lemon/core.h
author Alpar Juttner <alpar@cs.elte.hu>
Tue, 30 Jul 2013 15:10:43 +0200
branch1.1
changeset 1237 deaf433636ca
parent 1150 9147b013331a
parent 1236 756022ac1674
child 1248 14394c9603c2
permissions -rw-r--r--
Merge fix #470 to branch 1.1
     1 /* -*- mode: C++; indent-tabs-mode: nil; -*-
     2  *
     3  * This file is a part of LEMON, a generic C++ optimization library.
     4  *
     5  * Copyright (C) 2003-2011
     6  * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
     7  * (Egervary Research Group on Combinatorial Optimization, EGRES).
     8  *
     9  * Permission to use, modify and distribute this software is granted
    10  * provided that this copyright notice appears in all copies. For
    11  * precise terms see the accompanying LICENSE file.
    12  *
    13  * This software is provided "AS IS" with no warranty of any kind,
    14  * express or implied, and with no claim as to its suitability for any
    15  * purpose.
    16  *
    17  */
    18 
    19 #ifndef LEMON_CORE_H
    20 #define LEMON_CORE_H
    21 
    22 #include <vector>
    23 #include <algorithm>
    24 
    25 #include <lemon/config.h>
    26 #include <lemon/bits/enable_if.h>
    27 #include <lemon/bits/traits.h>
    28 #include <lemon/assert.h>
    29 
    30 // Disable the following warnings when compiling with MSVC:
    31 // C4250: 'class1' : inherits 'class2::member' via dominance
    32 // C4355: 'this' : used in base member initializer list
    33 // C4503: 'function' : decorated name length exceeded, name was truncated
    34 // C4800: 'type' : forcing value to bool 'true' or 'false' (performance warning)
    35 // C4996: 'function': was declared deprecated
    36 #ifdef _MSC_VER
    37 #pragma warning( disable : 4250 4355 4503 4800 4996 )
    38 #endif
    39 
    40 #ifdef __GNUC__
    41 // Needed by the [DI]GRAPH_TYPEDEFS marcos for gcc 4.8
    42 #pragma GCC diagnostic ignored "-Wunused-local-typedefs"
    43 #endif
    44 
    45 ///\file
    46 ///\brief LEMON core utilities.
    47 ///
    48 ///This header file contains core utilities for LEMON.
    49 ///It is automatically included by all graph types, therefore it usually
    50 ///do not have to be included directly.
    51 
    52 namespace lemon {
    53 
    54   /// \brief Dummy type to make it easier to create invalid iterators.
    55   ///
    56   /// Dummy type to make it easier to create invalid iterators.
    57   /// See \ref INVALID for the usage.
    58   struct Invalid {
    59   public:
    60     bool operator==(Invalid) { return true;  }
    61     bool operator!=(Invalid) { return false; }
    62     bool operator< (Invalid) { return false; }
    63   };
    64 
    65   /// \brief Invalid iterators.
    66   ///
    67   /// \ref Invalid is a global type that converts to each iterator
    68   /// in such a way that the value of the target iterator will be invalid.
    69 #ifdef LEMON_ONLY_TEMPLATES
    70   const Invalid INVALID = Invalid();
    71 #else
    72   extern const Invalid INVALID;
    73 #endif
    74 
    75   /// \addtogroup gutils
    76   /// @{
    77 
    78   ///Create convenience typedefs for the digraph types and iterators
    79 
    80   ///This \c \#define creates convenient type definitions for the following
    81   ///types of \c Digraph: \c Node,  \c NodeIt, \c Arc, \c ArcIt, \c InArcIt,
    82   ///\c OutArcIt, \c BoolNodeMap, \c IntNodeMap, \c DoubleNodeMap,
    83   ///\c BoolArcMap, \c IntArcMap, \c DoubleArcMap.
    84   ///
    85   ///\note If the graph type is a dependent type, ie. the graph type depend
    86   ///on a template parameter, then use \c TEMPLATE_DIGRAPH_TYPEDEFS()
    87   ///macro.
    88 #define DIGRAPH_TYPEDEFS(Digraph)                                       \
    89   typedef Digraph::Node Node;                                           \
    90   typedef Digraph::NodeIt NodeIt;                                       \
    91   typedef Digraph::Arc Arc;                                             \
    92   typedef Digraph::ArcIt ArcIt;                                         \
    93   typedef Digraph::InArcIt InArcIt;                                     \
    94   typedef Digraph::OutArcIt OutArcIt;                                   \
    95   typedef Digraph::NodeMap<bool> BoolNodeMap;                           \
    96   typedef Digraph::NodeMap<int> IntNodeMap;                             \
    97   typedef Digraph::NodeMap<double> DoubleNodeMap;                       \
    98   typedef Digraph::ArcMap<bool> BoolArcMap;                             \
    99   typedef Digraph::ArcMap<int> IntArcMap;                               \
   100   typedef Digraph::ArcMap<double> DoubleArcMap
   101 
   102   ///Create convenience typedefs for the digraph types and iterators
   103 
   104   ///\see DIGRAPH_TYPEDEFS
   105   ///
   106   ///\note Use this macro, if the graph type is a dependent type,
   107   ///ie. the graph type depend on a template parameter.
   108 #define TEMPLATE_DIGRAPH_TYPEDEFS(Digraph)                              \
   109   typedef typename Digraph::Node Node;                                  \
   110   typedef typename Digraph::NodeIt NodeIt;                              \
   111   typedef typename Digraph::Arc Arc;                                    \
   112   typedef typename Digraph::ArcIt ArcIt;                                \
   113   typedef typename Digraph::InArcIt InArcIt;                            \
   114   typedef typename Digraph::OutArcIt OutArcIt;                          \
   115   typedef typename Digraph::template NodeMap<bool> BoolNodeMap;         \
   116   typedef typename Digraph::template NodeMap<int> IntNodeMap;           \
   117   typedef typename Digraph::template NodeMap<double> DoubleNodeMap;     \
   118   typedef typename Digraph::template ArcMap<bool> BoolArcMap;           \
   119   typedef typename Digraph::template ArcMap<int> IntArcMap;             \
   120   typedef typename Digraph::template ArcMap<double> DoubleArcMap
   121 
   122   ///Create convenience typedefs for the graph types and iterators
   123 
   124   ///This \c \#define creates the same convenient type definitions as defined
   125   ///by \ref DIGRAPH_TYPEDEFS(Graph) and six more, namely it creates
   126   ///\c Edge, \c EdgeIt, \c IncEdgeIt, \c BoolEdgeMap, \c IntEdgeMap,
   127   ///\c DoubleEdgeMap.
   128   ///
   129   ///\note If the graph type is a dependent type, ie. the graph type depend
   130   ///on a template parameter, then use \c TEMPLATE_GRAPH_TYPEDEFS()
   131   ///macro.
   132 #define GRAPH_TYPEDEFS(Graph)                                           \
   133   DIGRAPH_TYPEDEFS(Graph);                                              \
   134   typedef Graph::Edge Edge;                                             \
   135   typedef Graph::EdgeIt EdgeIt;                                         \
   136   typedef Graph::IncEdgeIt IncEdgeIt;                                   \
   137   typedef Graph::EdgeMap<bool> BoolEdgeMap;                             \
   138   typedef Graph::EdgeMap<int> IntEdgeMap;                               \
   139   typedef Graph::EdgeMap<double> DoubleEdgeMap
   140 
   141   ///Create convenience typedefs for the graph types and iterators
   142 
   143   ///\see GRAPH_TYPEDEFS
   144   ///
   145   ///\note Use this macro, if the graph type is a dependent type,
   146   ///ie. the graph type depend on a template parameter.
   147 #define TEMPLATE_GRAPH_TYPEDEFS(Graph)                                  \
   148   TEMPLATE_DIGRAPH_TYPEDEFS(Graph);                                     \
   149   typedef typename Graph::Edge Edge;                                    \
   150   typedef typename Graph::EdgeIt EdgeIt;                                \
   151   typedef typename Graph::IncEdgeIt IncEdgeIt;                          \
   152   typedef typename Graph::template EdgeMap<bool> BoolEdgeMap;           \
   153   typedef typename Graph::template EdgeMap<int> IntEdgeMap;             \
   154   typedef typename Graph::template EdgeMap<double> DoubleEdgeMap
   155 
   156   /// \brief Function to count the items in a graph.
   157   ///
   158   /// This function counts the items (nodes, arcs etc.) in a graph.
   159   /// The complexity of the function is linear because
   160   /// it iterates on all of the items.
   161   template <typename Graph, typename Item>
   162   inline int countItems(const Graph& g) {
   163     typedef typename ItemSetTraits<Graph, Item>::ItemIt ItemIt;
   164     int num = 0;
   165     for (ItemIt it(g); it != INVALID; ++it) {
   166       ++num;
   167     }
   168     return num;
   169   }
   170 
   171   // Node counting:
   172 
   173   namespace _core_bits {
   174 
   175     template <typename Graph, typename Enable = void>
   176     struct CountNodesSelector {
   177       static int count(const Graph &g) {
   178         return countItems<Graph, typename Graph::Node>(g);
   179       }
   180     };
   181 
   182     template <typename Graph>
   183     struct CountNodesSelector<
   184       Graph, typename
   185       enable_if<typename Graph::NodeNumTag, void>::type>
   186     {
   187       static int count(const Graph &g) {
   188         return g.nodeNum();
   189       }
   190     };
   191   }
   192 
   193   /// \brief Function to count the nodes in the graph.
   194   ///
   195   /// This function counts the nodes in the graph.
   196   /// The complexity of the function is <em>O</em>(<em>n</em>), but for some
   197   /// graph structures it is specialized to run in <em>O</em>(1).
   198   ///
   199   /// \note If the graph contains a \c nodeNum() member function and a
   200   /// \c NodeNumTag tag then this function calls directly the member
   201   /// function to query the cardinality of the node set.
   202   template <typename Graph>
   203   inline int countNodes(const Graph& g) {
   204     return _core_bits::CountNodesSelector<Graph>::count(g);
   205   }
   206 
   207   // Arc counting:
   208 
   209   namespace _core_bits {
   210 
   211     template <typename Graph, typename Enable = void>
   212     struct CountArcsSelector {
   213       static int count(const Graph &g) {
   214         return countItems<Graph, typename Graph::Arc>(g);
   215       }
   216     };
   217 
   218     template <typename Graph>
   219     struct CountArcsSelector<
   220       Graph,
   221       typename enable_if<typename Graph::ArcNumTag, void>::type>
   222     {
   223       static int count(const Graph &g) {
   224         return g.arcNum();
   225       }
   226     };
   227   }
   228 
   229   /// \brief Function to count the arcs in the graph.
   230   ///
   231   /// This function counts the arcs in the graph.
   232   /// The complexity of the function is <em>O</em>(<em>m</em>), but for some
   233   /// graph structures it is specialized to run in <em>O</em>(1).
   234   ///
   235   /// \note If the graph contains a \c arcNum() member function and a
   236   /// \c ArcNumTag tag then this function calls directly the member
   237   /// function to query the cardinality of the arc set.
   238   template <typename Graph>
   239   inline int countArcs(const Graph& g) {
   240     return _core_bits::CountArcsSelector<Graph>::count(g);
   241   }
   242 
   243   // Edge counting:
   244 
   245   namespace _core_bits {
   246 
   247     template <typename Graph, typename Enable = void>
   248     struct CountEdgesSelector {
   249       static int count(const Graph &g) {
   250         return countItems<Graph, typename Graph::Edge>(g);
   251       }
   252     };
   253 
   254     template <typename Graph>
   255     struct CountEdgesSelector<
   256       Graph,
   257       typename enable_if<typename Graph::EdgeNumTag, void>::type>
   258     {
   259       static int count(const Graph &g) {
   260         return g.edgeNum();
   261       }
   262     };
   263   }
   264 
   265   /// \brief Function to count the edges in the graph.
   266   ///
   267   /// This function counts the edges in the graph.
   268   /// The complexity of the function is <em>O</em>(<em>m</em>), but for some
   269   /// graph structures it is specialized to run in <em>O</em>(1).
   270   ///
   271   /// \note If the graph contains a \c edgeNum() member function and a
   272   /// \c EdgeNumTag tag then this function calls directly the member
   273   /// function to query the cardinality of the edge set.
   274   template <typename Graph>
   275   inline int countEdges(const Graph& g) {
   276     return _core_bits::CountEdgesSelector<Graph>::count(g);
   277 
   278   }
   279 
   280 
   281   template <typename Graph, typename DegIt>
   282   inline int countNodeDegree(const Graph& _g, const typename Graph::Node& _n) {
   283     int num = 0;
   284     for (DegIt it(_g, _n); it != INVALID; ++it) {
   285       ++num;
   286     }
   287     return num;
   288   }
   289 
   290   /// \brief Function to count the number of the out-arcs from node \c n.
   291   ///
   292   /// This function counts the number of the out-arcs from node \c n
   293   /// in the graph \c g.
   294   template <typename Graph>
   295   inline int countOutArcs(const Graph& g,  const typename Graph::Node& n) {
   296     return countNodeDegree<Graph, typename Graph::OutArcIt>(g, n);
   297   }
   298 
   299   /// \brief Function to count the number of the in-arcs to node \c n.
   300   ///
   301   /// This function counts the number of the in-arcs to node \c n
   302   /// in the graph \c g.
   303   template <typename Graph>
   304   inline int countInArcs(const Graph& g,  const typename Graph::Node& n) {
   305     return countNodeDegree<Graph, typename Graph::InArcIt>(g, n);
   306   }
   307 
   308   /// \brief Function to count the number of the inc-edges to node \c n.
   309   ///
   310   /// This function counts the number of the inc-edges to node \c n
   311   /// in the undirected graph \c g.
   312   template <typename Graph>
   313   inline int countIncEdges(const Graph& g,  const typename Graph::Node& n) {
   314     return countNodeDegree<Graph, typename Graph::IncEdgeIt>(g, n);
   315   }
   316 
   317   namespace _core_bits {
   318 
   319     template <typename Digraph, typename Item, typename RefMap>
   320     class MapCopyBase {
   321     public:
   322       virtual void copy(const Digraph& from, const RefMap& refMap) = 0;
   323 
   324       virtual ~MapCopyBase() {}
   325     };
   326 
   327     template <typename Digraph, typename Item, typename RefMap,
   328               typename FromMap, typename ToMap>
   329     class MapCopy : public MapCopyBase<Digraph, Item, RefMap> {
   330     public:
   331 
   332       MapCopy(const FromMap& map, ToMap& tmap)
   333         : _map(map), _tmap(tmap) {}
   334 
   335       virtual void copy(const Digraph& digraph, const RefMap& refMap) {
   336         typedef typename ItemSetTraits<Digraph, Item>::ItemIt ItemIt;
   337         for (ItemIt it(digraph); it != INVALID; ++it) {
   338           _tmap.set(refMap[it], _map[it]);
   339         }
   340       }
   341 
   342     private:
   343       const FromMap& _map;
   344       ToMap& _tmap;
   345     };
   346 
   347     template <typename Digraph, typename Item, typename RefMap, typename It>
   348     class ItemCopy : public MapCopyBase<Digraph, Item, RefMap> {
   349     public:
   350 
   351       ItemCopy(const Item& item, It& it) : _item(item), _it(it) {}
   352 
   353       virtual void copy(const Digraph&, const RefMap& refMap) {
   354         _it = refMap[_item];
   355       }
   356 
   357     private:
   358       Item _item;
   359       It& _it;
   360     };
   361 
   362     template <typename Digraph, typename Item, typename RefMap, typename Ref>
   363     class RefCopy : public MapCopyBase<Digraph, Item, RefMap> {
   364     public:
   365 
   366       RefCopy(Ref& map) : _map(map) {}
   367 
   368       virtual void copy(const Digraph& digraph, const RefMap& refMap) {
   369         typedef typename ItemSetTraits<Digraph, Item>::ItemIt ItemIt;
   370         for (ItemIt it(digraph); it != INVALID; ++it) {
   371           _map.set(it, refMap[it]);
   372         }
   373       }
   374 
   375     private:
   376       Ref& _map;
   377     };
   378 
   379     template <typename Digraph, typename Item, typename RefMap,
   380               typename CrossRef>
   381     class CrossRefCopy : public MapCopyBase<Digraph, Item, RefMap> {
   382     public:
   383 
   384       CrossRefCopy(CrossRef& cmap) : _cmap(cmap) {}
   385 
   386       virtual void copy(const Digraph& digraph, const RefMap& refMap) {
   387         typedef typename ItemSetTraits<Digraph, Item>::ItemIt ItemIt;
   388         for (ItemIt it(digraph); it != INVALID; ++it) {
   389           _cmap.set(refMap[it], it);
   390         }
   391       }
   392 
   393     private:
   394       CrossRef& _cmap;
   395     };
   396 
   397     template <typename Digraph, typename Enable = void>
   398     struct DigraphCopySelector {
   399       template <typename From, typename NodeRefMap, typename ArcRefMap>
   400       static void copy(const From& from, Digraph &to,
   401                        NodeRefMap& nodeRefMap, ArcRefMap& arcRefMap) {
   402         to.clear();
   403         for (typename From::NodeIt it(from); it != INVALID; ++it) {
   404           nodeRefMap[it] = to.addNode();
   405         }
   406         for (typename From::ArcIt it(from); it != INVALID; ++it) {
   407           arcRefMap[it] = to.addArc(nodeRefMap[from.source(it)],
   408                                     nodeRefMap[from.target(it)]);
   409         }
   410       }
   411     };
   412 
   413     template <typename Digraph>
   414     struct DigraphCopySelector<
   415       Digraph,
   416       typename enable_if<typename Digraph::BuildTag, void>::type>
   417     {
   418       template <typename From, typename NodeRefMap, typename ArcRefMap>
   419       static void copy(const From& from, Digraph &to,
   420                        NodeRefMap& nodeRefMap, ArcRefMap& arcRefMap) {
   421         to.build(from, nodeRefMap, arcRefMap);
   422       }
   423     };
   424 
   425     template <typename Graph, typename Enable = void>
   426     struct GraphCopySelector {
   427       template <typename From, typename NodeRefMap, typename EdgeRefMap>
   428       static void copy(const From& from, Graph &to,
   429                        NodeRefMap& nodeRefMap, EdgeRefMap& edgeRefMap) {
   430         to.clear();
   431         for (typename From::NodeIt it(from); it != INVALID; ++it) {
   432           nodeRefMap[it] = to.addNode();
   433         }
   434         for (typename From::EdgeIt it(from); it != INVALID; ++it) {
   435           edgeRefMap[it] = to.addEdge(nodeRefMap[from.u(it)],
   436                                       nodeRefMap[from.v(it)]);
   437         }
   438       }
   439     };
   440 
   441     template <typename Graph>
   442     struct GraphCopySelector<
   443       Graph,
   444       typename enable_if<typename Graph::BuildTag, void>::type>
   445     {
   446       template <typename From, typename NodeRefMap, typename EdgeRefMap>
   447       static void copy(const From& from, Graph &to,
   448                        NodeRefMap& nodeRefMap, EdgeRefMap& edgeRefMap) {
   449         to.build(from, nodeRefMap, edgeRefMap);
   450       }
   451     };
   452 
   453   }
   454 
   455   /// \brief Class to copy a digraph.
   456   ///
   457   /// Class to copy a digraph to another digraph (duplicate a digraph). The
   458   /// simplest way of using it is through the \c digraphCopy() function.
   459   ///
   460   /// This class not only make a copy of a digraph, but it can create
   461   /// references and cross references between the nodes and arcs of
   462   /// the two digraphs, and it can copy maps to use with the newly created
   463   /// digraph.
   464   ///
   465   /// To make a copy from a digraph, first an instance of DigraphCopy
   466   /// should be created, then the data belongs to the digraph should
   467   /// assigned to copy. In the end, the \c run() member should be
   468   /// called.
   469   ///
   470   /// The next code copies a digraph with several data:
   471   ///\code
   472   ///  DigraphCopy<OrigGraph, NewGraph> cg(orig_graph, new_graph);
   473   ///  // Create references for the nodes
   474   ///  OrigGraph::NodeMap<NewGraph::Node> nr(orig_graph);
   475   ///  cg.nodeRef(nr);
   476   ///  // Create cross references (inverse) for the arcs
   477   ///  NewGraph::ArcMap<OrigGraph::Arc> acr(new_graph);
   478   ///  cg.arcCrossRef(acr);
   479   ///  // Copy an arc map
   480   ///  OrigGraph::ArcMap<double> oamap(orig_graph);
   481   ///  NewGraph::ArcMap<double> namap(new_graph);
   482   ///  cg.arcMap(oamap, namap);
   483   ///  // Copy a node
   484   ///  OrigGraph::Node on;
   485   ///  NewGraph::Node nn;
   486   ///  cg.node(on, nn);
   487   ///  // Execute copying
   488   ///  cg.run();
   489   ///\endcode
   490   template <typename From, typename To>
   491   class DigraphCopy {
   492   private:
   493 
   494     typedef typename From::Node Node;
   495     typedef typename From::NodeIt NodeIt;
   496     typedef typename From::Arc Arc;
   497     typedef typename From::ArcIt ArcIt;
   498 
   499     typedef typename To::Node TNode;
   500     typedef typename To::Arc TArc;
   501 
   502     typedef typename From::template NodeMap<TNode> NodeRefMap;
   503     typedef typename From::template ArcMap<TArc> ArcRefMap;
   504 
   505   public:
   506 
   507     /// \brief Constructor of DigraphCopy.
   508     ///
   509     /// Constructor of DigraphCopy for copying the content of the
   510     /// \c from digraph into the \c to digraph.
   511     DigraphCopy(const From& from, To& to)
   512       : _from(from), _to(to) {}
   513 
   514     /// \brief Destructor of DigraphCopy
   515     ///
   516     /// Destructor of DigraphCopy.
   517     ~DigraphCopy() {
   518       for (int i = 0; i < int(_node_maps.size()); ++i) {
   519         delete _node_maps[i];
   520       }
   521       for (int i = 0; i < int(_arc_maps.size()); ++i) {
   522         delete _arc_maps[i];
   523       }
   524 
   525     }
   526 
   527     /// \brief Copy the node references into the given map.
   528     ///
   529     /// This function copies the node references into the given map.
   530     /// The parameter should be a map, whose key type is the Node type of
   531     /// the source digraph, while the value type is the Node type of the
   532     /// destination digraph.
   533     template <typename NodeRef>
   534     DigraphCopy& nodeRef(NodeRef& map) {
   535       _node_maps.push_back(new _core_bits::RefCopy<From, Node,
   536                            NodeRefMap, NodeRef>(map));
   537       return *this;
   538     }
   539 
   540     /// \brief Copy the node cross references into the given map.
   541     ///
   542     /// This function copies the node cross references (reverse references)
   543     /// into the given map. The parameter should be a map, whose key type
   544     /// is the Node type of the destination digraph, while the value type is
   545     /// the Node type of the source digraph.
   546     template <typename NodeCrossRef>
   547     DigraphCopy& nodeCrossRef(NodeCrossRef& map) {
   548       _node_maps.push_back(new _core_bits::CrossRefCopy<From, Node,
   549                            NodeRefMap, NodeCrossRef>(map));
   550       return *this;
   551     }
   552 
   553     /// \brief Make a copy of the given node map.
   554     ///
   555     /// This function makes a copy of the given node map for the newly
   556     /// created digraph.
   557     /// The key type of the new map \c tmap should be the Node type of the
   558     /// destination digraph, and the key type of the original map \c map
   559     /// should be the Node type of the source digraph.
   560     template <typename FromMap, typename ToMap>
   561     DigraphCopy& nodeMap(const FromMap& map, ToMap& tmap) {
   562       _node_maps.push_back(new _core_bits::MapCopy<From, Node,
   563                            NodeRefMap, FromMap, ToMap>(map, tmap));
   564       return *this;
   565     }
   566 
   567     /// \brief Make a copy of the given node.
   568     ///
   569     /// This function makes a copy of the given node.
   570     DigraphCopy& node(const Node& node, TNode& tnode) {
   571       _node_maps.push_back(new _core_bits::ItemCopy<From, Node,
   572                            NodeRefMap, TNode>(node, tnode));
   573       return *this;
   574     }
   575 
   576     /// \brief Copy the arc references into the given map.
   577     ///
   578     /// This function copies the arc references into the given map.
   579     /// The parameter should be a map, whose key type is the Arc type of
   580     /// the source digraph, while the value type is the Arc type of the
   581     /// destination digraph.
   582     template <typename ArcRef>
   583     DigraphCopy& arcRef(ArcRef& map) {
   584       _arc_maps.push_back(new _core_bits::RefCopy<From, Arc,
   585                           ArcRefMap, ArcRef>(map));
   586       return *this;
   587     }
   588 
   589     /// \brief Copy the arc cross references into the given map.
   590     ///
   591     /// This function copies the arc cross references (reverse references)
   592     /// into the given map. The parameter should be a map, whose key type
   593     /// is the Arc type of the destination digraph, while the value type is
   594     /// the Arc type of the source digraph.
   595     template <typename ArcCrossRef>
   596     DigraphCopy& arcCrossRef(ArcCrossRef& map) {
   597       _arc_maps.push_back(new _core_bits::CrossRefCopy<From, Arc,
   598                           ArcRefMap, ArcCrossRef>(map));
   599       return *this;
   600     }
   601 
   602     /// \brief Make a copy of the given arc map.
   603     ///
   604     /// This function makes a copy of the given arc map for the newly
   605     /// created digraph.
   606     /// The key type of the new map \c tmap should be the Arc type of the
   607     /// destination digraph, and the key type of the original map \c map
   608     /// should be the Arc type of the source digraph.
   609     template <typename FromMap, typename ToMap>
   610     DigraphCopy& arcMap(const FromMap& map, ToMap& tmap) {
   611       _arc_maps.push_back(new _core_bits::MapCopy<From, Arc,
   612                           ArcRefMap, FromMap, ToMap>(map, tmap));
   613       return *this;
   614     }
   615 
   616     /// \brief Make a copy of the given arc.
   617     ///
   618     /// This function makes a copy of the given arc.
   619     DigraphCopy& arc(const Arc& arc, TArc& tarc) {
   620       _arc_maps.push_back(new _core_bits::ItemCopy<From, Arc,
   621                           ArcRefMap, TArc>(arc, tarc));
   622       return *this;
   623     }
   624 
   625     /// \brief Execute copying.
   626     ///
   627     /// This function executes the copying of the digraph along with the
   628     /// copying of the assigned data.
   629     void run() {
   630       NodeRefMap nodeRefMap(_from);
   631       ArcRefMap arcRefMap(_from);
   632       _core_bits::DigraphCopySelector<To>::
   633         copy(_from, _to, nodeRefMap, arcRefMap);
   634       for (int i = 0; i < int(_node_maps.size()); ++i) {
   635         _node_maps[i]->copy(_from, nodeRefMap);
   636       }
   637       for (int i = 0; i < int(_arc_maps.size()); ++i) {
   638         _arc_maps[i]->copy(_from, arcRefMap);
   639       }
   640     }
   641 
   642   protected:
   643 
   644     const From& _from;
   645     To& _to;
   646 
   647     std::vector<_core_bits::MapCopyBase<From, Node, NodeRefMap>* >
   648       _node_maps;
   649 
   650     std::vector<_core_bits::MapCopyBase<From, Arc, ArcRefMap>* >
   651       _arc_maps;
   652 
   653   };
   654 
   655   /// \brief Copy a digraph to another digraph.
   656   ///
   657   /// This function copies a digraph to another digraph.
   658   /// The complete usage of it is detailed in the DigraphCopy class, but
   659   /// a short example shows a basic work:
   660   ///\code
   661   /// digraphCopy(src, trg).nodeRef(nr).arcCrossRef(acr).run();
   662   ///\endcode
   663   ///
   664   /// After the copy the \c nr map will contain the mapping from the
   665   /// nodes of the \c from digraph to the nodes of the \c to digraph and
   666   /// \c acr will contain the mapping from the arcs of the \c to digraph
   667   /// to the arcs of the \c from digraph.
   668   ///
   669   /// \see DigraphCopy
   670   template <typename From, typename To>
   671   DigraphCopy<From, To> digraphCopy(const From& from, To& to) {
   672     return DigraphCopy<From, To>(from, to);
   673   }
   674 
   675   /// \brief Class to copy a graph.
   676   ///
   677   /// Class to copy a graph to another graph (duplicate a graph). The
   678   /// simplest way of using it is through the \c graphCopy() function.
   679   ///
   680   /// This class not only make a copy of a graph, but it can create
   681   /// references and cross references between the nodes, edges and arcs of
   682   /// the two graphs, and it can copy maps for using with the newly created
   683   /// graph.
   684   ///
   685   /// To make a copy from a graph, first an instance of GraphCopy
   686   /// should be created, then the data belongs to the graph should
   687   /// assigned to copy. In the end, the \c run() member should be
   688   /// called.
   689   ///
   690   /// The next code copies a graph with several data:
   691   ///\code
   692   ///  GraphCopy<OrigGraph, NewGraph> cg(orig_graph, new_graph);
   693   ///  // Create references for the nodes
   694   ///  OrigGraph::NodeMap<NewGraph::Node> nr(orig_graph);
   695   ///  cg.nodeRef(nr);
   696   ///  // Create cross references (inverse) for the edges
   697   ///  NewGraph::EdgeMap<OrigGraph::Edge> ecr(new_graph);
   698   ///  cg.edgeCrossRef(ecr);
   699   ///  // Copy an edge map
   700   ///  OrigGraph::EdgeMap<double> oemap(orig_graph);
   701   ///  NewGraph::EdgeMap<double> nemap(new_graph);
   702   ///  cg.edgeMap(oemap, nemap);
   703   ///  // Copy a node
   704   ///  OrigGraph::Node on;
   705   ///  NewGraph::Node nn;
   706   ///  cg.node(on, nn);
   707   ///  // Execute copying
   708   ///  cg.run();
   709   ///\endcode
   710   template <typename From, typename To>
   711   class GraphCopy {
   712   private:
   713 
   714     typedef typename From::Node Node;
   715     typedef typename From::NodeIt NodeIt;
   716     typedef typename From::Arc Arc;
   717     typedef typename From::ArcIt ArcIt;
   718     typedef typename From::Edge Edge;
   719     typedef typename From::EdgeIt EdgeIt;
   720 
   721     typedef typename To::Node TNode;
   722     typedef typename To::Arc TArc;
   723     typedef typename To::Edge TEdge;
   724 
   725     typedef typename From::template NodeMap<TNode> NodeRefMap;
   726     typedef typename From::template EdgeMap<TEdge> EdgeRefMap;
   727 
   728     struct ArcRefMap {
   729       ArcRefMap(const From& from, const To& to,
   730                 const EdgeRefMap& edge_ref, const NodeRefMap& node_ref)
   731         : _from(from), _to(to),
   732           _edge_ref(edge_ref), _node_ref(node_ref) {}
   733 
   734       typedef typename From::Arc Key;
   735       typedef typename To::Arc Value;
   736 
   737       Value operator[](const Key& key) const {
   738         bool forward = _from.u(key) != _from.v(key) ?
   739           _node_ref[_from.source(key)] ==
   740           _to.source(_to.direct(_edge_ref[key], true)) :
   741           _from.direction(key);
   742         return _to.direct(_edge_ref[key], forward);
   743       }
   744 
   745       const From& _from;
   746       const To& _to;
   747       const EdgeRefMap& _edge_ref;
   748       const NodeRefMap& _node_ref;
   749     };
   750 
   751   public:
   752 
   753     /// \brief Constructor of GraphCopy.
   754     ///
   755     /// Constructor of GraphCopy for copying the content of the
   756     /// \c from graph into the \c to graph.
   757     GraphCopy(const From& from, To& to)
   758       : _from(from), _to(to) {}
   759 
   760     /// \brief Destructor of GraphCopy
   761     ///
   762     /// Destructor of GraphCopy.
   763     ~GraphCopy() {
   764       for (int i = 0; i < int(_node_maps.size()); ++i) {
   765         delete _node_maps[i];
   766       }
   767       for (int i = 0; i < int(_arc_maps.size()); ++i) {
   768         delete _arc_maps[i];
   769       }
   770       for (int i = 0; i < int(_edge_maps.size()); ++i) {
   771         delete _edge_maps[i];
   772       }
   773     }
   774 
   775     /// \brief Copy the node references into the given map.
   776     ///
   777     /// This function copies the node references into the given map.
   778     /// The parameter should be a map, whose key type is the Node type of
   779     /// the source graph, while the value type is the Node type of the
   780     /// destination graph.
   781     template <typename NodeRef>
   782     GraphCopy& nodeRef(NodeRef& map) {
   783       _node_maps.push_back(new _core_bits::RefCopy<From, Node,
   784                            NodeRefMap, NodeRef>(map));
   785       return *this;
   786     }
   787 
   788     /// \brief Copy the node cross references into the given map.
   789     ///
   790     /// This function copies the node cross references (reverse references)
   791     /// into the given map. The parameter should be a map, whose key type
   792     /// is the Node type of the destination graph, while the value type is
   793     /// the Node type of the source graph.
   794     template <typename NodeCrossRef>
   795     GraphCopy& nodeCrossRef(NodeCrossRef& map) {
   796       _node_maps.push_back(new _core_bits::CrossRefCopy<From, Node,
   797                            NodeRefMap, NodeCrossRef>(map));
   798       return *this;
   799     }
   800 
   801     /// \brief Make a copy of the given node map.
   802     ///
   803     /// This function makes a copy of the given node map for the newly
   804     /// created graph.
   805     /// The key type of the new map \c tmap should be the Node type of the
   806     /// destination graph, and the key type of the original map \c map
   807     /// should be the Node type of the source graph.
   808     template <typename FromMap, typename ToMap>
   809     GraphCopy& nodeMap(const FromMap& map, ToMap& tmap) {
   810       _node_maps.push_back(new _core_bits::MapCopy<From, Node,
   811                            NodeRefMap, FromMap, ToMap>(map, tmap));
   812       return *this;
   813     }
   814 
   815     /// \brief Make a copy of the given node.
   816     ///
   817     /// This function makes a copy of the given node.
   818     GraphCopy& node(const Node& node, TNode& tnode) {
   819       _node_maps.push_back(new _core_bits::ItemCopy<From, Node,
   820                            NodeRefMap, TNode>(node, tnode));
   821       return *this;
   822     }
   823 
   824     /// \brief Copy the arc references into the given map.
   825     ///
   826     /// This function copies the arc references into the given map.
   827     /// The parameter should be a map, whose key type is the Arc type of
   828     /// the source graph, while the value type is the Arc type of the
   829     /// destination graph.
   830     template <typename ArcRef>
   831     GraphCopy& arcRef(ArcRef& map) {
   832       _arc_maps.push_back(new _core_bits::RefCopy<From, Arc,
   833                           ArcRefMap, ArcRef>(map));
   834       return *this;
   835     }
   836 
   837     /// \brief Copy the arc cross references into the given map.
   838     ///
   839     /// This function copies the arc cross references (reverse references)
   840     /// into the given map. The parameter should be a map, whose key type
   841     /// is the Arc type of the destination graph, while the value type is
   842     /// the Arc type of the source graph.
   843     template <typename ArcCrossRef>
   844     GraphCopy& arcCrossRef(ArcCrossRef& map) {
   845       _arc_maps.push_back(new _core_bits::CrossRefCopy<From, Arc,
   846                           ArcRefMap, ArcCrossRef>(map));
   847       return *this;
   848     }
   849 
   850     /// \brief Make a copy of the given arc map.
   851     ///
   852     /// This function makes a copy of the given arc map for the newly
   853     /// created graph.
   854     /// The key type of the new map \c tmap should be the Arc type of the
   855     /// destination graph, and the key type of the original map \c map
   856     /// should be the Arc type of the source graph.
   857     template <typename FromMap, typename ToMap>
   858     GraphCopy& arcMap(const FromMap& map, ToMap& tmap) {
   859       _arc_maps.push_back(new _core_bits::MapCopy<From, Arc,
   860                           ArcRefMap, FromMap, ToMap>(map, tmap));
   861       return *this;
   862     }
   863 
   864     /// \brief Make a copy of the given arc.
   865     ///
   866     /// This function makes a copy of the given arc.
   867     GraphCopy& arc(const Arc& arc, TArc& tarc) {
   868       _arc_maps.push_back(new _core_bits::ItemCopy<From, Arc,
   869                           ArcRefMap, TArc>(arc, tarc));
   870       return *this;
   871     }
   872 
   873     /// \brief Copy the edge references into the given map.
   874     ///
   875     /// This function copies the edge references into the given map.
   876     /// The parameter should be a map, whose key type is the Edge type of
   877     /// the source graph, while the value type is the Edge type of the
   878     /// destination graph.
   879     template <typename EdgeRef>
   880     GraphCopy& edgeRef(EdgeRef& map) {
   881       _edge_maps.push_back(new _core_bits::RefCopy<From, Edge,
   882                            EdgeRefMap, EdgeRef>(map));
   883       return *this;
   884     }
   885 
   886     /// \brief Copy the edge cross references into the given map.
   887     ///
   888     /// This function copies the edge cross references (reverse references)
   889     /// into the given map. The parameter should be a map, whose key type
   890     /// is the Edge type of the destination graph, while the value type is
   891     /// the Edge type of the source graph.
   892     template <typename EdgeCrossRef>
   893     GraphCopy& edgeCrossRef(EdgeCrossRef& map) {
   894       _edge_maps.push_back(new _core_bits::CrossRefCopy<From,
   895                            Edge, EdgeRefMap, EdgeCrossRef>(map));
   896       return *this;
   897     }
   898 
   899     /// \brief Make a copy of the given edge map.
   900     ///
   901     /// This function makes a copy of the given edge map for the newly
   902     /// created graph.
   903     /// The key type of the new map \c tmap should be the Edge type of the
   904     /// destination graph, and the key type of the original map \c map
   905     /// should be the Edge type of the source graph.
   906     template <typename FromMap, typename ToMap>
   907     GraphCopy& edgeMap(const FromMap& map, ToMap& tmap) {
   908       _edge_maps.push_back(new _core_bits::MapCopy<From, Edge,
   909                            EdgeRefMap, FromMap, ToMap>(map, tmap));
   910       return *this;
   911     }
   912 
   913     /// \brief Make a copy of the given edge.
   914     ///
   915     /// This function makes a copy of the given edge.
   916     GraphCopy& edge(const Edge& edge, TEdge& tedge) {
   917       _edge_maps.push_back(new _core_bits::ItemCopy<From, Edge,
   918                            EdgeRefMap, TEdge>(edge, tedge));
   919       return *this;
   920     }
   921 
   922     /// \brief Execute copying.
   923     ///
   924     /// This function executes the copying of the graph along with the
   925     /// copying of the assigned data.
   926     void run() {
   927       NodeRefMap nodeRefMap(_from);
   928       EdgeRefMap edgeRefMap(_from);
   929       ArcRefMap arcRefMap(_from, _to, edgeRefMap, nodeRefMap);
   930       _core_bits::GraphCopySelector<To>::
   931         copy(_from, _to, nodeRefMap, edgeRefMap);
   932       for (int i = 0; i < int(_node_maps.size()); ++i) {
   933         _node_maps[i]->copy(_from, nodeRefMap);
   934       }
   935       for (int i = 0; i < int(_edge_maps.size()); ++i) {
   936         _edge_maps[i]->copy(_from, edgeRefMap);
   937       }
   938       for (int i = 0; i < int(_arc_maps.size()); ++i) {
   939         _arc_maps[i]->copy(_from, arcRefMap);
   940       }
   941     }
   942 
   943   private:
   944 
   945     const From& _from;
   946     To& _to;
   947 
   948     std::vector<_core_bits::MapCopyBase<From, Node, NodeRefMap>* >
   949       _node_maps;
   950 
   951     std::vector<_core_bits::MapCopyBase<From, Arc, ArcRefMap>* >
   952       _arc_maps;
   953 
   954     std::vector<_core_bits::MapCopyBase<From, Edge, EdgeRefMap>* >
   955       _edge_maps;
   956 
   957   };
   958 
   959   /// \brief Copy a graph to another graph.
   960   ///
   961   /// This function copies a graph to another graph.
   962   /// The complete usage of it is detailed in the GraphCopy class,
   963   /// but a short example shows a basic work:
   964   ///\code
   965   /// graphCopy(src, trg).nodeRef(nr).edgeCrossRef(ecr).run();
   966   ///\endcode
   967   ///
   968   /// After the copy the \c nr map will contain the mapping from the
   969   /// nodes of the \c from graph to the nodes of the \c to graph and
   970   /// \c ecr will contain the mapping from the edges of the \c to graph
   971   /// to the edges of the \c from graph.
   972   ///
   973   /// \see GraphCopy
   974   template <typename From, typename To>
   975   GraphCopy<From, To>
   976   graphCopy(const From& from, To& to) {
   977     return GraphCopy<From, To>(from, to);
   978   }
   979 
   980   namespace _core_bits {
   981 
   982     template <typename Graph, typename Enable = void>
   983     struct FindArcSelector {
   984       typedef typename Graph::Node Node;
   985       typedef typename Graph::Arc Arc;
   986       static Arc find(const Graph &g, Node u, Node v, Arc e) {
   987         if (e == INVALID) {
   988           g.firstOut(e, u);
   989         } else {
   990           g.nextOut(e);
   991         }
   992         while (e != INVALID && g.target(e) != v) {
   993           g.nextOut(e);
   994         }
   995         return e;
   996       }
   997     };
   998 
   999     template <typename Graph>
  1000     struct FindArcSelector<
  1001       Graph,
  1002       typename enable_if<typename Graph::FindArcTag, void>::type>
  1003     {
  1004       typedef typename Graph::Node Node;
  1005       typedef typename Graph::Arc Arc;
  1006       static Arc find(const Graph &g, Node u, Node v, Arc prev) {
  1007         return g.findArc(u, v, prev);
  1008       }
  1009     };
  1010   }
  1011 
  1012   /// \brief Find an arc between two nodes of a digraph.
  1013   ///
  1014   /// This function finds an arc from node \c u to node \c v in the
  1015   /// digraph \c g.
  1016   ///
  1017   /// If \c prev is \ref INVALID (this is the default value), then
  1018   /// it finds the first arc from \c u to \c v. Otherwise it looks for
  1019   /// the next arc from \c u to \c v after \c prev.
  1020   /// \return The found arc or \ref INVALID if there is no such an arc.
  1021   ///
  1022   /// Thus you can iterate through each arc from \c u to \c v as it follows.
  1023   ///\code
  1024   /// for(Arc e = findArc(g,u,v); e != INVALID; e = findArc(g,u,v,e)) {
  1025   ///   ...
  1026   /// }
  1027   ///\endcode
  1028   ///
  1029   /// \note \ref ConArcIt provides iterator interface for the same
  1030   /// functionality.
  1031   ///
  1032   ///\sa ConArcIt
  1033   ///\sa ArcLookUp, AllArcLookUp, DynArcLookUp
  1034   template <typename Graph>
  1035   inline typename Graph::Arc
  1036   findArc(const Graph &g, typename Graph::Node u, typename Graph::Node v,
  1037           typename Graph::Arc prev = INVALID) {
  1038     return _core_bits::FindArcSelector<Graph>::find(g, u, v, prev);
  1039   }
  1040 
  1041   /// \brief Iterator for iterating on parallel arcs connecting the same nodes.
  1042   ///
  1043   /// Iterator for iterating on parallel arcs connecting the same nodes. It is
  1044   /// a higher level interface for the \ref findArc() function. You can
  1045   /// use it the following way:
  1046   ///\code
  1047   /// for (ConArcIt<Graph> it(g, src, trg); it != INVALID; ++it) {
  1048   ///   ...
  1049   /// }
  1050   ///\endcode
  1051   ///
  1052   ///\sa findArc()
  1053   ///\sa ArcLookUp, AllArcLookUp, DynArcLookUp
  1054   template <typename GR>
  1055   class ConArcIt : public GR::Arc {
  1056     typedef typename GR::Arc Parent;
  1057 
  1058   public:
  1059 
  1060     typedef typename GR::Arc Arc;
  1061     typedef typename GR::Node Node;
  1062 
  1063     /// \brief Constructor.
  1064     ///
  1065     /// Construct a new ConArcIt iterating on the arcs that
  1066     /// connects nodes \c u and \c v.
  1067     ConArcIt(const GR& g, Node u, Node v) : _graph(g) {
  1068       Parent::operator=(findArc(_graph, u, v));
  1069     }
  1070 
  1071     /// \brief Constructor.
  1072     ///
  1073     /// Construct a new ConArcIt that continues the iterating from arc \c a.
  1074     ConArcIt(const GR& g, Arc a) : Parent(a), _graph(g) {}
  1075 
  1076     /// \brief Increment operator.
  1077     ///
  1078     /// It increments the iterator and gives back the next arc.
  1079     ConArcIt& operator++() {
  1080       Parent::operator=(findArc(_graph, _graph.source(*this),
  1081                                 _graph.target(*this), *this));
  1082       return *this;
  1083     }
  1084   private:
  1085     const GR& _graph;
  1086   };
  1087 
  1088   namespace _core_bits {
  1089 
  1090     template <typename Graph, typename Enable = void>
  1091     struct FindEdgeSelector {
  1092       typedef typename Graph::Node Node;
  1093       typedef typename Graph::Edge Edge;
  1094       static Edge find(const Graph &g, Node u, Node v, Edge e) {
  1095         bool b;
  1096         if (u != v) {
  1097           if (e == INVALID) {
  1098             g.firstInc(e, b, u);
  1099           } else {
  1100             b = g.u(e) == u;
  1101             g.nextInc(e, b);
  1102           }
  1103           while (e != INVALID && (b ? g.v(e) : g.u(e)) != v) {
  1104             g.nextInc(e, b);
  1105           }
  1106         } else {
  1107           if (e == INVALID) {
  1108             g.firstInc(e, b, u);
  1109           } else {
  1110             b = true;
  1111             g.nextInc(e, b);
  1112           }
  1113           while (e != INVALID && (!b || g.v(e) != v)) {
  1114             g.nextInc(e, b);
  1115           }
  1116         }
  1117         return e;
  1118       }
  1119     };
  1120 
  1121     template <typename Graph>
  1122     struct FindEdgeSelector<
  1123       Graph,
  1124       typename enable_if<typename Graph::FindEdgeTag, void>::type>
  1125     {
  1126       typedef typename Graph::Node Node;
  1127       typedef typename Graph::Edge Edge;
  1128       static Edge find(const Graph &g, Node u, Node v, Edge prev) {
  1129         return g.findEdge(u, v, prev);
  1130       }
  1131     };
  1132   }
  1133 
  1134   /// \brief Find an edge between two nodes of a graph.
  1135   ///
  1136   /// This function finds an edge from node \c u to node \c v in graph \c g.
  1137   /// If node \c u and node \c v is equal then each loop edge
  1138   /// will be enumerated once.
  1139   ///
  1140   /// If \c prev is \ref INVALID (this is the default value), then
  1141   /// it finds the first edge from \c u to \c v. Otherwise it looks for
  1142   /// the next edge from \c u to \c v after \c prev.
  1143   /// \return The found edge or \ref INVALID if there is no such an edge.
  1144   ///
  1145   /// Thus you can iterate through each edge between \c u and \c v
  1146   /// as it follows.
  1147   ///\code
  1148   /// for(Edge e = findEdge(g,u,v); e != INVALID; e = findEdge(g,u,v,e)) {
  1149   ///   ...
  1150   /// }
  1151   ///\endcode
  1152   ///
  1153   /// \note \ref ConEdgeIt provides iterator interface for the same
  1154   /// functionality.
  1155   ///
  1156   ///\sa ConEdgeIt
  1157   template <typename Graph>
  1158   inline typename Graph::Edge
  1159   findEdge(const Graph &g, typename Graph::Node u, typename Graph::Node v,
  1160             typename Graph::Edge p = INVALID) {
  1161     return _core_bits::FindEdgeSelector<Graph>::find(g, u, v, p);
  1162   }
  1163 
  1164   /// \brief Iterator for iterating on parallel edges connecting the same nodes.
  1165   ///
  1166   /// Iterator for iterating on parallel edges connecting the same nodes.
  1167   /// It is a higher level interface for the findEdge() function. You can
  1168   /// use it the following way:
  1169   ///\code
  1170   /// for (ConEdgeIt<Graph> it(g, u, v); it != INVALID; ++it) {
  1171   ///   ...
  1172   /// }
  1173   ///\endcode
  1174   ///
  1175   ///\sa findEdge()
  1176   template <typename GR>
  1177   class ConEdgeIt : public GR::Edge {
  1178     typedef typename GR::Edge Parent;
  1179 
  1180   public:
  1181 
  1182     typedef typename GR::Edge Edge;
  1183     typedef typename GR::Node Node;
  1184 
  1185     /// \brief Constructor.
  1186     ///
  1187     /// Construct a new ConEdgeIt iterating on the edges that
  1188     /// connects nodes \c u and \c v.
  1189     ConEdgeIt(const GR& g, Node u, Node v) : _graph(g), _u(u), _v(v) {
  1190       Parent::operator=(findEdge(_graph, _u, _v));
  1191     }
  1192 
  1193     /// \brief Constructor.
  1194     ///
  1195     /// Construct a new ConEdgeIt that continues iterating from edge \c e.
  1196     ConEdgeIt(const GR& g, Edge e) : Parent(e), _graph(g) {}
  1197 
  1198     /// \brief Increment operator.
  1199     ///
  1200     /// It increments the iterator and gives back the next edge.
  1201     ConEdgeIt& operator++() {
  1202       Parent::operator=(findEdge(_graph, _u, _v, *this));
  1203       return *this;
  1204     }
  1205   private:
  1206     const GR& _graph;
  1207     Node _u, _v;
  1208   };
  1209 
  1210 
  1211   ///Dynamic arc look-up between given endpoints.
  1212 
  1213   ///Using this class, you can find an arc in a digraph from a given
  1214   ///source to a given target in amortized time <em>O</em>(log<em>d</em>),
  1215   ///where <em>d</em> is the out-degree of the source node.
  1216   ///
  1217   ///It is possible to find \e all parallel arcs between two nodes with
  1218   ///the \c operator() member.
  1219   ///
  1220   ///This is a dynamic data structure. Consider to use \ref ArcLookUp or
  1221   ///\ref AllArcLookUp if your digraph is not changed so frequently.
  1222   ///
  1223   ///This class uses a self-adjusting binary search tree, the Splay tree
  1224   ///of Sleator and Tarjan to guarantee the logarithmic amortized
  1225   ///time bound for arc look-ups. This class also guarantees the
  1226   ///optimal time bound in a constant factor for any distribution of
  1227   ///queries.
  1228   ///
  1229   ///\tparam GR The type of the underlying digraph.
  1230   ///
  1231   ///\sa ArcLookUp
  1232   ///\sa AllArcLookUp
  1233   template <typename GR>
  1234   class DynArcLookUp
  1235     : protected ItemSetTraits<GR, typename GR::Arc>::ItemNotifier::ObserverBase
  1236   {
  1237     typedef typename ItemSetTraits<GR, typename GR::Arc>
  1238     ::ItemNotifier::ObserverBase Parent;
  1239 
  1240     TEMPLATE_DIGRAPH_TYPEDEFS(GR);
  1241 
  1242   public:
  1243 
  1244     /// The Digraph type
  1245     typedef GR Digraph;
  1246 
  1247   protected:
  1248 
  1249     class AutoNodeMap :
  1250       public ItemSetTraits<GR, Node>::template Map<Arc>::Type {
  1251       typedef typename ItemSetTraits<GR, Node>::template Map<Arc>::Type Parent;
  1252 
  1253     public:
  1254 
  1255       AutoNodeMap(const GR& digraph) : Parent(digraph, INVALID) {}
  1256 
  1257       virtual void add(const Node& node) {
  1258         Parent::add(node);
  1259         Parent::set(node, INVALID);
  1260       }
  1261 
  1262       virtual void add(const std::vector<Node>& nodes) {
  1263         Parent::add(nodes);
  1264         for (int i = 0; i < int(nodes.size()); ++i) {
  1265           Parent::set(nodes[i], INVALID);
  1266         }
  1267       }
  1268 
  1269       virtual void build() {
  1270         Parent::build();
  1271         Node it;
  1272         typename Parent::Notifier* nf = Parent::notifier();
  1273         for (nf->first(it); it != INVALID; nf->next(it)) {
  1274           Parent::set(it, INVALID);
  1275         }
  1276       }
  1277     };
  1278 
  1279     class ArcLess {
  1280       const Digraph &g;
  1281     public:
  1282       ArcLess(const Digraph &_g) : g(_g) {}
  1283       bool operator()(Arc a,Arc b) const
  1284       {
  1285         return g.target(a)<g.target(b);
  1286       }
  1287     };
  1288 
  1289   protected:
  1290 
  1291     const Digraph &_g;
  1292     AutoNodeMap _head;
  1293     typename Digraph::template ArcMap<Arc> _parent;
  1294     typename Digraph::template ArcMap<Arc> _left;
  1295     typename Digraph::template ArcMap<Arc> _right;
  1296 
  1297   public:
  1298 
  1299     ///Constructor
  1300 
  1301     ///Constructor.
  1302     ///
  1303     ///It builds up the search database.
  1304     DynArcLookUp(const Digraph &g)
  1305       : _g(g),_head(g),_parent(g),_left(g),_right(g)
  1306     {
  1307       Parent::attach(_g.notifier(typename Digraph::Arc()));
  1308       refresh();
  1309     }
  1310 
  1311   protected:
  1312 
  1313     virtual void add(const Arc& arc) {
  1314       insert(arc);
  1315     }
  1316 
  1317     virtual void add(const std::vector<Arc>& arcs) {
  1318       for (int i = 0; i < int(arcs.size()); ++i) {
  1319         insert(arcs[i]);
  1320       }
  1321     }
  1322 
  1323     virtual void erase(const Arc& arc) {
  1324       remove(arc);
  1325     }
  1326 
  1327     virtual void erase(const std::vector<Arc>& arcs) {
  1328       for (int i = 0; i < int(arcs.size()); ++i) {
  1329         remove(arcs[i]);
  1330       }
  1331     }
  1332 
  1333     virtual void build() {
  1334       refresh();
  1335     }
  1336 
  1337     virtual void clear() {
  1338       for(NodeIt n(_g);n!=INVALID;++n) {
  1339         _head[n] = INVALID;
  1340       }
  1341     }
  1342 
  1343     void insert(Arc arc) {
  1344       Node s = _g.source(arc);
  1345       Node t = _g.target(arc);
  1346       _left[arc] = INVALID;
  1347       _right[arc] = INVALID;
  1348 
  1349       Arc e = _head[s];
  1350       if (e == INVALID) {
  1351         _head[s] = arc;
  1352         _parent[arc] = INVALID;
  1353         return;
  1354       }
  1355       while (true) {
  1356         if (t < _g.target(e)) {
  1357           if (_left[e] == INVALID) {
  1358             _left[e] = arc;
  1359             _parent[arc] = e;
  1360             splay(arc);
  1361             return;
  1362           } else {
  1363             e = _left[e];
  1364           }
  1365         } else {
  1366           if (_right[e] == INVALID) {
  1367             _right[e] = arc;
  1368             _parent[arc] = e;
  1369             splay(arc);
  1370             return;
  1371           } else {
  1372             e = _right[e];
  1373           }
  1374         }
  1375       }
  1376     }
  1377 
  1378     void remove(Arc arc) {
  1379       if (_left[arc] == INVALID) {
  1380         if (_right[arc] != INVALID) {
  1381           _parent[_right[arc]] = _parent[arc];
  1382         }
  1383         if (_parent[arc] != INVALID) {
  1384           if (_left[_parent[arc]] == arc) {
  1385             _left[_parent[arc]] = _right[arc];
  1386           } else {
  1387             _right[_parent[arc]] = _right[arc];
  1388           }
  1389         } else {
  1390           _head[_g.source(arc)] = _right[arc];
  1391         }
  1392       } else if (_right[arc] == INVALID) {
  1393         _parent[_left[arc]] = _parent[arc];
  1394         if (_parent[arc] != INVALID) {
  1395           if (_left[_parent[arc]] == arc) {
  1396             _left[_parent[arc]] = _left[arc];
  1397           } else {
  1398             _right[_parent[arc]] = _left[arc];
  1399           }
  1400         } else {
  1401           _head[_g.source(arc)] = _left[arc];
  1402         }
  1403       } else {
  1404         Arc e = _left[arc];
  1405         if (_right[e] != INVALID) {
  1406           e = _right[e];
  1407           while (_right[e] != INVALID) {
  1408             e = _right[e];
  1409           }
  1410           Arc s = _parent[e];
  1411           _right[_parent[e]] = _left[e];
  1412           if (_left[e] != INVALID) {
  1413             _parent[_left[e]] = _parent[e];
  1414           }
  1415 
  1416           _left[e] = _left[arc];
  1417           _parent[_left[arc]] = e;
  1418           _right[e] = _right[arc];
  1419           _parent[_right[arc]] = e;
  1420 
  1421           _parent[e] = _parent[arc];
  1422           if (_parent[arc] != INVALID) {
  1423             if (_left[_parent[arc]] == arc) {
  1424               _left[_parent[arc]] = e;
  1425             } else {
  1426               _right[_parent[arc]] = e;
  1427             }
  1428           }
  1429           splay(s);
  1430         } else {
  1431           _right[e] = _right[arc];
  1432           _parent[_right[arc]] = e;
  1433           _parent[e] = _parent[arc];
  1434 
  1435           if (_parent[arc] != INVALID) {
  1436             if (_left[_parent[arc]] == arc) {
  1437               _left[_parent[arc]] = e;
  1438             } else {
  1439               _right[_parent[arc]] = e;
  1440             }
  1441           } else {
  1442             _head[_g.source(arc)] = e;
  1443           }
  1444         }
  1445       }
  1446     }
  1447 
  1448     Arc refreshRec(std::vector<Arc> &v,int a,int b)
  1449     {
  1450       int m=(a+b)/2;
  1451       Arc me=v[m];
  1452       if (a < m) {
  1453         Arc left = refreshRec(v,a,m-1);
  1454         _left[me] = left;
  1455         _parent[left] = me;
  1456       } else {
  1457         _left[me] = INVALID;
  1458       }
  1459       if (m < b) {
  1460         Arc right = refreshRec(v,m+1,b);
  1461         _right[me] = right;
  1462         _parent[right] = me;
  1463       } else {
  1464         _right[me] = INVALID;
  1465       }
  1466       return me;
  1467     }
  1468 
  1469     void refresh() {
  1470       for(NodeIt n(_g);n!=INVALID;++n) {
  1471         std::vector<Arc> v;
  1472         for(OutArcIt a(_g,n);a!=INVALID;++a) v.push_back(a);
  1473         if (!v.empty()) {
  1474           std::sort(v.begin(),v.end(),ArcLess(_g));
  1475           Arc head = refreshRec(v,0,v.size()-1);
  1476           _head[n] = head;
  1477           _parent[head] = INVALID;
  1478         }
  1479         else _head[n] = INVALID;
  1480       }
  1481     }
  1482 
  1483     void zig(Arc v) {
  1484       Arc w = _parent[v];
  1485       _parent[v] = _parent[w];
  1486       _parent[w] = v;
  1487       _left[w] = _right[v];
  1488       _right[v] = w;
  1489       if (_parent[v] != INVALID) {
  1490         if (_right[_parent[v]] == w) {
  1491           _right[_parent[v]] = v;
  1492         } else {
  1493           _left[_parent[v]] = v;
  1494         }
  1495       }
  1496       if (_left[w] != INVALID){
  1497         _parent[_left[w]] = w;
  1498       }
  1499     }
  1500 
  1501     void zag(Arc v) {
  1502       Arc w = _parent[v];
  1503       _parent[v] = _parent[w];
  1504       _parent[w] = v;
  1505       _right[w] = _left[v];
  1506       _left[v] = w;
  1507       if (_parent[v] != INVALID){
  1508         if (_left[_parent[v]] == w) {
  1509           _left[_parent[v]] = v;
  1510         } else {
  1511           _right[_parent[v]] = v;
  1512         }
  1513       }
  1514       if (_right[w] != INVALID){
  1515         _parent[_right[w]] = w;
  1516       }
  1517     }
  1518 
  1519     void splay(Arc v) {
  1520       while (_parent[v] != INVALID) {
  1521         if (v == _left[_parent[v]]) {
  1522           if (_parent[_parent[v]] == INVALID) {
  1523             zig(v);
  1524           } else {
  1525             if (_parent[v] == _left[_parent[_parent[v]]]) {
  1526               zig(_parent[v]);
  1527               zig(v);
  1528             } else {
  1529               zig(v);
  1530               zag(v);
  1531             }
  1532           }
  1533         } else {
  1534           if (_parent[_parent[v]] == INVALID) {
  1535             zag(v);
  1536           } else {
  1537             if (_parent[v] == _left[_parent[_parent[v]]]) {
  1538               zag(v);
  1539               zig(v);
  1540             } else {
  1541               zag(_parent[v]);
  1542               zag(v);
  1543             }
  1544           }
  1545         }
  1546       }
  1547       _head[_g.source(v)] = v;
  1548     }
  1549 
  1550 
  1551   public:
  1552 
  1553     ///Find an arc between two nodes.
  1554 
  1555     ///Find an arc between two nodes.
  1556     ///\param s The source node.
  1557     ///\param t The target node.
  1558     ///\param p The previous arc between \c s and \c t. It it is INVALID or
  1559     ///not given, the operator finds the first appropriate arc.
  1560     ///\return An arc from \c s to \c t after \c p or
  1561     ///\ref INVALID if there is no more.
  1562     ///
  1563     ///For example, you can count the number of arcs from \c u to \c v in the
  1564     ///following way.
  1565     ///\code
  1566     ///DynArcLookUp<ListDigraph> ae(g);
  1567     ///...
  1568     ///int n = 0;
  1569     ///for(Arc a = ae(u,v); a != INVALID; a = ae(u,v,a)) n++;
  1570     ///\endcode
  1571     ///
  1572     ///Finding the arcs take at most <em>O</em>(log<em>d</em>)
  1573     ///amortized time, specifically, the time complexity of the lookups
  1574     ///is equal to the optimal search tree implementation for the
  1575     ///current query distribution in a constant factor.
  1576     ///
  1577     ///\note This is a dynamic data structure, therefore the data
  1578     ///structure is updated after each graph alteration. Thus although
  1579     ///this data structure is theoretically faster than \ref ArcLookUp
  1580     ///and \ref AllArcLookUp, it often provides worse performance than
  1581     ///them.
  1582     Arc operator()(Node s, Node t, Arc p = INVALID) const  {
  1583       if (p == INVALID) {
  1584         Arc a = _head[s];
  1585         if (a == INVALID) return INVALID;
  1586         Arc r = INVALID;
  1587         while (true) {
  1588           if (_g.target(a) < t) {
  1589             if (_right[a] == INVALID) {
  1590               const_cast<DynArcLookUp&>(*this).splay(a);
  1591               return r;
  1592             } else {
  1593               a = _right[a];
  1594             }
  1595           } else {
  1596             if (_g.target(a) == t) {
  1597               r = a;
  1598             }
  1599             if (_left[a] == INVALID) {
  1600               const_cast<DynArcLookUp&>(*this).splay(a);
  1601               return r;
  1602             } else {
  1603               a = _left[a];
  1604             }
  1605           }
  1606         }
  1607       } else {
  1608         Arc a = p;
  1609         if (_right[a] != INVALID) {
  1610           a = _right[a];
  1611           while (_left[a] != INVALID) {
  1612             a = _left[a];
  1613           }
  1614           const_cast<DynArcLookUp&>(*this).splay(a);
  1615         } else {
  1616           while (_parent[a] != INVALID && _right[_parent[a]] ==  a) {
  1617             a = _parent[a];
  1618           }
  1619           if (_parent[a] == INVALID) {
  1620             return INVALID;
  1621           } else {
  1622             a = _parent[a];
  1623             const_cast<DynArcLookUp&>(*this).splay(a);
  1624           }
  1625         }
  1626         if (_g.target(a) == t) return a;
  1627         else return INVALID;
  1628       }
  1629     }
  1630 
  1631   };
  1632 
  1633   ///Fast arc look-up between given endpoints.
  1634 
  1635   ///Using this class, you can find an arc in a digraph from a given
  1636   ///source to a given target in time <em>O</em>(log<em>d</em>),
  1637   ///where <em>d</em> is the out-degree of the source node.
  1638   ///
  1639   ///It is not possible to find \e all parallel arcs between two nodes.
  1640   ///Use \ref AllArcLookUp for this purpose.
  1641   ///
  1642   ///\warning This class is static, so you should call refresh() (or at
  1643   ///least refresh(Node)) to refresh this data structure whenever the
  1644   ///digraph changes. This is a time consuming (superlinearly proportional
  1645   ///(<em>O</em>(<em>m</em> log<em>m</em>)) to the number of arcs).
  1646   ///
  1647   ///\tparam GR The type of the underlying digraph.
  1648   ///
  1649   ///\sa DynArcLookUp
  1650   ///\sa AllArcLookUp
  1651   template<class GR>
  1652   class ArcLookUp
  1653   {
  1654     TEMPLATE_DIGRAPH_TYPEDEFS(GR);
  1655 
  1656   public:
  1657 
  1658     /// The Digraph type
  1659     typedef GR Digraph;
  1660 
  1661   protected:
  1662     const Digraph &_g;
  1663     typename Digraph::template NodeMap<Arc> _head;
  1664     typename Digraph::template ArcMap<Arc> _left;
  1665     typename Digraph::template ArcMap<Arc> _right;
  1666 
  1667     class ArcLess {
  1668       const Digraph &g;
  1669     public:
  1670       ArcLess(const Digraph &_g) : g(_g) {}
  1671       bool operator()(Arc a,Arc b) const
  1672       {
  1673         return g.target(a)<g.target(b);
  1674       }
  1675     };
  1676 
  1677   public:
  1678 
  1679     ///Constructor
  1680 
  1681     ///Constructor.
  1682     ///
  1683     ///It builds up the search database, which remains valid until the digraph
  1684     ///changes.
  1685     ArcLookUp(const Digraph &g) :_g(g),_head(g),_left(g),_right(g) {refresh();}
  1686 
  1687   private:
  1688     Arc refreshRec(std::vector<Arc> &v,int a,int b)
  1689     {
  1690       int m=(a+b)/2;
  1691       Arc me=v[m];
  1692       _left[me] = a<m?refreshRec(v,a,m-1):INVALID;
  1693       _right[me] = m<b?refreshRec(v,m+1,b):INVALID;
  1694       return me;
  1695     }
  1696   public:
  1697     ///Refresh the search data structure at a node.
  1698 
  1699     ///Build up the search database of node \c n.
  1700     ///
  1701     ///It runs in time <em>O</em>(<em>d</em> log<em>d</em>), where <em>d</em>
  1702     ///is the number of the outgoing arcs of \c n.
  1703     void refresh(Node n)
  1704     {
  1705       std::vector<Arc> v;
  1706       for(OutArcIt e(_g,n);e!=INVALID;++e) v.push_back(e);
  1707       if(v.size()) {
  1708         std::sort(v.begin(),v.end(),ArcLess(_g));
  1709         _head[n]=refreshRec(v,0,v.size()-1);
  1710       }
  1711       else _head[n]=INVALID;
  1712     }
  1713     ///Refresh the full data structure.
  1714 
  1715     ///Build up the full search database. In fact, it simply calls
  1716     ///\ref refresh(Node) "refresh(n)" for each node \c n.
  1717     ///
  1718     ///It runs in time <em>O</em>(<em>m</em> log<em>D</em>), where <em>m</em> is
  1719     ///the number of the arcs in the digraph and <em>D</em> is the maximum
  1720     ///out-degree of the digraph.
  1721     void refresh()
  1722     {
  1723       for(NodeIt n(_g);n!=INVALID;++n) refresh(n);
  1724     }
  1725 
  1726     ///Find an arc between two nodes.
  1727 
  1728     ///Find an arc between two nodes in time <em>O</em>(log<em>d</em>),
  1729     ///where <em>d</em> is the number of outgoing arcs of \c s.
  1730     ///\param s The source node.
  1731     ///\param t The target node.
  1732     ///\return An arc from \c s to \c t if there exists,
  1733     ///\ref INVALID otherwise.
  1734     ///
  1735     ///\warning If you change the digraph, refresh() must be called before using
  1736     ///this operator. If you change the outgoing arcs of
  1737     ///a single node \c n, then \ref refresh(Node) "refresh(n)" is enough.
  1738     Arc operator()(Node s, Node t) const
  1739     {
  1740       Arc e;
  1741       for(e=_head[s];
  1742           e!=INVALID&&_g.target(e)!=t;
  1743           e = t < _g.target(e)?_left[e]:_right[e]) ;
  1744       return e;
  1745     }
  1746 
  1747   };
  1748 
  1749   ///Fast look-up of all arcs between given endpoints.
  1750 
  1751   ///This class is the same as \ref ArcLookUp, with the addition
  1752   ///that it makes it possible to find all parallel arcs between given
  1753   ///endpoints.
  1754   ///
  1755   ///\warning This class is static, so you should call refresh() (or at
  1756   ///least refresh(Node)) to refresh this data structure whenever the
  1757   ///digraph changes. This is a time consuming (superlinearly proportional
  1758   ///(<em>O</em>(<em>m</em> log<em>m</em>)) to the number of arcs).
  1759   ///
  1760   ///\tparam GR The type of the underlying digraph.
  1761   ///
  1762   ///\sa DynArcLookUp
  1763   ///\sa ArcLookUp
  1764   template<class GR>
  1765   class AllArcLookUp : public ArcLookUp<GR>
  1766   {
  1767     using ArcLookUp<GR>::_g;
  1768     using ArcLookUp<GR>::_right;
  1769     using ArcLookUp<GR>::_left;
  1770     using ArcLookUp<GR>::_head;
  1771 
  1772     TEMPLATE_DIGRAPH_TYPEDEFS(GR);
  1773 
  1774     typename GR::template ArcMap<Arc> _next;
  1775 
  1776     Arc refreshNext(Arc head,Arc next=INVALID)
  1777     {
  1778       if(head==INVALID) return next;
  1779       else {
  1780         next=refreshNext(_right[head],next);
  1781         _next[head]=( next!=INVALID && _g.target(next)==_g.target(head))
  1782           ? next : INVALID;
  1783         return refreshNext(_left[head],head);
  1784       }
  1785     }
  1786 
  1787     void refreshNext()
  1788     {
  1789       for(NodeIt n(_g);n!=INVALID;++n) refreshNext(_head[n]);
  1790     }
  1791 
  1792   public:
  1793 
  1794     /// The Digraph type
  1795     typedef GR Digraph;
  1796 
  1797     ///Constructor
  1798 
  1799     ///Constructor.
  1800     ///
  1801     ///It builds up the search database, which remains valid until the digraph
  1802     ///changes.
  1803     AllArcLookUp(const Digraph &g) : ArcLookUp<GR>(g), _next(g) {refreshNext();}
  1804 
  1805     ///Refresh the data structure at a node.
  1806 
  1807     ///Build up the search database of node \c n.
  1808     ///
  1809     ///It runs in time <em>O</em>(<em>d</em> log<em>d</em>), where <em>d</em> is
  1810     ///the number of the outgoing arcs of \c n.
  1811     void refresh(Node n)
  1812     {
  1813       ArcLookUp<GR>::refresh(n);
  1814       refreshNext(_head[n]);
  1815     }
  1816 
  1817     ///Refresh the full data structure.
  1818 
  1819     ///Build up the full search database. In fact, it simply calls
  1820     ///\ref refresh(Node) "refresh(n)" for each node \c n.
  1821     ///
  1822     ///It runs in time <em>O</em>(<em>m</em> log<em>D</em>), where <em>m</em> is
  1823     ///the number of the arcs in the digraph and <em>D</em> is the maximum
  1824     ///out-degree of the digraph.
  1825     void refresh()
  1826     {
  1827       for(NodeIt n(_g);n!=INVALID;++n) refresh(_head[n]);
  1828     }
  1829 
  1830     ///Find an arc between two nodes.
  1831 
  1832     ///Find an arc between two nodes.
  1833     ///\param s The source node.
  1834     ///\param t The target node.
  1835     ///\param prev The previous arc between \c s and \c t. It it is INVALID or
  1836     ///not given, the operator finds the first appropriate arc.
  1837     ///\return An arc from \c s to \c t after \c prev or
  1838     ///\ref INVALID if there is no more.
  1839     ///
  1840     ///For example, you can count the number of arcs from \c u to \c v in the
  1841     ///following way.
  1842     ///\code
  1843     ///AllArcLookUp<ListDigraph> ae(g);
  1844     ///...
  1845     ///int n = 0;
  1846     ///for(Arc a = ae(u,v); a != INVALID; a=ae(u,v,a)) n++;
  1847     ///\endcode
  1848     ///
  1849     ///Finding the first arc take <em>O</em>(log<em>d</em>) time,
  1850     ///where <em>d</em> is the number of outgoing arcs of \c s. Then the
  1851     ///consecutive arcs are found in constant time.
  1852     ///
  1853     ///\warning If you change the digraph, refresh() must be called before using
  1854     ///this operator. If you change the outgoing arcs of
  1855     ///a single node \c n, then \ref refresh(Node) "refresh(n)" is enough.
  1856     ///
  1857     Arc operator()(Node s, Node t, Arc prev=INVALID) const
  1858     {
  1859       if(prev==INVALID)
  1860         {
  1861           Arc f=INVALID;
  1862           Arc e;
  1863           for(e=_head[s];
  1864               e!=INVALID&&_g.target(e)!=t;
  1865               e = t < _g.target(e)?_left[e]:_right[e]) ;
  1866           while(e!=INVALID)
  1867             if(_g.target(e)==t)
  1868               {
  1869                 f = e;
  1870                 e = _left[e];
  1871               }
  1872             else e = _right[e];
  1873           return f;
  1874         }
  1875       else return _next[prev];
  1876     }
  1877 
  1878   };
  1879 
  1880   /// @}
  1881 
  1882 } //namespace lemon
  1883 
  1884 #endif