lemon/capacity_scaling.h
author Peter Kovacs <kpeter@inf.elte.hu>
Thu, 12 Nov 2009 23:45:15 +0100
changeset 877 fe80a8145653
parent 876 3b53491bf643
child 878 4b1b378823dc
permissions -rw-r--r--
Small implementation improvements in MCF algorithms (#180)

- Handle max() as infinite value (not only infinity()).
- Better GEQ handling in CapacityScaling.
- Skip the unnecessary saturating operations in the first phase in
CapacityScaling.
- Use vector<char> instead of vector<bool> and vector<int> if it is
possible and it proved to be usually faster.
     1 /* -*- C++ -*-
     2  *
     3  * This file is a part of LEMON, a generic C++ optimization library
     4  *
     5  * Copyright (C) 2003-2008
     6  * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
     7  * (Egervary Research Group on Combinatorial Optimization, EGRES).
     8  *
     9  * Permission to use, modify and distribute this software is granted
    10  * provided that this copyright notice appears in all copies. For
    11  * precise terms see the accompanying LICENSE file.
    12  *
    13  * This software is provided "AS IS" with no warranty of any kind,
    14  * express or implied, and with no claim as to its suitability for any
    15  * purpose.
    16  *
    17  */
    18 
    19 #ifndef LEMON_CAPACITY_SCALING_H
    20 #define LEMON_CAPACITY_SCALING_H
    21 
    22 /// \ingroup min_cost_flow_algs
    23 ///
    24 /// \file
    25 /// \brief Capacity Scaling algorithm for finding a minimum cost flow.
    26 
    27 #include <vector>
    28 #include <limits>
    29 #include <lemon/core.h>
    30 #include <lemon/bin_heap.h>
    31 
    32 namespace lemon {
    33 
    34   /// \brief Default traits class of CapacityScaling algorithm.
    35   ///
    36   /// Default traits class of CapacityScaling algorithm.
    37   /// \tparam GR Digraph type.
    38   /// \tparam V The value type used for flow amounts, capacity bounds
    39   /// and supply values. By default it is \c int.
    40   /// \tparam C The value type used for costs and potentials.
    41   /// By default it is the same as \c V.
    42   template <typename GR, typename V = int, typename C = V>
    43   struct CapacityScalingDefaultTraits
    44   {
    45     /// The type of the digraph
    46     typedef GR Digraph;
    47     /// The type of the flow amounts, capacity bounds and supply values
    48     typedef V Value;
    49     /// The type of the arc costs
    50     typedef C Cost;
    51 
    52     /// \brief The type of the heap used for internal Dijkstra computations.
    53     ///
    54     /// The type of the heap used for internal Dijkstra computations.
    55     /// It must conform to the \ref lemon::concepts::Heap "Heap" concept,
    56     /// its priority type must be \c Cost and its cross reference type
    57     /// must be \ref RangeMap "RangeMap<int>".
    58     typedef BinHeap<Cost, RangeMap<int> > Heap;
    59   };
    60 
    61   /// \addtogroup min_cost_flow_algs
    62   /// @{
    63 
    64   /// \brief Implementation of the Capacity Scaling algorithm for
    65   /// finding a \ref min_cost_flow "minimum cost flow".
    66   ///
    67   /// \ref CapacityScaling implements the capacity scaling version
    68   /// of the successive shortest path algorithm for finding a
    69   /// \ref min_cost_flow "minimum cost flow". It is an efficient dual
    70   /// solution method.
    71   ///
    72   /// Most of the parameters of the problem (except for the digraph)
    73   /// can be given using separate functions, and the algorithm can be
    74   /// executed using the \ref run() function. If some parameters are not
    75   /// specified, then default values will be used.
    76   ///
    77   /// \tparam GR The digraph type the algorithm runs on.
    78   /// \tparam V The value type used for flow amounts, capacity bounds
    79   /// and supply values in the algorithm. By default it is \c int.
    80   /// \tparam C The value type used for costs and potentials in the
    81   /// algorithm. By default it is the same as \c V.
    82   ///
    83   /// \warning Both value types must be signed and all input data must
    84   /// be integer.
    85   /// \warning This algorithm does not support negative costs for such
    86   /// arcs that have infinite upper bound.
    87 #ifdef DOXYGEN
    88   template <typename GR, typename V, typename C, typename TR>
    89 #else
    90   template < typename GR, typename V = int, typename C = V,
    91              typename TR = CapacityScalingDefaultTraits<GR, V, C> >
    92 #endif
    93   class CapacityScaling
    94   {
    95   public:
    96 
    97     /// The type of the digraph
    98     typedef typename TR::Digraph Digraph;
    99     /// The type of the flow amounts, capacity bounds and supply values
   100     typedef typename TR::Value Value;
   101     /// The type of the arc costs
   102     typedef typename TR::Cost Cost;
   103 
   104     /// The type of the heap used for internal Dijkstra computations
   105     typedef typename TR::Heap Heap;
   106 
   107     /// The \ref CapacityScalingDefaultTraits "traits class" of the algorithm
   108     typedef TR Traits;
   109 
   110   public:
   111 
   112     /// \brief Problem type constants for the \c run() function.
   113     ///
   114     /// Enum type containing the problem type constants that can be
   115     /// returned by the \ref run() function of the algorithm.
   116     enum ProblemType {
   117       /// The problem has no feasible solution (flow).
   118       INFEASIBLE,
   119       /// The problem has optimal solution (i.e. it is feasible and
   120       /// bounded), and the algorithm has found optimal flow and node
   121       /// potentials (primal and dual solutions).
   122       OPTIMAL,
   123       /// The digraph contains an arc of negative cost and infinite
   124       /// upper bound. It means that the objective function is unbounded
   125       /// on that arc, however note that it could actually be bounded
   126       /// over the feasible flows, but this algroithm cannot handle
   127       /// these cases.
   128       UNBOUNDED
   129     };
   130   
   131   private:
   132 
   133     TEMPLATE_DIGRAPH_TYPEDEFS(GR);
   134 
   135     typedef std::vector<int> IntVector;
   136     typedef std::vector<char> BoolVector;
   137     typedef std::vector<Value> ValueVector;
   138     typedef std::vector<Cost> CostVector;
   139 
   140   private:
   141 
   142     // Data related to the underlying digraph
   143     const GR &_graph;
   144     int _node_num;
   145     int _arc_num;
   146     int _res_arc_num;
   147     int _root;
   148 
   149     // Parameters of the problem
   150     bool _have_lower;
   151     Value _sum_supply;
   152 
   153     // Data structures for storing the digraph
   154     IntNodeMap _node_id;
   155     IntArcMap _arc_idf;
   156     IntArcMap _arc_idb;
   157     IntVector _first_out;
   158     BoolVector _forward;
   159     IntVector _source;
   160     IntVector _target;
   161     IntVector _reverse;
   162 
   163     // Node and arc data
   164     ValueVector _lower;
   165     ValueVector _upper;
   166     CostVector _cost;
   167     ValueVector _supply;
   168 
   169     ValueVector _res_cap;
   170     CostVector _pi;
   171     ValueVector _excess;
   172     IntVector _excess_nodes;
   173     IntVector _deficit_nodes;
   174 
   175     Value _delta;
   176     int _factor;
   177     IntVector _pred;
   178 
   179   public:
   180   
   181     /// \brief Constant for infinite upper bounds (capacities).
   182     ///
   183     /// Constant for infinite upper bounds (capacities).
   184     /// It is \c std::numeric_limits<Value>::infinity() if available,
   185     /// \c std::numeric_limits<Value>::max() otherwise.
   186     const Value INF;
   187 
   188   private:
   189 
   190     // Special implementation of the Dijkstra algorithm for finding
   191     // shortest paths in the residual network of the digraph with
   192     // respect to the reduced arc costs and modifying the node
   193     // potentials according to the found distance labels.
   194     class ResidualDijkstra
   195     {
   196     private:
   197 
   198       int _node_num;
   199       bool _geq;
   200       const IntVector &_first_out;
   201       const IntVector &_target;
   202       const CostVector &_cost;
   203       const ValueVector &_res_cap;
   204       const ValueVector &_excess;
   205       CostVector &_pi;
   206       IntVector &_pred;
   207       
   208       IntVector _proc_nodes;
   209       CostVector _dist;
   210       
   211     public:
   212 
   213       ResidualDijkstra(CapacityScaling& cs) :
   214         _node_num(cs._node_num), _geq(cs._sum_supply < 0),
   215         _first_out(cs._first_out), _target(cs._target), _cost(cs._cost),
   216         _res_cap(cs._res_cap), _excess(cs._excess), _pi(cs._pi),
   217         _pred(cs._pred), _dist(cs._node_num)
   218       {}
   219 
   220       int run(int s, Value delta = 1) {
   221         RangeMap<int> heap_cross_ref(_node_num, Heap::PRE_HEAP);
   222         Heap heap(heap_cross_ref);
   223         heap.push(s, 0);
   224         _pred[s] = -1;
   225         _proc_nodes.clear();
   226 
   227         // Process nodes
   228         while (!heap.empty() && _excess[heap.top()] > -delta) {
   229           int u = heap.top(), v;
   230           Cost d = heap.prio() + _pi[u], dn;
   231           _dist[u] = heap.prio();
   232           _proc_nodes.push_back(u);
   233           heap.pop();
   234 
   235           // Traverse outgoing residual arcs
   236           int last_out = _geq ? _first_out[u+1] : _first_out[u+1] - 1;
   237           for (int a = _first_out[u]; a != last_out; ++a) {
   238             if (_res_cap[a] < delta) continue;
   239             v = _target[a];
   240             switch (heap.state(v)) {
   241               case Heap::PRE_HEAP:
   242                 heap.push(v, d + _cost[a] - _pi[v]);
   243                 _pred[v] = a;
   244                 break;
   245               case Heap::IN_HEAP:
   246                 dn = d + _cost[a] - _pi[v];
   247                 if (dn < heap[v]) {
   248                   heap.decrease(v, dn);
   249                   _pred[v] = a;
   250                 }
   251                 break;
   252               case Heap::POST_HEAP:
   253                 break;
   254             }
   255           }
   256         }
   257         if (heap.empty()) return -1;
   258 
   259         // Update potentials of processed nodes
   260         int t = heap.top();
   261         Cost dt = heap.prio();
   262         for (int i = 0; i < int(_proc_nodes.size()); ++i) {
   263           _pi[_proc_nodes[i]] += _dist[_proc_nodes[i]] - dt;
   264         }
   265 
   266         return t;
   267       }
   268 
   269     }; //class ResidualDijkstra
   270 
   271   public:
   272 
   273     /// \name Named Template Parameters
   274     /// @{
   275 
   276     template <typename T>
   277     struct SetHeapTraits : public Traits {
   278       typedef T Heap;
   279     };
   280 
   281     /// \brief \ref named-templ-param "Named parameter" for setting
   282     /// \c Heap type.
   283     ///
   284     /// \ref named-templ-param "Named parameter" for setting \c Heap
   285     /// type, which is used for internal Dijkstra computations.
   286     /// It must conform to the \ref lemon::concepts::Heap "Heap" concept,
   287     /// its priority type must be \c Cost and its cross reference type
   288     /// must be \ref RangeMap "RangeMap<int>".
   289     template <typename T>
   290     struct SetHeap
   291       : public CapacityScaling<GR, V, C, SetHeapTraits<T> > {
   292       typedef  CapacityScaling<GR, V, C, SetHeapTraits<T> > Create;
   293     };
   294 
   295     /// @}
   296 
   297   public:
   298 
   299     /// \brief Constructor.
   300     ///
   301     /// The constructor of the class.
   302     ///
   303     /// \param graph The digraph the algorithm runs on.
   304     CapacityScaling(const GR& graph) :
   305       _graph(graph), _node_id(graph), _arc_idf(graph), _arc_idb(graph),
   306       INF(std::numeric_limits<Value>::has_infinity ?
   307           std::numeric_limits<Value>::infinity() :
   308           std::numeric_limits<Value>::max())
   309     {
   310       // Check the value types
   311       LEMON_ASSERT(std::numeric_limits<Value>::is_signed,
   312         "The flow type of CapacityScaling must be signed");
   313       LEMON_ASSERT(std::numeric_limits<Cost>::is_signed,
   314         "The cost type of CapacityScaling must be signed");
   315 
   316       // Resize vectors
   317       _node_num = countNodes(_graph);
   318       _arc_num = countArcs(_graph);
   319       _res_arc_num = 2 * (_arc_num + _node_num);
   320       _root = _node_num;
   321       ++_node_num;
   322 
   323       _first_out.resize(_node_num + 1);
   324       _forward.resize(_res_arc_num);
   325       _source.resize(_res_arc_num);
   326       _target.resize(_res_arc_num);
   327       _reverse.resize(_res_arc_num);
   328 
   329       _lower.resize(_res_arc_num);
   330       _upper.resize(_res_arc_num);
   331       _cost.resize(_res_arc_num);
   332       _supply.resize(_node_num);
   333       
   334       _res_cap.resize(_res_arc_num);
   335       _pi.resize(_node_num);
   336       _excess.resize(_node_num);
   337       _pred.resize(_node_num);
   338 
   339       // Copy the graph
   340       int i = 0, j = 0, k = 2 * _arc_num + _node_num - 1;
   341       for (NodeIt n(_graph); n != INVALID; ++n, ++i) {
   342         _node_id[n] = i;
   343       }
   344       i = 0;
   345       for (NodeIt n(_graph); n != INVALID; ++n, ++i) {
   346         _first_out[i] = j;
   347         for (OutArcIt a(_graph, n); a != INVALID; ++a, ++j) {
   348           _arc_idf[a] = j;
   349           _forward[j] = true;
   350           _source[j] = i;
   351           _target[j] = _node_id[_graph.runningNode(a)];
   352         }
   353         for (InArcIt a(_graph, n); a != INVALID; ++a, ++j) {
   354           _arc_idb[a] = j;
   355           _forward[j] = false;
   356           _source[j] = i;
   357           _target[j] = _node_id[_graph.runningNode(a)];
   358         }
   359         _forward[j] = false;
   360         _source[j] = i;
   361         _target[j] = _root;
   362         _reverse[j] = k;
   363         _forward[k] = true;
   364         _source[k] = _root;
   365         _target[k] = i;
   366         _reverse[k] = j;
   367         ++j; ++k;
   368       }
   369       _first_out[i] = j;
   370       _first_out[_node_num] = k;
   371       for (ArcIt a(_graph); a != INVALID; ++a) {
   372         int fi = _arc_idf[a];
   373         int bi = _arc_idb[a];
   374         _reverse[fi] = bi;
   375         _reverse[bi] = fi;
   376       }
   377       
   378       // Reset parameters
   379       reset();
   380     }
   381 
   382     /// \name Parameters
   383     /// The parameters of the algorithm can be specified using these
   384     /// functions.
   385 
   386     /// @{
   387 
   388     /// \brief Set the lower bounds on the arcs.
   389     ///
   390     /// This function sets the lower bounds on the arcs.
   391     /// If it is not used before calling \ref run(), the lower bounds
   392     /// will be set to zero on all arcs.
   393     ///
   394     /// \param map An arc map storing the lower bounds.
   395     /// Its \c Value type must be convertible to the \c Value type
   396     /// of the algorithm.
   397     ///
   398     /// \return <tt>(*this)</tt>
   399     template <typename LowerMap>
   400     CapacityScaling& lowerMap(const LowerMap& map) {
   401       _have_lower = true;
   402       for (ArcIt a(_graph); a != INVALID; ++a) {
   403         _lower[_arc_idf[a]] = map[a];
   404         _lower[_arc_idb[a]] = map[a];
   405       }
   406       return *this;
   407     }
   408 
   409     /// \brief Set the upper bounds (capacities) on the arcs.
   410     ///
   411     /// This function sets the upper bounds (capacities) on the arcs.
   412     /// If it is not used before calling \ref run(), the upper bounds
   413     /// will be set to \ref INF on all arcs (i.e. the flow value will be
   414     /// unbounded from above on each arc).
   415     ///
   416     /// \param map An arc map storing the upper bounds.
   417     /// Its \c Value type must be convertible to the \c Value type
   418     /// of the algorithm.
   419     ///
   420     /// \return <tt>(*this)</tt>
   421     template<typename UpperMap>
   422     CapacityScaling& upperMap(const UpperMap& map) {
   423       for (ArcIt a(_graph); a != INVALID; ++a) {
   424         _upper[_arc_idf[a]] = map[a];
   425       }
   426       return *this;
   427     }
   428 
   429     /// \brief Set the costs of the arcs.
   430     ///
   431     /// This function sets the costs of the arcs.
   432     /// If it is not used before calling \ref run(), the costs
   433     /// will be set to \c 1 on all arcs.
   434     ///
   435     /// \param map An arc map storing the costs.
   436     /// Its \c Value type must be convertible to the \c Cost type
   437     /// of the algorithm.
   438     ///
   439     /// \return <tt>(*this)</tt>
   440     template<typename CostMap>
   441     CapacityScaling& costMap(const CostMap& map) {
   442       for (ArcIt a(_graph); a != INVALID; ++a) {
   443         _cost[_arc_idf[a]] =  map[a];
   444         _cost[_arc_idb[a]] = -map[a];
   445       }
   446       return *this;
   447     }
   448 
   449     /// \brief Set the supply values of the nodes.
   450     ///
   451     /// This function sets the supply values of the nodes.
   452     /// If neither this function nor \ref stSupply() is used before
   453     /// calling \ref run(), the supply of each node will be set to zero.
   454     ///
   455     /// \param map A node map storing the supply values.
   456     /// Its \c Value type must be convertible to the \c Value type
   457     /// of the algorithm.
   458     ///
   459     /// \return <tt>(*this)</tt>
   460     template<typename SupplyMap>
   461     CapacityScaling& supplyMap(const SupplyMap& map) {
   462       for (NodeIt n(_graph); n != INVALID; ++n) {
   463         _supply[_node_id[n]] = map[n];
   464       }
   465       return *this;
   466     }
   467 
   468     /// \brief Set single source and target nodes and a supply value.
   469     ///
   470     /// This function sets a single source node and a single target node
   471     /// and the required flow value.
   472     /// If neither this function nor \ref supplyMap() is used before
   473     /// calling \ref run(), the supply of each node will be set to zero.
   474     ///
   475     /// Using this function has the same effect as using \ref supplyMap()
   476     /// with such a map in which \c k is assigned to \c s, \c -k is
   477     /// assigned to \c t and all other nodes have zero supply value.
   478     ///
   479     /// \param s The source node.
   480     /// \param t The target node.
   481     /// \param k The required amount of flow from node \c s to node \c t
   482     /// (i.e. the supply of \c s and the demand of \c t).
   483     ///
   484     /// \return <tt>(*this)</tt>
   485     CapacityScaling& stSupply(const Node& s, const Node& t, Value k) {
   486       for (int i = 0; i != _node_num; ++i) {
   487         _supply[i] = 0;
   488       }
   489       _supply[_node_id[s]] =  k;
   490       _supply[_node_id[t]] = -k;
   491       return *this;
   492     }
   493     
   494     /// @}
   495 
   496     /// \name Execution control
   497     /// The algorithm can be executed using \ref run().
   498 
   499     /// @{
   500 
   501     /// \brief Run the algorithm.
   502     ///
   503     /// This function runs the algorithm.
   504     /// The paramters can be specified using functions \ref lowerMap(),
   505     /// \ref upperMap(), \ref costMap(), \ref supplyMap(), \ref stSupply().
   506     /// For example,
   507     /// \code
   508     ///   CapacityScaling<ListDigraph> cs(graph);
   509     ///   cs.lowerMap(lower).upperMap(upper).costMap(cost)
   510     ///     .supplyMap(sup).run();
   511     /// \endcode
   512     ///
   513     /// This function can be called more than once. All the parameters
   514     /// that have been given are kept for the next call, unless
   515     /// \ref reset() is called, thus only the modified parameters
   516     /// have to be set again. See \ref reset() for examples.
   517     /// However the underlying digraph must not be modified after this
   518     /// class have been constructed, since it copies and extends the graph.
   519     ///
   520     /// \param factor The capacity scaling factor. It must be larger than
   521     /// one to use scaling. If it is less or equal to one, then scaling
   522     /// will be disabled.
   523     ///
   524     /// \return \c INFEASIBLE if no feasible flow exists,
   525     /// \n \c OPTIMAL if the problem has optimal solution
   526     /// (i.e. it is feasible and bounded), and the algorithm has found
   527     /// optimal flow and node potentials (primal and dual solutions),
   528     /// \n \c UNBOUNDED if the digraph contains an arc of negative cost
   529     /// and infinite upper bound. It means that the objective function
   530     /// is unbounded on that arc, however note that it could actually be
   531     /// bounded over the feasible flows, but this algroithm cannot handle
   532     /// these cases.
   533     ///
   534     /// \see ProblemType
   535     ProblemType run(int factor = 4) {
   536       _factor = factor;
   537       ProblemType pt = init();
   538       if (pt != OPTIMAL) return pt;
   539       return start();
   540     }
   541 
   542     /// \brief Reset all the parameters that have been given before.
   543     ///
   544     /// This function resets all the paramaters that have been given
   545     /// before using functions \ref lowerMap(), \ref upperMap(),
   546     /// \ref costMap(), \ref supplyMap(), \ref stSupply().
   547     ///
   548     /// It is useful for multiple run() calls. If this function is not
   549     /// used, all the parameters given before are kept for the next
   550     /// \ref run() call.
   551     /// However, the underlying digraph must not be modified after this
   552     /// class have been constructed, since it copies and extends the graph.
   553     ///
   554     /// For example,
   555     /// \code
   556     ///   CapacityScaling<ListDigraph> cs(graph);
   557     ///
   558     ///   // First run
   559     ///   cs.lowerMap(lower).upperMap(upper).costMap(cost)
   560     ///     .supplyMap(sup).run();
   561     ///
   562     ///   // Run again with modified cost map (reset() is not called,
   563     ///   // so only the cost map have to be set again)
   564     ///   cost[e] += 100;
   565     ///   cs.costMap(cost).run();
   566     ///
   567     ///   // Run again from scratch using reset()
   568     ///   // (the lower bounds will be set to zero on all arcs)
   569     ///   cs.reset();
   570     ///   cs.upperMap(capacity).costMap(cost)
   571     ///     .supplyMap(sup).run();
   572     /// \endcode
   573     ///
   574     /// \return <tt>(*this)</tt>
   575     CapacityScaling& reset() {
   576       for (int i = 0; i != _node_num; ++i) {
   577         _supply[i] = 0;
   578       }
   579       for (int j = 0; j != _res_arc_num; ++j) {
   580         _lower[j] = 0;
   581         _upper[j] = INF;
   582         _cost[j] = _forward[j] ? 1 : -1;
   583       }
   584       _have_lower = false;
   585       return *this;
   586     }
   587 
   588     /// @}
   589 
   590     /// \name Query Functions
   591     /// The results of the algorithm can be obtained using these
   592     /// functions.\n
   593     /// The \ref run() function must be called before using them.
   594 
   595     /// @{
   596 
   597     /// \brief Return the total cost of the found flow.
   598     ///
   599     /// This function returns the total cost of the found flow.
   600     /// Its complexity is O(e).
   601     ///
   602     /// \note The return type of the function can be specified as a
   603     /// template parameter. For example,
   604     /// \code
   605     ///   cs.totalCost<double>();
   606     /// \endcode
   607     /// It is useful if the total cost cannot be stored in the \c Cost
   608     /// type of the algorithm, which is the default return type of the
   609     /// function.
   610     ///
   611     /// \pre \ref run() must be called before using this function.
   612     template <typename Number>
   613     Number totalCost() const {
   614       Number c = 0;
   615       for (ArcIt a(_graph); a != INVALID; ++a) {
   616         int i = _arc_idb[a];
   617         c += static_cast<Number>(_res_cap[i]) *
   618              (-static_cast<Number>(_cost[i]));
   619       }
   620       return c;
   621     }
   622 
   623 #ifndef DOXYGEN
   624     Cost totalCost() const {
   625       return totalCost<Cost>();
   626     }
   627 #endif
   628 
   629     /// \brief Return the flow on the given arc.
   630     ///
   631     /// This function returns the flow on the given arc.
   632     ///
   633     /// \pre \ref run() must be called before using this function.
   634     Value flow(const Arc& a) const {
   635       return _res_cap[_arc_idb[a]];
   636     }
   637 
   638     /// \brief Return the flow map (the primal solution).
   639     ///
   640     /// This function copies the flow value on each arc into the given
   641     /// map. The \c Value type of the algorithm must be convertible to
   642     /// the \c Value type of the map.
   643     ///
   644     /// \pre \ref run() must be called before using this function.
   645     template <typename FlowMap>
   646     void flowMap(FlowMap &map) const {
   647       for (ArcIt a(_graph); a != INVALID; ++a) {
   648         map.set(a, _res_cap[_arc_idb[a]]);
   649       }
   650     }
   651 
   652     /// \brief Return the potential (dual value) of the given node.
   653     ///
   654     /// This function returns the potential (dual value) of the
   655     /// given node.
   656     ///
   657     /// \pre \ref run() must be called before using this function.
   658     Cost potential(const Node& n) const {
   659       return _pi[_node_id[n]];
   660     }
   661 
   662     /// \brief Return the potential map (the dual solution).
   663     ///
   664     /// This function copies the potential (dual value) of each node
   665     /// into the given map.
   666     /// The \c Cost type of the algorithm must be convertible to the
   667     /// \c Value type of the map.
   668     ///
   669     /// \pre \ref run() must be called before using this function.
   670     template <typename PotentialMap>
   671     void potentialMap(PotentialMap &map) const {
   672       for (NodeIt n(_graph); n != INVALID; ++n) {
   673         map.set(n, _pi[_node_id[n]]);
   674       }
   675     }
   676 
   677     /// @}
   678 
   679   private:
   680 
   681     // Initialize the algorithm
   682     ProblemType init() {
   683       if (_node_num == 0) return INFEASIBLE;
   684 
   685       // Check the sum of supply values
   686       _sum_supply = 0;
   687       for (int i = 0; i != _root; ++i) {
   688         _sum_supply += _supply[i];
   689       }
   690       if (_sum_supply > 0) return INFEASIBLE;
   691       
   692       // Initialize vectors
   693       for (int i = 0; i != _root; ++i) {
   694         _pi[i] = 0;
   695         _excess[i] = _supply[i];
   696       }
   697 
   698       // Remove non-zero lower bounds
   699       const Value MAX = std::numeric_limits<Value>::max();
   700       int last_out;
   701       if (_have_lower) {
   702         for (int i = 0; i != _root; ++i) {
   703           last_out = _first_out[i+1];
   704           for (int j = _first_out[i]; j != last_out; ++j) {
   705             if (_forward[j]) {
   706               Value c = _lower[j];
   707               if (c >= 0) {
   708                 _res_cap[j] = _upper[j] < MAX ? _upper[j] - c : INF;
   709               } else {
   710                 _res_cap[j] = _upper[j] < MAX + c ? _upper[j] - c : INF;
   711               }
   712               _excess[i] -= c;
   713               _excess[_target[j]] += c;
   714             } else {
   715               _res_cap[j] = 0;
   716             }
   717           }
   718         }
   719       } else {
   720         for (int j = 0; j != _res_arc_num; ++j) {
   721           _res_cap[j] = _forward[j] ? _upper[j] : 0;
   722         }
   723       }
   724 
   725       // Handle negative costs
   726       for (int i = 0; i != _root; ++i) {
   727         last_out = _first_out[i+1] - 1;
   728         for (int j = _first_out[i]; j != last_out; ++j) {
   729           Value rc = _res_cap[j];
   730           if (_cost[j] < 0 && rc > 0) {
   731             if (rc >= MAX) return UNBOUNDED;
   732             _excess[i] -= rc;
   733             _excess[_target[j]] += rc;
   734             _res_cap[j] = 0;
   735             _res_cap[_reverse[j]] += rc;
   736           }
   737         }
   738       }
   739       
   740       // Handle GEQ supply type
   741       if (_sum_supply < 0) {
   742         _pi[_root] = 0;
   743         _excess[_root] = -_sum_supply;
   744         for (int a = _first_out[_root]; a != _res_arc_num; ++a) {
   745           int ra = _reverse[a];
   746           _res_cap[a] = -_sum_supply + 1;
   747           _res_cap[ra] = 0;
   748           _cost[a] = 0;
   749           _cost[ra] = 0;
   750         }
   751       } else {
   752         _pi[_root] = 0;
   753         _excess[_root] = 0;
   754         for (int a = _first_out[_root]; a != _res_arc_num; ++a) {
   755           int ra = _reverse[a];
   756           _res_cap[a] = 1;
   757           _res_cap[ra] = 0;
   758           _cost[a] = 0;
   759           _cost[ra] = 0;
   760         }
   761       }
   762 
   763       // Initialize delta value
   764       if (_factor > 1) {
   765         // With scaling
   766         Value max_sup = 0, max_dem = 0;
   767         for (int i = 0; i != _node_num; ++i) {
   768           Value ex = _excess[i];
   769           if ( ex > max_sup) max_sup =  ex;
   770           if (-ex > max_dem) max_dem = -ex;
   771         }
   772         Value max_cap = 0;
   773         for (int j = 0; j != _res_arc_num; ++j) {
   774           if (_res_cap[j] > max_cap) max_cap = _res_cap[j];
   775         }
   776         max_sup = std::min(std::min(max_sup, max_dem), max_cap);
   777         for (_delta = 1; 2 * _delta <= max_sup; _delta *= 2) ;
   778       } else {
   779         // Without scaling
   780         _delta = 1;
   781       }
   782 
   783       return OPTIMAL;
   784     }
   785 
   786     ProblemType start() {
   787       // Execute the algorithm
   788       ProblemType pt;
   789       if (_delta > 1)
   790         pt = startWithScaling();
   791       else
   792         pt = startWithoutScaling();
   793 
   794       // Handle non-zero lower bounds
   795       if (_have_lower) {
   796         int limit = _first_out[_root];
   797         for (int j = 0; j != limit; ++j) {
   798           if (!_forward[j]) _res_cap[j] += _lower[j];
   799         }
   800       }
   801 
   802       // Shift potentials if necessary
   803       Cost pr = _pi[_root];
   804       if (_sum_supply < 0 || pr > 0) {
   805         for (int i = 0; i != _node_num; ++i) {
   806           _pi[i] -= pr;
   807         }        
   808       }
   809       
   810       return pt;
   811     }
   812 
   813     // Execute the capacity scaling algorithm
   814     ProblemType startWithScaling() {
   815       // Perform capacity scaling phases
   816       int s, t;
   817       ResidualDijkstra _dijkstra(*this);
   818       while (true) {
   819         // Saturate all arcs not satisfying the optimality condition
   820         int last_out;
   821         for (int u = 0; u != _node_num; ++u) {
   822           last_out = _sum_supply < 0 ?
   823             _first_out[u+1] : _first_out[u+1] - 1;
   824           for (int a = _first_out[u]; a != last_out; ++a) {
   825             int v = _target[a];
   826             Cost c = _cost[a] + _pi[u] - _pi[v];
   827             Value rc = _res_cap[a];
   828             if (c < 0 && rc >= _delta) {
   829               _excess[u] -= rc;
   830               _excess[v] += rc;
   831               _res_cap[a] = 0;
   832               _res_cap[_reverse[a]] += rc;
   833             }
   834           }
   835         }
   836 
   837         // Find excess nodes and deficit nodes
   838         _excess_nodes.clear();
   839         _deficit_nodes.clear();
   840         for (int u = 0; u != _node_num; ++u) {
   841           Value ex = _excess[u];
   842           if (ex >=  _delta) _excess_nodes.push_back(u);
   843           if (ex <= -_delta) _deficit_nodes.push_back(u);
   844         }
   845         int next_node = 0, next_def_node = 0;
   846 
   847         // Find augmenting shortest paths
   848         while (next_node < int(_excess_nodes.size())) {
   849           // Check deficit nodes
   850           if (_delta > 1) {
   851             bool delta_deficit = false;
   852             for ( ; next_def_node < int(_deficit_nodes.size());
   853                     ++next_def_node ) {
   854               if (_excess[_deficit_nodes[next_def_node]] <= -_delta) {
   855                 delta_deficit = true;
   856                 break;
   857               }
   858             }
   859             if (!delta_deficit) break;
   860           }
   861 
   862           // Run Dijkstra in the residual network
   863           s = _excess_nodes[next_node];
   864           if ((t = _dijkstra.run(s, _delta)) == -1) {
   865             if (_delta > 1) {
   866               ++next_node;
   867               continue;
   868             }
   869             return INFEASIBLE;
   870           }
   871 
   872           // Augment along a shortest path from s to t
   873           Value d = std::min(_excess[s], -_excess[t]);
   874           int u = t;
   875           int a;
   876           if (d > _delta) {
   877             while ((a = _pred[u]) != -1) {
   878               if (_res_cap[a] < d) d = _res_cap[a];
   879               u = _source[a];
   880             }
   881           }
   882           u = t;
   883           while ((a = _pred[u]) != -1) {
   884             _res_cap[a] -= d;
   885             _res_cap[_reverse[a]] += d;
   886             u = _source[a];
   887           }
   888           _excess[s] -= d;
   889           _excess[t] += d;
   890 
   891           if (_excess[s] < _delta) ++next_node;
   892         }
   893 
   894         if (_delta == 1) break;
   895         _delta = _delta <= _factor ? 1 : _delta / _factor;
   896       }
   897 
   898       return OPTIMAL;
   899     }
   900 
   901     // Execute the successive shortest path algorithm
   902     ProblemType startWithoutScaling() {
   903       // Find excess nodes
   904       _excess_nodes.clear();
   905       for (int i = 0; i != _node_num; ++i) {
   906         if (_excess[i] > 0) _excess_nodes.push_back(i);
   907       }
   908       if (_excess_nodes.size() == 0) return OPTIMAL;
   909       int next_node = 0;
   910 
   911       // Find shortest paths
   912       int s, t;
   913       ResidualDijkstra _dijkstra(*this);
   914       while ( _excess[_excess_nodes[next_node]] > 0 ||
   915               ++next_node < int(_excess_nodes.size()) )
   916       {
   917         // Run Dijkstra in the residual network
   918         s = _excess_nodes[next_node];
   919         if ((t = _dijkstra.run(s)) == -1) return INFEASIBLE;
   920 
   921         // Augment along a shortest path from s to t
   922         Value d = std::min(_excess[s], -_excess[t]);
   923         int u = t;
   924         int a;
   925         if (d > 1) {
   926           while ((a = _pred[u]) != -1) {
   927             if (_res_cap[a] < d) d = _res_cap[a];
   928             u = _source[a];
   929           }
   930         }
   931         u = t;
   932         while ((a = _pred[u]) != -1) {
   933           _res_cap[a] -= d;
   934           _res_cap[_reverse[a]] += d;
   935           u = _source[a];
   936         }
   937         _excess[s] -= d;
   938         _excess[t] += d;
   939       }
   940 
   941       return OPTIMAL;
   942     }
   943 
   944   }; //class CapacityScaling
   945 
   946   ///@}
   947 
   948 } //namespace lemon
   949 
   950 #endif //LEMON_CAPACITY_SCALING_H