_supply == 0) {
  1446         if (_stype == GEQ) {
  1447           Cost max_pot = std::numeric_limits<Cost>::min();
  1448           for (int i = 0; i != _node_num; ++i) {
  1449             if (_pi[i] > max_pot) max_pot = _pi[i];
  1450           }
  1451           if (max_pot > 0) {
  1452             for (int i = 0; i != _node_num; ++i)
  1453               _pi[i] -= max_pot;
  1454           }
  1455         } else {
  1456           Cost min_pot = std::numeric_limits<Cost>::max();
  1457           for (int i = 0; i != _node_num; ++i) {
  1458             if (_pi[i] < min_pot) min_pot = _pi[i];
  1459           }
  1460           if (min_pot < 0) {
  1461             for (int i = 0; i != _node_num; ++i)
  1462               _pi[i] -= min_pot;
  1463           }
  1464         }
  1465       }
  1466 
  1467       return OPTIMAL;
  1468     }
  1469 
  1470   }; //class NetworkSimplex
  1471 
  1472   ///@}
  1473 
  1474 } //namespace lemon
  1475 
  1476 #endif //LEMON_NETWORK_SIMPLEX_H