kpeter@648: /* -*- mode: C++; indent-tabs-mode: nil; -*- kpeter@648: * kpeter@648: * This file is a part of LEMON, a generic C++ optimization library. kpeter@648: * kpeter@648: * Copyright (C) 2003-2009 kpeter@648: * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport kpeter@648: * (Egervary Research Group on Combinatorial Optimization, EGRES). kpeter@648: * kpeter@648: * Permission to use, modify and distribute this software is granted kpeter@648: * provided that this copyright notice appears in all copies. For kpeter@648: * precise terms see the accompanying LICENSE file. kpeter@648: * kpeter@648: * This software is provided "AS IS" with no warranty of any kind, kpeter@648: * express or implied, and with no claim as to its suitability for any kpeter@648: * purpose. kpeter@648: * kpeter@648: */ kpeter@648: kpeter@648: #ifndef LEMON_NETWORK_SIMPLEX_H kpeter@648: #define LEMON_NETWORK_SIMPLEX_H kpeter@648: kpeter@648: /// \ingroup min_cost_flow kpeter@648: /// kpeter@648: /// \file kpeter@648: /// \brief Network simplex algorithm for finding a minimum cost flow. kpeter@648: kpeter@648: #include kpeter@648: #include kpeter@648: #include kpeter@648: kpeter@650: #include kpeter@648: #include kpeter@648: kpeter@648: namespace lemon { kpeter@648: kpeter@648: /// \addtogroup min_cost_flow kpeter@648: /// @{ kpeter@648: kpeter@648: /// \brief Implementation of the primal network simplex algorithm kpeter@648: /// for finding a \ref min_cost_flow "minimum cost flow". kpeter@648: /// kpeter@648: /// \ref NetworkSimplex implements the primal network simplex algorithm kpeter@648: /// for finding a \ref min_cost_flow "minimum cost flow". kpeter@648: /// kpeter@648: /// \tparam Digraph The digraph type the algorithm runs on. kpeter@648: /// \tparam LowerMap The type of the lower bound map. kpeter@648: /// \tparam CapacityMap The type of the capacity (upper bound) map. kpeter@648: /// \tparam CostMap The type of the cost (length) map. kpeter@648: /// \tparam SupplyMap The type of the supply map. kpeter@648: /// kpeter@648: /// \warning kpeter@648: /// - Arc capacities and costs should be \e non-negative \e integers. kpeter@648: /// - Supply values should be \e signed \e integers. kpeter@648: /// - The value types of the maps should be convertible to each other. kpeter@648: /// - \c CostMap::Value must be signed type. kpeter@648: /// kpeter@648: /// \note \ref NetworkSimplex provides five different pivot rule kpeter@648: /// implementations that significantly affect the efficiency of the kpeter@648: /// algorithm. kpeter@648: /// By default "Block Search" pivot rule is used, which proved to be kpeter@648: /// by far the most efficient according to our benchmark tests. kpeter@648: /// However another pivot rule can be selected using \ref run() kpeter@648: /// function with the proper parameter. kpeter@648: #ifdef DOXYGEN kpeter@648: template < typename Digraph, kpeter@648: typename LowerMap, kpeter@648: typename CapacityMap, kpeter@648: typename CostMap, kpeter@648: typename SupplyMap > kpeter@648: kpeter@648: #else kpeter@648: template < typename Digraph, kpeter@648: typename LowerMap = typename Digraph::template ArcMap, kpeter@648: typename CapacityMap = typename Digraph::template ArcMap, kpeter@648: typename CostMap = typename Digraph::template ArcMap, kpeter@648: typename SupplyMap = typename Digraph::template NodeMap > kpeter@648: #endif kpeter@648: class NetworkSimplex kpeter@648: { kpeter@648: TEMPLATE_DIGRAPH_TYPEDEFS(Digraph); kpeter@648: kpeter@648: typedef typename CapacityMap::Value Capacity; kpeter@648: typedef typename CostMap::Value Cost; kpeter@648: typedef typename SupplyMap::Value Supply; kpeter@648: kpeter@648: typedef std::vector ArcVector; kpeter@648: typedef std::vector NodeVector; kpeter@648: typedef std::vector IntVector; kpeter@648: typedef std::vector BoolVector; kpeter@648: typedef std::vector CapacityVector; kpeter@648: typedef std::vector CostVector; kpeter@648: typedef std::vector SupplyVector; kpeter@648: kpeter@648: public: kpeter@648: kpeter@648: /// The type of the flow map kpeter@648: typedef typename Digraph::template ArcMap FlowMap; kpeter@648: /// The type of the potential map kpeter@648: typedef typename Digraph::template NodeMap PotentialMap; kpeter@648: kpeter@648: public: kpeter@648: kpeter@648: /// Enum type for selecting the pivot rule used by \ref run() kpeter@648: enum PivotRuleEnum { kpeter@648: FIRST_ELIGIBLE_PIVOT, kpeter@648: BEST_ELIGIBLE_PIVOT, kpeter@648: BLOCK_SEARCH_PIVOT, kpeter@648: CANDIDATE_LIST_PIVOT, kpeter@648: ALTERING_LIST_PIVOT kpeter@648: }; kpeter@648: kpeter@648: private: kpeter@648: kpeter@648: // State constants for arcs kpeter@648: enum ArcStateEnum { kpeter@648: STATE_UPPER = -1, kpeter@648: STATE_TREE = 0, kpeter@648: STATE_LOWER = 1 kpeter@648: }; kpeter@648: kpeter@648: private: kpeter@648: kpeter@648: // References for the original data kpeter@650: const Digraph &_graph; kpeter@648: const LowerMap *_orig_lower; kpeter@648: const CapacityMap &_orig_cap; kpeter@648: const CostMap &_orig_cost; kpeter@648: const SupplyMap *_orig_supply; kpeter@648: Node _orig_source; kpeter@648: Node _orig_target; kpeter@648: Capacity _orig_flow_value; kpeter@648: kpeter@648: // Result maps kpeter@650: FlowMap *_flow_map; kpeter@650: PotentialMap *_potential_map; kpeter@648: bool _local_flow; kpeter@648: bool _local_potential; kpeter@648: kpeter@648: // The number of nodes and arcs in the original graph kpeter@648: int _node_num; kpeter@648: int _arc_num; kpeter@648: kpeter@650: // Data structures for storing the graph kpeter@650: IntNodeMap _node_id; kpeter@650: ArcVector _arc_ref; kpeter@650: IntVector _source; kpeter@650: IntVector _target; kpeter@650: kpeter@648: // Node and arc maps kpeter@648: CapacityVector _cap; kpeter@648: CostVector _cost; kpeter@648: CostVector _supply; kpeter@648: CapacityVector _flow; kpeter@648: CostVector _pi; kpeter@648: kpeter@650: // Data for storing the spanning tree structure kpeter@648: IntVector _parent; kpeter@648: IntVector _pred; kpeter@648: IntVector _thread; kpeter@651: IntVector _rev_thread; kpeter@651: IntVector _succ_num; kpeter@651: IntVector _last_succ; kpeter@651: IntVector _dirty_revs; kpeter@648: BoolVector _forward; kpeter@648: IntVector _state; kpeter@648: int _root; kpeter@648: kpeter@648: // Temporary data used in the current pivot iteration kpeter@650: int in_arc, join, u_in, v_in, u_out, v_out; kpeter@650: int first, second, right, last; kpeter@648: int stem, par_stem, new_stem; kpeter@648: Capacity delta; kpeter@648: kpeter@648: private: kpeter@648: kpeter@648: /// \brief Implementation of the "First Eligible" pivot rule for the kpeter@648: /// \ref NetworkSimplex "network simplex" algorithm. kpeter@648: /// kpeter@648: /// This class implements the "First Eligible" pivot rule kpeter@648: /// for the \ref NetworkSimplex "network simplex" algorithm. kpeter@648: /// kpeter@648: /// For more information see \ref NetworkSimplex::run(). kpeter@648: class FirstEligiblePivotRule kpeter@648: { kpeter@648: private: kpeter@648: kpeter@648: // References to the NetworkSimplex class kpeter@648: const IntVector &_source; kpeter@648: const IntVector &_target; kpeter@648: const CostVector &_cost; kpeter@648: const IntVector &_state; kpeter@648: const CostVector &_pi; kpeter@648: int &_in_arc; kpeter@648: int _arc_num; kpeter@648: kpeter@648: // Pivot rule data kpeter@648: int _next_arc; kpeter@648: kpeter@648: public: kpeter@648: kpeter@648: /// Constructor kpeter@648: FirstEligiblePivotRule(NetworkSimplex &ns) : kpeter@650: _source(ns._source), _target(ns._target), kpeter@648: _cost(ns._cost), _state(ns._state), _pi(ns._pi), kpeter@650: _in_arc(ns.in_arc), _arc_num(ns._arc_num), _next_arc(0) kpeter@648: {} kpeter@648: kpeter@648: /// Find next entering arc kpeter@648: bool findEnteringArc() { kpeter@648: Cost c; kpeter@648: for (int e = _next_arc; e < _arc_num; ++e) { kpeter@648: c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]); kpeter@648: if (c < 0) { kpeter@648: _in_arc = e; kpeter@648: _next_arc = e + 1; kpeter@648: return true; kpeter@648: } kpeter@648: } kpeter@648: for (int e = 0; e < _next_arc; ++e) { kpeter@648: c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]); kpeter@648: if (c < 0) { kpeter@648: _in_arc = e; kpeter@648: _next_arc = e + 1; kpeter@648: return true; kpeter@648: } kpeter@648: } kpeter@648: return false; kpeter@648: } kpeter@648: kpeter@648: }; //class FirstEligiblePivotRule kpeter@648: kpeter@648: kpeter@648: /// \brief Implementation of the "Best Eligible" pivot rule for the kpeter@648: /// \ref NetworkSimplex "network simplex" algorithm. kpeter@648: /// kpeter@648: /// This class implements the "Best Eligible" pivot rule kpeter@648: /// for the \ref NetworkSimplex "network simplex" algorithm. kpeter@648: /// kpeter@648: /// For more information see \ref NetworkSimplex::run(). kpeter@648: class BestEligiblePivotRule kpeter@648: { kpeter@648: private: kpeter@648: kpeter@648: // References to the NetworkSimplex class kpeter@648: const IntVector &_source; kpeter@648: const IntVector &_target; kpeter@648: const CostVector &_cost; kpeter@648: const IntVector &_state; kpeter@648: const CostVector &_pi; kpeter@648: int &_in_arc; kpeter@648: int _arc_num; kpeter@648: kpeter@648: public: kpeter@648: kpeter@648: /// Constructor kpeter@648: BestEligiblePivotRule(NetworkSimplex &ns) : kpeter@650: _source(ns._source), _target(ns._target), kpeter@648: _cost(ns._cost), _state(ns._state), _pi(ns._pi), kpeter@650: _in_arc(ns.in_arc), _arc_num(ns._arc_num) kpeter@648: {} kpeter@648: kpeter@648: /// Find next entering arc kpeter@648: bool findEnteringArc() { kpeter@648: Cost c, min = 0; kpeter@648: for (int e = 0; e < _arc_num; ++e) { kpeter@648: c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]); kpeter@648: if (c < min) { kpeter@648: min = c; kpeter@648: _in_arc = e; kpeter@648: } kpeter@648: } kpeter@648: return min < 0; kpeter@648: } kpeter@648: kpeter@648: }; //class BestEligiblePivotRule kpeter@648: kpeter@648: kpeter@648: /// \brief Implementation of the "Block Search" pivot rule for the kpeter@648: /// \ref NetworkSimplex "network simplex" algorithm. kpeter@648: /// kpeter@648: /// This class implements the "Block Search" pivot rule kpeter@648: /// for the \ref NetworkSimplex "network simplex" algorithm. kpeter@648: /// kpeter@648: /// For more information see \ref NetworkSimplex::run(). kpeter@648: class BlockSearchPivotRule kpeter@648: { kpeter@648: private: kpeter@648: kpeter@648: // References to the NetworkSimplex class kpeter@648: const IntVector &_source; kpeter@648: const IntVector &_target; kpeter@648: const CostVector &_cost; kpeter@648: const IntVector &_state; kpeter@648: const CostVector &_pi; kpeter@648: int &_in_arc; kpeter@648: int _arc_num; kpeter@648: kpeter@648: // Pivot rule data kpeter@648: int _block_size; kpeter@648: int _next_arc; kpeter@648: kpeter@648: public: kpeter@648: kpeter@648: /// Constructor kpeter@648: BlockSearchPivotRule(NetworkSimplex &ns) : kpeter@650: _source(ns._source), _target(ns._target), kpeter@648: _cost(ns._cost), _state(ns._state), _pi(ns._pi), kpeter@650: _in_arc(ns.in_arc), _arc_num(ns._arc_num), _next_arc(0) kpeter@648: { kpeter@648: // The main parameters of the pivot rule kpeter@648: const double BLOCK_SIZE_FACTOR = 2.0; kpeter@648: const int MIN_BLOCK_SIZE = 10; kpeter@648: kpeter@648: _block_size = std::max( int(BLOCK_SIZE_FACTOR * sqrt(_arc_num)), kpeter@648: MIN_BLOCK_SIZE ); kpeter@648: } kpeter@648: kpeter@648: /// Find next entering arc kpeter@648: bool findEnteringArc() { kpeter@648: Cost c, min = 0; kpeter@648: int cnt = _block_size; kpeter@648: int e, min_arc = _next_arc; kpeter@648: for (e = _next_arc; e < _arc_num; ++e) { kpeter@648: c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]); kpeter@648: if (c < min) { kpeter@648: min = c; kpeter@648: min_arc = e; kpeter@648: } kpeter@648: if (--cnt == 0) { kpeter@648: if (min < 0) break; kpeter@648: cnt = _block_size; kpeter@648: } kpeter@648: } kpeter@648: if (min == 0 || cnt > 0) { kpeter@648: for (e = 0; e < _next_arc; ++e) { kpeter@648: c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]); kpeter@648: if (c < min) { kpeter@648: min = c; kpeter@648: min_arc = e; kpeter@648: } kpeter@648: if (--cnt == 0) { kpeter@648: if (min < 0) break; kpeter@648: cnt = _block_size; kpeter@648: } kpeter@648: } kpeter@648: } kpeter@648: if (min >= 0) return false; kpeter@648: _in_arc = min_arc; kpeter@648: _next_arc = e; kpeter@648: return true; kpeter@648: } kpeter@648: kpeter@648: }; //class BlockSearchPivotRule kpeter@648: kpeter@648: kpeter@648: /// \brief Implementation of the "Candidate List" pivot rule for the kpeter@648: /// \ref NetworkSimplex "network simplex" algorithm. kpeter@648: /// kpeter@648: /// This class implements the "Candidate List" pivot rule kpeter@648: /// for the \ref NetworkSimplex "network simplex" algorithm. kpeter@648: /// kpeter@648: /// For more information see \ref NetworkSimplex::run(). kpeter@648: class CandidateListPivotRule kpeter@648: { kpeter@648: private: kpeter@648: kpeter@648: // References to the NetworkSimplex class kpeter@648: const IntVector &_source; kpeter@648: const IntVector &_target; kpeter@648: const CostVector &_cost; kpeter@648: const IntVector &_state; kpeter@648: const CostVector &_pi; kpeter@648: int &_in_arc; kpeter@648: int _arc_num; kpeter@648: kpeter@648: // Pivot rule data kpeter@648: IntVector _candidates; kpeter@648: int _list_length, _minor_limit; kpeter@648: int _curr_length, _minor_count; kpeter@648: int _next_arc; kpeter@648: kpeter@648: public: kpeter@648: kpeter@648: /// Constructor kpeter@648: CandidateListPivotRule(NetworkSimplex &ns) : kpeter@650: _source(ns._source), _target(ns._target), kpeter@648: _cost(ns._cost), _state(ns._state), _pi(ns._pi), kpeter@650: _in_arc(ns.in_arc), _arc_num(ns._arc_num), _next_arc(0) kpeter@648: { kpeter@648: // The main parameters of the pivot rule kpeter@648: const double LIST_LENGTH_FACTOR = 1.0; kpeter@648: const int MIN_LIST_LENGTH = 10; kpeter@648: const double MINOR_LIMIT_FACTOR = 0.1; kpeter@648: const int MIN_MINOR_LIMIT = 3; kpeter@648: kpeter@648: _list_length = std::max( int(LIST_LENGTH_FACTOR * sqrt(_arc_num)), kpeter@648: MIN_LIST_LENGTH ); kpeter@648: _minor_limit = std::max( int(MINOR_LIMIT_FACTOR * _list_length), kpeter@648: MIN_MINOR_LIMIT ); kpeter@648: _curr_length = _minor_count = 0; kpeter@648: _candidates.resize(_list_length); kpeter@648: } kpeter@648: kpeter@648: /// Find next entering arc kpeter@648: bool findEnteringArc() { kpeter@648: Cost min, c; kpeter@648: int e, min_arc = _next_arc; kpeter@648: if (_curr_length > 0 && _minor_count < _minor_limit) { kpeter@648: // Minor iteration: select the best eligible arc from the kpeter@648: // current candidate list kpeter@648: ++_minor_count; kpeter@648: min = 0; kpeter@648: for (int i = 0; i < _curr_length; ++i) { kpeter@648: e = _candidates[i]; kpeter@648: c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]); kpeter@648: if (c < min) { kpeter@648: min = c; kpeter@648: min_arc = e; kpeter@648: } kpeter@648: if (c >= 0) { kpeter@648: _candidates[i--] = _candidates[--_curr_length]; kpeter@648: } kpeter@648: } kpeter@648: if (min < 0) { kpeter@648: _in_arc = min_arc; kpeter@648: return true; kpeter@648: } kpeter@648: } kpeter@648: kpeter@648: // Major iteration: build a new candidate list kpeter@648: min = 0; kpeter@648: _curr_length = 0; kpeter@648: for (e = _next_arc; e < _arc_num; ++e) { kpeter@648: c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]); kpeter@648: if (c < 0) { kpeter@648: _candidates[_curr_length++] = e; kpeter@648: if (c < min) { kpeter@648: min = c; kpeter@648: min_arc = e; kpeter@648: } kpeter@648: if (_curr_length == _list_length) break; kpeter@648: } kpeter@648: } kpeter@648: if (_curr_length < _list_length) { kpeter@648: for (e = 0; e < _next_arc; ++e) { kpeter@648: c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]); kpeter@648: if (c < 0) { kpeter@648: _candidates[_curr_length++] = e; kpeter@648: if (c < min) { kpeter@648: min = c; kpeter@648: min_arc = e; kpeter@648: } kpeter@648: if (_curr_length == _list_length) break; kpeter@648: } kpeter@648: } kpeter@648: } kpeter@648: if (_curr_length == 0) return false; kpeter@648: _minor_count = 1; kpeter@648: _in_arc = min_arc; kpeter@648: _next_arc = e; kpeter@648: return true; kpeter@648: } kpeter@648: kpeter@648: }; //class CandidateListPivotRule kpeter@648: kpeter@648: kpeter@648: /// \brief Implementation of the "Altering Candidate List" pivot rule kpeter@648: /// for the \ref NetworkSimplex "network simplex" algorithm. kpeter@648: /// kpeter@648: /// This class implements the "Altering Candidate List" pivot rule kpeter@648: /// for the \ref NetworkSimplex "network simplex" algorithm. kpeter@648: /// kpeter@648: /// For more information see \ref NetworkSimplex::run(). kpeter@648: class AlteringListPivotRule kpeter@648: { kpeter@648: private: kpeter@648: kpeter@648: // References to the NetworkSimplex class kpeter@648: const IntVector &_source; kpeter@648: const IntVector &_target; kpeter@648: const CostVector &_cost; kpeter@648: const IntVector &_state; kpeter@648: const CostVector &_pi; kpeter@648: int &_in_arc; kpeter@648: int _arc_num; kpeter@648: kpeter@648: // Pivot rule data kpeter@648: int _block_size, _head_length, _curr_length; kpeter@648: int _next_arc; kpeter@648: IntVector _candidates; kpeter@648: CostVector _cand_cost; kpeter@648: kpeter@648: // Functor class to compare arcs during sort of the candidate list kpeter@648: class SortFunc kpeter@648: { kpeter@648: private: kpeter@648: const CostVector &_map; kpeter@648: public: kpeter@648: SortFunc(const CostVector &map) : _map(map) {} kpeter@648: bool operator()(int left, int right) { kpeter@648: return _map[left] > _map[right]; kpeter@648: } kpeter@648: }; kpeter@648: kpeter@648: SortFunc _sort_func; kpeter@648: kpeter@648: public: kpeter@648: kpeter@648: /// Constructor kpeter@648: AlteringListPivotRule(NetworkSimplex &ns) : kpeter@650: _source(ns._source), _target(ns._target), kpeter@648: _cost(ns._cost), _state(ns._state), _pi(ns._pi), kpeter@650: _in_arc(ns.in_arc), _arc_num(ns._arc_num), kpeter@648: _next_arc(0), _cand_cost(ns._arc_num), _sort_func(_cand_cost) kpeter@648: { kpeter@648: // The main parameters of the pivot rule kpeter@648: const double BLOCK_SIZE_FACTOR = 1.5; kpeter@648: const int MIN_BLOCK_SIZE = 10; kpeter@648: const double HEAD_LENGTH_FACTOR = 0.1; kpeter@648: const int MIN_HEAD_LENGTH = 3; kpeter@648: kpeter@648: _block_size = std::max( int(BLOCK_SIZE_FACTOR * sqrt(_arc_num)), kpeter@648: MIN_BLOCK_SIZE ); kpeter@648: _head_length = std::max( int(HEAD_LENGTH_FACTOR * _block_size), kpeter@648: MIN_HEAD_LENGTH ); kpeter@648: _candidates.resize(_head_length + _block_size); kpeter@648: _curr_length = 0; kpeter@648: } kpeter@648: kpeter@648: /// Find next entering arc kpeter@648: bool findEnteringArc() { kpeter@648: // Check the current candidate list kpeter@648: int e; kpeter@648: for (int i = 0; i < _curr_length; ++i) { kpeter@648: e = _candidates[i]; kpeter@648: _cand_cost[e] = _state[e] * kpeter@648: (_cost[e] + _pi[_source[e]] - _pi[_target[e]]); kpeter@648: if (_cand_cost[e] >= 0) { kpeter@648: _candidates[i--] = _candidates[--_curr_length]; kpeter@648: } kpeter@648: } kpeter@648: kpeter@648: // Extend the list kpeter@648: int cnt = _block_size; kpeter@650: int last_arc = 0; kpeter@648: int limit = _head_length; kpeter@648: kpeter@648: for (int e = _next_arc; e < _arc_num; ++e) { kpeter@648: _cand_cost[e] = _state[e] * kpeter@648: (_cost[e] + _pi[_source[e]] - _pi[_target[e]]); kpeter@648: if (_cand_cost[e] < 0) { kpeter@648: _candidates[_curr_length++] = e; kpeter@650: last_arc = e; kpeter@648: } kpeter@648: if (--cnt == 0) { kpeter@648: if (_curr_length > limit) break; kpeter@648: limit = 0; kpeter@648: cnt = _block_size; kpeter@648: } kpeter@648: } kpeter@648: if (_curr_length <= limit) { kpeter@648: for (int e = 0; e < _next_arc; ++e) { kpeter@648: _cand_cost[e] = _state[e] * kpeter@648: (_cost[e] + _pi[_source[e]] - _pi[_target[e]]); kpeter@648: if (_cand_cost[e] < 0) { kpeter@648: _candidates[_curr_length++] = e; kpeter@650: last_arc = e; kpeter@648: } kpeter@648: if (--cnt == 0) { kpeter@648: if (_curr_length > limit) break; kpeter@648: limit = 0; kpeter@648: cnt = _block_size; kpeter@648: } kpeter@648: } kpeter@648: } kpeter@648: if (_curr_length == 0) return false; kpeter@650: _next_arc = last_arc + 1; kpeter@648: kpeter@648: // Make heap of the candidate list (approximating a partial sort) kpeter@648: make_heap( _candidates.begin(), _candidates.begin() + _curr_length, kpeter@648: _sort_func ); kpeter@648: kpeter@648: // Pop the first element of the heap kpeter@648: _in_arc = _candidates[0]; kpeter@648: pop_heap( _candidates.begin(), _candidates.begin() + _curr_length, kpeter@648: _sort_func ); kpeter@648: _curr_length = std::min(_head_length, _curr_length - 1); kpeter@648: return true; kpeter@648: } kpeter@648: kpeter@648: }; //class AlteringListPivotRule kpeter@648: kpeter@648: public: kpeter@648: kpeter@648: /// \brief General constructor (with lower bounds). kpeter@648: /// kpeter@648: /// General constructor (with lower bounds). kpeter@648: /// kpeter@650: /// \param graph The digraph the algorithm runs on. kpeter@648: /// \param lower The lower bounds of the arcs. kpeter@648: /// \param capacity The capacities (upper bounds) of the arcs. kpeter@648: /// \param cost The cost (length) values of the arcs. kpeter@648: /// \param supply The supply values of the nodes (signed). kpeter@650: NetworkSimplex( const Digraph &graph, kpeter@648: const LowerMap &lower, kpeter@648: const CapacityMap &capacity, kpeter@648: const CostMap &cost, kpeter@648: const SupplyMap &supply ) : kpeter@650: _graph(graph), _orig_lower(&lower), _orig_cap(capacity), kpeter@648: _orig_cost(cost), _orig_supply(&supply), kpeter@650: _flow_map(NULL), _potential_map(NULL), kpeter@648: _local_flow(false), _local_potential(false), kpeter@650: _node_id(graph) kpeter@648: {} kpeter@648: kpeter@648: /// \brief General constructor (without lower bounds). kpeter@648: /// kpeter@648: /// General constructor (without lower bounds). kpeter@648: /// kpeter@650: /// \param graph The digraph the algorithm runs on. kpeter@648: /// \param capacity The capacities (upper bounds) of the arcs. kpeter@648: /// \param cost The cost (length) values of the arcs. kpeter@648: /// \param supply The supply values of the nodes (signed). kpeter@650: NetworkSimplex( const Digraph &graph, kpeter@648: const CapacityMap &capacity, kpeter@648: const CostMap &cost, kpeter@648: const SupplyMap &supply ) : kpeter@650: _graph(graph), _orig_lower(NULL), _orig_cap(capacity), kpeter@648: _orig_cost(cost), _orig_supply(&supply), kpeter@650: _flow_map(NULL), _potential_map(NULL), kpeter@648: _local_flow(false), _local_potential(false), kpeter@650: _node_id(graph) kpeter@648: {} kpeter@648: kpeter@648: /// \brief Simple constructor (with lower bounds). kpeter@648: /// kpeter@648: /// Simple constructor (with lower bounds). kpeter@648: /// kpeter@650: /// \param graph The digraph the algorithm runs on. kpeter@648: /// \param lower The lower bounds of the arcs. kpeter@648: /// \param capacity The capacities (upper bounds) of the arcs. kpeter@648: /// \param cost The cost (length) values of the arcs. kpeter@648: /// \param s The source node. kpeter@648: /// \param t The target node. kpeter@648: /// \param flow_value The required amount of flow from node \c s kpeter@648: /// to node \c t (i.e. the supply of \c s and the demand of \c t). kpeter@650: NetworkSimplex( const Digraph &graph, kpeter@648: const LowerMap &lower, kpeter@648: const CapacityMap &capacity, kpeter@648: const CostMap &cost, kpeter@648: Node s, Node t, kpeter@648: Capacity flow_value ) : kpeter@650: _graph(graph), _orig_lower(&lower), _orig_cap(capacity), kpeter@648: _orig_cost(cost), _orig_supply(NULL), kpeter@648: _orig_source(s), _orig_target(t), _orig_flow_value(flow_value), kpeter@650: _flow_map(NULL), _potential_map(NULL), kpeter@648: _local_flow(false), _local_potential(false), kpeter@650: _node_id(graph) kpeter@648: {} kpeter@648: kpeter@648: /// \brief Simple constructor (without lower bounds). kpeter@648: /// kpeter@648: /// Simple constructor (without lower bounds). kpeter@648: /// kpeter@650: /// \param graph The digraph the algorithm runs on. kpeter@648: /// \param capacity The capacities (upper bounds) of the arcs. kpeter@648: /// \param cost The cost (length) values of the arcs. kpeter@648: /// \param s The source node. kpeter@648: /// \param t The target node. kpeter@648: /// \param flow_value The required amount of flow from node \c s kpeter@648: /// to node \c t (i.e. the supply of \c s and the demand of \c t). kpeter@650: NetworkSimplex( const Digraph &graph, kpeter@648: const CapacityMap &capacity, kpeter@648: const CostMap &cost, kpeter@648: Node s, Node t, kpeter@648: Capacity flow_value ) : kpeter@650: _graph(graph), _orig_lower(NULL), _orig_cap(capacity), kpeter@648: _orig_cost(cost), _orig_supply(NULL), kpeter@648: _orig_source(s), _orig_target(t), _orig_flow_value(flow_value), kpeter@650: _flow_map(NULL), _potential_map(NULL), kpeter@648: _local_flow(false), _local_potential(false), kpeter@650: _node_id(graph) kpeter@648: {} kpeter@648: kpeter@648: /// Destructor. kpeter@648: ~NetworkSimplex() { kpeter@650: if (_local_flow) delete _flow_map; kpeter@650: if (_local_potential) delete _potential_map; kpeter@648: } kpeter@648: kpeter@648: /// \brief Set the flow map. kpeter@648: /// kpeter@648: /// This function sets the flow map. kpeter@648: /// kpeter@648: /// \return (*this) kpeter@648: NetworkSimplex& flowMap(FlowMap &map) { kpeter@648: if (_local_flow) { kpeter@650: delete _flow_map; kpeter@648: _local_flow = false; kpeter@648: } kpeter@650: _flow_map = ↦ kpeter@648: return *this; kpeter@648: } kpeter@648: kpeter@648: /// \brief Set the potential map. kpeter@648: /// kpeter@648: /// This function sets the potential map. kpeter@648: /// kpeter@648: /// \return (*this) kpeter@648: NetworkSimplex& potentialMap(PotentialMap &map) { kpeter@648: if (_local_potential) { kpeter@650: delete _potential_map; kpeter@648: _local_potential = false; kpeter@648: } kpeter@650: _potential_map = ↦ kpeter@648: return *this; kpeter@648: } kpeter@648: kpeter@648: /// \name Execution control kpeter@648: /// The algorithm can be executed using the kpeter@648: /// \ref lemon::NetworkSimplex::run() "run()" function. kpeter@648: /// @{ kpeter@648: kpeter@648: /// \brief Run the algorithm. kpeter@648: /// kpeter@648: /// This function runs the algorithm. kpeter@648: /// kpeter@648: /// \param pivot_rule The pivot rule that is used during the kpeter@648: /// algorithm. kpeter@648: /// kpeter@648: /// The available pivot rules: kpeter@648: /// kpeter@648: /// - FIRST_ELIGIBLE_PIVOT The next eligible arc is selected in kpeter@648: /// a wraparound fashion in every iteration kpeter@648: /// (\ref FirstEligiblePivotRule). kpeter@648: /// kpeter@648: /// - BEST_ELIGIBLE_PIVOT The best eligible arc is selected in kpeter@648: /// every iteration (\ref BestEligiblePivotRule). kpeter@648: /// kpeter@648: /// - BLOCK_SEARCH_PIVOT A specified number of arcs are examined in kpeter@648: /// every iteration in a wraparound fashion and the best eligible kpeter@648: /// arc is selected from this block (\ref BlockSearchPivotRule). kpeter@648: /// kpeter@648: /// - CANDIDATE_LIST_PIVOT In a major iteration a candidate list is kpeter@648: /// built from eligible arcs in a wraparound fashion and in the kpeter@648: /// following minor iterations the best eligible arc is selected kpeter@648: /// from this list (\ref CandidateListPivotRule). kpeter@648: /// kpeter@648: /// - ALTERING_LIST_PIVOT It is a modified version of the kpeter@648: /// "Candidate List" pivot rule. It keeps only the several best kpeter@648: /// eligible arcs from the former candidate list and extends this kpeter@648: /// list in every iteration (\ref AlteringListPivotRule). kpeter@648: /// kpeter@648: /// According to our comprehensive benchmark tests the "Block Search" kpeter@648: /// pivot rule proved to be the fastest and the most robust on kpeter@648: /// various test inputs. Thus it is the default option. kpeter@648: /// kpeter@648: /// \return \c true if a feasible flow can be found. kpeter@648: bool run(PivotRuleEnum pivot_rule = BLOCK_SEARCH_PIVOT) { kpeter@648: return init() && start(pivot_rule); kpeter@648: } kpeter@648: kpeter@648: /// @} kpeter@648: kpeter@648: /// \name Query Functions kpeter@648: /// The results of the algorithm can be obtained using these kpeter@648: /// functions.\n kpeter@648: /// \ref lemon::NetworkSimplex::run() "run()" must be called before kpeter@648: /// using them. kpeter@648: /// @{ kpeter@648: kpeter@648: /// \brief Return a const reference to the flow map. kpeter@648: /// kpeter@648: /// This function returns a const reference to an arc map storing kpeter@648: /// the found flow. kpeter@648: /// kpeter@648: /// \pre \ref run() must be called before using this function. kpeter@648: const FlowMap& flowMap() const { kpeter@650: return *_flow_map; kpeter@648: } kpeter@648: kpeter@648: /// \brief Return a const reference to the potential map kpeter@648: /// (the dual solution). kpeter@648: /// kpeter@648: /// This function returns a const reference to a node map storing kpeter@648: /// the found potentials (the dual solution). kpeter@648: /// kpeter@648: /// \pre \ref run() must be called before using this function. kpeter@648: const PotentialMap& potentialMap() const { kpeter@650: return *_potential_map; kpeter@648: } kpeter@648: kpeter@648: /// \brief Return the flow on the given arc. kpeter@648: /// kpeter@648: /// This function returns the flow on the given arc. kpeter@648: /// kpeter@648: /// \pre \ref run() must be called before using this function. kpeter@648: Capacity flow(const Arc& arc) const { kpeter@650: return (*_flow_map)[arc]; kpeter@648: } kpeter@648: kpeter@648: /// \brief Return the potential of the given node. kpeter@648: /// kpeter@648: /// This function returns the potential of the given node. kpeter@648: /// kpeter@648: /// \pre \ref run() must be called before using this function. kpeter@648: Cost potential(const Node& node) const { kpeter@650: return (*_potential_map)[node]; kpeter@648: } kpeter@648: kpeter@648: /// \brief Return the total cost of the found flow. kpeter@648: /// kpeter@648: /// This function returns the total cost of the found flow. kpeter@648: /// The complexity of the function is \f$ O(e) \f$. kpeter@648: /// kpeter@648: /// \pre \ref run() must be called before using this function. kpeter@648: Cost totalCost() const { kpeter@648: Cost c = 0; kpeter@650: for (ArcIt e(_graph); e != INVALID; ++e) kpeter@650: c += (*_flow_map)[e] * _orig_cost[e]; kpeter@648: return c; kpeter@648: } kpeter@648: kpeter@648: /// @} kpeter@648: kpeter@648: private: kpeter@648: kpeter@648: // Initialize internal data structures kpeter@648: bool init() { kpeter@648: // Initialize result maps kpeter@650: if (!_flow_map) { kpeter@650: _flow_map = new FlowMap(_graph); kpeter@648: _local_flow = true; kpeter@648: } kpeter@650: if (!_potential_map) { kpeter@650: _potential_map = new PotentialMap(_graph); kpeter@648: _local_potential = true; kpeter@648: } kpeter@648: kpeter@648: // Initialize vectors kpeter@650: _node_num = countNodes(_graph); kpeter@650: _arc_num = countArcs(_graph); kpeter@648: int all_node_num = _node_num + 1; kpeter@650: int all_arc_num = _arc_num + _node_num; kpeter@648: kpeter@650: _arc_ref.resize(_arc_num); kpeter@650: _source.resize(all_arc_num); kpeter@650: _target.resize(all_arc_num); kpeter@648: kpeter@650: _cap.resize(all_arc_num); kpeter@650: _cost.resize(all_arc_num); kpeter@648: _supply.resize(all_node_num); kpeter@650: _flow.resize(all_arc_num, 0); kpeter@648: _pi.resize(all_node_num, 0); kpeter@648: kpeter@648: _parent.resize(all_node_num); kpeter@648: _pred.resize(all_node_num); kpeter@650: _forward.resize(all_node_num); kpeter@648: _thread.resize(all_node_num); kpeter@651: _rev_thread.resize(all_node_num); kpeter@651: _succ_num.resize(all_node_num); kpeter@651: _last_succ.resize(all_node_num); kpeter@650: _state.resize(all_arc_num, STATE_LOWER); kpeter@648: kpeter@648: // Initialize node related data kpeter@648: bool valid_supply = true; kpeter@648: if (_orig_supply) { kpeter@648: Supply sum = 0; kpeter@648: int i = 0; kpeter@650: for (NodeIt n(_graph); n != INVALID; ++n, ++i) { kpeter@648: _node_id[n] = i; kpeter@648: _supply[i] = (*_orig_supply)[n]; kpeter@648: sum += _supply[i]; kpeter@648: } kpeter@648: valid_supply = (sum == 0); kpeter@648: } else { kpeter@648: int i = 0; kpeter@650: for (NodeIt n(_graph); n != INVALID; ++n, ++i) { kpeter@648: _node_id[n] = i; kpeter@648: _supply[i] = 0; kpeter@648: } kpeter@648: _supply[_node_id[_orig_source]] = _orig_flow_value; kpeter@648: _supply[_node_id[_orig_target]] = -_orig_flow_value; kpeter@648: } kpeter@648: if (!valid_supply) return false; kpeter@648: kpeter@648: // Set data for the artificial root node kpeter@648: _root = _node_num; kpeter@648: _parent[_root] = -1; kpeter@648: _pred[_root] = -1; kpeter@648: _thread[_root] = 0; kpeter@651: _rev_thread[0] = _root; kpeter@651: _succ_num[_root] = all_node_num; kpeter@651: _last_succ[_root] = _root - 1; kpeter@648: _supply[_root] = 0; kpeter@648: _pi[_root] = 0; kpeter@648: kpeter@648: // Store the arcs in a mixed order kpeter@648: int k = std::max(int(sqrt(_arc_num)), 10); kpeter@648: int i = 0; kpeter@650: for (ArcIt e(_graph); e != INVALID; ++e) { kpeter@650: _arc_ref[i] = e; kpeter@648: if ((i += k) >= _arc_num) i = (i % k) + 1; kpeter@648: } kpeter@648: kpeter@648: // Initialize arc maps kpeter@648: for (int i = 0; i != _arc_num; ++i) { kpeter@650: Arc e = _arc_ref[i]; kpeter@650: _source[i] = _node_id[_graph.source(e)]; kpeter@650: _target[i] = _node_id[_graph.target(e)]; kpeter@648: _cost[i] = _orig_cost[e]; kpeter@648: _cap[i] = _orig_cap[e]; kpeter@648: } kpeter@648: kpeter@648: // Remove non-zero lower bounds kpeter@648: if (_orig_lower) { kpeter@648: for (int i = 0; i != _arc_num; ++i) { kpeter@650: Capacity c = (*_orig_lower)[_arc_ref[i]]; kpeter@648: if (c != 0) { kpeter@648: _cap[i] -= c; kpeter@648: _supply[_source[i]] -= c; kpeter@648: _supply[_target[i]] += c; kpeter@648: } kpeter@648: } kpeter@648: } kpeter@648: kpeter@648: // Add artificial arcs and initialize the spanning tree data structure kpeter@648: Cost max_cost = std::numeric_limits::max() / 4; kpeter@648: Capacity max_cap = std::numeric_limits::max(); kpeter@648: for (int u = 0, e = _arc_num; u != _node_num; ++u, ++e) { kpeter@648: _thread[u] = u + 1; kpeter@651: _rev_thread[u + 1] = u; kpeter@651: _succ_num[u] = 1; kpeter@651: _last_succ[u] = u; kpeter@648: _parent[u] = _root; kpeter@648: _pred[u] = e; kpeter@648: if (_supply[u] >= 0) { kpeter@648: _flow[e] = _supply[u]; kpeter@648: _forward[u] = true; kpeter@648: _pi[u] = -max_cost; kpeter@648: } else { kpeter@648: _flow[e] = -_supply[u]; kpeter@648: _forward[u] = false; kpeter@648: _pi[u] = max_cost; kpeter@648: } kpeter@648: _cost[e] = max_cost; kpeter@648: _cap[e] = max_cap; kpeter@648: _state[e] = STATE_TREE; kpeter@648: } kpeter@648: kpeter@648: return true; kpeter@648: } kpeter@648: kpeter@648: // Find the join node kpeter@648: void findJoinNode() { kpeter@650: int u = _source[in_arc]; kpeter@650: int v = _target[in_arc]; kpeter@648: while (u != v) { kpeter@651: if (_succ_num[u] < _succ_num[v]) { kpeter@651: u = _parent[u]; kpeter@651: } else { kpeter@651: v = _parent[v]; kpeter@651: } kpeter@648: } kpeter@648: join = u; kpeter@648: } kpeter@648: kpeter@648: // Find the leaving arc of the cycle and returns true if the kpeter@648: // leaving arc is not the same as the entering arc kpeter@648: bool findLeavingArc() { kpeter@648: // Initialize first and second nodes according to the direction kpeter@648: // of the cycle kpeter@650: if (_state[in_arc] == STATE_LOWER) { kpeter@650: first = _source[in_arc]; kpeter@650: second = _target[in_arc]; kpeter@648: } else { kpeter@650: first = _target[in_arc]; kpeter@650: second = _source[in_arc]; kpeter@648: } kpeter@650: delta = _cap[in_arc]; kpeter@648: int result = 0; kpeter@648: Capacity d; kpeter@648: int e; kpeter@648: kpeter@648: // Search the cycle along the path form the first node to the root kpeter@648: for (int u = first; u != join; u = _parent[u]) { kpeter@648: e = _pred[u]; kpeter@648: d = _forward[u] ? _flow[e] : _cap[e] - _flow[e]; kpeter@648: if (d < delta) { kpeter@648: delta = d; kpeter@648: u_out = u; kpeter@648: result = 1; kpeter@648: } kpeter@648: } kpeter@648: // Search the cycle along the path form the second node to the root kpeter@648: for (int u = second; u != join; u = _parent[u]) { kpeter@648: e = _pred[u]; kpeter@648: d = _forward[u] ? _cap[e] - _flow[e] : _flow[e]; kpeter@648: if (d <= delta) { kpeter@648: delta = d; kpeter@648: u_out = u; kpeter@648: result = 2; kpeter@648: } kpeter@648: } kpeter@648: kpeter@648: if (result == 1) { kpeter@648: u_in = first; kpeter@648: v_in = second; kpeter@648: } else { kpeter@648: u_in = second; kpeter@648: v_in = first; kpeter@648: } kpeter@648: return result != 0; kpeter@648: } kpeter@648: kpeter@648: // Change _flow and _state vectors kpeter@648: void changeFlow(bool change) { kpeter@648: // Augment along the cycle kpeter@648: if (delta > 0) { kpeter@650: Capacity val = _state[in_arc] * delta; kpeter@650: _flow[in_arc] += val; kpeter@650: for (int u = _source[in_arc]; u != join; u = _parent[u]) { kpeter@648: _flow[_pred[u]] += _forward[u] ? -val : val; kpeter@648: } kpeter@650: for (int u = _target[in_arc]; u != join; u = _parent[u]) { kpeter@648: _flow[_pred[u]] += _forward[u] ? val : -val; kpeter@648: } kpeter@648: } kpeter@648: // Update the state of the entering and leaving arcs kpeter@648: if (change) { kpeter@650: _state[in_arc] = STATE_TREE; kpeter@648: _state[_pred[u_out]] = kpeter@648: (_flow[_pred[u_out]] == 0) ? STATE_LOWER : STATE_UPPER; kpeter@648: } else { kpeter@650: _state[in_arc] = -_state[in_arc]; kpeter@648: } kpeter@648: } kpeter@648: kpeter@651: // Update the tree structure kpeter@651: void updateTreeStructure() { kpeter@651: int u, w; kpeter@651: int old_rev_thread = _rev_thread[u_out]; kpeter@651: int old_succ_num = _succ_num[u_out]; kpeter@651: int old_last_succ = _last_succ[u_out]; kpeter@648: v_out = _parent[u_out]; kpeter@648: kpeter@651: u = _last_succ[u_in]; // the last successor of u_in kpeter@651: right = _thread[u]; // the node after it kpeter@651: kpeter@651: // Handle the case when old_rev_thread equals to v_in kpeter@651: // (it also means that join and v_out coincide) kpeter@651: if (old_rev_thread == v_in) { kpeter@651: last = _thread[_last_succ[u_out]]; kpeter@651: } else { kpeter@651: last = _thread[v_in]; kpeter@648: } kpeter@648: kpeter@651: // Update _thread and _parent along the stem nodes (i.e. the nodes kpeter@651: // between u_in and u_out, whose parent have to be changed) kpeter@648: _thread[v_in] = stem = u_in; kpeter@651: _dirty_revs.clear(); kpeter@651: _dirty_revs.push_back(v_in); kpeter@648: par_stem = v_in; kpeter@648: while (stem != u_out) { kpeter@651: // Insert the next stem node into the thread list kpeter@651: new_stem = _parent[stem]; kpeter@651: _thread[u] = new_stem; kpeter@651: _dirty_revs.push_back(u); kpeter@648: kpeter@651: // Remove the subtree of stem from the thread list kpeter@651: w = _rev_thread[stem]; kpeter@651: _thread[w] = right; kpeter@651: _rev_thread[right] = w; kpeter@648: kpeter@651: // Change the parent node and shift stem nodes kpeter@648: _parent[stem] = par_stem; kpeter@648: par_stem = stem; kpeter@648: stem = new_stem; kpeter@648: kpeter@651: // Update u and right kpeter@651: u = _last_succ[stem] == _last_succ[par_stem] ? kpeter@651: _rev_thread[par_stem] : _last_succ[stem]; kpeter@648: right = _thread[u]; kpeter@648: } kpeter@648: _parent[u_out] = par_stem; kpeter@648: _thread[u] = last; kpeter@651: _rev_thread[last] = u; kpeter@651: _last_succ[u_out] = u; kpeter@648: kpeter@651: // Remove the subtree of u_out from the thread list except for kpeter@651: // the case when old_rev_thread equals to v_in kpeter@651: // (it also means that join and v_out coincide) kpeter@651: if (old_rev_thread != v_in) { kpeter@651: _thread[old_rev_thread] = right; kpeter@651: _rev_thread[right] = old_rev_thread; kpeter@651: } kpeter@651: kpeter@651: // Update _rev_thread using the new _thread values kpeter@651: for (int i = 0; i < int(_dirty_revs.size()); ++i) { kpeter@651: u = _dirty_revs[i]; kpeter@651: _rev_thread[_thread[u]] = u; kpeter@651: } kpeter@651: kpeter@651: // Update _pred, _forward, _last_succ and _succ_num for the kpeter@651: // stem nodes from u_out to u_in kpeter@651: int tmp_sc = 0, tmp_ls = _last_succ[u_out]; kpeter@651: u = u_out; kpeter@651: while (u != u_in) { kpeter@651: w = _parent[u]; kpeter@651: _pred[u] = _pred[w]; kpeter@651: _forward[u] = !_forward[w]; kpeter@651: tmp_sc += _succ_num[u] - _succ_num[w]; kpeter@651: _succ_num[u] = tmp_sc; kpeter@651: _last_succ[w] = tmp_ls; kpeter@651: u = w; kpeter@651: } kpeter@651: _pred[u_in] = in_arc; kpeter@651: _forward[u_in] = (u_in == _source[in_arc]); kpeter@651: _succ_num[u_in] = old_succ_num; kpeter@651: kpeter@651: // Set limits for updating _last_succ form v_in and v_out kpeter@651: // towards the root kpeter@651: int up_limit_in = -1; kpeter@651: int up_limit_out = -1; kpeter@651: if (_last_succ[join] == v_in) { kpeter@651: up_limit_out = join; kpeter@648: } else { kpeter@651: up_limit_in = join; kpeter@651: } kpeter@651: kpeter@651: // Update _last_succ from v_in towards the root kpeter@651: for (u = v_in; u != up_limit_in && _last_succ[u] == v_in; kpeter@651: u = _parent[u]) { kpeter@651: _last_succ[u] = _last_succ[u_out]; kpeter@651: } kpeter@651: // Update _last_succ from v_out towards the root kpeter@651: if (join != old_rev_thread && v_in != old_rev_thread) { kpeter@651: for (u = v_out; u != up_limit_out && _last_succ[u] == old_last_succ; kpeter@651: u = _parent[u]) { kpeter@651: _last_succ[u] = old_rev_thread; kpeter@651: } kpeter@651: } else { kpeter@651: for (u = v_out; u != up_limit_out && _last_succ[u] == old_last_succ; kpeter@651: u = _parent[u]) { kpeter@651: _last_succ[u] = _last_succ[u_out]; kpeter@651: } kpeter@651: } kpeter@651: kpeter@651: // Update _succ_num from v_in to join kpeter@651: for (u = v_in; u != join; u = _parent[u]) { kpeter@651: _succ_num[u] += old_succ_num; kpeter@651: } kpeter@651: // Update _succ_num from v_out to join kpeter@651: for (u = v_out; u != join; u = _parent[u]) { kpeter@651: _succ_num[u] -= old_succ_num; kpeter@648: } kpeter@648: } kpeter@648: kpeter@651: // Update potentials kpeter@651: void updatePotential() { kpeter@648: Cost sigma = _forward[u_in] ? kpeter@648: _pi[v_in] - _pi[u_in] - _cost[_pred[u_in]] : kpeter@648: _pi[v_in] - _pi[u_in] + _cost[_pred[u_in]]; kpeter@651: if (_succ_num[u_in] > _node_num / 2) { kpeter@651: // Update in the upper subtree (which contains the root) kpeter@651: int before = _rev_thread[u_in]; kpeter@651: int after = _thread[_last_succ[u_in]]; kpeter@651: _thread[before] = after; kpeter@651: _pi[_root] -= sigma; kpeter@651: for (int u = _thread[_root]; u != _root; u = _thread[u]) { kpeter@651: _pi[u] -= sigma; kpeter@651: } kpeter@651: _thread[before] = u_in; kpeter@651: } else { kpeter@651: // Update in the lower subtree (which has been moved) kpeter@651: int end = _thread[_last_succ[u_in]]; kpeter@651: for (int u = u_in; u != end; u = _thread[u]) { kpeter@651: _pi[u] += sigma; kpeter@651: } kpeter@648: } kpeter@648: } kpeter@648: kpeter@648: // Execute the algorithm kpeter@648: bool start(PivotRuleEnum pivot_rule) { kpeter@648: // Select the pivot rule implementation kpeter@648: switch (pivot_rule) { kpeter@648: case FIRST_ELIGIBLE_PIVOT: kpeter@648: return start(); kpeter@648: case BEST_ELIGIBLE_PIVOT: kpeter@648: return start(); kpeter@648: case BLOCK_SEARCH_PIVOT: kpeter@648: return start(); kpeter@648: case CANDIDATE_LIST_PIVOT: kpeter@648: return start(); kpeter@648: case ALTERING_LIST_PIVOT: kpeter@648: return start(); kpeter@648: } kpeter@648: return false; kpeter@648: } kpeter@648: kpeter@648: template kpeter@648: bool start() { kpeter@648: PivotRuleImplementation pivot(*this); kpeter@648: kpeter@648: // Execute the network simplex algorithm kpeter@648: while (pivot.findEnteringArc()) { kpeter@648: findJoinNode(); kpeter@648: bool change = findLeavingArc(); kpeter@648: changeFlow(change); kpeter@648: if (change) { kpeter@651: updateTreeStructure(); kpeter@651: updatePotential(); kpeter@648: } kpeter@648: } kpeter@648: kpeter@648: // Check if the flow amount equals zero on all the artificial arcs kpeter@648: for (int e = _arc_num; e != _arc_num + _node_num; ++e) { kpeter@648: if (_flow[e] > 0) return false; kpeter@648: } kpeter@648: kpeter@650: // Copy flow values to _flow_map kpeter@648: if (_orig_lower) { kpeter@648: for (int i = 0; i != _arc_num; ++i) { kpeter@650: Arc e = _arc_ref[i]; kpeter@650: _flow_map->set(e, (*_orig_lower)[e] + _flow[i]); kpeter@648: } kpeter@648: } else { kpeter@648: for (int i = 0; i != _arc_num; ++i) { kpeter@650: _flow_map->set(_arc_ref[i], _flow[i]); kpeter@648: } kpeter@648: } kpeter@650: // Copy potential values to _potential_map kpeter@650: for (NodeIt n(_graph); n != INVALID; ++n) { kpeter@650: _potential_map->set(n, _pi[_node_id[n]]); kpeter@648: } kpeter@648: kpeter@648: return true; kpeter@648: } kpeter@648: kpeter@648: }; //class NetworkSimplex kpeter@648: kpeter@648: ///@} kpeter@648: kpeter@648: } //namespace lemon kpeter@648: kpeter@648: #endif //LEMON_NETWORK_SIMPLEX_H