lemon/pairing_heap.h
author Peter Kovacs <kpeter@inf.elte.hu>
Thu, 09 Jul 2009 02:38:01 +0200
changeset 748 d1a9224f1e30
child 749 bdc7dfc8c054
permissions -rw-r--r--
Add fourary, k-ary, pairing and binomial heaps (#301)
These structures were implemented by Dorian Batha.
     1 /* -*- C++ -*-
     2  *
     3  * This file is a part of LEMON, a generic C++ optimization library
     4  *
     5  * Copyright (C) 2003-2008
     6  * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
     7  * (Egervary Research Group on Combinatorial Optimization, EGRES).
     8  *
     9  * Permission to use, modify and distribute this software is granted
    10  * provided that this copyright notice appears in all copies. For
    11  * precise terms see the accompanying LICENSE file.
    12  *
    13  * This software is provided "AS IS" with no warranty of any kind,
    14  * express or implied, and with no claim as to its suitability for any
    15  * purpose.
    16  *
    17  */
    18 
    19 #ifndef LEMON_PAIRING_HEAP_H
    20 #define LEMON_PAIRING_HEAP_H
    21 
    22 ///\file
    23 ///\ingroup auxdat
    24 ///\brief Pairing Heap implementation.
    25 
    26 #include <vector>
    27 #include <functional>
    28 #include <lemon/math.h>
    29 
    30 namespace lemon {
    31 
    32   /// \ingroup auxdat
    33   ///
    34   ///\brief Pairing Heap.
    35   ///
    36   ///This class implements the \e Pairing \e heap data structure. A \e heap
    37   ///is a data structure for storing items with specified values called \e
    38   ///priorities in such a way that finding the item with minimum priority is
    39   ///efficient. \c Compare specifies the ordering of the priorities. In a heap
    40   ///one can change the priority of an item, add or erase an item, etc.
    41   ///
    42   ///The methods \ref increase and \ref erase are not efficient in a Pairing
    43   ///heap. In case of many calls to these operations, it is better to use a
    44   ///\ref BinHeap "binary heap".
    45   ///
    46   ///\param _Prio Type of the priority of the items.
    47   ///\param _ItemIntMap A read and writable Item int map, used internally
    48   ///to handle the cross references.
    49   ///\param _Compare A class for the ordering of the priorities. The
    50   ///default is \c std::less<_Prio>.
    51   ///
    52   ///\sa BinHeap
    53   ///\sa Dijkstra
    54   ///\author Dorian Batha
    55 
    56 #ifdef DOXYGEN
    57   template <typename _Prio,
    58             typename _ItemIntMap,
    59             typename _Compare>
    60 #else
    61   template <typename _Prio,
    62             typename _ItemIntMap,
    63             typename _Compare = std::less<_Prio> >
    64 #endif
    65   class PairingHeap {
    66   public:
    67     typedef _ItemIntMap ItemIntMap;
    68     typedef _Prio Prio;
    69     typedef typename ItemIntMap::Key Item;
    70     typedef std::pair<Item,Prio> Pair;
    71     typedef _Compare Compare;
    72 
    73   private:
    74     class store;
    75 
    76     std::vector<store> container;
    77     int minimum;
    78     ItemIntMap &iimap;
    79     Compare comp;
    80     int num_items;
    81 
    82   public:
    83     ///Status of the nodes
    84     enum State {
    85       ///The node is in the heap
    86       IN_HEAP = 0,
    87       ///The node has never been in the heap
    88       PRE_HEAP = -1,
    89       ///The node was in the heap but it got out of it
    90       POST_HEAP = -2
    91     };
    92 
    93     /// \brief The constructor
    94     ///
    95     /// \c _iimap should be given to the constructor, since it is
    96     ///   used internally to handle the cross references.
    97     explicit PairingHeap(ItemIntMap &_iimap)
    98       : minimum(0), iimap(_iimap), num_items(0) {}
    99 
   100     /// \brief The constructor
   101     ///
   102     /// \c _iimap should be given to the constructor, since it is used
   103     /// internally to handle the cross references. \c _comp is an
   104     /// object for ordering of the priorities.
   105     PairingHeap(ItemIntMap &_iimap, const Compare &_comp)
   106       : minimum(0), iimap(_iimap), comp(_comp), num_items(0) {}
   107 
   108     /// \brief The number of items stored in the heap.
   109     ///
   110     /// Returns the number of items stored in the heap.
   111     int size() const { return num_items; }
   112 
   113     /// \brief Checks if the heap stores no items.
   114     ///
   115     ///   Returns \c true if and only if the heap stores no items.
   116     bool empty() const { return num_items==0; }
   117 
   118     /// \brief Make empty this heap.
   119     ///
   120     /// Make empty this heap. It does not change the cross reference
   121     /// map.  If you want to reuse a heap what is not surely empty you
   122     /// should first clear the heap and after that you should set the
   123     /// cross reference map for each item to \c PRE_HEAP.
   124     void clear() {
   125       container.clear();
   126       minimum = 0;
   127       num_items = 0;
   128     }
   129 
   130     /// \brief \c item gets to the heap with priority \c value independently
   131     /// if \c item was already there.
   132     ///
   133     /// This method calls \ref push(\c item, \c value) if \c item is not
   134     /// stored in the heap and it calls \ref decrease(\c item, \c value) or
   135     /// \ref increase(\c item, \c value) otherwise.
   136     void set (const Item& item, const Prio& value) {
   137       int i=iimap[item];
   138       if ( i>=0 && container[i].in ) {
   139         if ( comp(value, container[i].prio) ) decrease(item, value);
   140         if ( comp(container[i].prio, value) ) increase(item, value);
   141       } else push(item, value);
   142     }
   143 
   144     /// \brief Adds \c item to the heap with priority \c value.
   145     ///
   146     /// Adds \c item to the heap with priority \c value.
   147     /// \pre \c item must not be stored in the heap.
   148     void push (const Item& item, const Prio& value) {
   149       int i=iimap[item];
   150       if( i<0 ) {
   151         int s=container.size();
   152         iimap.set(item, s);
   153         store st;
   154         st.name=item;
   155         container.push_back(st);
   156         i=s;
   157       } else {
   158         container[i].parent=container[i].child=-1;
   159         container[i].left_child=false;
   160         container[i].degree=0;
   161         container[i].in=true;
   162       }
   163 
   164       container[i].prio=value;
   165 
   166       if ( num_items!=0 ) {
   167         if ( comp( value, container[minimum].prio) ) {
   168           fuse(i,minimum);
   169           minimum=i;
   170         }
   171         else fuse(minimum,i);
   172       }
   173       else minimum=i;
   174 
   175       ++num_items;
   176     }
   177 
   178     /// \brief Returns the item with minimum priority relative to \c Compare.
   179     ///
   180     /// This method returns the item with minimum priority relative to \c
   181     /// Compare.
   182     /// \pre The heap must be nonempty.
   183     Item top() const { return container[minimum].name; }
   184 
   185     /// \brief Returns the minimum priority relative to \c Compare.
   186     ///
   187     /// It returns the minimum priority relative to \c Compare.
   188     /// \pre The heap must be nonempty.
   189     const Prio& prio() const { return container[minimum].prio; }
   190 
   191     /// \brief Returns the priority of \c item.
   192     ///
   193     /// It returns the priority of \c item.
   194     /// \pre \c item must be in the heap.
   195     const Prio& operator[](const Item& item) const {
   196       return container[iimap[item]].prio;
   197     }
   198 
   199     /// \brief Deletes the item with minimum priority relative to \c Compare.
   200     ///
   201     /// This method deletes the item with minimum priority relative to \c
   202     /// Compare from the heap.
   203     /// \pre The heap must be non-empty.
   204     void pop() {
   205       int TreeArray[num_items];
   206       int i=0, num_child=0, child_right = 0;
   207       container[minimum].in=false;
   208 
   209       if( -1!=container[minimum].child ) {
   210         i=container[minimum].child;
   211         TreeArray[num_child] = i;
   212         container[i].parent = -1;
   213         container[minimum].child = -1;
   214 
   215         ++num_child;
   216         int ch=-1;
   217         while( container[i].child!=-1 ) {
   218           ch=container[i].child;
   219           if( container[ch].left_child && i==container[ch].parent ) {
   220             i=ch;
   221             //break;
   222           } else {
   223             if( container[ch].left_child ) {
   224               child_right=container[ch].parent;
   225               container[ch].parent = i;
   226               --container[i].degree;
   227             }
   228             else {
   229               child_right=ch;
   230               container[i].child=-1;
   231               container[i].degree=0;
   232             }
   233             container[child_right].parent = -1;
   234             TreeArray[num_child] = child_right;
   235             i = child_right;
   236             ++num_child;
   237           }
   238         }
   239 
   240         int other;
   241         for( i=0; i<num_child-1; i+=2 ) {
   242           if ( !comp(container[TreeArray[i]].prio,
   243                      container[TreeArray[i+1]].prio) ) {
   244             other=TreeArray[i];
   245             TreeArray[i]=TreeArray[i+1];
   246             TreeArray[i+1]=other;
   247           }
   248           fuse( TreeArray[i], TreeArray[i+1] );
   249         }
   250 
   251         i = (0==(num_child % 2)) ? num_child-2 : num_child-1;
   252         while(i>=2) {
   253           if ( comp(container[TreeArray[i]].prio,
   254                     container[TreeArray[i-2]].prio) ) {
   255             other=TreeArray[i];
   256             TreeArray[i]=TreeArray[i-2];
   257             TreeArray[i-2]=other;
   258           }
   259           fuse( TreeArray[i-2], TreeArray[i] );
   260           i-=2;
   261         }
   262         minimum = TreeArray[0];
   263       }
   264 
   265       if ( 0==num_child ) {
   266         minimum = container[minimum].child;
   267       }
   268 
   269       --num_items;
   270     }
   271 
   272     /// \brief Deletes \c item from the heap.
   273     ///
   274     /// This method deletes \c item from the heap, if \c item was already
   275     /// stored in the heap. It is quite inefficient in Pairing heaps.
   276     void erase (const Item& item) {
   277       int i=iimap[item];
   278       if ( i>=0 && container[i].in ) {
   279         decrease( item, container[minimum].prio-1 );
   280         pop();
   281       }
   282     }
   283 
   284     /// \brief Decreases the priority of \c item to \c value.
   285     ///
   286     /// This method decreases the priority of \c item to \c value.
   287     /// \pre \c item must be stored in the heap with priority at least \c
   288     ///   value relative to \c Compare.
   289     void decrease (Item item, const Prio& value) {
   290       int i=iimap[item];
   291       container[i].prio=value;
   292       int p=container[i].parent;
   293 
   294       if( container[i].left_child && i!=container[p].child ) {
   295         p=container[p].parent;
   296       }
   297 
   298       if ( p!=-1 && comp(value,container[p].prio) ) {
   299         cut(i,p);
   300         if ( comp(container[minimum].prio,value) ) {
   301           fuse(minimum,i);
   302         } else {
   303           fuse(i,minimum);
   304           minimum=i;
   305         }
   306       }
   307     }
   308 
   309     /// \brief Increases the priority of \c item to \c value.
   310     ///
   311     /// This method sets the priority of \c item to \c value. Though
   312     /// there is no precondition on the priority of \c item, this
   313     /// method should be used only if it is indeed necessary to increase
   314     /// (relative to \c Compare) the priority of \c item, because this
   315     /// method is inefficient.
   316     void increase (Item item, const Prio& value) {
   317       erase(item);
   318       push(item,value);
   319     }
   320 
   321     /// \brief Returns if \c item is in, has already been in, or has never
   322     /// been in the heap.
   323     ///
   324     /// This method returns PRE_HEAP if \c item has never been in the
   325     /// heap, IN_HEAP if it is in the heap at the moment, and POST_HEAP
   326     /// otherwise. In the latter case it is possible that \c item will
   327     /// get back to the heap again.
   328     State state(const Item &item) const {
   329       int i=iimap[item];
   330       if( i>=0 ) {
   331         if( container[i].in ) i=0;
   332         else i=-2;
   333       }
   334       return State(i);
   335     }
   336 
   337     /// \brief Sets the state of the \c item in the heap.
   338     ///
   339     /// Sets the state of the \c item in the heap. It can be used to
   340     /// manually clear the heap when it is important to achive the
   341     /// better time complexity.
   342     /// \param i The item.
   343     /// \param st The state. It should not be \c IN_HEAP.
   344     void state(const Item& i, State st) {
   345       switch (st) {
   346       case POST_HEAP:
   347       case PRE_HEAP:
   348         if (state(i) == IN_HEAP) erase(i);
   349         iimap[i]=st;
   350         break;
   351       case IN_HEAP:
   352         break;
   353       }
   354     }
   355 
   356   private:
   357 
   358     void cut(int a, int b) {
   359       int child_a;
   360       switch (container[a].degree) {
   361         case 2:
   362           child_a = container[container[a].child].parent;
   363           if( container[a].left_child ) {
   364             container[child_a].left_child=true;
   365             container[b].child=child_a;
   366             container[child_a].parent=container[a].parent;
   367           }
   368           else {
   369             container[child_a].left_child=false;
   370             container[child_a].parent=b;
   371             if( a!=container[b].child )
   372               container[container[b].child].parent=child_a;
   373             else
   374               container[b].child=child_a;
   375           }
   376           --container[a].degree;
   377           container[container[a].child].parent=a;
   378           break;
   379 
   380         case 1:
   381           child_a = container[a].child;
   382           if( !container[child_a].left_child ) {
   383             --container[a].degree;
   384             if( container[a].left_child ) {
   385               container[child_a].left_child=true;
   386               container[child_a].parent=container[a].parent;
   387               container[b].child=child_a;
   388             }
   389             else {
   390               container[child_a].left_child=false;
   391               container[child_a].parent=b;
   392               if( a!=container[b].child )
   393                 container[container[b].child].parent=child_a;
   394               else
   395                 container[b].child=child_a;
   396             }
   397             container[a].child=-1;
   398           }
   399           else {
   400             --container[b].degree;
   401             if( container[a].left_child ) {
   402               container[b].child =
   403                 (1==container[b].degree) ? container[a].parent : -1;
   404             } else {
   405               if (1==container[b].degree)
   406                 container[container[b].child].parent=b;
   407               else
   408                 container[b].child=-1;
   409             }
   410           }
   411           break;
   412 
   413         case 0:
   414           --container[b].degree;
   415           if( container[a].left_child ) {
   416             container[b].child =
   417               (0!=container[b].degree) ? container[a].parent : -1;
   418           } else {
   419             if( 0!=container[b].degree )
   420               container[container[b].child].parent=b;
   421             else
   422               container[b].child=-1;
   423           }
   424           break;
   425       }
   426       container[a].parent=-1;
   427       container[a].left_child=false;
   428     }
   429 
   430     void fuse(int a, int b) {
   431       int child_a = container[a].child;
   432       int child_b = container[b].child;
   433       container[a].child=b;
   434       container[b].parent=a;
   435       container[b].left_child=true;
   436 
   437       if( -1!=child_a ) {
   438         container[b].child=child_a;
   439         container[child_a].parent=b;
   440         container[child_a].left_child=false;
   441         ++container[b].degree;
   442 
   443         if( -1!=child_b ) {
   444            container[b].child=child_b;
   445            container[child_b].parent=child_a;
   446         }
   447       }
   448       else { ++container[a].degree; }
   449     }
   450 
   451     class store {
   452       friend class PairingHeap;
   453 
   454       Item name;
   455       int parent;
   456       int child;
   457       bool left_child;
   458       int degree;
   459       bool in;
   460       Prio prio;
   461 
   462       store() : parent(-1), child(-1), left_child(false), degree(0), in(true) {}
   463     };
   464   };
   465 
   466 } //namespace lemon
   467 
   468 #endif //LEMON_PAIRING_HEAP_H
   469