lemon/dfs.h
author Alpar Juttner <alpar@cs.elte.hu>
Mon, 14 Jul 2008 15:23:11 +0100
changeset 280 e7f8647ce760
parent 258 0310c8984732
child 281 e9b4fbe163f5
permissions -rw-r--r--
Remove todo-s and convert them to trac tickets
     1 /* -*- mode: C++; indent-tabs-mode: nil; -*-
     2  *
     3  * This file is a part of LEMON, a generic C++ optimization library.
     4  *
     5  * Copyright (C) 2003-2008
     6  * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
     7  * (Egervary Research Group on Combinatorial Optimization, EGRES).
     8  *
     9  * Permission to use, modify and distribute this software is granted
    10  * provided that this copyright notice appears in all copies. For
    11  * precise terms see the accompanying LICENSE file.
    12  *
    13  * This software is provided "AS IS" with no warranty of any kind,
    14  * express or implied, and with no claim as to its suitability for any
    15  * purpose.
    16  *
    17  */
    18 
    19 #ifndef LEMON_DFS_H
    20 #define LEMON_DFS_H
    21 
    22 ///\ingroup search
    23 ///\file
    24 ///\brief DFS algorithm.
    25 
    26 #include <lemon/list_graph.h>
    27 #include <lemon/bits/path_dump.h>
    28 #include <lemon/core.h>
    29 #include <lemon/error.h>
    30 #include <lemon/assert.h>
    31 #include <lemon/maps.h>
    32 
    33 namespace lemon {
    34 
    35   ///Default traits class of Dfs class.
    36 
    37   ///Default traits class of Dfs class.
    38   ///\tparam GR Digraph type.
    39   template<class GR>
    40   struct DfsDefaultTraits
    41   {
    42     ///The type of the digraph the algorithm runs on.
    43     typedef GR Digraph;
    44 
    45     ///\brief The type of the map that stores the predecessor
    46     ///arcs of the %DFS paths.
    47     ///
    48     ///The type of the map that stores the predecessor
    49     ///arcs of the %DFS paths.
    50     ///It must meet the \ref concepts::WriteMap "WriteMap" concept.
    51     typedef typename Digraph::template NodeMap<typename Digraph::Arc> PredMap;
    52     ///Instantiates a \ref PredMap.
    53 
    54     ///This function instantiates a \ref PredMap.
    55     ///\param g is the digraph, to which we would like to define the
    56     ///\ref PredMap.
    57     static PredMap *createPredMap(const Digraph &g)
    58     {
    59       return new PredMap(g);
    60     }
    61 
    62     ///The type of the map that indicates which nodes are processed.
    63 
    64     ///The type of the map that indicates which nodes are processed.
    65     ///It must meet the \ref concepts::WriteMap "WriteMap" concept.
    66     typedef NullMap<typename Digraph::Node,bool> ProcessedMap;
    67     ///Instantiates a \ref ProcessedMap.
    68 
    69     ///This function instantiates a \ref ProcessedMap.
    70     ///\param g is the digraph, to which
    71     ///we would like to define the \ref ProcessedMap
    72 #ifdef DOXYGEN
    73     static ProcessedMap *createProcessedMap(const Digraph &g)
    74 #else
    75     static ProcessedMap *createProcessedMap(const Digraph &)
    76 #endif
    77     {
    78       return new ProcessedMap();
    79     }
    80 
    81     ///The type of the map that indicates which nodes are reached.
    82 
    83     ///The type of the map that indicates which nodes are reached.
    84     ///It must meet the \ref concepts::ReadWriteMap "ReadWriteMap" concept.
    85     typedef typename Digraph::template NodeMap<bool> ReachedMap;
    86     ///Instantiates a \ref ReachedMap.
    87 
    88     ///This function instantiates a \ref ReachedMap.
    89     ///\param g is the digraph, to which
    90     ///we would like to define the \ref ReachedMap.
    91     static ReachedMap *createReachedMap(const Digraph &g)
    92     {
    93       return new ReachedMap(g);
    94     }
    95 
    96     ///The type of the map that stores the distances of the nodes.
    97 
    98     ///The type of the map that stores the distances of the nodes.
    99     ///It must meet the \ref concepts::WriteMap "WriteMap" concept.
   100     typedef typename Digraph::template NodeMap<int> DistMap;
   101     ///Instantiates a \ref DistMap.
   102 
   103     ///This function instantiates a \ref DistMap.
   104     ///\param g is the digraph, to which we would like to define the
   105     ///\ref DistMap.
   106     static DistMap *createDistMap(const Digraph &g)
   107     {
   108       return new DistMap(g);
   109     }
   110   };
   111 
   112   ///%DFS algorithm class.
   113 
   114   ///\ingroup search
   115   ///This class provides an efficient implementation of the %DFS algorithm.
   116   ///
   117   ///There is also a \ref dfs() "function type interface" for the DFS
   118   ///algorithm, which is convenient in the simplier cases and it can be
   119   ///used easier.
   120   ///
   121   ///\tparam GR The type of the digraph the algorithm runs on.
   122   ///The default value is \ref ListDigraph. The value of GR is not used
   123   ///directly by \ref Dfs, it is only passed to \ref DfsDefaultTraits.
   124   ///\tparam TR Traits class to set various data types used by the algorithm.
   125   ///The default traits class is
   126   ///\ref DfsDefaultTraits "DfsDefaultTraits<GR>".
   127   ///See \ref DfsDefaultTraits for the documentation of
   128   ///a Dfs traits class.
   129 #ifdef DOXYGEN
   130   template <typename GR,
   131             typename TR>
   132 #else
   133   template <typename GR=ListDigraph,
   134             typename TR=DfsDefaultTraits<GR> >
   135 #endif
   136   class Dfs {
   137   public:
   138     ///\ref Exception for uninitialized parameters.
   139 
   140     ///This error represents problems in the initialization of the
   141     ///parameters of the algorithm.
   142     class UninitializedParameter : public lemon::UninitializedParameter {
   143     public:
   144       virtual const char* what() const throw() {
   145         return "lemon::Dfs::UninitializedParameter";
   146       }
   147     };
   148 
   149     ///The type of the digraph the algorithm runs on.
   150     typedef typename TR::Digraph Digraph;
   151 
   152     ///\brief The type of the map that stores the predecessor arcs of the
   153     ///DFS paths.
   154     typedef typename TR::PredMap PredMap;
   155     ///The type of the map that stores the distances of the nodes.
   156     typedef typename TR::DistMap DistMap;
   157     ///The type of the map that indicates which nodes are reached.
   158     typedef typename TR::ReachedMap ReachedMap;
   159     ///The type of the map that indicates which nodes are processed.
   160     typedef typename TR::ProcessedMap ProcessedMap;
   161     ///The type of the paths.
   162     typedef PredMapPath<Digraph, PredMap> Path;
   163 
   164     ///The traits class.
   165     typedef TR Traits;
   166 
   167   private:
   168 
   169     typedef typename Digraph::Node Node;
   170     typedef typename Digraph::NodeIt NodeIt;
   171     typedef typename Digraph::Arc Arc;
   172     typedef typename Digraph::OutArcIt OutArcIt;
   173 
   174     //Pointer to the underlying digraph.
   175     const Digraph *G;
   176     //Pointer to the map of predecessor arcs.
   177     PredMap *_pred;
   178     //Indicates if _pred is locally allocated (true) or not.
   179     bool local_pred;
   180     //Pointer to the map of distances.
   181     DistMap *_dist;
   182     //Indicates if _dist is locally allocated (true) or not.
   183     bool local_dist;
   184     //Pointer to the map of reached status of the nodes.
   185     ReachedMap *_reached;
   186     //Indicates if _reached is locally allocated (true) or not.
   187     bool local_reached;
   188     //Pointer to the map of processed status of the nodes.
   189     ProcessedMap *_processed;
   190     //Indicates if _processed is locally allocated (true) or not.
   191     bool local_processed;
   192 
   193     std::vector<typename Digraph::OutArcIt> _stack;
   194     int _stack_head;
   195 
   196     //Creates the maps if necessary.
   197     void create_maps()
   198     {
   199       if(!_pred) {
   200         local_pred = true;
   201         _pred = Traits::createPredMap(*G);
   202       }
   203       if(!_dist) {
   204         local_dist = true;
   205         _dist = Traits::createDistMap(*G);
   206       }
   207       if(!_reached) {
   208         local_reached = true;
   209         _reached = Traits::createReachedMap(*G);
   210       }
   211       if(!_processed) {
   212         local_processed = true;
   213         _processed = Traits::createProcessedMap(*G);
   214       }
   215     }
   216 
   217   protected:
   218 
   219     Dfs() {}
   220 
   221   public:
   222 
   223     typedef Dfs Create;
   224 
   225     ///\name Named template parameters
   226 
   227     ///@{
   228 
   229     template <class T>
   230     struct SetPredMapTraits : public Traits {
   231       typedef T PredMap;
   232       static PredMap *createPredMap(const Digraph &)
   233       {
   234         throw UninitializedParameter();
   235       }
   236     };
   237     ///\brief \ref named-templ-param "Named parameter" for setting
   238     ///\ref PredMap type.
   239     ///
   240     ///\ref named-templ-param "Named parameter" for setting
   241     ///\ref PredMap type.
   242     template <class T>
   243     struct SetPredMap : public Dfs<Digraph, SetPredMapTraits<T> > {
   244       typedef Dfs<Digraph, SetPredMapTraits<T> > Create;
   245     };
   246 
   247     template <class T>
   248     struct SetDistMapTraits : public Traits {
   249       typedef T DistMap;
   250       static DistMap *createDistMap(const Digraph &)
   251       {
   252         throw UninitializedParameter();
   253       }
   254     };
   255     ///\brief \ref named-templ-param "Named parameter" for setting
   256     ///\ref DistMap type.
   257     ///
   258     ///\ref named-templ-param "Named parameter" for setting
   259     ///\ref DistMap type.
   260     template <class T>
   261     struct SetDistMap : public Dfs< Digraph, SetDistMapTraits<T> > {
   262       typedef Dfs<Digraph, SetDistMapTraits<T> > Create;
   263     };
   264 
   265     template <class T>
   266     struct SetReachedMapTraits : public Traits {
   267       typedef T ReachedMap;
   268       static ReachedMap *createReachedMap(const Digraph &)
   269       {
   270         throw UninitializedParameter();
   271       }
   272     };
   273     ///\brief \ref named-templ-param "Named parameter" for setting
   274     ///\ref ReachedMap type.
   275     ///
   276     ///\ref named-templ-param "Named parameter" for setting
   277     ///\ref ReachedMap type.
   278     template <class T>
   279     struct SetReachedMap : public Dfs< Digraph, SetReachedMapTraits<T> > {
   280       typedef Dfs< Digraph, SetReachedMapTraits<T> > Create;
   281     };
   282 
   283     template <class T>
   284     struct SetProcessedMapTraits : public Traits {
   285       typedef T ProcessedMap;
   286       static ProcessedMap *createProcessedMap(const Digraph &)
   287       {
   288         throw UninitializedParameter();
   289       }
   290     };
   291     ///\brief \ref named-templ-param "Named parameter" for setting
   292     ///\ref ProcessedMap type.
   293     ///
   294     ///\ref named-templ-param "Named parameter" for setting
   295     ///\ref ProcessedMap type.
   296     template <class T>
   297     struct SetProcessedMap : public Dfs< Digraph, SetProcessedMapTraits<T> > {
   298       typedef Dfs< Digraph, SetProcessedMapTraits<T> > Create;
   299     };
   300 
   301     struct SetStandardProcessedMapTraits : public Traits {
   302       typedef typename Digraph::template NodeMap<bool> ProcessedMap;
   303       static ProcessedMap *createProcessedMap(const Digraph &g)
   304       {
   305         return new ProcessedMap(g);
   306       }
   307     };
   308     ///\brief \ref named-templ-param "Named parameter" for setting
   309     ///\ref ProcessedMap type to be <tt>Digraph::NodeMap<bool></tt>.
   310     ///
   311     ///\ref named-templ-param "Named parameter" for setting
   312     ///\ref ProcessedMap type to be <tt>Digraph::NodeMap<bool></tt>.
   313     ///If you don't set it explicitly, it will be automatically allocated.
   314     struct SetStandardProcessedMap :
   315       public Dfs< Digraph, SetStandardProcessedMapTraits > {
   316       typedef Dfs< Digraph, SetStandardProcessedMapTraits > Create;
   317     };
   318 
   319     ///@}
   320 
   321   public:
   322 
   323     ///Constructor.
   324 
   325     ///Constructor.
   326     ///\param g The digraph the algorithm runs on.
   327     Dfs(const Digraph &g) :
   328       G(&g),
   329       _pred(NULL), local_pred(false),
   330       _dist(NULL), local_dist(false),
   331       _reached(NULL), local_reached(false),
   332       _processed(NULL), local_processed(false)
   333     { }
   334 
   335     ///Destructor.
   336     ~Dfs()
   337     {
   338       if(local_pred) delete _pred;
   339       if(local_dist) delete _dist;
   340       if(local_reached) delete _reached;
   341       if(local_processed) delete _processed;
   342     }
   343 
   344     ///Sets the map that stores the predecessor arcs.
   345 
   346     ///Sets the map that stores the predecessor arcs.
   347     ///If you don't use this function before calling \ref run(),
   348     ///it will allocate one. The destructor deallocates this
   349     ///automatically allocated map, of course.
   350     ///\return <tt> (*this) </tt>
   351     Dfs &predMap(PredMap &m)
   352     {
   353       if(local_pred) {
   354         delete _pred;
   355         local_pred=false;
   356       }
   357       _pred = &m;
   358       return *this;
   359     }
   360 
   361     ///Sets the map that indicates which nodes are reached.
   362 
   363     ///Sets the map that indicates which nodes are reached.
   364     ///If you don't use this function before calling \ref run(),
   365     ///it will allocate one. The destructor deallocates this
   366     ///automatically allocated map, of course.
   367     ///\return <tt> (*this) </tt>
   368     Dfs &reachedMap(ReachedMap &m)
   369     {
   370       if(local_reached) {
   371         delete _reached;
   372         local_reached=false;
   373       }
   374       _reached = &m;
   375       return *this;
   376     }
   377 
   378     ///Sets the map that indicates which nodes are processed.
   379 
   380     ///Sets the map that indicates which nodes are processed.
   381     ///If you don't use this function before calling \ref run(),
   382     ///it will allocate one. The destructor deallocates this
   383     ///automatically allocated map, of course.
   384     ///\return <tt> (*this) </tt>
   385     Dfs &processedMap(ProcessedMap &m)
   386     {
   387       if(local_processed) {
   388         delete _processed;
   389         local_processed=false;
   390       }
   391       _processed = &m;
   392       return *this;
   393     }
   394 
   395     ///Sets the map that stores the distances of the nodes.
   396 
   397     ///Sets the map that stores the distances of the nodes calculated by
   398     ///the algorithm.
   399     ///If you don't use this function before calling \ref run(),
   400     ///it will allocate one. The destructor deallocates this
   401     ///automatically allocated map, of course.
   402     ///\return <tt> (*this) </tt>
   403     Dfs &distMap(DistMap &m)
   404     {
   405       if(local_dist) {
   406         delete _dist;
   407         local_dist=false;
   408       }
   409       _dist = &m;
   410       return *this;
   411     }
   412 
   413   public:
   414 
   415     ///\name Execution control
   416     ///The simplest way to execute the algorithm is to use
   417     ///one of the member functions called \ref lemon::Dfs::run() "run()".
   418     ///\n
   419     ///If you need more control on the execution, first you must call
   420     ///\ref lemon::Dfs::init() "init()", then you can add a source node
   421     ///with \ref lemon::Dfs::addSource() "addSource()".
   422     ///Finally \ref lemon::Dfs::start() "start()" will perform the
   423     ///actual path computation.
   424 
   425     ///@{
   426 
   427     ///Initializes the internal data structures.
   428 
   429     ///Initializes the internal data structures.
   430     ///
   431     void init()
   432     {
   433       create_maps();
   434       _stack.resize(countNodes(*G));
   435       _stack_head=-1;
   436       for ( NodeIt u(*G) ; u!=INVALID ; ++u ) {
   437         _pred->set(u,INVALID);
   438         _reached->set(u,false);
   439         _processed->set(u,false);
   440       }
   441     }
   442 
   443     ///Adds a new source node.
   444 
   445     ///Adds a new source node to the set of nodes to be processed.
   446     ///
   447     ///\pre The stack must be empty. (Otherwise the algorithm gives
   448     ///false results.)
   449     ///
   450     ///\warning Distances will be wrong (or at least strange) in case of
   451     ///multiple sources.
   452     void addSource(Node s)
   453     {
   454       LEMON_DEBUG(emptyQueue(), "The stack is not empty.");
   455       if(!(*_reached)[s])
   456         {
   457           _reached->set(s,true);
   458           _pred->set(s,INVALID);
   459           OutArcIt e(*G,s);
   460           if(e!=INVALID) {
   461             _stack[++_stack_head]=e;
   462             _dist->set(s,_stack_head);
   463           }
   464           else {
   465             _processed->set(s,true);
   466             _dist->set(s,0);
   467           }
   468         }
   469     }
   470 
   471     ///Processes the next arc.
   472 
   473     ///Processes the next arc.
   474     ///
   475     ///\return The processed arc.
   476     ///
   477     ///\pre The stack must not be empty.
   478     Arc processNextArc()
   479     {
   480       Node m;
   481       Arc e=_stack[_stack_head];
   482       if(!(*_reached)[m=G->target(e)]) {
   483         _pred->set(m,e);
   484         _reached->set(m,true);
   485         ++_stack_head;
   486         _stack[_stack_head] = OutArcIt(*G, m);
   487         _dist->set(m,_stack_head);
   488       }
   489       else {
   490         m=G->source(e);
   491         ++_stack[_stack_head];
   492       }
   493       while(_stack_head>=0 && _stack[_stack_head]==INVALID) {
   494         _processed->set(m,true);
   495         --_stack_head;
   496         if(_stack_head>=0) {
   497           m=G->source(_stack[_stack_head]);
   498           ++_stack[_stack_head];
   499         }
   500       }
   501       return e;
   502     }
   503 
   504     ///Next arc to be processed.
   505 
   506     ///Next arc to be processed.
   507     ///
   508     ///\return The next arc to be processed or \c INVALID if the stack
   509     ///is empty.
   510     OutArcIt nextArc() const
   511     {
   512       return _stack_head>=0?_stack[_stack_head]:INVALID;
   513     }
   514 
   515     ///\brief Returns \c false if there are nodes
   516     ///to be processed.
   517     ///
   518     ///Returns \c false if there are nodes
   519     ///to be processed in the queue (stack).
   520     bool emptyQueue() const { return _stack_head<0; }
   521 
   522     ///Returns the number of the nodes to be processed.
   523 
   524     ///Returns the number of the nodes to be processed in the queue (stack).
   525     int queueSize() const { return _stack_head+1; }
   526 
   527     ///Executes the algorithm.
   528 
   529     ///Executes the algorithm.
   530     ///
   531     ///This method runs the %DFS algorithm from the root node
   532     ///in order to compute the DFS path to each node.
   533     ///
   534     /// The algorithm computes
   535     ///- the %DFS tree,
   536     ///- the distance of each node from the root in the %DFS tree.
   537     ///
   538     ///\pre init() must be called and a root node should be
   539     ///added with addSource() before using this function.
   540     ///
   541     ///\note <tt>d.start()</tt> is just a shortcut of the following code.
   542     ///\code
   543     ///  while ( !d.emptyQueue() ) {
   544     ///    d.processNextArc();
   545     ///  }
   546     ///\endcode
   547     void start()
   548     {
   549       while ( !emptyQueue() ) processNextArc();
   550     }
   551 
   552     ///Executes the algorithm until the given target node is reached.
   553 
   554     ///Executes the algorithm until the given target node is reached.
   555     ///
   556     ///This method runs the %DFS algorithm from the root node
   557     ///in order to compute the DFS path to \c dest.
   558     ///
   559     ///The algorithm computes
   560     ///- the %DFS path to \c dest,
   561     ///- the distance of \c dest from the root in the %DFS tree.
   562     ///
   563     ///\pre init() must be called and a root node should be
   564     ///added with addSource() before using this function.
   565     void start(Node dest)
   566     {
   567       while ( !emptyQueue() && G->target(_stack[_stack_head])!=dest )
   568         processNextArc();
   569     }
   570 
   571     ///Executes the algorithm until a condition is met.
   572 
   573     ///Executes the algorithm until a condition is met.
   574     ///
   575     ///This method runs the %DFS algorithm from the root node
   576     ///until an arc \c a with <tt>am[a]</tt> true is found.
   577     ///
   578     ///\param am A \c bool (or convertible) arc map. The algorithm
   579     ///will stop when it reaches an arc \c a with <tt>am[a]</tt> true.
   580     ///
   581     ///\return The reached arc \c a with <tt>am[a]</tt> true or
   582     ///\c INVALID if no such arc was found.
   583     ///
   584     ///\pre init() must be called and a root node should be
   585     ///added with addSource() before using this function.
   586     ///
   587     ///\warning Contrary to \ref Bfs and \ref Dijkstra, \c am is an arc map,
   588     ///not a node map.
   589     template<class ArcBoolMap>
   590     Arc start(const ArcBoolMap &am)
   591     {
   592       while ( !emptyQueue() && !am[_stack[_stack_head]] )
   593         processNextArc();
   594       return emptyQueue() ? INVALID : _stack[_stack_head];
   595     }
   596 
   597     ///Runs the algorithm from the given node.
   598 
   599     ///This method runs the %DFS algorithm from node \c s
   600     ///in order to compute the DFS path to each node.
   601     ///
   602     ///The algorithm computes
   603     ///- the %DFS tree,
   604     ///- the distance of each node from the root in the %DFS tree.
   605     ///
   606     ///\note <tt>d.run(s)</tt> is just a shortcut of the following code.
   607     ///\code
   608     ///  d.init();
   609     ///  d.addSource(s);
   610     ///  d.start();
   611     ///\endcode
   612     void run(Node s) {
   613       init();
   614       addSource(s);
   615       start();
   616     }
   617 
   618     ///Finds the %DFS path between \c s and \c t.
   619 
   620     ///This method runs the %DFS algorithm from node \c s
   621     ///in order to compute the DFS path to \c t.
   622     ///
   623     ///\return The length of the <tt>s</tt>--<tt>t</tt> DFS path,
   624     ///if \c t is reachable form \c s, \c 0 otherwise.
   625     ///
   626     ///\note Apart from the return value, <tt>d.run(s,t)</tt> is
   627     ///just a shortcut of the following code.
   628     ///\code
   629     ///  d.init();
   630     ///  d.addSource(s);
   631     ///  d.start(t);
   632     ///\endcode
   633     int run(Node s,Node t) {
   634       init();
   635       addSource(s);
   636       start(t);
   637       return reached(t)?_stack_head+1:0;
   638     }
   639 
   640     ///Runs the algorithm to visit all nodes in the digraph.
   641 
   642     ///This method runs the %DFS algorithm in order to compute the
   643     ///%DFS path to each node.
   644     ///
   645     ///The algorithm computes
   646     ///- the %DFS tree,
   647     ///- the distance of each node from the root in the %DFS tree.
   648     ///
   649     ///\note <tt>d.run()</tt> is just a shortcut of the following code.
   650     ///\code
   651     ///  d.init();
   652     ///  for (NodeIt n(digraph); n != INVALID; ++n) {
   653     ///    if (!d.reached(n)) {
   654     ///      d.addSource(n);
   655     ///      d.start();
   656     ///    }
   657     ///  }
   658     ///\endcode
   659     void run() {
   660       init();
   661       for (NodeIt it(*G); it != INVALID; ++it) {
   662         if (!reached(it)) {
   663           addSource(it);
   664           start();
   665         }
   666       }
   667     }
   668 
   669     ///@}
   670 
   671     ///\name Query Functions
   672     ///The result of the %DFS algorithm can be obtained using these
   673     ///functions.\n
   674     ///Either \ref lemon::Dfs::run() "run()" or \ref lemon::Dfs::start()
   675     ///"start()" must be called before using them.
   676 
   677     ///@{
   678 
   679     ///The DFS path to a node.
   680 
   681     ///Returns the DFS path to a node.
   682     ///
   683     ///\warning \c t should be reachable from the root.
   684     ///
   685     ///\pre Either \ref run() or \ref start() must be called before
   686     ///using this function.
   687     Path path(Node t) const { return Path(*G, *_pred, t); }
   688 
   689     ///The distance of a node from the root.
   690 
   691     ///Returns the distance of a node from the root.
   692     ///
   693     ///\warning If node \c v is not reachable from the root, then
   694     ///the return value of this function is undefined.
   695     ///
   696     ///\pre Either \ref run() or \ref start() must be called before
   697     ///using this function.
   698     int dist(Node v) const { return (*_dist)[v]; }
   699 
   700     ///Returns the 'previous arc' of the %DFS tree for a node.
   701 
   702     ///This function returns the 'previous arc' of the %DFS tree for the
   703     ///node \c v, i.e. it returns the last arc of a %DFS path from the
   704     ///root to \c v. It is \c INVALID
   705     ///if \c v is not reachable from the root(s) or if \c v is a root.
   706     ///
   707     ///The %DFS tree used here is equal to the %DFS tree used in
   708     ///\ref predNode().
   709     ///
   710     ///\pre Either \ref run() or \ref start() must be called before using
   711     ///this function.
   712     Arc predArc(Node v) const { return (*_pred)[v];}
   713 
   714     ///Returns the 'previous node' of the %DFS tree.
   715 
   716     ///This function returns the 'previous node' of the %DFS
   717     ///tree for the node \c v, i.e. it returns the last but one node
   718     ///from a %DFS path from the root to \c v. It is \c INVALID
   719     ///if \c v is not reachable from the root(s) or if \c v is a root.
   720     ///
   721     ///The %DFS tree used here is equal to the %DFS tree used in
   722     ///\ref predArc().
   723     ///
   724     ///\pre Either \ref run() or \ref start() must be called before
   725     ///using this function.
   726     Node predNode(Node v) const { return (*_pred)[v]==INVALID ? INVALID:
   727                                   G->source((*_pred)[v]); }
   728 
   729     ///\brief Returns a const reference to the node map that stores the
   730     ///distances of the nodes.
   731     ///
   732     ///Returns a const reference to the node map that stores the
   733     ///distances of the nodes calculated by the algorithm.
   734     ///
   735     ///\pre Either \ref run() or \ref init()
   736     ///must be called before using this function.
   737     const DistMap &distMap() const { return *_dist;}
   738 
   739     ///\brief Returns a const reference to the node map that stores the
   740     ///predecessor arcs.
   741     ///
   742     ///Returns a const reference to the node map that stores the predecessor
   743     ///arcs, which form the DFS tree.
   744     ///
   745     ///\pre Either \ref run() or \ref init()
   746     ///must be called before using this function.
   747     const PredMap &predMap() const { return *_pred;}
   748 
   749     ///Checks if a node is reachable from the root(s).
   750 
   751     ///Returns \c true if \c v is reachable from the root(s).
   752     ///\pre Either \ref run() or \ref start()
   753     ///must be called before using this function.
   754     bool reached(Node v) const { return (*_reached)[v]; }
   755 
   756     ///@}
   757   };
   758 
   759   ///Default traits class of dfs() function.
   760 
   761   ///Default traits class of dfs() function.
   762   ///\tparam GR Digraph type.
   763   template<class GR>
   764   struct DfsWizardDefaultTraits
   765   {
   766     ///The type of the digraph the algorithm runs on.
   767     typedef GR Digraph;
   768 
   769     ///\brief The type of the map that stores the predecessor
   770     ///arcs of the %DFS paths.
   771     ///
   772     ///The type of the map that stores the predecessor
   773     ///arcs of the %DFS paths.
   774     ///It must meet the \ref concepts::WriteMap "WriteMap" concept.
   775     ///
   776     typedef NullMap<typename Digraph::Node,typename Digraph::Arc> PredMap;
   777     ///Instantiates a \ref PredMap.
   778 
   779     ///This function instantiates a \ref PredMap.
   780     ///\param g is the digraph, to which we would like to define the
   781     ///\ref PredMap.
   782 #ifdef DOXYGEN
   783     static PredMap *createPredMap(const Digraph &g)
   784 #else
   785     static PredMap *createPredMap(const Digraph &)
   786 #endif
   787     {
   788       return new PredMap();
   789     }
   790 
   791     ///The type of the map that indicates which nodes are processed.
   792 
   793     ///The type of the map that indicates which nodes are processed.
   794     ///It must meet the \ref concepts::WriteMap "WriteMap" concept.
   795     typedef NullMap<typename Digraph::Node,bool> ProcessedMap;
   796     ///Instantiates a \ref ProcessedMap.
   797 
   798     ///This function instantiates a \ref ProcessedMap.
   799     ///\param g is the digraph, to which
   800     ///we would like to define the \ref ProcessedMap.
   801 #ifdef DOXYGEN
   802     static ProcessedMap *createProcessedMap(const Digraph &g)
   803 #else
   804     static ProcessedMap *createProcessedMap(const Digraph &)
   805 #endif
   806     {
   807       return new ProcessedMap();
   808     }
   809 
   810     ///The type of the map that indicates which nodes are reached.
   811 
   812     ///The type of the map that indicates which nodes are reached.
   813     ///It must meet the \ref concepts::ReadWriteMap "ReadWriteMap" concept.
   814     typedef typename Digraph::template NodeMap<bool> ReachedMap;
   815     ///Instantiates a \ref ReachedMap.
   816 
   817     ///This function instantiates a \ref ReachedMap.
   818     ///\param g is the digraph, to which
   819     ///we would like to define the \ref ReachedMap.
   820     static ReachedMap *createReachedMap(const Digraph &g)
   821     {
   822       return new ReachedMap(g);
   823     }
   824 
   825     ///The type of the map that stores the distances of the nodes.
   826 
   827     ///The type of the map that stores the distances of the nodes.
   828     ///It must meet the \ref concepts::WriteMap "WriteMap" concept.
   829     ///
   830     typedef NullMap<typename Digraph::Node,int> DistMap;
   831     ///Instantiates a \ref DistMap.
   832 
   833     ///This function instantiates a \ref DistMap.
   834     ///\param g is the digraph, to which we would like to define
   835     ///the \ref DistMap
   836 #ifdef DOXYGEN
   837     static DistMap *createDistMap(const Digraph &g)
   838 #else
   839     static DistMap *createDistMap(const Digraph &)
   840 #endif
   841     {
   842       return new DistMap();
   843     }
   844   };
   845 
   846   /// Default traits class used by \ref DfsWizard
   847 
   848   /// To make it easier to use Dfs algorithm
   849   /// we have created a wizard class.
   850   /// This \ref DfsWizard class needs default traits,
   851   /// as well as the \ref Dfs class.
   852   /// The \ref DfsWizardBase is a class to be the default traits of the
   853   /// \ref DfsWizard class.
   854   template<class GR>
   855   class DfsWizardBase : public DfsWizardDefaultTraits<GR>
   856   {
   857 
   858     typedef DfsWizardDefaultTraits<GR> Base;
   859   protected:
   860     //The type of the nodes in the digraph.
   861     typedef typename Base::Digraph::Node Node;
   862 
   863     //Pointer to the digraph the algorithm runs on.
   864     void *_g;
   865     //Pointer to the map of reached nodes.
   866     void *_reached;
   867     //Pointer to the map of processed nodes.
   868     void *_processed;
   869     //Pointer to the map of predecessors arcs.
   870     void *_pred;
   871     //Pointer to the map of distances.
   872     void *_dist;
   873     //Pointer to the source node.
   874     Node _source;
   875 
   876     public:
   877     /// Constructor.
   878 
   879     /// This constructor does not require parameters, therefore it initiates
   880     /// all of the attributes to default values (0, INVALID).
   881     DfsWizardBase() : _g(0), _reached(0), _processed(0), _pred(0),
   882                       _dist(0), _source(INVALID) {}
   883 
   884     /// Constructor.
   885 
   886     /// This constructor requires some parameters,
   887     /// listed in the parameters list.
   888     /// Others are initiated to 0.
   889     /// \param g The digraph the algorithm runs on.
   890     /// \param s The source node.
   891     DfsWizardBase(const GR &g, Node s=INVALID) :
   892       _g(reinterpret_cast<void*>(const_cast<GR*>(&g))),
   893       _reached(0), _processed(0), _pred(0), _dist(0), _source(s) {}
   894 
   895   };
   896 
   897   /// Auxiliary class for the function type interface of DFS algorithm.
   898 
   899   /// This auxiliary class is created to implement the function type
   900   /// interface of \ref Dfs algorithm. It uses the functions and features
   901   /// of the plain \ref Dfs, but it is much simpler to use it.
   902   /// It should only be used through the \ref dfs() function, which makes
   903   /// it easier to use the algorithm.
   904   ///
   905   /// Simplicity means that the way to change the types defined
   906   /// in the traits class is based on functions that returns the new class
   907   /// and not on templatable built-in classes.
   908   /// When using the plain \ref Dfs
   909   /// the new class with the modified type comes from
   910   /// the original class by using the ::
   911   /// operator. In the case of \ref DfsWizard only
   912   /// a function have to be called, and it will
   913   /// return the needed class.
   914   ///
   915   /// It does not have own \ref run() method. When its \ref run() method
   916   /// is called, it initiates a plain \ref Dfs object, and calls the
   917   /// \ref Dfs::run() method of it.
   918   template<class TR>
   919   class DfsWizard : public TR
   920   {
   921     typedef TR Base;
   922 
   923     ///The type of the digraph the algorithm runs on.
   924     typedef typename TR::Digraph Digraph;
   925 
   926     typedef typename Digraph::Node Node;
   927     typedef typename Digraph::NodeIt NodeIt;
   928     typedef typename Digraph::Arc Arc;
   929     typedef typename Digraph::OutArcIt OutArcIt;
   930 
   931     ///\brief The type of the map that stores the predecessor
   932     ///arcs of the shortest paths.
   933     typedef typename TR::PredMap PredMap;
   934     ///\brief The type of the map that stores the distances of the nodes.
   935     typedef typename TR::DistMap DistMap;
   936     ///\brief The type of the map that indicates which nodes are reached.
   937     typedef typename TR::ReachedMap ReachedMap;
   938     ///\brief The type of the map that indicates which nodes are processed.
   939     typedef typename TR::ProcessedMap ProcessedMap;
   940 
   941   public:
   942 
   943     /// Constructor.
   944     DfsWizard() : TR() {}
   945 
   946     /// Constructor that requires parameters.
   947 
   948     /// Constructor that requires parameters.
   949     /// These parameters will be the default values for the traits class.
   950     DfsWizard(const Digraph &g, Node s=INVALID) :
   951       TR(g,s) {}
   952 
   953     ///Copy constructor
   954     DfsWizard(const TR &b) : TR(b) {}
   955 
   956     ~DfsWizard() {}
   957 
   958     ///Runs DFS algorithm from a source node.
   959 
   960     ///Runs DFS algorithm from a source node.
   961     ///The node can be given with the \ref source() function.
   962     void run()
   963     {
   964       if(Base::_source==INVALID) throw UninitializedParameter();
   965       Dfs<Digraph,TR> alg(*reinterpret_cast<const Digraph*>(Base::_g));
   966       if(Base::_reached)
   967         alg.reachedMap(*reinterpret_cast<ReachedMap*>(Base::_reached));
   968       if(Base::_processed)
   969         alg.processedMap(*reinterpret_cast<ProcessedMap*>(Base::_processed));
   970       if(Base::_pred)
   971         alg.predMap(*reinterpret_cast<PredMap*>(Base::_pred));
   972       if(Base::_dist)
   973         alg.distMap(*reinterpret_cast<DistMap*>(Base::_dist));
   974       alg.run(Base::_source);
   975     }
   976 
   977     ///Runs DFS algorithm from the given node.
   978 
   979     ///Runs DFS algorithm from the given node.
   980     ///\param s is the given source.
   981     void run(Node s)
   982     {
   983       Base::_source=s;
   984       run();
   985     }
   986 
   987     /// Sets the source node, from which the Dfs algorithm runs.
   988 
   989     /// Sets the source node, from which the Dfs algorithm runs.
   990     /// \param s is the source node.
   991     DfsWizard<TR> &source(Node s)
   992     {
   993       Base::_source=s;
   994       return *this;
   995     }
   996 
   997     template<class T>
   998     struct SetPredMapBase : public Base {
   999       typedef T PredMap;
  1000       static PredMap *createPredMap(const Digraph &) { return 0; };
  1001       SetPredMapBase(const TR &b) : TR(b) {}
  1002     };
  1003     ///\brief \ref named-templ-param "Named parameter"
  1004     ///for setting \ref PredMap object.
  1005     ///
  1006     ///\ref named-templ-param "Named parameter"
  1007     ///for setting \ref PredMap object.
  1008     template<class T>
  1009     DfsWizard<SetPredMapBase<T> > predMap(const T &t)
  1010     {
  1011       Base::_pred=reinterpret_cast<void*>(const_cast<T*>(&t));
  1012       return DfsWizard<SetPredMapBase<T> >(*this);
  1013     }
  1014 
  1015     template<class T>
  1016     struct SetReachedMapBase : public Base {
  1017       typedef T ReachedMap;
  1018       static ReachedMap *createReachedMap(const Digraph &) { return 0; };
  1019       SetReachedMapBase(const TR &b) : TR(b) {}
  1020     };
  1021     ///\brief \ref named-templ-param "Named parameter"
  1022     ///for setting \ref ReachedMap object.
  1023     ///
  1024     /// \ref named-templ-param "Named parameter"
  1025     ///for setting \ref ReachedMap object.
  1026     template<class T>
  1027     DfsWizard<SetReachedMapBase<T> > reachedMap(const T &t)
  1028     {
  1029       Base::_reached=reinterpret_cast<void*>(const_cast<T*>(&t));
  1030       return DfsWizard<SetReachedMapBase<T> >(*this);
  1031     }
  1032 
  1033     template<class T>
  1034     struct SetProcessedMapBase : public Base {
  1035       typedef T ProcessedMap;
  1036       static ProcessedMap *createProcessedMap(const Digraph &) { return 0; };
  1037       SetProcessedMapBase(const TR &b) : TR(b) {}
  1038     };
  1039     ///\brief \ref named-templ-param "Named parameter"
  1040     ///for setting \ref ProcessedMap object.
  1041     ///
  1042     /// \ref named-templ-param "Named parameter"
  1043     ///for setting \ref ProcessedMap object.
  1044     template<class T>
  1045     DfsWizard<SetProcessedMapBase<T> > processedMap(const T &t)
  1046     {
  1047       Base::_processed=reinterpret_cast<void*>(const_cast<T*>(&t));
  1048       return DfsWizard<SetProcessedMapBase<T> >(*this);
  1049     }
  1050 
  1051     template<class T>
  1052     struct SetDistMapBase : public Base {
  1053       typedef T DistMap;
  1054       static DistMap *createDistMap(const Digraph &) { return 0; };
  1055       SetDistMapBase(const TR &b) : TR(b) {}
  1056     };
  1057     ///\brief \ref named-templ-param "Named parameter"
  1058     ///for setting \ref DistMap object.
  1059     ///
  1060     ///\ref named-templ-param "Named parameter"
  1061     ///for setting \ref DistMap object.
  1062     template<class T>
  1063     DfsWizard<SetDistMapBase<T> > distMap(const T &t)
  1064     {
  1065       Base::_dist=reinterpret_cast<void*>(const_cast<T*>(&t));
  1066       return DfsWizard<SetDistMapBase<T> >(*this);
  1067     }
  1068 
  1069   };
  1070 
  1071   ///Function type interface for Dfs algorithm.
  1072 
  1073   ///\ingroup search
  1074   ///Function type interface for Dfs algorithm.
  1075   ///
  1076   ///This function also has several
  1077   ///\ref named-templ-func-param "named parameters",
  1078   ///they are declared as the members of class \ref DfsWizard.
  1079   ///The following
  1080   ///example shows how to use these parameters.
  1081   ///\code
  1082   ///  dfs(g,source).predMap(preds).run();
  1083   ///\endcode
  1084   ///\warning Don't forget to put the \ref DfsWizard::run() "run()"
  1085   ///to the end of the parameter list.
  1086   ///\sa DfsWizard
  1087   ///\sa Dfs
  1088   template<class GR>
  1089   DfsWizard<DfsWizardBase<GR> >
  1090   dfs(const GR &g,typename GR::Node s=INVALID)
  1091   {
  1092     return DfsWizard<DfsWizardBase<GR> >(g,s);
  1093   }
  1094 
  1095 #ifdef DOXYGEN
  1096   /// \brief Visitor class for DFS.
  1097   ///
  1098   /// This class defines the interface of the DfsVisit events, and
  1099   /// it could be the base of a real visitor class.
  1100   template <typename _Digraph>
  1101   struct DfsVisitor {
  1102     typedef _Digraph Digraph;
  1103     typedef typename Digraph::Arc Arc;
  1104     typedef typename Digraph::Node Node;
  1105     /// \brief Called for the source node of the DFS.
  1106     ///
  1107     /// This function is called for the source node of the DFS.
  1108     void start(const Node& node) {}
  1109     /// \brief Called when the source node is leaved.
  1110     ///
  1111     /// This function is called when the source node is leaved.
  1112     void stop(const Node& node) {}
  1113     /// \brief Called when a node is reached first time.
  1114     ///
  1115     /// This function is called when a node is reached first time.
  1116     void reach(const Node& node) {}
  1117     /// \brief Called when an arc reaches a new node.
  1118     ///
  1119     /// This function is called when the DFS finds an arc whose target node
  1120     /// is not reached yet.
  1121     void discover(const Arc& arc) {}
  1122     /// \brief Called when an arc is examined but its target node is
  1123     /// already discovered.
  1124     ///
  1125     /// This function is called when an arc is examined but its target node is
  1126     /// already discovered.
  1127     void examine(const Arc& arc) {}
  1128     /// \brief Called when the DFS steps back from a node.
  1129     ///
  1130     /// This function is called when the DFS steps back from a node.
  1131     void leave(const Node& node) {}
  1132     /// \brief Called when the DFS steps back on an arc.
  1133     ///
  1134     /// This function is called when the DFS steps back on an arc.
  1135     void backtrack(const Arc& arc) {}
  1136   };
  1137 #else
  1138   template <typename _Digraph>
  1139   struct DfsVisitor {
  1140     typedef _Digraph Digraph;
  1141     typedef typename Digraph::Arc Arc;
  1142     typedef typename Digraph::Node Node;
  1143     void start(const Node&) {}
  1144     void stop(const Node&) {}
  1145     void reach(const Node&) {}
  1146     void discover(const Arc&) {}
  1147     void examine(const Arc&) {}
  1148     void leave(const Node&) {}
  1149     void backtrack(const Arc&) {}
  1150 
  1151     template <typename _Visitor>
  1152     struct Constraints {
  1153       void constraints() {
  1154         Arc arc;
  1155         Node node;
  1156         visitor.start(node);
  1157         visitor.stop(arc);
  1158         visitor.reach(node);
  1159         visitor.discover(arc);
  1160         visitor.examine(arc);
  1161         visitor.leave(node);
  1162         visitor.backtrack(arc);
  1163       }
  1164       _Visitor& visitor;
  1165     };
  1166   };
  1167 #endif
  1168 
  1169   /// \brief Default traits class of DfsVisit class.
  1170   ///
  1171   /// Default traits class of DfsVisit class.
  1172   /// \tparam _Digraph The type of the digraph the algorithm runs on.
  1173   template<class _Digraph>
  1174   struct DfsVisitDefaultTraits {
  1175 
  1176     /// \brief The type of the digraph the algorithm runs on.
  1177     typedef _Digraph Digraph;
  1178 
  1179     /// \brief The type of the map that indicates which nodes are reached.
  1180     ///
  1181     /// The type of the map that indicates which nodes are reached.
  1182     /// It must meet the \ref concepts::ReadWriteMap "ReadWriteMap" concept.
  1183     typedef typename Digraph::template NodeMap<bool> ReachedMap;
  1184 
  1185     /// \brief Instantiates a \ref ReachedMap.
  1186     ///
  1187     /// This function instantiates a \ref ReachedMap.
  1188     /// \param digraph is the digraph, to which
  1189     /// we would like to define the \ref ReachedMap.
  1190     static ReachedMap *createReachedMap(const Digraph &digraph) {
  1191       return new ReachedMap(digraph);
  1192     }
  1193 
  1194   };
  1195 
  1196   /// \ingroup search
  1197   ///
  1198   /// \brief %DFS algorithm class with visitor interface.
  1199   ///
  1200   /// This class provides an efficient implementation of the %DFS algorithm
  1201   /// with visitor interface.
  1202   ///
  1203   /// The %DfsVisit class provides an alternative interface to the Dfs
  1204   /// class. It works with callback mechanism, the DfsVisit object calls
  1205   /// the member functions of the \c Visitor class on every DFS event.
  1206   ///
  1207   /// This interface of the DFS algorithm should be used in special cases
  1208   /// when extra actions have to be performed in connection with certain
  1209   /// events of the DFS algorithm. Otherwise consider to use Dfs or dfs()
  1210   /// instead.
  1211   ///
  1212   /// \tparam _Digraph The type of the digraph the algorithm runs on.
  1213   /// The default value is
  1214   /// \ref ListDigraph. The value of _Digraph is not used directly by
  1215   /// \ref DfsVisit, it is only passed to \ref DfsVisitDefaultTraits.
  1216   /// \tparam _Visitor The Visitor type that is used by the algorithm.
  1217   /// \ref DfsVisitor "DfsVisitor<_Digraph>" is an empty visitor, which
  1218   /// does not observe the DFS events. If you want to observe the DFS
  1219   /// events, you should implement your own visitor class.
  1220   /// \tparam _Traits Traits class to set various data types used by the
  1221   /// algorithm. The default traits class is
  1222   /// \ref DfsVisitDefaultTraits "DfsVisitDefaultTraits<_Digraph>".
  1223   /// See \ref DfsVisitDefaultTraits for the documentation of
  1224   /// a DFS visit traits class.
  1225 #ifdef DOXYGEN
  1226   template <typename _Digraph, typename _Visitor, typename _Traits>
  1227 #else
  1228   template <typename _Digraph = ListDigraph,
  1229             typename _Visitor = DfsVisitor<_Digraph>,
  1230             typename _Traits = DfsDefaultTraits<_Digraph> >
  1231 #endif
  1232   class DfsVisit {
  1233   public:
  1234 
  1235     /// \brief \ref Exception for uninitialized parameters.
  1236     ///
  1237     /// This error represents problems in the initialization
  1238     /// of the parameters of the algorithm.
  1239     class UninitializedParameter : public lemon::UninitializedParameter {
  1240     public:
  1241       virtual const char* what() const throw()
  1242       {
  1243         return "lemon::DfsVisit::UninitializedParameter";
  1244       }
  1245     };
  1246 
  1247     ///The traits class.
  1248     typedef _Traits Traits;
  1249 
  1250     ///The type of the digraph the algorithm runs on.
  1251     typedef typename Traits::Digraph Digraph;
  1252 
  1253     ///The visitor type used by the algorithm.
  1254     typedef _Visitor Visitor;
  1255 
  1256     ///The type of the map that indicates which nodes are reached.
  1257     typedef typename Traits::ReachedMap ReachedMap;
  1258 
  1259   private:
  1260 
  1261     typedef typename Digraph::Node Node;
  1262     typedef typename Digraph::NodeIt NodeIt;
  1263     typedef typename Digraph::Arc Arc;
  1264     typedef typename Digraph::OutArcIt OutArcIt;
  1265 
  1266     //Pointer to the underlying digraph.
  1267     const Digraph *_digraph;
  1268     //Pointer to the visitor object.
  1269     Visitor *_visitor;
  1270     //Pointer to the map of reached status of the nodes.
  1271     ReachedMap *_reached;
  1272     //Indicates if _reached is locally allocated (true) or not.
  1273     bool local_reached;
  1274 
  1275     std::vector<typename Digraph::Arc> _stack;
  1276     int _stack_head;
  1277 
  1278     //Creates the maps if necessary.
  1279     void create_maps() {
  1280       if(!_reached) {
  1281         local_reached = true;
  1282         _reached = Traits::createReachedMap(*_digraph);
  1283       }
  1284     }
  1285 
  1286   protected:
  1287 
  1288     DfsVisit() {}
  1289 
  1290   public:
  1291 
  1292     typedef DfsVisit Create;
  1293 
  1294     /// \name Named template parameters
  1295 
  1296     ///@{
  1297     template <class T>
  1298     struct SetReachedMapTraits : public Traits {
  1299       typedef T ReachedMap;
  1300       static ReachedMap *createReachedMap(const Digraph &digraph) {
  1301         throw UninitializedParameter();
  1302       }
  1303     };
  1304     /// \brief \ref named-templ-param "Named parameter" for setting
  1305     /// ReachedMap type.
  1306     ///
  1307     /// \ref named-templ-param "Named parameter" for setting ReachedMap type.
  1308     template <class T>
  1309     struct SetReachedMap : public DfsVisit< Digraph, Visitor,
  1310                                             SetReachedMapTraits<T> > {
  1311       typedef DfsVisit< Digraph, Visitor, SetReachedMapTraits<T> > Create;
  1312     };
  1313     ///@}
  1314 
  1315   public:
  1316 
  1317     /// \brief Constructor.
  1318     ///
  1319     /// Constructor.
  1320     ///
  1321     /// \param digraph The digraph the algorithm runs on.
  1322     /// \param visitor The visitor object of the algorithm.
  1323     DfsVisit(const Digraph& digraph, Visitor& visitor)
  1324       : _digraph(&digraph), _visitor(&visitor),
  1325         _reached(0), local_reached(false) {}
  1326 
  1327     /// \brief Destructor.
  1328     ~DfsVisit() {
  1329       if(local_reached) delete _reached;
  1330     }
  1331 
  1332     /// \brief Sets the map that indicates which nodes are reached.
  1333     ///
  1334     /// Sets the map that indicates which nodes are reached.
  1335     /// If you don't use this function before calling \ref run(),
  1336     /// it will allocate one. The destructor deallocates this
  1337     /// automatically allocated map, of course.
  1338     /// \return <tt> (*this) </tt>
  1339     DfsVisit &reachedMap(ReachedMap &m) {
  1340       if(local_reached) {
  1341         delete _reached;
  1342         local_reached=false;
  1343       }
  1344       _reached = &m;
  1345       return *this;
  1346     }
  1347 
  1348   public:
  1349 
  1350     /// \name Execution control
  1351     /// The simplest way to execute the algorithm is to use
  1352     /// one of the member functions called \ref lemon::DfsVisit::run()
  1353     /// "run()".
  1354     /// \n
  1355     /// If you need more control on the execution, first you must call
  1356     /// \ref lemon::DfsVisit::init() "init()", then you can add several
  1357     /// source nodes with \ref lemon::DfsVisit::addSource() "addSource()".
  1358     /// Finally \ref lemon::DfsVisit::start() "start()" will perform the
  1359     /// actual path computation.
  1360 
  1361     /// @{
  1362 
  1363     /// \brief Initializes the internal data structures.
  1364     ///
  1365     /// Initializes the internal data structures.
  1366     void init() {
  1367       create_maps();
  1368       _stack.resize(countNodes(*_digraph));
  1369       _stack_head = -1;
  1370       for (NodeIt u(*_digraph) ; u != INVALID ; ++u) {
  1371         _reached->set(u, false);
  1372       }
  1373     }
  1374 
  1375     ///Adds a new source node.
  1376 
  1377     ///Adds a new source node to the set of nodes to be processed.
  1378     ///
  1379     ///\pre The stack must be empty. (Otherwise the algorithm gives
  1380     ///false results.)
  1381     ///
  1382     ///\warning Distances will be wrong (or at least strange) in case of
  1383     ///multiple sources.
  1384     void addSource(Node s)
  1385     {
  1386       LEMON_DEBUG(emptyQueue(), "The stack is not empty.");
  1387       if(!(*_reached)[s]) {
  1388           _reached->set(s,true);
  1389           _visitor->start(s);
  1390           _visitor->reach(s);
  1391           Arc e;
  1392           _digraph->firstOut(e, s);
  1393           if (e != INVALID) {
  1394             _stack[++_stack_head] = e;
  1395           } else {
  1396             _visitor->leave(s);
  1397           }
  1398         }
  1399     }
  1400 
  1401     /// \brief Processes the next arc.
  1402     ///
  1403     /// Processes the next arc.
  1404     ///
  1405     /// \return The processed arc.
  1406     ///
  1407     /// \pre The stack must not be empty.
  1408     Arc processNextArc() {
  1409       Arc e = _stack[_stack_head];
  1410       Node m = _digraph->target(e);
  1411       if(!(*_reached)[m]) {
  1412         _visitor->discover(e);
  1413         _visitor->reach(m);
  1414         _reached->set(m, true);
  1415         _digraph->firstOut(_stack[++_stack_head], m);
  1416       } else {
  1417         _visitor->examine(e);
  1418         m = _digraph->source(e);
  1419         _digraph->nextOut(_stack[_stack_head]);
  1420       }
  1421       while (_stack_head>=0 && _stack[_stack_head] == INVALID) {
  1422         _visitor->leave(m);
  1423         --_stack_head;
  1424         if (_stack_head >= 0) {
  1425           _visitor->backtrack(_stack[_stack_head]);
  1426           m = _digraph->source(_stack[_stack_head]);
  1427           _digraph->nextOut(_stack[_stack_head]);
  1428         } else {
  1429           _visitor->stop(m);
  1430         }
  1431       }
  1432       return e;
  1433     }
  1434 
  1435     /// \brief Next arc to be processed.
  1436     ///
  1437     /// Next arc to be processed.
  1438     ///
  1439     /// \return The next arc to be processed or INVALID if the stack is
  1440     /// empty.
  1441     Arc nextArc() const {
  1442       return _stack_head >= 0 ? _stack[_stack_head] : INVALID;
  1443     }
  1444 
  1445     /// \brief Returns \c false if there are nodes
  1446     /// to be processed.
  1447     ///
  1448     /// Returns \c false if there are nodes
  1449     /// to be processed in the queue (stack).
  1450     bool emptyQueue() const { return _stack_head < 0; }
  1451 
  1452     /// \brief Returns the number of the nodes to be processed.
  1453     ///
  1454     /// Returns the number of the nodes to be processed in the queue (stack).
  1455     int queueSize() const { return _stack_head + 1; }
  1456 
  1457     /// \brief Executes the algorithm.
  1458     ///
  1459     /// Executes the algorithm.
  1460     ///
  1461     /// This method runs the %DFS algorithm from the root node
  1462     /// in order to compute the %DFS path to each node.
  1463     ///
  1464     /// The algorithm computes
  1465     /// - the %DFS tree,
  1466     /// - the distance of each node from the root in the %DFS tree.
  1467     ///
  1468     /// \pre init() must be called and a root node should be
  1469     /// added with addSource() before using this function.
  1470     ///
  1471     /// \note <tt>d.start()</tt> is just a shortcut of the following code.
  1472     /// \code
  1473     ///   while ( !d.emptyQueue() ) {
  1474     ///     d.processNextArc();
  1475     ///   }
  1476     /// \endcode
  1477     void start() {
  1478       while ( !emptyQueue() ) processNextArc();
  1479     }
  1480 
  1481     /// \brief Executes the algorithm until the given target node is reached.
  1482     ///
  1483     /// Executes the algorithm until the given target node is reached.
  1484     ///
  1485     /// This method runs the %DFS algorithm from the root node
  1486     /// in order to compute the DFS path to \c dest.
  1487     ///
  1488     /// The algorithm computes
  1489     /// - the %DFS path to \c dest,
  1490     /// - the distance of \c dest from the root in the %DFS tree.
  1491     ///
  1492     /// \pre init() must be called and a root node should be added
  1493     /// with addSource() before using this function.
  1494     void start(Node dest) {
  1495       while ( !emptyQueue() && _digraph->target(_stack[_stack_head]) != dest )
  1496         processNextArc();
  1497     }
  1498 
  1499     /// \brief Executes the algorithm until a condition is met.
  1500     ///
  1501     /// Executes the algorithm until a condition is met.
  1502     ///
  1503     /// This method runs the %DFS algorithm from the root node
  1504     /// until an arc \c a with <tt>am[a]</tt> true is found.
  1505     ///
  1506     /// \param am A \c bool (or convertible) arc map. The algorithm
  1507     /// will stop when it reaches an arc \c a with <tt>am[a]</tt> true.
  1508     ///
  1509     /// \return The reached arc \c a with <tt>am[a]</tt> true or
  1510     /// \c INVALID if no such arc was found.
  1511     ///
  1512     /// \pre init() must be called and a root node should be added
  1513     /// with addSource() before using this function.
  1514     ///
  1515     /// \warning Contrary to \ref Bfs and \ref Dijkstra, \c am is an arc map,
  1516     /// not a node map.
  1517     template <typename AM>
  1518     Arc start(const AM &am) {
  1519       while ( !emptyQueue() && !am[_stack[_stack_head]] )
  1520         processNextArc();
  1521       return emptyQueue() ? INVALID : _stack[_stack_head];
  1522     }
  1523 
  1524     /// \brief Runs the algorithm from the given node.
  1525     ///
  1526     /// This method runs the %DFS algorithm from node \c s.
  1527     /// in order to compute the DFS path to each node.
  1528     ///
  1529     /// The algorithm computes
  1530     /// - the %DFS tree,
  1531     /// - the distance of each node from the root in the %DFS tree.
  1532     ///
  1533     /// \note <tt>d.run(s)</tt> is just a shortcut of the following code.
  1534     ///\code
  1535     ///   d.init();
  1536     ///   d.addSource(s);
  1537     ///   d.start();
  1538     ///\endcode
  1539     void run(Node s) {
  1540       init();
  1541       addSource(s);
  1542       start();
  1543     }
  1544 
  1545     /// \brief Finds the %DFS path between \c s and \c t.
  1546 
  1547     /// This method runs the %DFS algorithm from node \c s
  1548     /// in order to compute the DFS path to \c t.
  1549     ///
  1550     /// \return The length of the <tt>s</tt>--<tt>t</tt> DFS path,
  1551     /// if \c t is reachable form \c s, \c 0 otherwise.
  1552     ///
  1553     /// \note Apart from the return value, <tt>d.run(s,t)</tt> is
  1554     /// just a shortcut of the following code.
  1555     ///\code
  1556     ///   d.init();
  1557     ///   d.addSource(s);
  1558     ///   d.start(t);
  1559     ///\endcode
  1560     int run(Node s,Node t) {
  1561       init();
  1562       addSource(s);
  1563       start(t);
  1564       return reached(t)?_stack_head+1:0;
  1565     }
  1566 
  1567     /// \brief Runs the algorithm to visit all nodes in the digraph.
  1568 
  1569     /// This method runs the %DFS algorithm in order to
  1570     /// compute the %DFS path to each node.
  1571     ///
  1572     /// The algorithm computes
  1573     /// - the %DFS tree,
  1574     /// - the distance of each node from the root in the %DFS tree.
  1575     ///
  1576     /// \note <tt>d.run()</tt> is just a shortcut of the following code.
  1577     ///\code
  1578     ///   d.init();
  1579     ///   for (NodeIt n(digraph); n != INVALID; ++n) {
  1580     ///     if (!d.reached(n)) {
  1581     ///       d.addSource(n);
  1582     ///       d.start();
  1583     ///     }
  1584     ///   }
  1585     ///\endcode
  1586     void run() {
  1587       init();
  1588       for (NodeIt it(*_digraph); it != INVALID; ++it) {
  1589         if (!reached(it)) {
  1590           addSource(it);
  1591           start();
  1592         }
  1593       }
  1594     }
  1595 
  1596     ///@}
  1597 
  1598     /// \name Query Functions
  1599     /// The result of the %DFS algorithm can be obtained using these
  1600     /// functions.\n
  1601     /// Either \ref lemon::DfsVisit::run() "run()" or
  1602     /// \ref lemon::DfsVisit::start() "start()" must be called before
  1603     /// using them.
  1604     ///@{
  1605 
  1606     /// \brief Checks if a node is reachable from the root(s).
  1607     ///
  1608     /// Returns \c true if \c v is reachable from the root(s).
  1609     /// \pre Either \ref run() or \ref start()
  1610     /// must be called before using this function.
  1611     bool reached(Node v) { return (*_reached)[v]; }
  1612 
  1613     ///@}
  1614 
  1615   };
  1616 
  1617 } //END OF NAMESPACE LEMON
  1618 
  1619 #endif