lemon/cycle_canceling.h
author Peter Kovacs <kpeter@inf.elte.hu>
Sat, 20 Feb 2010 18:39:03 +0100
changeset 910 f3bc4e9b5f3a
parent 886 7ef7a5fbb85d
child 911 2914b6f0fde0
permissions -rw-r--r--
New heuristics for MCF algorithms (#340)
and some implementation improvements.

- A useful heuristic is added to NetworkSimplex to make the
initial pivots faster.
- A powerful global update heuristic is added to CostScaling
and the implementation is reworked with various improvements.
- Better relabeling in CostScaling to improve numerical stability
and make the code faster.
- A small improvement is made in CapacityScaling for better
delta computation.
- Add notes to the classes about the usage of vector<char> instead
of vector<bool> for efficiency reasons.
     1 /* -*- C++ -*-
     2  *
     3  * This file is a part of LEMON, a generic C++ optimization library
     4  *
     5  * Copyright (C) 2003-2008
     6  * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
     7  * (Egervary Research Group on Combinatorial Optimization, EGRES).
     8  *
     9  * Permission to use, modify and distribute this software is granted
    10  * provided that this copyright notice appears in all copies. For
    11  * precise terms see the accompanying LICENSE file.
    12  *
    13  * This software is provided "AS IS" with no warranty of any kind,
    14  * express or implied, and with no claim as to its suitability for any
    15  * purpose.
    16  *
    17  */
    18 
    19 #ifndef LEMON_CYCLE_CANCELING_H
    20 #define LEMON_CYCLE_CANCELING_H
    21 
    22 /// \ingroup min_cost_flow_algs
    23 /// \file
    24 /// \brief Cycle-canceling algorithms for finding a minimum cost flow.
    25 
    26 #include <vector>
    27 #include <limits>
    28 
    29 #include <lemon/core.h>
    30 #include <lemon/maps.h>
    31 #include <lemon/path.h>
    32 #include <lemon/math.h>
    33 #include <lemon/static_graph.h>
    34 #include <lemon/adaptors.h>
    35 #include <lemon/circulation.h>
    36 #include <lemon/bellman_ford.h>
    37 #include <lemon/howard.h>
    38 
    39 namespace lemon {
    40 
    41   /// \addtogroup min_cost_flow_algs
    42   /// @{
    43 
    44   /// \brief Implementation of cycle-canceling algorithms for
    45   /// finding a \ref min_cost_flow "minimum cost flow".
    46   ///
    47   /// \ref CycleCanceling implements three different cycle-canceling
    48   /// algorithms for finding a \ref min_cost_flow "minimum cost flow"
    49   /// \ref amo93networkflows, \ref klein67primal,
    50   /// \ref goldberg89cyclecanceling.
    51   /// The most efficent one (both theoretically and practically)
    52   /// is the \ref CANCEL_AND_TIGHTEN "Cancel and Tighten" algorithm,
    53   /// thus it is the default method.
    54   /// It is strongly polynomial, but in practice, it is typically much
    55   /// slower than the scaling algorithms and NetworkSimplex.
    56   ///
    57   /// Most of the parameters of the problem (except for the digraph)
    58   /// can be given using separate functions, and the algorithm can be
    59   /// executed using the \ref run() function. If some parameters are not
    60   /// specified, then default values will be used.
    61   ///
    62   /// \tparam GR The digraph type the algorithm runs on.
    63   /// \tparam V The number type used for flow amounts, capacity bounds
    64   /// and supply values in the algorithm. By default, it is \c int.
    65   /// \tparam C The number type used for costs and potentials in the
    66   /// algorithm. By default, it is the same as \c V.
    67   ///
    68   /// \warning Both number types must be signed and all input data must
    69   /// be integer.
    70   /// \warning This algorithm does not support negative costs for such
    71   /// arcs that have infinite upper bound.
    72   ///
    73   /// \note For more information about the three available methods,
    74   /// see \ref Method.
    75 #ifdef DOXYGEN
    76   template <typename GR, typename V, typename C>
    77 #else
    78   template <typename GR, typename V = int, typename C = V>
    79 #endif
    80   class CycleCanceling
    81   {
    82   public:
    83 
    84     /// The type of the digraph
    85     typedef GR Digraph;
    86     /// The type of the flow amounts, capacity bounds and supply values
    87     typedef V Value;
    88     /// The type of the arc costs
    89     typedef C Cost;
    90 
    91   public:
    92 
    93     /// \brief Problem type constants for the \c run() function.
    94     ///
    95     /// Enum type containing the problem type constants that can be
    96     /// returned by the \ref run() function of the algorithm.
    97     enum ProblemType {
    98       /// The problem has no feasible solution (flow).
    99       INFEASIBLE,
   100       /// The problem has optimal solution (i.e. it is feasible and
   101       /// bounded), and the algorithm has found optimal flow and node
   102       /// potentials (primal and dual solutions).
   103       OPTIMAL,
   104       /// The digraph contains an arc of negative cost and infinite
   105       /// upper bound. It means that the objective function is unbounded
   106       /// on that arc, however, note that it could actually be bounded
   107       /// over the feasible flows, but this algroithm cannot handle
   108       /// these cases.
   109       UNBOUNDED
   110     };
   111 
   112     /// \brief Constants for selecting the used method.
   113     ///
   114     /// Enum type containing constants for selecting the used method
   115     /// for the \ref run() function.
   116     ///
   117     /// \ref CycleCanceling provides three different cycle-canceling
   118     /// methods. By default, \ref CANCEL_AND_TIGHTEN "Cancel and Tighten"
   119     /// is used, which proved to be the most efficient and the most robust
   120     /// on various test inputs.
   121     /// However, the other methods can be selected using the \ref run()
   122     /// function with the proper parameter.
   123     enum Method {
   124       /// A simple cycle-canceling method, which uses the
   125       /// \ref BellmanFord "Bellman-Ford" algorithm with limited iteration
   126       /// number for detecting negative cycles in the residual network.
   127       SIMPLE_CYCLE_CANCELING,
   128       /// The "Minimum Mean Cycle-Canceling" algorithm, which is a
   129       /// well-known strongly polynomial method
   130       /// \ref goldberg89cyclecanceling. It improves along a
   131       /// \ref min_mean_cycle "minimum mean cycle" in each iteration.
   132       /// Its running time complexity is O(n<sup>2</sup>m<sup>3</sup>log(n)).
   133       MINIMUM_MEAN_CYCLE_CANCELING,
   134       /// The "Cancel And Tighten" algorithm, which can be viewed as an
   135       /// improved version of the previous method
   136       /// \ref goldberg89cyclecanceling.
   137       /// It is faster both in theory and in practice, its running time
   138       /// complexity is O(n<sup>2</sup>m<sup>2</sup>log(n)).
   139       CANCEL_AND_TIGHTEN
   140     };
   141 
   142   private:
   143 
   144     TEMPLATE_DIGRAPH_TYPEDEFS(GR);
   145     
   146     typedef std::vector<int> IntVector;
   147     typedef std::vector<double> DoubleVector;
   148     typedef std::vector<Value> ValueVector;
   149     typedef std::vector<Cost> CostVector;
   150     typedef std::vector<char> BoolVector;
   151     // Note: vector<char> is used instead of vector<bool> for efficiency reasons
   152 
   153   private:
   154   
   155     template <typename KT, typename VT>
   156     class StaticVectorMap {
   157     public:
   158       typedef KT Key;
   159       typedef VT Value;
   160       
   161       StaticVectorMap(std::vector<Value>& v) : _v(v) {}
   162       
   163       const Value& operator[](const Key& key) const {
   164         return _v[StaticDigraph::id(key)];
   165       }
   166 
   167       Value& operator[](const Key& key) {
   168         return _v[StaticDigraph::id(key)];
   169       }
   170       
   171       void set(const Key& key, const Value& val) {
   172         _v[StaticDigraph::id(key)] = val;
   173       }
   174 
   175     private:
   176       std::vector<Value>& _v;
   177     };
   178 
   179     typedef StaticVectorMap<StaticDigraph::Node, Cost> CostNodeMap;
   180     typedef StaticVectorMap<StaticDigraph::Arc, Cost> CostArcMap;
   181 
   182   private:
   183 
   184 
   185     // Data related to the underlying digraph
   186     const GR &_graph;
   187     int _node_num;
   188     int _arc_num;
   189     int _res_node_num;
   190     int _res_arc_num;
   191     int _root;
   192 
   193     // Parameters of the problem
   194     bool _have_lower;
   195     Value _sum_supply;
   196 
   197     // Data structures for storing the digraph
   198     IntNodeMap _node_id;
   199     IntArcMap _arc_idf;
   200     IntArcMap _arc_idb;
   201     IntVector _first_out;
   202     BoolVector _forward;
   203     IntVector _source;
   204     IntVector _target;
   205     IntVector _reverse;
   206 
   207     // Node and arc data
   208     ValueVector _lower;
   209     ValueVector _upper;
   210     CostVector _cost;
   211     ValueVector _supply;
   212 
   213     ValueVector _res_cap;
   214     CostVector _pi;
   215 
   216     // Data for a StaticDigraph structure
   217     typedef std::pair<int, int> IntPair;
   218     StaticDigraph _sgr;
   219     std::vector<IntPair> _arc_vec;
   220     std::vector<Cost> _cost_vec;
   221     IntVector _id_vec;
   222     CostArcMap _cost_map;
   223     CostNodeMap _pi_map;
   224   
   225   public:
   226   
   227     /// \brief Constant for infinite upper bounds (capacities).
   228     ///
   229     /// Constant for infinite upper bounds (capacities).
   230     /// It is \c std::numeric_limits<Value>::infinity() if available,
   231     /// \c std::numeric_limits<Value>::max() otherwise.
   232     const Value INF;
   233 
   234   public:
   235 
   236     /// \brief Constructor.
   237     ///
   238     /// The constructor of the class.
   239     ///
   240     /// \param graph The digraph the algorithm runs on.
   241     CycleCanceling(const GR& graph) :
   242       _graph(graph), _node_id(graph), _arc_idf(graph), _arc_idb(graph),
   243       _cost_map(_cost_vec), _pi_map(_pi),
   244       INF(std::numeric_limits<Value>::has_infinity ?
   245           std::numeric_limits<Value>::infinity() :
   246           std::numeric_limits<Value>::max())
   247     {
   248       // Check the number types
   249       LEMON_ASSERT(std::numeric_limits<Value>::is_signed,
   250         "The flow type of CycleCanceling must be signed");
   251       LEMON_ASSERT(std::numeric_limits<Cost>::is_signed,
   252         "The cost type of CycleCanceling must be signed");
   253 
   254       // Resize vectors
   255       _node_num = countNodes(_graph);
   256       _arc_num = countArcs(_graph);
   257       _res_node_num = _node_num + 1;
   258       _res_arc_num = 2 * (_arc_num + _node_num);
   259       _root = _node_num;
   260 
   261       _first_out.resize(_res_node_num + 1);
   262       _forward.resize(_res_arc_num);
   263       _source.resize(_res_arc_num);
   264       _target.resize(_res_arc_num);
   265       _reverse.resize(_res_arc_num);
   266 
   267       _lower.resize(_res_arc_num);
   268       _upper.resize(_res_arc_num);
   269       _cost.resize(_res_arc_num);
   270       _supply.resize(_res_node_num);
   271       
   272       _res_cap.resize(_res_arc_num);
   273       _pi.resize(_res_node_num);
   274 
   275       _arc_vec.reserve(_res_arc_num);
   276       _cost_vec.reserve(_res_arc_num);
   277       _id_vec.reserve(_res_arc_num);
   278 
   279       // Copy the graph
   280       int i = 0, j = 0, k = 2 * _arc_num + _node_num;
   281       for (NodeIt n(_graph); n != INVALID; ++n, ++i) {
   282         _node_id[n] = i;
   283       }
   284       i = 0;
   285       for (NodeIt n(_graph); n != INVALID; ++n, ++i) {
   286         _first_out[i] = j;
   287         for (OutArcIt a(_graph, n); a != INVALID; ++a, ++j) {
   288           _arc_idf[a] = j;
   289           _forward[j] = true;
   290           _source[j] = i;
   291           _target[j] = _node_id[_graph.runningNode(a)];
   292         }
   293         for (InArcIt a(_graph, n); a != INVALID; ++a, ++j) {
   294           _arc_idb[a] = j;
   295           _forward[j] = false;
   296           _source[j] = i;
   297           _target[j] = _node_id[_graph.runningNode(a)];
   298         }
   299         _forward[j] = false;
   300         _source[j] = i;
   301         _target[j] = _root;
   302         _reverse[j] = k;
   303         _forward[k] = true;
   304         _source[k] = _root;
   305         _target[k] = i;
   306         _reverse[k] = j;
   307         ++j; ++k;
   308       }
   309       _first_out[i] = j;
   310       _first_out[_res_node_num] = k;
   311       for (ArcIt a(_graph); a != INVALID; ++a) {
   312         int fi = _arc_idf[a];
   313         int bi = _arc_idb[a];
   314         _reverse[fi] = bi;
   315         _reverse[bi] = fi;
   316       }
   317       
   318       // Reset parameters
   319       reset();
   320     }
   321 
   322     /// \name Parameters
   323     /// The parameters of the algorithm can be specified using these
   324     /// functions.
   325 
   326     /// @{
   327 
   328     /// \brief Set the lower bounds on the arcs.
   329     ///
   330     /// This function sets the lower bounds on the arcs.
   331     /// If it is not used before calling \ref run(), the lower bounds
   332     /// will be set to zero on all arcs.
   333     ///
   334     /// \param map An arc map storing the lower bounds.
   335     /// Its \c Value type must be convertible to the \c Value type
   336     /// of the algorithm.
   337     ///
   338     /// \return <tt>(*this)</tt>
   339     template <typename LowerMap>
   340     CycleCanceling& lowerMap(const LowerMap& map) {
   341       _have_lower = true;
   342       for (ArcIt a(_graph); a != INVALID; ++a) {
   343         _lower[_arc_idf[a]] = map[a];
   344         _lower[_arc_idb[a]] = map[a];
   345       }
   346       return *this;
   347     }
   348 
   349     /// \brief Set the upper bounds (capacities) on the arcs.
   350     ///
   351     /// This function sets the upper bounds (capacities) on the arcs.
   352     /// If it is not used before calling \ref run(), the upper bounds
   353     /// will be set to \ref INF on all arcs (i.e. the flow value will be
   354     /// unbounded from above).
   355     ///
   356     /// \param map An arc map storing the upper bounds.
   357     /// Its \c Value type must be convertible to the \c Value type
   358     /// of the algorithm.
   359     ///
   360     /// \return <tt>(*this)</tt>
   361     template<typename UpperMap>
   362     CycleCanceling& upperMap(const UpperMap& map) {
   363       for (ArcIt a(_graph); a != INVALID; ++a) {
   364         _upper[_arc_idf[a]] = map[a];
   365       }
   366       return *this;
   367     }
   368 
   369     /// \brief Set the costs of the arcs.
   370     ///
   371     /// This function sets the costs of the arcs.
   372     /// If it is not used before calling \ref run(), the costs
   373     /// will be set to \c 1 on all arcs.
   374     ///
   375     /// \param map An arc map storing the costs.
   376     /// Its \c Value type must be convertible to the \c Cost type
   377     /// of the algorithm.
   378     ///
   379     /// \return <tt>(*this)</tt>
   380     template<typename CostMap>
   381     CycleCanceling& costMap(const CostMap& map) {
   382       for (ArcIt a(_graph); a != INVALID; ++a) {
   383         _cost[_arc_idf[a]] =  map[a];
   384         _cost[_arc_idb[a]] = -map[a];
   385       }
   386       return *this;
   387     }
   388 
   389     /// \brief Set the supply values of the nodes.
   390     ///
   391     /// This function sets the supply values of the nodes.
   392     /// If neither this function nor \ref stSupply() is used before
   393     /// calling \ref run(), the supply of each node will be set to zero.
   394     ///
   395     /// \param map A node map storing the supply values.
   396     /// Its \c Value type must be convertible to the \c Value type
   397     /// of the algorithm.
   398     ///
   399     /// \return <tt>(*this)</tt>
   400     template<typename SupplyMap>
   401     CycleCanceling& supplyMap(const SupplyMap& map) {
   402       for (NodeIt n(_graph); n != INVALID; ++n) {
   403         _supply[_node_id[n]] = map[n];
   404       }
   405       return *this;
   406     }
   407 
   408     /// \brief Set single source and target nodes and a supply value.
   409     ///
   410     /// This function sets a single source node and a single target node
   411     /// and the required flow value.
   412     /// If neither this function nor \ref supplyMap() is used before
   413     /// calling \ref run(), the supply of each node will be set to zero.
   414     ///
   415     /// Using this function has the same effect as using \ref supplyMap()
   416     /// with such a map in which \c k is assigned to \c s, \c -k is
   417     /// assigned to \c t and all other nodes have zero supply value.
   418     ///
   419     /// \param s The source node.
   420     /// \param t The target node.
   421     /// \param k The required amount of flow from node \c s to node \c t
   422     /// (i.e. the supply of \c s and the demand of \c t).
   423     ///
   424     /// \return <tt>(*this)</tt>
   425     CycleCanceling& stSupply(const Node& s, const Node& t, Value k) {
   426       for (int i = 0; i != _res_node_num; ++i) {
   427         _supply[i] = 0;
   428       }
   429       _supply[_node_id[s]] =  k;
   430       _supply[_node_id[t]] = -k;
   431       return *this;
   432     }
   433     
   434     /// @}
   435 
   436     /// \name Execution control
   437     /// The algorithm can be executed using \ref run().
   438 
   439     /// @{
   440 
   441     /// \brief Run the algorithm.
   442     ///
   443     /// This function runs the algorithm.
   444     /// The paramters can be specified using functions \ref lowerMap(),
   445     /// \ref upperMap(), \ref costMap(), \ref supplyMap(), \ref stSupply().
   446     /// For example,
   447     /// \code
   448     ///   CycleCanceling<ListDigraph> cc(graph);
   449     ///   cc.lowerMap(lower).upperMap(upper).costMap(cost)
   450     ///     .supplyMap(sup).run();
   451     /// \endcode
   452     ///
   453     /// This function can be called more than once. All the parameters
   454     /// that have been given are kept for the next call, unless
   455     /// \ref reset() is called, thus only the modified parameters
   456     /// have to be set again. See \ref reset() for examples.
   457     /// However, the underlying digraph must not be modified after this
   458     /// class have been constructed, since it copies and extends the graph.
   459     ///
   460     /// \param method The cycle-canceling method that will be used.
   461     /// For more information, see \ref Method.
   462     ///
   463     /// \return \c INFEASIBLE if no feasible flow exists,
   464     /// \n \c OPTIMAL if the problem has optimal solution
   465     /// (i.e. it is feasible and bounded), and the algorithm has found
   466     /// optimal flow and node potentials (primal and dual solutions),
   467     /// \n \c UNBOUNDED if the digraph contains an arc of negative cost
   468     /// and infinite upper bound. It means that the objective function
   469     /// is unbounded on that arc, however, note that it could actually be
   470     /// bounded over the feasible flows, but this algroithm cannot handle
   471     /// these cases.
   472     ///
   473     /// \see ProblemType, Method
   474     ProblemType run(Method method = CANCEL_AND_TIGHTEN) {
   475       ProblemType pt = init();
   476       if (pt != OPTIMAL) return pt;
   477       start(method);
   478       return OPTIMAL;
   479     }
   480 
   481     /// \brief Reset all the parameters that have been given before.
   482     ///
   483     /// This function resets all the paramaters that have been given
   484     /// before using functions \ref lowerMap(), \ref upperMap(),
   485     /// \ref costMap(), \ref supplyMap(), \ref stSupply().
   486     ///
   487     /// It is useful for multiple run() calls. If this function is not
   488     /// used, all the parameters given before are kept for the next
   489     /// \ref run() call.
   490     /// However, the underlying digraph must not be modified after this
   491     /// class have been constructed, since it copies and extends the graph.
   492     ///
   493     /// For example,
   494     /// \code
   495     ///   CycleCanceling<ListDigraph> cs(graph);
   496     ///
   497     ///   // First run
   498     ///   cc.lowerMap(lower).upperMap(upper).costMap(cost)
   499     ///     .supplyMap(sup).run();
   500     ///
   501     ///   // Run again with modified cost map (reset() is not called,
   502     ///   // so only the cost map have to be set again)
   503     ///   cost[e] += 100;
   504     ///   cc.costMap(cost).run();
   505     ///
   506     ///   // Run again from scratch using reset()
   507     ///   // (the lower bounds will be set to zero on all arcs)
   508     ///   cc.reset();
   509     ///   cc.upperMap(capacity).costMap(cost)
   510     ///     .supplyMap(sup).run();
   511     /// \endcode
   512     ///
   513     /// \return <tt>(*this)</tt>
   514     CycleCanceling& reset() {
   515       for (int i = 0; i != _res_node_num; ++i) {
   516         _supply[i] = 0;
   517       }
   518       int limit = _first_out[_root];
   519       for (int j = 0; j != limit; ++j) {
   520         _lower[j] = 0;
   521         _upper[j] = INF;
   522         _cost[j] = _forward[j] ? 1 : -1;
   523       }
   524       for (int j = limit; j != _res_arc_num; ++j) {
   525         _lower[j] = 0;
   526         _upper[j] = INF;
   527         _cost[j] = 0;
   528         _cost[_reverse[j]] = 0;
   529       }      
   530       _have_lower = false;
   531       return *this;
   532     }
   533 
   534     /// @}
   535 
   536     /// \name Query Functions
   537     /// The results of the algorithm can be obtained using these
   538     /// functions.\n
   539     /// The \ref run() function must be called before using them.
   540 
   541     /// @{
   542 
   543     /// \brief Return the total cost of the found flow.
   544     ///
   545     /// This function returns the total cost of the found flow.
   546     /// Its complexity is O(e).
   547     ///
   548     /// \note The return type of the function can be specified as a
   549     /// template parameter. For example,
   550     /// \code
   551     ///   cc.totalCost<double>();
   552     /// \endcode
   553     /// It is useful if the total cost cannot be stored in the \c Cost
   554     /// type of the algorithm, which is the default return type of the
   555     /// function.
   556     ///
   557     /// \pre \ref run() must be called before using this function.
   558     template <typename Number>
   559     Number totalCost() const {
   560       Number c = 0;
   561       for (ArcIt a(_graph); a != INVALID; ++a) {
   562         int i = _arc_idb[a];
   563         c += static_cast<Number>(_res_cap[i]) *
   564              (-static_cast<Number>(_cost[i]));
   565       }
   566       return c;
   567     }
   568 
   569 #ifndef DOXYGEN
   570     Cost totalCost() const {
   571       return totalCost<Cost>();
   572     }
   573 #endif
   574 
   575     /// \brief Return the flow on the given arc.
   576     ///
   577     /// This function returns the flow on the given arc.
   578     ///
   579     /// \pre \ref run() must be called before using this function.
   580     Value flow(const Arc& a) const {
   581       return _res_cap[_arc_idb[a]];
   582     }
   583 
   584     /// \brief Return the flow map (the primal solution).
   585     ///
   586     /// This function copies the flow value on each arc into the given
   587     /// map. The \c Value type of the algorithm must be convertible to
   588     /// the \c Value type of the map.
   589     ///
   590     /// \pre \ref run() must be called before using this function.
   591     template <typename FlowMap>
   592     void flowMap(FlowMap &map) const {
   593       for (ArcIt a(_graph); a != INVALID; ++a) {
   594         map.set(a, _res_cap[_arc_idb[a]]);
   595       }
   596     }
   597 
   598     /// \brief Return the potential (dual value) of the given node.
   599     ///
   600     /// This function returns the potential (dual value) of the
   601     /// given node.
   602     ///
   603     /// \pre \ref run() must be called before using this function.
   604     Cost potential(const Node& n) const {
   605       return static_cast<Cost>(_pi[_node_id[n]]);
   606     }
   607 
   608     /// \brief Return the potential map (the dual solution).
   609     ///
   610     /// This function copies the potential (dual value) of each node
   611     /// into the given map.
   612     /// The \c Cost type of the algorithm must be convertible to the
   613     /// \c Value type of the map.
   614     ///
   615     /// \pre \ref run() must be called before using this function.
   616     template <typename PotentialMap>
   617     void potentialMap(PotentialMap &map) const {
   618       for (NodeIt n(_graph); n != INVALID; ++n) {
   619         map.set(n, static_cast<Cost>(_pi[_node_id[n]]));
   620       }
   621     }
   622 
   623     /// @}
   624 
   625   private:
   626 
   627     // Initialize the algorithm
   628     ProblemType init() {
   629       if (_res_node_num <= 1) return INFEASIBLE;
   630 
   631       // Check the sum of supply values
   632       _sum_supply = 0;
   633       for (int i = 0; i != _root; ++i) {
   634         _sum_supply += _supply[i];
   635       }
   636       if (_sum_supply > 0) return INFEASIBLE;
   637       
   638 
   639       // Initialize vectors
   640       for (int i = 0; i != _res_node_num; ++i) {
   641         _pi[i] = 0;
   642       }
   643       ValueVector excess(_supply);
   644       
   645       // Remove infinite upper bounds and check negative arcs
   646       const Value MAX = std::numeric_limits<Value>::max();
   647       int last_out;
   648       if (_have_lower) {
   649         for (int i = 0; i != _root; ++i) {
   650           last_out = _first_out[i+1];
   651           for (int j = _first_out[i]; j != last_out; ++j) {
   652             if (_forward[j]) {
   653               Value c = _cost[j] < 0 ? _upper[j] : _lower[j];
   654               if (c >= MAX) return UNBOUNDED;
   655               excess[i] -= c;
   656               excess[_target[j]] += c;
   657             }
   658           }
   659         }
   660       } else {
   661         for (int i = 0; i != _root; ++i) {
   662           last_out = _first_out[i+1];
   663           for (int j = _first_out[i]; j != last_out; ++j) {
   664             if (_forward[j] && _cost[j] < 0) {
   665               Value c = _upper[j];
   666               if (c >= MAX) return UNBOUNDED;
   667               excess[i] -= c;
   668               excess[_target[j]] += c;
   669             }
   670           }
   671         }
   672       }
   673       Value ex, max_cap = 0;
   674       for (int i = 0; i != _res_node_num; ++i) {
   675         ex = excess[i];
   676         if (ex < 0) max_cap -= ex;
   677       }
   678       for (int j = 0; j != _res_arc_num; ++j) {
   679         if (_upper[j] >= MAX) _upper[j] = max_cap;
   680       }
   681 
   682       // Initialize maps for Circulation and remove non-zero lower bounds
   683       ConstMap<Arc, Value> low(0);
   684       typedef typename Digraph::template ArcMap<Value> ValueArcMap;
   685       typedef typename Digraph::template NodeMap<Value> ValueNodeMap;
   686       ValueArcMap cap(_graph), flow(_graph);
   687       ValueNodeMap sup(_graph);
   688       for (NodeIt n(_graph); n != INVALID; ++n) {
   689         sup[n] = _supply[_node_id[n]];
   690       }
   691       if (_have_lower) {
   692         for (ArcIt a(_graph); a != INVALID; ++a) {
   693           int j = _arc_idf[a];
   694           Value c = _lower[j];
   695           cap[a] = _upper[j] - c;
   696           sup[_graph.source(a)] -= c;
   697           sup[_graph.target(a)] += c;
   698         }
   699       } else {
   700         for (ArcIt a(_graph); a != INVALID; ++a) {
   701           cap[a] = _upper[_arc_idf[a]];
   702         }
   703       }
   704 
   705       // Find a feasible flow using Circulation
   706       Circulation<Digraph, ConstMap<Arc, Value>, ValueArcMap, ValueNodeMap>
   707         circ(_graph, low, cap, sup);
   708       if (!circ.flowMap(flow).run()) return INFEASIBLE;
   709 
   710       // Set residual capacities and handle GEQ supply type
   711       if (_sum_supply < 0) {
   712         for (ArcIt a(_graph); a != INVALID; ++a) {
   713           Value fa = flow[a];
   714           _res_cap[_arc_idf[a]] = cap[a] - fa;
   715           _res_cap[_arc_idb[a]] = fa;
   716           sup[_graph.source(a)] -= fa;
   717           sup[_graph.target(a)] += fa;
   718         }
   719         for (NodeIt n(_graph); n != INVALID; ++n) {
   720           excess[_node_id[n]] = sup[n];
   721         }
   722         for (int a = _first_out[_root]; a != _res_arc_num; ++a) {
   723           int u = _target[a];
   724           int ra = _reverse[a];
   725           _res_cap[a] = -_sum_supply + 1;
   726           _res_cap[ra] = -excess[u];
   727           _cost[a] = 0;
   728           _cost[ra] = 0;
   729         }
   730       } else {
   731         for (ArcIt a(_graph); a != INVALID; ++a) {
   732           Value fa = flow[a];
   733           _res_cap[_arc_idf[a]] = cap[a] - fa;
   734           _res_cap[_arc_idb[a]] = fa;
   735         }
   736         for (int a = _first_out[_root]; a != _res_arc_num; ++a) {
   737           int ra = _reverse[a];
   738           _res_cap[a] = 1;
   739           _res_cap[ra] = 0;
   740           _cost[a] = 0;
   741           _cost[ra] = 0;
   742         }
   743       }
   744       
   745       return OPTIMAL;
   746     }
   747     
   748     // Build a StaticDigraph structure containing the current
   749     // residual network
   750     void buildResidualNetwork() {
   751       _arc_vec.clear();
   752       _cost_vec.clear();
   753       _id_vec.clear();
   754       for (int j = 0; j != _res_arc_num; ++j) {
   755         if (_res_cap[j] > 0) {
   756           _arc_vec.push_back(IntPair(_source[j], _target[j]));
   757           _cost_vec.push_back(_cost[j]);
   758           _id_vec.push_back(j);
   759         }
   760       }
   761       _sgr.build(_res_node_num, _arc_vec.begin(), _arc_vec.end());
   762     }
   763 
   764     // Execute the algorithm and transform the results
   765     void start(Method method) {
   766       // Execute the algorithm
   767       switch (method) {
   768         case SIMPLE_CYCLE_CANCELING:
   769           startSimpleCycleCanceling();
   770           break;
   771         case MINIMUM_MEAN_CYCLE_CANCELING:
   772           startMinMeanCycleCanceling();
   773           break;
   774         case CANCEL_AND_TIGHTEN:
   775           startCancelAndTighten();
   776           break;
   777       }
   778 
   779       // Compute node potentials
   780       if (method != SIMPLE_CYCLE_CANCELING) {
   781         buildResidualNetwork();
   782         typename BellmanFord<StaticDigraph, CostArcMap>
   783           ::template SetDistMap<CostNodeMap>::Create bf(_sgr, _cost_map);
   784         bf.distMap(_pi_map);
   785         bf.init(0);
   786         bf.start();
   787       }
   788 
   789       // Handle non-zero lower bounds
   790       if (_have_lower) {
   791         int limit = _first_out[_root];
   792         for (int j = 0; j != limit; ++j) {
   793           if (!_forward[j]) _res_cap[j] += _lower[j];
   794         }
   795       }
   796     }
   797 
   798     // Execute the "Simple Cycle Canceling" method
   799     void startSimpleCycleCanceling() {
   800       // Constants for computing the iteration limits
   801       const int BF_FIRST_LIMIT  = 2;
   802       const double BF_LIMIT_FACTOR = 1.5;
   803       
   804       typedef StaticVectorMap<StaticDigraph::Arc, Value> FilterMap;
   805       typedef FilterArcs<StaticDigraph, FilterMap> ResDigraph;
   806       typedef StaticVectorMap<StaticDigraph::Node, StaticDigraph::Arc> PredMap;
   807       typedef typename BellmanFord<ResDigraph, CostArcMap>
   808         ::template SetDistMap<CostNodeMap>
   809         ::template SetPredMap<PredMap>::Create BF;
   810       
   811       // Build the residual network
   812       _arc_vec.clear();
   813       _cost_vec.clear();
   814       for (int j = 0; j != _res_arc_num; ++j) {
   815         _arc_vec.push_back(IntPair(_source[j], _target[j]));
   816         _cost_vec.push_back(_cost[j]);
   817       }
   818       _sgr.build(_res_node_num, _arc_vec.begin(), _arc_vec.end());
   819 
   820       FilterMap filter_map(_res_cap);
   821       ResDigraph rgr(_sgr, filter_map);
   822       std::vector<int> cycle;
   823       std::vector<StaticDigraph::Arc> pred(_res_arc_num);
   824       PredMap pred_map(pred);
   825       BF bf(rgr, _cost_map);
   826       bf.distMap(_pi_map).predMap(pred_map);
   827 
   828       int length_bound = BF_FIRST_LIMIT;
   829       bool optimal = false;
   830       while (!optimal) {
   831         bf.init(0);
   832         int iter_num = 0;
   833         bool cycle_found = false;
   834         while (!cycle_found) {
   835           // Perform some iterations of the Bellman-Ford algorithm
   836           int curr_iter_num = iter_num + length_bound <= _node_num ?
   837             length_bound : _node_num - iter_num;
   838           iter_num += curr_iter_num;
   839           int real_iter_num = curr_iter_num;
   840           for (int i = 0; i < curr_iter_num; ++i) {
   841             if (bf.processNextWeakRound()) {
   842               real_iter_num = i;
   843               break;
   844             }
   845           }
   846           if (real_iter_num < curr_iter_num) {
   847             // Optimal flow is found
   848             optimal = true;
   849             break;
   850           } else {
   851             // Search for node disjoint negative cycles
   852             std::vector<int> state(_res_node_num, 0);
   853             int id = 0;
   854             for (int u = 0; u != _res_node_num; ++u) {
   855               if (state[u] != 0) continue;
   856               ++id;
   857               int v = u;
   858               for (; v != -1 && state[v] == 0; v = pred[v] == INVALID ?
   859                    -1 : rgr.id(rgr.source(pred[v]))) {
   860                 state[v] = id;
   861               }
   862               if (v != -1 && state[v] == id) {
   863                 // A negative cycle is found
   864                 cycle_found = true;
   865                 cycle.clear();
   866                 StaticDigraph::Arc a = pred[v];
   867                 Value d, delta = _res_cap[rgr.id(a)];
   868                 cycle.push_back(rgr.id(a));
   869                 while (rgr.id(rgr.source(a)) != v) {
   870                   a = pred_map[rgr.source(a)];
   871                   d = _res_cap[rgr.id(a)];
   872                   if (d < delta) delta = d;
   873                   cycle.push_back(rgr.id(a));
   874                 }
   875 
   876                 // Augment along the cycle
   877                 for (int i = 0; i < int(cycle.size()); ++i) {
   878                   int j = cycle[i];
   879                   _res_cap[j] -= delta;
   880                   _res_cap[_reverse[j]] += delta;
   881                 }
   882               }
   883             }
   884           }
   885 
   886           // Increase iteration limit if no cycle is found
   887           if (!cycle_found) {
   888             length_bound = static_cast<int>(length_bound * BF_LIMIT_FACTOR);
   889           }
   890         }
   891       }
   892     }
   893 
   894     // Execute the "Minimum Mean Cycle Canceling" method
   895     void startMinMeanCycleCanceling() {
   896       typedef SimplePath<StaticDigraph> SPath;
   897       typedef typename SPath::ArcIt SPathArcIt;
   898       typedef typename Howard<StaticDigraph, CostArcMap>
   899         ::template SetPath<SPath>::Create MMC;
   900       
   901       SPath cycle;
   902       MMC mmc(_sgr, _cost_map);
   903       mmc.cycle(cycle);
   904       buildResidualNetwork();
   905       while (mmc.findMinMean() && mmc.cycleLength() < 0) {
   906         // Find the cycle
   907         mmc.findCycle();
   908 
   909         // Compute delta value
   910         Value delta = INF;
   911         for (SPathArcIt a(cycle); a != INVALID; ++a) {
   912           Value d = _res_cap[_id_vec[_sgr.id(a)]];
   913           if (d < delta) delta = d;
   914         }
   915 
   916         // Augment along the cycle
   917         for (SPathArcIt a(cycle); a != INVALID; ++a) {
   918           int j = _id_vec[_sgr.id(a)];
   919           _res_cap[j] -= delta;
   920           _res_cap[_reverse[j]] += delta;
   921         }
   922 
   923         // Rebuild the residual network        
   924         buildResidualNetwork();
   925       }
   926     }
   927 
   928     // Execute the "Cancel And Tighten" method
   929     void startCancelAndTighten() {
   930       // Constants for the min mean cycle computations
   931       const double LIMIT_FACTOR = 1.0;
   932       const int MIN_LIMIT = 5;
   933 
   934       // Contruct auxiliary data vectors
   935       DoubleVector pi(_res_node_num, 0.0);
   936       IntVector level(_res_node_num);
   937       BoolVector reached(_res_node_num);
   938       BoolVector processed(_res_node_num);
   939       IntVector pred_node(_res_node_num);
   940       IntVector pred_arc(_res_node_num);
   941       std::vector<int> stack(_res_node_num);
   942       std::vector<int> proc_vector(_res_node_num);
   943 
   944       // Initialize epsilon
   945       double epsilon = 0;
   946       for (int a = 0; a != _res_arc_num; ++a) {
   947         if (_res_cap[a] > 0 && -_cost[a] > epsilon)
   948           epsilon = -_cost[a];
   949       }
   950 
   951       // Start phases
   952       Tolerance<double> tol;
   953       tol.epsilon(1e-6);
   954       int limit = int(LIMIT_FACTOR * std::sqrt(double(_res_node_num)));
   955       if (limit < MIN_LIMIT) limit = MIN_LIMIT;
   956       int iter = limit;
   957       while (epsilon * _res_node_num >= 1) {
   958         // Find and cancel cycles in the admissible network using DFS
   959         for (int u = 0; u != _res_node_num; ++u) {
   960           reached[u] = false;
   961           processed[u] = false;
   962         }
   963         int stack_head = -1;
   964         int proc_head = -1;
   965         for (int start = 0; start != _res_node_num; ++start) {
   966           if (reached[start]) continue;
   967 
   968           // New start node
   969           reached[start] = true;
   970           pred_arc[start] = -1;
   971           pred_node[start] = -1;
   972 
   973           // Find the first admissible outgoing arc
   974           double p = pi[start];
   975           int a = _first_out[start];
   976           int last_out = _first_out[start+1];
   977           for (; a != last_out && (_res_cap[a] == 0 ||
   978                !tol.negative(_cost[a] + p - pi[_target[a]])); ++a) ;
   979           if (a == last_out) {
   980             processed[start] = true;
   981             proc_vector[++proc_head] = start;
   982             continue;
   983           }
   984           stack[++stack_head] = a;
   985 
   986           while (stack_head >= 0) {
   987             int sa = stack[stack_head];
   988             int u = _source[sa];
   989             int v = _target[sa];
   990 
   991             if (!reached[v]) {
   992               // A new node is reached
   993               reached[v] = true;
   994               pred_node[v] = u;
   995               pred_arc[v] = sa;
   996               p = pi[v];
   997               a = _first_out[v];
   998               last_out = _first_out[v+1];
   999               for (; a != last_out && (_res_cap[a] == 0 ||
  1000                    !tol.negative(_cost[a] + p - pi[_target[a]])); ++a) ;
  1001               stack[++stack_head] = a == last_out ? -1 : a;
  1002             } else {
  1003               if (!processed[v]) {
  1004                 // A cycle is found
  1005                 int n, w = u;
  1006                 Value d, delta = _res_cap[sa];
  1007                 for (n = u; n != v; n = pred_node[n]) {
  1008                   d = _res_cap[pred_arc[n]];
  1009                   if (d <= delta) {
  1010                     delta = d;
  1011                     w = pred_node[n];
  1012                   }
  1013                 }
  1014 
  1015                 // Augment along the cycle
  1016                 _res_cap[sa] -= delta;
  1017                 _res_cap[_reverse[sa]] += delta;
  1018                 for (n = u; n != v; n = pred_node[n]) {
  1019                   int pa = pred_arc[n];
  1020                   _res_cap[pa] -= delta;
  1021                   _res_cap[_reverse[pa]] += delta;
  1022                 }
  1023                 for (n = u; stack_head > 0 && n != w; n = pred_node[n]) {
  1024                   --stack_head;
  1025                   reached[n] = false;
  1026                 }
  1027                 u = w;
  1028               }
  1029               v = u;
  1030 
  1031               // Find the next admissible outgoing arc
  1032               p = pi[v];
  1033               a = stack[stack_head] + 1;
  1034               last_out = _first_out[v+1];
  1035               for (; a != last_out && (_res_cap[a] == 0 ||
  1036                    !tol.negative(_cost[a] + p - pi[_target[a]])); ++a) ;
  1037               stack[stack_head] = a == last_out ? -1 : a;
  1038             }
  1039 
  1040             while (stack_head >= 0 && stack[stack_head] == -1) {
  1041               processed[v] = true;
  1042               proc_vector[++proc_head] = v;
  1043               if (--stack_head >= 0) {
  1044                 // Find the next admissible outgoing arc
  1045                 v = _source[stack[stack_head]];
  1046                 p = pi[v];
  1047                 a = stack[stack_head] + 1;
  1048                 last_out = _first_out[v+1];
  1049                 for (; a != last_out && (_res_cap[a] == 0 ||
  1050                      !tol.negative(_cost[a] + p - pi[_target[a]])); ++a) ;
  1051                 stack[stack_head] = a == last_out ? -1 : a;
  1052               }
  1053             }
  1054           }
  1055         }
  1056 
  1057         // Tighten potentials and epsilon
  1058         if (--iter > 0) {
  1059           for (int u = 0; u != _res_node_num; ++u) {
  1060             level[u] = 0;
  1061           }
  1062           for (int i = proc_head; i > 0; --i) {
  1063             int u = proc_vector[i];
  1064             double p = pi[u];
  1065             int l = level[u] + 1;
  1066             int last_out = _first_out[u+1];
  1067             for (int a = _first_out[u]; a != last_out; ++a) {
  1068               int v = _target[a];
  1069               if (_res_cap[a] > 0 && tol.negative(_cost[a] + p - pi[v]) &&
  1070                   l > level[v]) level[v] = l;
  1071             }
  1072           }
  1073 
  1074           // Modify potentials
  1075           double q = std::numeric_limits<double>::max();
  1076           for (int u = 0; u != _res_node_num; ++u) {
  1077             int lu = level[u];
  1078             double p, pu = pi[u];
  1079             int last_out = _first_out[u+1];
  1080             for (int a = _first_out[u]; a != last_out; ++a) {
  1081               if (_res_cap[a] == 0) continue;
  1082               int v = _target[a];
  1083               int ld = lu - level[v];
  1084               if (ld > 0) {
  1085                 p = (_cost[a] + pu - pi[v] + epsilon) / (ld + 1);
  1086                 if (p < q) q = p;
  1087               }
  1088             }
  1089           }
  1090           for (int u = 0; u != _res_node_num; ++u) {
  1091             pi[u] -= q * level[u];
  1092           }
  1093 
  1094           // Modify epsilon
  1095           epsilon = 0;
  1096           for (int u = 0; u != _res_node_num; ++u) {
  1097             double curr, pu = pi[u];
  1098             int last_out = _first_out[u+1];
  1099             for (int a = _first_out[u]; a != last_out; ++a) {
  1100               if (_res_cap[a] == 0) continue;
  1101               curr = _cost[a] + pu - pi[_target[a]];
  1102               if (-curr > epsilon) epsilon = -curr;
  1103             }
  1104           }
  1105         } else {
  1106           typedef Howard<StaticDigraph, CostArcMap> MMC;
  1107           typedef typename BellmanFord<StaticDigraph, CostArcMap>
  1108             ::template SetDistMap<CostNodeMap>::Create BF;
  1109 
  1110           // Set epsilon to the minimum cycle mean
  1111           buildResidualNetwork();
  1112           MMC mmc(_sgr, _cost_map);
  1113           mmc.findMinMean();
  1114           epsilon = -mmc.cycleMean();
  1115           Cost cycle_cost = mmc.cycleLength();
  1116           int cycle_size = mmc.cycleArcNum();
  1117           
  1118           // Compute feasible potentials for the current epsilon
  1119           for (int i = 0; i != int(_cost_vec.size()); ++i) {
  1120             _cost_vec[i] = cycle_size * _cost_vec[i] - cycle_cost;
  1121           }
  1122           BF bf(_sgr, _cost_map);
  1123           bf.distMap(_pi_map);
  1124           bf.init(0);
  1125           bf.start();
  1126           for (int u = 0; u != _res_node_num; ++u) {
  1127             pi[u] = static_cast<double>(_pi[u]) / cycle_size;
  1128           }
  1129         
  1130           iter = limit;
  1131         }
  1132       }
  1133     }
  1134 
  1135   }; //class CycleCanceling
  1136 
  1137   ///@}
  1138 
  1139 } //namespace lemon
  1140 
  1141 #endif //LEMON_CYCLE_CANCELING_H