1 /* -*- mode: C++; indent-tabs-mode: nil; -*-
 
     3  * This file is a part of LEMON, a generic C++ optimization library.
 
     5  * Copyright (C) 2003-2009
 
     6  * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
 
     7  * (Egervary Research Group on Combinatorial Optimization, EGRES).
 
     9  * Permission to use, modify and distribute this software is granted
 
    10  * provided that this copyright notice appears in all copies. For
 
    11  * precise terms see the accompanying LICENSE file.
 
    13  * This software is provided "AS IS" with no warranty of any kind,
 
    14  * express or implied, and with no claim as to its suitability for any
 
    24 ///\brief DFS algorithm.
 
    26 #include <lemon/list_graph.h>
 
    27 #include <lemon/bits/path_dump.h>
 
    28 #include <lemon/core.h>
 
    29 #include <lemon/error.h>
 
    30 #include <lemon/maps.h>
 
    31 #include <lemon/path.h>
 
    35   ///Default traits class of Dfs class.
 
    37   ///Default traits class of Dfs class.
 
    38   ///\tparam GR Digraph type.
 
    40   struct DfsDefaultTraits
 
    42     ///The type of the digraph the algorithm runs on.
 
    45     ///\brief The type of the map that stores the predecessor
 
    46     ///arcs of the %DFS paths.
 
    48     ///The type of the map that stores the predecessor
 
    49     ///arcs of the %DFS paths.
 
    50     ///It must meet the \ref concepts::WriteMap "WriteMap" concept.
 
    51     typedef typename Digraph::template NodeMap<typename Digraph::Arc> PredMap;
 
    52     ///Instantiates a PredMap.
 
    54     ///This function instantiates a PredMap.
 
    55     ///\param g is the digraph, to which we would like to define the
 
    57     static PredMap *createPredMap(const Digraph &g)
 
    59       return new PredMap(g);
 
    62     ///The type of the map that indicates which nodes are processed.
 
    64     ///The type of the map that indicates which nodes are processed.
 
    65     ///It must meet the \ref concepts::WriteMap "WriteMap" concept.
 
    66     typedef NullMap<typename Digraph::Node,bool> ProcessedMap;
 
    67     ///Instantiates a ProcessedMap.
 
    69     ///This function instantiates a ProcessedMap.
 
    70     ///\param g is the digraph, to which
 
    71     ///we would like to define the ProcessedMap
 
    73     static ProcessedMap *createProcessedMap(const Digraph &g)
 
    75     static ProcessedMap *createProcessedMap(const Digraph &)
 
    78       return new ProcessedMap();
 
    81     ///The type of the map that indicates which nodes are reached.
 
    83     ///The type of the map that indicates which nodes are reached.
 
    84     ///It must meet the \ref concepts::ReadWriteMap "ReadWriteMap" concept.
 
    85     typedef typename Digraph::template NodeMap<bool> ReachedMap;
 
    86     ///Instantiates a ReachedMap.
 
    88     ///This function instantiates a ReachedMap.
 
    89     ///\param g is the digraph, to which
 
    90     ///we would like to define the ReachedMap.
 
    91     static ReachedMap *createReachedMap(const Digraph &g)
 
    93       return new ReachedMap(g);
 
    96     ///The type of the map that stores the distances of the nodes.
 
    98     ///The type of the map that stores the distances of the nodes.
 
    99     ///It must meet the \ref concepts::WriteMap "WriteMap" concept.
 
   100     typedef typename Digraph::template NodeMap<int> DistMap;
 
   101     ///Instantiates a DistMap.
 
   103     ///This function instantiates a DistMap.
 
   104     ///\param g is the digraph, to which we would like to define the
 
   106     static DistMap *createDistMap(const Digraph &g)
 
   108       return new DistMap(g);
 
   112   ///%DFS algorithm class.
 
   115   ///This class provides an efficient implementation of the %DFS algorithm.
 
   117   ///There is also a \ref dfs() "function-type interface" for the DFS
 
   118   ///algorithm, which is convenient in the simplier cases and it can be
 
   121   ///\tparam GR The type of the digraph the algorithm runs on.
 
   122   ///The default type is \ref ListDigraph.
 
   124   template <typename GR,
 
   127   template <typename GR=ListDigraph,
 
   128             typename TR=DfsDefaultTraits<GR> >
 
   133     ///The type of the digraph the algorithm runs on.
 
   134     typedef typename TR::Digraph Digraph;
 
   136     ///\brief The type of the map that stores the predecessor arcs of the
 
   138     typedef typename TR::PredMap PredMap;
 
   139     ///The type of the map that stores the distances of the nodes.
 
   140     typedef typename TR::DistMap DistMap;
 
   141     ///The type of the map that indicates which nodes are reached.
 
   142     typedef typename TR::ReachedMap ReachedMap;
 
   143     ///The type of the map that indicates which nodes are processed.
 
   144     typedef typename TR::ProcessedMap ProcessedMap;
 
   145     ///The type of the paths.
 
   146     typedef PredMapPath<Digraph, PredMap> Path;
 
   148     ///The \ref DfsDefaultTraits "traits class" of the algorithm.
 
   153     typedef typename Digraph::Node Node;
 
   154     typedef typename Digraph::NodeIt NodeIt;
 
   155     typedef typename Digraph::Arc Arc;
 
   156     typedef typename Digraph::OutArcIt OutArcIt;
 
   158     //Pointer to the underlying digraph.
 
   160     //Pointer to the map of predecessor arcs.
 
   162     //Indicates if _pred is locally allocated (true) or not.
 
   164     //Pointer to the map of distances.
 
   166     //Indicates if _dist is locally allocated (true) or not.
 
   168     //Pointer to the map of reached status of the nodes.
 
   169     ReachedMap *_reached;
 
   170     //Indicates if _reached is locally allocated (true) or not.
 
   172     //Pointer to the map of processed status of the nodes.
 
   173     ProcessedMap *_processed;
 
   174     //Indicates if _processed is locally allocated (true) or not.
 
   175     bool local_processed;
 
   177     std::vector<typename Digraph::OutArcIt> _stack;
 
   180     //Creates the maps if necessary.
 
   185         _pred = Traits::createPredMap(*G);
 
   189         _dist = Traits::createDistMap(*G);
 
   192         local_reached = true;
 
   193         _reached = Traits::createReachedMap(*G);
 
   196         local_processed = true;
 
   197         _processed = Traits::createProcessedMap(*G);
 
   209     ///\name Named template parameters
 
   214     struct SetPredMapTraits : public Traits {
 
   216       static PredMap *createPredMap(const Digraph &)
 
   218         LEMON_ASSERT(false, "PredMap is not initialized");
 
   219         return 0; // ignore warnings
 
   222     ///\brief \ref named-templ-param "Named parameter" for setting
 
   225     ///\ref named-templ-param "Named parameter" for setting
 
   227     ///It must meet the \ref concepts::WriteMap "WriteMap" concept.
 
   229     struct SetPredMap : public Dfs<Digraph, SetPredMapTraits<T> > {
 
   230       typedef Dfs<Digraph, SetPredMapTraits<T> > Create;
 
   234     struct SetDistMapTraits : public Traits {
 
   236       static DistMap *createDistMap(const Digraph &)
 
   238         LEMON_ASSERT(false, "DistMap is not initialized");
 
   239         return 0; // ignore warnings
 
   242     ///\brief \ref named-templ-param "Named parameter" for setting
 
   245     ///\ref named-templ-param "Named parameter" for setting
 
   247     ///It must meet the \ref concepts::WriteMap "WriteMap" concept.
 
   249     struct SetDistMap : public Dfs< Digraph, SetDistMapTraits<T> > {
 
   250       typedef Dfs<Digraph, SetDistMapTraits<T> > Create;
 
   254     struct SetReachedMapTraits : public Traits {
 
   255       typedef T ReachedMap;
 
   256       static ReachedMap *createReachedMap(const Digraph &)
 
   258         LEMON_ASSERT(false, "ReachedMap is not initialized");
 
   259         return 0; // ignore warnings
 
   262     ///\brief \ref named-templ-param "Named parameter" for setting
 
   265     ///\ref named-templ-param "Named parameter" for setting
 
   267     ///It must meet the \ref concepts::ReadWriteMap "ReadWriteMap" concept.
 
   269     struct SetReachedMap : public Dfs< Digraph, SetReachedMapTraits<T> > {
 
   270       typedef Dfs< Digraph, SetReachedMapTraits<T> > Create;
 
   274     struct SetProcessedMapTraits : public Traits {
 
   275       typedef T ProcessedMap;
 
   276       static ProcessedMap *createProcessedMap(const Digraph &)
 
   278         LEMON_ASSERT(false, "ProcessedMap is not initialized");
 
   279         return 0; // ignore warnings
 
   282     ///\brief \ref named-templ-param "Named parameter" for setting
 
   283     ///ProcessedMap type.
 
   285     ///\ref named-templ-param "Named parameter" for setting
 
   286     ///ProcessedMap type.
 
   287     ///It must meet the \ref concepts::WriteMap "WriteMap" concept.
 
   289     struct SetProcessedMap : public Dfs< Digraph, SetProcessedMapTraits<T> > {
 
   290       typedef Dfs< Digraph, SetProcessedMapTraits<T> > Create;
 
   293     struct SetStandardProcessedMapTraits : public Traits {
 
   294       typedef typename Digraph::template NodeMap<bool> ProcessedMap;
 
   295       static ProcessedMap *createProcessedMap(const Digraph &g)
 
   297         return new ProcessedMap(g);
 
   300     ///\brief \ref named-templ-param "Named parameter" for setting
 
   301     ///ProcessedMap type to be <tt>Digraph::NodeMap<bool></tt>.
 
   303     ///\ref named-templ-param "Named parameter" for setting
 
   304     ///ProcessedMap type to be <tt>Digraph::NodeMap<bool></tt>.
 
   305     ///If you don't set it explicitly, it will be automatically allocated.
 
   306     struct SetStandardProcessedMap :
 
   307       public Dfs< Digraph, SetStandardProcessedMapTraits > {
 
   308       typedef Dfs< Digraph, SetStandardProcessedMapTraits > Create;
 
   318     ///\param g The digraph the algorithm runs on.
 
   319     Dfs(const Digraph &g) :
 
   321       _pred(NULL), local_pred(false),
 
   322       _dist(NULL), local_dist(false),
 
   323       _reached(NULL), local_reached(false),
 
   324       _processed(NULL), local_processed(false)
 
   330       if(local_pred) delete _pred;
 
   331       if(local_dist) delete _dist;
 
   332       if(local_reached) delete _reached;
 
   333       if(local_processed) delete _processed;
 
   336     ///Sets the map that stores the predecessor arcs.
 
   338     ///Sets the map that stores the predecessor arcs.
 
   339     ///If you don't use this function before calling \ref run(Node) "run()"
 
   340     ///or \ref init(), an instance will be allocated automatically.
 
   341     ///The destructor deallocates this automatically allocated map,
 
   343     ///\return <tt> (*this) </tt>
 
   344     Dfs &predMap(PredMap &m)
 
   354     ///Sets the map that indicates which nodes are reached.
 
   356     ///Sets the map that indicates which nodes are reached.
 
   357     ///If you don't use this function before calling \ref run(Node) "run()"
 
   358     ///or \ref init(), an instance will be allocated automatically.
 
   359     ///The destructor deallocates this automatically allocated map,
 
   361     ///\return <tt> (*this) </tt>
 
   362     Dfs &reachedMap(ReachedMap &m)
 
   372     ///Sets the map that indicates which nodes are processed.
 
   374     ///Sets the map that indicates which nodes are processed.
 
   375     ///If you don't use this function before calling \ref run(Node) "run()"
 
   376     ///or \ref init(), an instance will be allocated automatically.
 
   377     ///The destructor deallocates this automatically allocated map,
 
   379     ///\return <tt> (*this) </tt>
 
   380     Dfs &processedMap(ProcessedMap &m)
 
   382       if(local_processed) {
 
   384         local_processed=false;
 
   390     ///Sets the map that stores the distances of the nodes.
 
   392     ///Sets the map that stores the distances of the nodes calculated by
 
   394     ///If you don't use this function before calling \ref run(Node) "run()"
 
   395     ///or \ref init(), an instance will be allocated automatically.
 
   396     ///The destructor deallocates this automatically allocated map,
 
   398     ///\return <tt> (*this) </tt>
 
   399     Dfs &distMap(DistMap &m)
 
   411     ///\name Execution Control
 
   412     ///The simplest way to execute the DFS algorithm is to use one of the
 
   413     ///member functions called \ref run(Node) "run()".\n
 
   414     ///If you need more control on the execution, first you have to call
 
   415     ///\ref init(), then you can add a source node with \ref addSource()
 
   416     ///and perform the actual computation with \ref start().
 
   417     ///This procedure can be repeated if there are nodes that have not
 
   422     ///\brief Initializes the internal data structures.
 
   424     ///Initializes the internal data structures.
 
   428       _stack.resize(countNodes(*G));
 
   430       for ( NodeIt u(*G) ; u!=INVALID ; ++u ) {
 
   431         _pred->set(u,INVALID);
 
   432         _reached->set(u,false);
 
   433         _processed->set(u,false);
 
   437     ///Adds a new source node.
 
   439     ///Adds a new source node to the set of nodes to be processed.
 
   441     ///\pre The stack must be empty. Otherwise the algorithm gives
 
   442     ///wrong results. (One of the outgoing arcs of all the source nodes
 
   443     ///except for the last one will not be visited and distances will
 
   445     void addSource(Node s)
 
   447       LEMON_DEBUG(emptyQueue(), "The stack is not empty.");
 
   450           _reached->set(s,true);
 
   451           _pred->set(s,INVALID);
 
   454             _stack[++_stack_head]=e;
 
   455             _dist->set(s,_stack_head);
 
   458             _processed->set(s,true);
 
   464     ///Processes the next arc.
 
   466     ///Processes the next arc.
 
   468     ///\return The processed arc.
 
   470     ///\pre The stack must not be empty.
 
   474       Arc e=_stack[_stack_head];
 
   475       if(!(*_reached)[m=G->target(e)]) {
 
   477         _reached->set(m,true);
 
   479         _stack[_stack_head] = OutArcIt(*G, m);
 
   480         _dist->set(m,_stack_head);
 
   484         ++_stack[_stack_head];
 
   486       while(_stack_head>=0 && _stack[_stack_head]==INVALID) {
 
   487         _processed->set(m,true);
 
   490           m=G->source(_stack[_stack_head]);
 
   491           ++_stack[_stack_head];
 
   497     ///Next arc to be processed.
 
   499     ///Next arc to be processed.
 
   501     ///\return The next arc to be processed or \c INVALID if the stack
 
   503     OutArcIt nextArc() const
 
   505       return _stack_head>=0?_stack[_stack_head]:INVALID;
 
   508     ///Returns \c false if there are nodes to be processed.
 
   510     ///Returns \c false if there are nodes to be processed
 
   511     ///in the queue (stack).
 
   512     bool emptyQueue() const { return _stack_head<0; }
 
   514     ///Returns the number of the nodes to be processed.
 
   516     ///Returns the number of the nodes to be processed
 
   517     ///in the queue (stack).
 
   518     int queueSize() const { return _stack_head+1; }
 
   520     ///Executes the algorithm.
 
   522     ///Executes the algorithm.
 
   524     ///This method runs the %DFS algorithm from the root node
 
   525     ///in order to compute the DFS path to each node.
 
   527     /// The algorithm computes
 
   529     ///- the distance of each node from the root in the %DFS tree.
 
   531     ///\pre init() must be called and a root node should be
 
   532     ///added with addSource() before using this function.
 
   534     ///\note <tt>d.start()</tt> is just a shortcut of the following code.
 
   536     ///  while ( !d.emptyQueue() ) {
 
   537     ///    d.processNextArc();
 
   542       while ( !emptyQueue() ) processNextArc();
 
   545     ///Executes the algorithm until the given target node is reached.
 
   547     ///Executes the algorithm until the given target node is reached.
 
   549     ///This method runs the %DFS algorithm from the root node
 
   550     ///in order to compute the DFS path to \c t.
 
   552     ///The algorithm computes
 
   553     ///- the %DFS path to \c t,
 
   554     ///- the distance of \c t from the root in the %DFS tree.
 
   556     ///\pre init() must be called and a root node should be
 
   557     ///added with addSource() before using this function.
 
   560       while ( !emptyQueue() && G->target(_stack[_stack_head])!=t )
 
   564     ///Executes the algorithm until a condition is met.
 
   566     ///Executes the algorithm until a condition is met.
 
   568     ///This method runs the %DFS algorithm from the root node
 
   569     ///until an arc \c a with <tt>am[a]</tt> true is found.
 
   571     ///\param am A \c bool (or convertible) arc map. The algorithm
 
   572     ///will stop when it reaches an arc \c a with <tt>am[a]</tt> true.
 
   574     ///\return The reached arc \c a with <tt>am[a]</tt> true or
 
   575     ///\c INVALID if no such arc was found.
 
   577     ///\pre init() must be called and a root node should be
 
   578     ///added with addSource() before using this function.
 
   580     ///\warning Contrary to \ref Bfs and \ref Dijkstra, \c am is an arc map,
 
   582     template<class ArcBoolMap>
 
   583     Arc start(const ArcBoolMap &am)
 
   585       while ( !emptyQueue() && !am[_stack[_stack_head]] )
 
   587       return emptyQueue() ? INVALID : _stack[_stack_head];
 
   590     ///Runs the algorithm from the given source node.
 
   592     ///This method runs the %DFS algorithm from node \c s
 
   593     ///in order to compute the DFS path to each node.
 
   595     ///The algorithm computes
 
   597     ///- the distance of each node from the root in the %DFS tree.
 
   599     ///\note <tt>d.run(s)</tt> is just a shortcut of the following code.
 
   611     ///Finds the %DFS path between \c s and \c t.
 
   613     ///This method runs the %DFS algorithm from node \c s
 
   614     ///in order to compute the DFS path to node \c t
 
   615     ///(it stops searching when \c t is processed)
 
   617     ///\return \c true if \c t is reachable form \c s.
 
   619     ///\note Apart from the return value, <tt>d.run(s,t)</tt> is
 
   620     ///just a shortcut of the following code.
 
   626     bool run(Node s,Node t) {
 
   633     ///Runs the algorithm to visit all nodes in the digraph.
 
   635     ///This method runs the %DFS algorithm in order to compute the
 
   636     ///%DFS path to each node.
 
   638     ///The algorithm computes
 
   639     ///- the %DFS tree (forest),
 
   640     ///- the distance of each node from the root(s) in the %DFS tree.
 
   642     ///\note <tt>d.run()</tt> is just a shortcut of the following code.
 
   645     ///  for (NodeIt n(digraph); n != INVALID; ++n) {
 
   646     ///    if (!d.reached(n)) {
 
   654       for (NodeIt it(*G); it != INVALID; ++it) {
 
   664     ///\name Query Functions
 
   665     ///The results of the DFS algorithm can be obtained using these
 
   667     ///Either \ref run(Node) "run()" or \ref start() should be called
 
   668     ///before using them.
 
   672     ///The DFS path to a node.
 
   674     ///Returns the DFS path to a node.
 
   676     ///\warning \c t should be reached from the root(s).
 
   678     ///\pre Either \ref run(Node) "run()" or \ref init()
 
   679     ///must be called before using this function.
 
   680     Path path(Node t) const { return Path(*G, *_pred, t); }
 
   682     ///The distance of a node from the root(s).
 
   684     ///Returns the distance of a node from the root(s).
 
   686     ///\warning If node \c v is not reached from the root(s), then
 
   687     ///the return value of this function is undefined.
 
   689     ///\pre Either \ref run(Node) "run()" or \ref init()
 
   690     ///must be called before using this function.
 
   691     int dist(Node v) const { return (*_dist)[v]; }
 
   693     ///Returns the 'previous arc' of the %DFS tree for a node.
 
   695     ///This function returns the 'previous arc' of the %DFS tree for the
 
   696     ///node \c v, i.e. it returns the last arc of a %DFS path from a
 
   697     ///root to \c v. It is \c INVALID if \c v is not reached from the
 
   698     ///root(s) or if \c v is a root.
 
   700     ///The %DFS tree used here is equal to the %DFS tree used in
 
   703     ///\pre Either \ref run(Node) "run()" or \ref init()
 
   704     ///must be called before using this function.
 
   705     Arc predArc(Node v) const { return (*_pred)[v];}
 
   707     ///Returns the 'previous node' of the %DFS tree.
 
   709     ///This function returns the 'previous node' of the %DFS
 
   710     ///tree for the node \c v, i.e. it returns the last but one node
 
   711     ///from a %DFS path from a root to \c v. It is \c INVALID
 
   712     ///if \c v is not reached from the root(s) or if \c v is a root.
 
   714     ///The %DFS tree used here is equal to the %DFS tree used in
 
   717     ///\pre Either \ref run(Node) "run()" or \ref init()
 
   718     ///must be called before using this function.
 
   719     Node predNode(Node v) const { return (*_pred)[v]==INVALID ? INVALID:
 
   720                                   G->source((*_pred)[v]); }
 
   722     ///\brief Returns a const reference to the node map that stores the
 
   723     ///distances of the nodes.
 
   725     ///Returns a const reference to the node map that stores the
 
   726     ///distances of the nodes calculated by the algorithm.
 
   728     ///\pre Either \ref run(Node) "run()" or \ref init()
 
   729     ///must be called before using this function.
 
   730     const DistMap &distMap() const { return *_dist;}
 
   732     ///\brief Returns a const reference to the node map that stores the
 
   735     ///Returns a const reference to the node map that stores the predecessor
 
   736     ///arcs, which form the DFS tree.
 
   738     ///\pre Either \ref run(Node) "run()" or \ref init()
 
   739     ///must be called before using this function.
 
   740     const PredMap &predMap() const { return *_pred;}
 
   742     ///Checks if a node is reached from the root(s).
 
   744     ///Returns \c true if \c v is reached from the root(s).
 
   746     ///\pre Either \ref run(Node) "run()" or \ref init()
 
   747     ///must be called before using this function.
 
   748     bool reached(Node v) const { return (*_reached)[v]; }
 
   753   ///Default traits class of dfs() function.
 
   755   ///Default traits class of dfs() function.
 
   756   ///\tparam GR Digraph type.
 
   758   struct DfsWizardDefaultTraits
 
   760     ///The type of the digraph the algorithm runs on.
 
   763     ///\brief The type of the map that stores the predecessor
 
   764     ///arcs of the %DFS paths.
 
   766     ///The type of the map that stores the predecessor
 
   767     ///arcs of the %DFS paths.
 
   768     ///It must meet the \ref concepts::WriteMap "WriteMap" concept.
 
   769     typedef typename Digraph::template NodeMap<typename Digraph::Arc> PredMap;
 
   770     ///Instantiates a PredMap.
 
   772     ///This function instantiates a PredMap.
 
   773     ///\param g is the digraph, to which we would like to define the
 
   775     static PredMap *createPredMap(const Digraph &g)
 
   777       return new PredMap(g);
 
   780     ///The type of the map that indicates which nodes are processed.
 
   782     ///The type of the map that indicates which nodes are processed.
 
   783     ///It must meet the \ref concepts::WriteMap "WriteMap" concept.
 
   784     ///By default it is a NullMap.
 
   785     typedef NullMap<typename Digraph::Node,bool> ProcessedMap;
 
   786     ///Instantiates a ProcessedMap.
 
   788     ///This function instantiates a ProcessedMap.
 
   789     ///\param g is the digraph, to which
 
   790     ///we would like to define the ProcessedMap.
 
   792     static ProcessedMap *createProcessedMap(const Digraph &g)
 
   794     static ProcessedMap *createProcessedMap(const Digraph &)
 
   797       return new ProcessedMap();
 
   800     ///The type of the map that indicates which nodes are reached.
 
   802     ///The type of the map that indicates which nodes are reached.
 
   803     ///It must meet the \ref concepts::ReadWriteMap "ReadWriteMap" concept.
 
   804     typedef typename Digraph::template NodeMap<bool> ReachedMap;
 
   805     ///Instantiates a ReachedMap.
 
   807     ///This function instantiates a ReachedMap.
 
   808     ///\param g is the digraph, to which
 
   809     ///we would like to define the ReachedMap.
 
   810     static ReachedMap *createReachedMap(const Digraph &g)
 
   812       return new ReachedMap(g);
 
   815     ///The type of the map that stores the distances of the nodes.
 
   817     ///The type of the map that stores the distances of the nodes.
 
   818     ///It must meet the \ref concepts::WriteMap "WriteMap" concept.
 
   819     typedef typename Digraph::template NodeMap<int> DistMap;
 
   820     ///Instantiates a DistMap.
 
   822     ///This function instantiates a DistMap.
 
   823     ///\param g is the digraph, to which we would like to define
 
   825     static DistMap *createDistMap(const Digraph &g)
 
   827       return new DistMap(g);
 
   830     ///The type of the DFS paths.
 
   832     ///The type of the DFS paths.
 
   833     ///It must meet the \ref concepts::Path "Path" concept.
 
   834     typedef lemon::Path<Digraph> Path;
 
   837   /// Default traits class used by DfsWizard
 
   839   /// To make it easier to use Dfs algorithm
 
   840   /// we have created a wizard class.
 
   841   /// This \ref DfsWizard class needs default traits,
 
   842   /// as well as the \ref Dfs class.
 
   843   /// The \ref DfsWizardBase is a class to be the default traits of the
 
   844   /// \ref DfsWizard class.
 
   846   class DfsWizardBase : public DfsWizardDefaultTraits<GR>
 
   849     typedef DfsWizardDefaultTraits<GR> Base;
 
   851     //The type of the nodes in the digraph.
 
   852     typedef typename Base::Digraph::Node Node;
 
   854     //Pointer to the digraph the algorithm runs on.
 
   856     //Pointer to the map of reached nodes.
 
   858     //Pointer to the map of processed nodes.
 
   860     //Pointer to the map of predecessors arcs.
 
   862     //Pointer to the map of distances.
 
   864     //Pointer to the DFS path to the target node.
 
   866     //Pointer to the distance of the target node.
 
   872     /// This constructor does not require parameters, therefore it initiates
 
   873     /// all of the attributes to \c 0.
 
   874     DfsWizardBase() : _g(0), _reached(0), _processed(0), _pred(0),
 
   875                       _dist(0), _path(0), _di(0) {}
 
   879     /// This constructor requires one parameter,
 
   880     /// others are initiated to \c 0.
 
   881     /// \param g The digraph the algorithm runs on.
 
   882     DfsWizardBase(const GR &g) :
 
   883       _g(reinterpret_cast<void*>(const_cast<GR*>(&g))),
 
   884       _reached(0), _processed(0), _pred(0), _dist(0),  _path(0), _di(0) {}
 
   888   /// Auxiliary class for the function-type interface of DFS algorithm.
 
   890   /// This auxiliary class is created to implement the
 
   891   /// \ref dfs() "function-type interface" of \ref Dfs algorithm.
 
   892   /// It does not have own \ref run(Node) "run()" method, it uses the
 
   893   /// functions and features of the plain \ref Dfs.
 
   895   /// This class should only be used through the \ref dfs() function,
 
   896   /// which makes it easier to use the algorithm.
 
   898   class DfsWizard : public TR
 
   902     ///The type of the digraph the algorithm runs on.
 
   903     typedef typename TR::Digraph Digraph;
 
   905     typedef typename Digraph::Node Node;
 
   906     typedef typename Digraph::NodeIt NodeIt;
 
   907     typedef typename Digraph::Arc Arc;
 
   908     typedef typename Digraph::OutArcIt OutArcIt;
 
   910     ///\brief The type of the map that stores the predecessor
 
   911     ///arcs of the DFS paths.
 
   912     typedef typename TR::PredMap PredMap;
 
   913     ///\brief The type of the map that stores the distances of the nodes.
 
   914     typedef typename TR::DistMap DistMap;
 
   915     ///\brief The type of the map that indicates which nodes are reached.
 
   916     typedef typename TR::ReachedMap ReachedMap;
 
   917     ///\brief The type of the map that indicates which nodes are processed.
 
   918     typedef typename TR::ProcessedMap ProcessedMap;
 
   919     ///The type of the DFS paths
 
   920     typedef typename TR::Path Path;
 
   925     DfsWizard() : TR() {}
 
   927     /// Constructor that requires parameters.
 
   929     /// Constructor that requires parameters.
 
   930     /// These parameters will be the default values for the traits class.
 
   931     /// \param g The digraph the algorithm runs on.
 
   932     DfsWizard(const Digraph &g) :
 
   936     DfsWizard(const TR &b) : TR(b) {}
 
   940     ///Runs DFS algorithm from the given source node.
 
   942     ///This method runs DFS algorithm from node \c s
 
   943     ///in order to compute the DFS path to each node.
 
   946       Dfs<Digraph,TR> alg(*reinterpret_cast<const Digraph*>(Base::_g));
 
   948         alg.predMap(*reinterpret_cast<PredMap*>(Base::_pred));
 
   950         alg.distMap(*reinterpret_cast<DistMap*>(Base::_dist));
 
   952         alg.reachedMap(*reinterpret_cast<ReachedMap*>(Base::_reached));
 
   953       if (Base::_processed)
 
   954         alg.processedMap(*reinterpret_cast<ProcessedMap*>(Base::_processed));
 
   961     ///Finds the DFS path between \c s and \c t.
 
   963     ///This method runs DFS algorithm from node \c s
 
   964     ///in order to compute the DFS path to node \c t
 
   965     ///(it stops searching when \c t is processed).
 
   967     ///\return \c true if \c t is reachable form \c s.
 
   968     bool run(Node s, Node t)
 
   970       Dfs<Digraph,TR> alg(*reinterpret_cast<const Digraph*>(Base::_g));
 
   972         alg.predMap(*reinterpret_cast<PredMap*>(Base::_pred));
 
   974         alg.distMap(*reinterpret_cast<DistMap*>(Base::_dist));
 
   976         alg.reachedMap(*reinterpret_cast<ReachedMap*>(Base::_reached));
 
   977       if (Base::_processed)
 
   978         alg.processedMap(*reinterpret_cast<ProcessedMap*>(Base::_processed));
 
   981         *reinterpret_cast<Path*>(Base::_path) = alg.path(t);
 
   983         *Base::_di = alg.dist(t);
 
   984       return alg.reached(t);
 
   987     ///Runs DFS algorithm to visit all nodes in the digraph.
 
   989     ///This method runs DFS algorithm in order to compute
 
   990     ///the DFS path to each node.
 
   997     struct SetPredMapBase : public Base {
 
   999       static PredMap *createPredMap(const Digraph &) { return 0; };
 
  1000       SetPredMapBase(const TR &b) : TR(b) {}
 
  1002     ///\brief \ref named-func-param "Named parameter"
 
  1003     ///for setting PredMap object.
 
  1005     ///\ref named-func-param "Named parameter"
 
  1006     ///for setting PredMap object.
 
  1008     DfsWizard<SetPredMapBase<T> > predMap(const T &t)
 
  1010       Base::_pred=reinterpret_cast<void*>(const_cast<T*>(&t));
 
  1011       return DfsWizard<SetPredMapBase<T> >(*this);
 
  1015     struct SetReachedMapBase : public Base {
 
  1016       typedef T ReachedMap;
 
  1017       static ReachedMap *createReachedMap(const Digraph &) { return 0; };
 
  1018       SetReachedMapBase(const TR &b) : TR(b) {}
 
  1020     ///\brief \ref named-func-param "Named parameter"
 
  1021     ///for setting ReachedMap object.
 
  1023     /// \ref named-func-param "Named parameter"
 
  1024     ///for setting ReachedMap object.
 
  1026     DfsWizard<SetReachedMapBase<T> > reachedMap(const T &t)
 
  1028       Base::_reached=reinterpret_cast<void*>(const_cast<T*>(&t));
 
  1029       return DfsWizard<SetReachedMapBase<T> >(*this);
 
  1033     struct SetDistMapBase : public Base {
 
  1035       static DistMap *createDistMap(const Digraph &) { return 0; };
 
  1036       SetDistMapBase(const TR &b) : TR(b) {}
 
  1038     ///\brief \ref named-func-param "Named parameter"
 
  1039     ///for setting DistMap object.
 
  1041     /// \ref named-func-param "Named parameter"
 
  1042     ///for setting DistMap object.
 
  1044     DfsWizard<SetDistMapBase<T> > distMap(const T &t)
 
  1046       Base::_dist=reinterpret_cast<void*>(const_cast<T*>(&t));
 
  1047       return DfsWizard<SetDistMapBase<T> >(*this);
 
  1051     struct SetProcessedMapBase : public Base {
 
  1052       typedef T ProcessedMap;
 
  1053       static ProcessedMap *createProcessedMap(const Digraph &) { return 0; };
 
  1054       SetProcessedMapBase(const TR &b) : TR(b) {}
 
  1056     ///\brief \ref named-func-param "Named parameter"
 
  1057     ///for setting ProcessedMap object.
 
  1059     /// \ref named-func-param "Named parameter"
 
  1060     ///for setting ProcessedMap object.
 
  1062     DfsWizard<SetProcessedMapBase<T> > processedMap(const T &t)
 
  1064       Base::_processed=reinterpret_cast<void*>(const_cast<T*>(&t));
 
  1065       return DfsWizard<SetProcessedMapBase<T> >(*this);
 
  1069     struct SetPathBase : public Base {
 
  1071       SetPathBase(const TR &b) : TR(b) {}
 
  1073     ///\brief \ref named-func-param "Named parameter"
 
  1074     ///for getting the DFS path to the target node.
 
  1076     ///\ref named-func-param "Named parameter"
 
  1077     ///for getting the DFS path to the target node.
 
  1079     DfsWizard<SetPathBase<T> > path(const T &t)
 
  1081       Base::_path=reinterpret_cast<void*>(const_cast<T*>(&t));
 
  1082       return DfsWizard<SetPathBase<T> >(*this);
 
  1085     ///\brief \ref named-func-param "Named parameter"
 
  1086     ///for getting the distance of the target node.
 
  1088     ///\ref named-func-param "Named parameter"
 
  1089     ///for getting the distance of the target node.
 
  1090     DfsWizard dist(const int &d)
 
  1092       Base::_di=const_cast<int*>(&d);
 
  1098   ///Function-type interface for DFS algorithm.
 
  1101   ///Function-type interface for DFS algorithm.
 
  1103   ///This function also has several \ref named-func-param "named parameters",
 
  1104   ///they are declared as the members of class \ref DfsWizard.
 
  1105   ///The following examples show how to use these parameters.
 
  1107   ///  // Compute the DFS tree
 
  1108   ///  dfs(g).predMap(preds).distMap(dists).run(s);
 
  1110   ///  // Compute the DFS path from s to t
 
  1111   ///  bool reached = dfs(g).path(p).dist(d).run(s,t);
 
  1113   ///\warning Don't forget to put the \ref DfsWizard::run(Node) "run()"
 
  1114   ///to the end of the parameter list.
 
  1118   DfsWizard<DfsWizardBase<GR> >
 
  1119   dfs(const GR &digraph)
 
  1121     return DfsWizard<DfsWizardBase<GR> >(digraph);
 
  1125   /// \brief Visitor class for DFS.
 
  1127   /// This class defines the interface of the DfsVisit events, and
 
  1128   /// it could be the base of a real visitor class.
 
  1129   template <typename _Digraph>
 
  1131     typedef _Digraph Digraph;
 
  1132     typedef typename Digraph::Arc Arc;
 
  1133     typedef typename Digraph::Node Node;
 
  1134     /// \brief Called for the source node of the DFS.
 
  1136     /// This function is called for the source node of the DFS.
 
  1137     void start(const Node& node) {}
 
  1138     /// \brief Called when the source node is leaved.
 
  1140     /// This function is called when the source node is leaved.
 
  1141     void stop(const Node& node) {}
 
  1142     /// \brief Called when a node is reached first time.
 
  1144     /// This function is called when a node is reached first time.
 
  1145     void reach(const Node& node) {}
 
  1146     /// \brief Called when an arc reaches a new node.
 
  1148     /// This function is called when the DFS finds an arc whose target node
 
  1149     /// is not reached yet.
 
  1150     void discover(const Arc& arc) {}
 
  1151     /// \brief Called when an arc is examined but its target node is
 
  1152     /// already discovered.
 
  1154     /// This function is called when an arc is examined but its target node is
 
  1155     /// already discovered.
 
  1156     void examine(const Arc& arc) {}
 
  1157     /// \brief Called when the DFS steps back from a node.
 
  1159     /// This function is called when the DFS steps back from a node.
 
  1160     void leave(const Node& node) {}
 
  1161     /// \brief Called when the DFS steps back on an arc.
 
  1163     /// This function is called when the DFS steps back on an arc.
 
  1164     void backtrack(const Arc& arc) {}
 
  1167   template <typename _Digraph>
 
  1169     typedef _Digraph Digraph;
 
  1170     typedef typename Digraph::Arc Arc;
 
  1171     typedef typename Digraph::Node Node;
 
  1172     void start(const Node&) {}
 
  1173     void stop(const Node&) {}
 
  1174     void reach(const Node&) {}
 
  1175     void discover(const Arc&) {}
 
  1176     void examine(const Arc&) {}
 
  1177     void leave(const Node&) {}
 
  1178     void backtrack(const Arc&) {}
 
  1180     template <typename _Visitor>
 
  1181     struct Constraints {
 
  1182       void constraints() {
 
  1185         visitor.start(node);
 
  1187         visitor.reach(node);
 
  1188         visitor.discover(arc);
 
  1189         visitor.examine(arc);
 
  1190         visitor.leave(node);
 
  1191         visitor.backtrack(arc);
 
  1198   /// \brief Default traits class of DfsVisit class.
 
  1200   /// Default traits class of DfsVisit class.
 
  1201   /// \tparam _Digraph The type of the digraph the algorithm runs on.
 
  1202   template<class _Digraph>
 
  1203   struct DfsVisitDefaultTraits {
 
  1205     /// \brief The type of the digraph the algorithm runs on.
 
  1206     typedef _Digraph Digraph;
 
  1208     /// \brief The type of the map that indicates which nodes are reached.
 
  1210     /// The type of the map that indicates which nodes are reached.
 
  1211     /// It must meet the \ref concepts::ReadWriteMap "ReadWriteMap" concept.
 
  1212     typedef typename Digraph::template NodeMap<bool> ReachedMap;
 
  1214     /// \brief Instantiates a ReachedMap.
 
  1216     /// This function instantiates a ReachedMap.
 
  1217     /// \param digraph is the digraph, to which
 
  1218     /// we would like to define the ReachedMap.
 
  1219     static ReachedMap *createReachedMap(const Digraph &digraph) {
 
  1220       return new ReachedMap(digraph);
 
  1227   /// \brief %DFS algorithm class with visitor interface.
 
  1229   /// This class provides an efficient implementation of the %DFS algorithm
 
  1230   /// with visitor interface.
 
  1232   /// The %DfsVisit class provides an alternative interface to the Dfs
 
  1233   /// class. It works with callback mechanism, the DfsVisit object calls
 
  1234   /// the member functions of the \c Visitor class on every DFS event.
 
  1236   /// This interface of the DFS algorithm should be used in special cases
 
  1237   /// when extra actions have to be performed in connection with certain
 
  1238   /// events of the DFS algorithm. Otherwise consider to use Dfs or dfs()
 
  1241   /// \tparam _Digraph The type of the digraph the algorithm runs on.
 
  1242   /// The default value is
 
  1243   /// \ref ListDigraph. The value of _Digraph is not used directly by
 
  1244   /// \ref DfsVisit, it is only passed to \ref DfsVisitDefaultTraits.
 
  1245   /// \tparam _Visitor The Visitor type that is used by the algorithm.
 
  1246   /// \ref DfsVisitor "DfsVisitor<_Digraph>" is an empty visitor, which
 
  1247   /// does not observe the DFS events. If you want to observe the DFS
 
  1248   /// events, you should implement your own visitor class.
 
  1249   /// \tparam _Traits Traits class to set various data types used by the
 
  1250   /// algorithm. The default traits class is
 
  1251   /// \ref DfsVisitDefaultTraits "DfsVisitDefaultTraits<_Digraph>".
 
  1252   /// See \ref DfsVisitDefaultTraits for the documentation of
 
  1253   /// a DFS visit traits class.
 
  1255   template <typename _Digraph, typename _Visitor, typename _Traits>
 
  1257   template <typename _Digraph = ListDigraph,
 
  1258             typename _Visitor = DfsVisitor<_Digraph>,
 
  1259             typename _Traits = DfsVisitDefaultTraits<_Digraph> >
 
  1264     ///The traits class.
 
  1265     typedef _Traits Traits;
 
  1267     ///The type of the digraph the algorithm runs on.
 
  1268     typedef typename Traits::Digraph Digraph;
 
  1270     ///The visitor type used by the algorithm.
 
  1271     typedef _Visitor Visitor;
 
  1273     ///The type of the map that indicates which nodes are reached.
 
  1274     typedef typename Traits::ReachedMap ReachedMap;
 
  1278     typedef typename Digraph::Node Node;
 
  1279     typedef typename Digraph::NodeIt NodeIt;
 
  1280     typedef typename Digraph::Arc Arc;
 
  1281     typedef typename Digraph::OutArcIt OutArcIt;
 
  1283     //Pointer to the underlying digraph.
 
  1284     const Digraph *_digraph;
 
  1285     //Pointer to the visitor object.
 
  1287     //Pointer to the map of reached status of the nodes.
 
  1288     ReachedMap *_reached;
 
  1289     //Indicates if _reached is locally allocated (true) or not.
 
  1292     std::vector<typename Digraph::Arc> _stack;
 
  1295     //Creates the maps if necessary.
 
  1296     void create_maps() {
 
  1298         local_reached = true;
 
  1299         _reached = Traits::createReachedMap(*_digraph);
 
  1309     typedef DfsVisit Create;
 
  1311     /// \name Named Template Parameters
 
  1315     struct SetReachedMapTraits : public Traits {
 
  1316       typedef T ReachedMap;
 
  1317       static ReachedMap *createReachedMap(const Digraph &digraph) {
 
  1318         LEMON_ASSERT(false, "ReachedMap is not initialized");
 
  1319         return 0; // ignore warnings
 
  1322     /// \brief \ref named-templ-param "Named parameter" for setting
 
  1323     /// ReachedMap type.
 
  1325     /// \ref named-templ-param "Named parameter" for setting ReachedMap type.
 
  1327     struct SetReachedMap : public DfsVisit< Digraph, Visitor,
 
  1328                                             SetReachedMapTraits<T> > {
 
  1329       typedef DfsVisit< Digraph, Visitor, SetReachedMapTraits<T> > Create;
 
  1335     /// \brief Constructor.
 
  1339     /// \param digraph The digraph the algorithm runs on.
 
  1340     /// \param visitor The visitor object of the algorithm.
 
  1341     DfsVisit(const Digraph& digraph, Visitor& visitor)
 
  1342       : _digraph(&digraph), _visitor(&visitor),
 
  1343         _reached(0), local_reached(false) {}
 
  1345     /// \brief Destructor.
 
  1347       if(local_reached) delete _reached;
 
  1350     /// \brief Sets the map that indicates which nodes are reached.
 
  1352     /// Sets the map that indicates which nodes are reached.
 
  1353     /// If you don't use this function before calling \ref run(Node) "run()"
 
  1354     /// or \ref init(), an instance will be allocated automatically.
 
  1355     /// The destructor deallocates this automatically allocated map,
 
  1357     /// \return <tt> (*this) </tt>
 
  1358     DfsVisit &reachedMap(ReachedMap &m) {
 
  1361         local_reached=false;
 
  1369     /// \name Execution Control
 
  1370     /// The simplest way to execute the DFS algorithm is to use one of the
 
  1371     /// member functions called \ref run(Node) "run()".\n
 
  1372     /// If you need more control on the execution, first you have to call
 
  1373     /// \ref init(), then you can add a source node with \ref addSource()
 
  1374     /// and perform the actual computation with \ref start().
 
  1375     /// This procedure can be repeated if there are nodes that have not
 
  1380     /// \brief Initializes the internal data structures.
 
  1382     /// Initializes the internal data structures.
 
  1385       _stack.resize(countNodes(*_digraph));
 
  1387       for (NodeIt u(*_digraph) ; u != INVALID ; ++u) {
 
  1388         _reached->set(u, false);
 
  1392     /// \brief Adds a new source node.
 
  1394     /// Adds a new source node to the set of nodes to be processed.
 
  1396     /// \pre The stack must be empty. Otherwise the algorithm gives
 
  1397     /// wrong results. (One of the outgoing arcs of all the source nodes
 
  1398     /// except for the last one will not be visited and distances will
 
  1400     void addSource(Node s)
 
  1402       LEMON_DEBUG(emptyQueue(), "The stack is not empty.");
 
  1403       if(!(*_reached)[s]) {
 
  1404           _reached->set(s,true);
 
  1408           _digraph->firstOut(e, s);
 
  1410             _stack[++_stack_head] = e;
 
  1418     /// \brief Processes the next arc.
 
  1420     /// Processes the next arc.
 
  1422     /// \return The processed arc.
 
  1424     /// \pre The stack must not be empty.
 
  1425     Arc processNextArc() {
 
  1426       Arc e = _stack[_stack_head];
 
  1427       Node m = _digraph->target(e);
 
  1428       if(!(*_reached)[m]) {
 
  1429         _visitor->discover(e);
 
  1431         _reached->set(m, true);
 
  1432         _digraph->firstOut(_stack[++_stack_head], m);
 
  1434         _visitor->examine(e);
 
  1435         m = _digraph->source(e);
 
  1436         _digraph->nextOut(_stack[_stack_head]);
 
  1438       while (_stack_head>=0 && _stack[_stack_head] == INVALID) {
 
  1441         if (_stack_head >= 0) {
 
  1442           _visitor->backtrack(_stack[_stack_head]);
 
  1443           m = _digraph->source(_stack[_stack_head]);
 
  1444           _digraph->nextOut(_stack[_stack_head]);
 
  1452     /// \brief Next arc to be processed.
 
  1454     /// Next arc to be processed.
 
  1456     /// \return The next arc to be processed or INVALID if the stack is
 
  1458     Arc nextArc() const {
 
  1459       return _stack_head >= 0 ? _stack[_stack_head] : INVALID;
 
  1462     /// \brief Returns \c false if there are nodes
 
  1463     /// to be processed.
 
  1465     /// Returns \c false if there are nodes
 
  1466     /// to be processed in the queue (stack).
 
  1467     bool emptyQueue() const { return _stack_head < 0; }
 
  1469     /// \brief Returns the number of the nodes to be processed.
 
  1471     /// Returns the number of the nodes to be processed in the queue (stack).
 
  1472     int queueSize() const { return _stack_head + 1; }
 
  1474     /// \brief Executes the algorithm.
 
  1476     /// Executes the algorithm.
 
  1478     /// This method runs the %DFS algorithm from the root node
 
  1479     /// in order to compute the %DFS path to each node.
 
  1481     /// The algorithm computes
 
  1482     /// - the %DFS tree,
 
  1483     /// - the distance of each node from the root in the %DFS tree.
 
  1485     /// \pre init() must be called and a root node should be
 
  1486     /// added with addSource() before using this function.
 
  1488     /// \note <tt>d.start()</tt> is just a shortcut of the following code.
 
  1490     ///   while ( !d.emptyQueue() ) {
 
  1491     ///     d.processNextArc();
 
  1495       while ( !emptyQueue() ) processNextArc();
 
  1498     /// \brief Executes the algorithm until the given target node is reached.
 
  1500     /// Executes the algorithm until the given target node is reached.
 
  1502     /// This method runs the %DFS algorithm from the root node
 
  1503     /// in order to compute the DFS path to \c t.
 
  1505     /// The algorithm computes
 
  1506     /// - the %DFS path to \c t,
 
  1507     /// - the distance of \c t from the root in the %DFS tree.
 
  1509     /// \pre init() must be called and a root node should be added
 
  1510     /// with addSource() before using this function.
 
  1511     void start(Node t) {
 
  1512       while ( !emptyQueue() && _digraph->target(_stack[_stack_head]) != t )
 
  1516     /// \brief Executes the algorithm until a condition is met.
 
  1518     /// Executes the algorithm until a condition is met.
 
  1520     /// This method runs the %DFS algorithm from the root node
 
  1521     /// until an arc \c a with <tt>am[a]</tt> true is found.
 
  1523     /// \param am A \c bool (or convertible) arc map. The algorithm
 
  1524     /// will stop when it reaches an arc \c a with <tt>am[a]</tt> true.
 
  1526     /// \return The reached arc \c a with <tt>am[a]</tt> true or
 
  1527     /// \c INVALID if no such arc was found.
 
  1529     /// \pre init() must be called and a root node should be added
 
  1530     /// with addSource() before using this function.
 
  1532     /// \warning Contrary to \ref Bfs and \ref Dijkstra, \c am is an arc map,
 
  1534     template <typename AM>
 
  1535     Arc start(const AM &am) {
 
  1536       while ( !emptyQueue() && !am[_stack[_stack_head]] )
 
  1538       return emptyQueue() ? INVALID : _stack[_stack_head];
 
  1541     /// \brief Runs the algorithm from the given source node.
 
  1543     /// This method runs the %DFS algorithm from node \c s.
 
  1544     /// in order to compute the DFS path to each node.
 
  1546     /// The algorithm computes
 
  1547     /// - the %DFS tree,
 
  1548     /// - the distance of each node from the root in the %DFS tree.
 
  1550     /// \note <tt>d.run(s)</tt> is just a shortcut of the following code.
 
  1562     /// \brief Finds the %DFS path between \c s and \c t.
 
  1564     /// This method runs the %DFS algorithm from node \c s
 
  1565     /// in order to compute the DFS path to node \c t
 
  1566     /// (it stops searching when \c t is processed).
 
  1568     /// \return \c true if \c t is reachable form \c s.
 
  1570     /// \note Apart from the return value, <tt>d.run(s,t)</tt> is
 
  1571     /// just a shortcut of the following code.
 
  1577     bool run(Node s,Node t) {
 
  1584     /// \brief Runs the algorithm to visit all nodes in the digraph.
 
  1586     /// This method runs the %DFS algorithm in order to
 
  1587     /// compute the %DFS path to each node.
 
  1589     /// The algorithm computes
 
  1590     /// - the %DFS tree (forest),
 
  1591     /// - the distance of each node from the root(s) in the %DFS tree.
 
  1593     /// \note <tt>d.run()</tt> is just a shortcut of the following code.
 
  1596     ///   for (NodeIt n(digraph); n != INVALID; ++n) {
 
  1597     ///     if (!d.reached(n)) {
 
  1605       for (NodeIt it(*_digraph); it != INVALID; ++it) {
 
  1615     /// \name Query Functions
 
  1616     /// The results of the DFS algorithm can be obtained using these
 
  1618     /// Either \ref run(Node) "run()" or \ref start() should be called
 
  1619     /// before using them.
 
  1623     /// \brief Checks if a node is reached from the root(s).
 
  1625     /// Returns \c true if \c v is reached from the root(s).
 
  1627     /// \pre Either \ref run(Node) "run()" or \ref init()
 
  1628     /// must be called before using this function.
 
  1629     bool reached(Node v) const { return (*_reached)[v]; }
 
  1635 } //END OF NAMESPACE LEMON