diff -r 257e91516e09 -r 532697c9fa53 lemon/fib_heap.h --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/lemon/fib_heap.h Thu Jun 11 22:11:29 2009 +0200 @@ -0,0 +1,467 @@ +/* -*- mode: C++; indent-tabs-mode: nil; -*- + * + * This file is a part of LEMON, a generic C++ optimization library. + * + * Copyright (C) 2003-2009 + * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport + * (Egervary Research Group on Combinatorial Optimization, EGRES). + * + * Permission to use, modify and distribute this software is granted + * provided that this copyright notice appears in all copies. For + * precise terms see the accompanying LICENSE file. + * + * This software is provided "AS IS" with no warranty of any kind, + * express or implied, and with no claim as to its suitability for any + * purpose. + * + */ + +#ifndef LEMON_FIB_HEAP_H +#define LEMON_FIB_HEAP_H + +///\file +///\ingroup auxdat +///\brief Fibonacci Heap implementation. + +#include +#include +#include + +namespace lemon { + + /// \ingroup auxdat + /// + ///\brief Fibonacci Heap. + /// + ///This class implements the \e Fibonacci \e heap data structure. A \e heap + ///is a data structure for storing items with specified values called \e + ///priorities in such a way that finding the item with minimum priority is + ///efficient. \c Compare specifies the ordering of the priorities. In a heap + ///one can change the priority of an item, add or erase an item, etc. + /// + ///The methods \ref increase and \ref erase are not efficient in a Fibonacci + ///heap. In case of many calls to these operations, it is better to use a + ///\ref BinHeap "binary heap". + /// + ///\param _Prio Type of the priority of the items. + ///\param _ItemIntMap A read and writable Item int map, used internally + ///to handle the cross references. + ///\param _Compare A class for the ordering of the priorities. The + ///default is \c std::less<_Prio>. + /// + ///\sa BinHeap + ///\sa Dijkstra +#ifdef DOXYGEN + template +#else + template > +#endif + class FibHeap { + public: + ///\e + typedef _ItemIntMap ItemIntMap; + ///\e + typedef _Prio Prio; + ///\e + typedef typename ItemIntMap::Key Item; + ///\e + typedef std::pair Pair; + ///\e + typedef _Compare Compare; + + private: + class store; + + std::vector container; + int minimum; + ItemIntMap &iimap; + Compare comp; + int num_items; + + public: + ///Status of the nodes + enum State { + ///The node is in the heap + IN_HEAP = 0, + ///The node has never been in the heap + PRE_HEAP = -1, + ///The node was in the heap but it got out of it + POST_HEAP = -2 + }; + + /// \brief The constructor + /// + /// \c _iimap should be given to the constructor, since it is + /// used internally to handle the cross references. + explicit FibHeap(ItemIntMap &_iimap) + : minimum(0), iimap(_iimap), num_items() {} + + /// \brief The constructor + /// + /// \c _iimap should be given to the constructor, since it is used + /// internally to handle the cross references. \c _comp is an + /// object for ordering of the priorities. + FibHeap(ItemIntMap &_iimap, const Compare &_comp) + : minimum(0), iimap(_iimap), comp(_comp), num_items() {} + + /// \brief The number of items stored in the heap. + /// + /// Returns the number of items stored in the heap. + int size() const { return num_items; } + + /// \brief Checks if the heap stores no items. + /// + /// Returns \c true if and only if the heap stores no items. + bool empty() const { return num_items==0; } + + /// \brief Make empty this heap. + /// + /// Make empty this heap. It does not change the cross reference + /// map. If you want to reuse a heap what is not surely empty you + /// should first clear the heap and after that you should set the + /// cross reference map for each item to \c PRE_HEAP. + void clear() { + container.clear(); minimum = 0; num_items = 0; + } + + /// \brief \c item gets to the heap with priority \c value independently + /// if \c item was already there. + /// + /// This method calls \ref push(\c item, \c value) if \c item is not + /// stored in the heap and it calls \ref decrease(\c item, \c value) or + /// \ref increase(\c item, \c value) otherwise. + void set (const Item& item, const Prio& value) { + int i=iimap[item]; + if ( i >= 0 && container[i].in ) { + if ( comp(value, container[i].prio) ) decrease(item, value); + if ( comp(container[i].prio, value) ) increase(item, value); + } else push(item, value); + } + + /// \brief Adds \c item to the heap with priority \c value. + /// + /// Adds \c item to the heap with priority \c value. + /// \pre \c item must not be stored in the heap. + void push (const Item& item, const Prio& value) { + int i=iimap[item]; + if ( i < 0 ) { + int s=container.size(); + iimap.set( item, s ); + store st; + st.name=item; + container.push_back(st); + i=s; + } else { + container[i].parent=container[i].child=-1; + container[i].degree=0; + container[i].in=true; + container[i].marked=false; + } + + if ( num_items ) { + container[container[minimum].right_neighbor].left_neighbor=i; + container[i].right_neighbor=container[minimum].right_neighbor; + container[minimum].right_neighbor=i; + container[i].left_neighbor=minimum; + if ( comp( value, container[minimum].prio) ) minimum=i; + } else { + container[i].right_neighbor=container[i].left_neighbor=i; + minimum=i; + } + container[i].prio=value; + ++num_items; + } + + /// \brief Returns the item with minimum priority relative to \c Compare. + /// + /// This method returns the item with minimum priority relative to \c + /// Compare. + /// \pre The heap must be nonempty. + Item top() const { return container[minimum].name; } + + /// \brief Returns the minimum priority relative to \c Compare. + /// + /// It returns the minimum priority relative to \c Compare. + /// \pre The heap must be nonempty. + const Prio& prio() const { return container[minimum].prio; } + + /// \brief Returns the priority of \c item. + /// + /// It returns the priority of \c item. + /// \pre \c item must be in the heap. + const Prio& operator[](const Item& item) const { + return container[iimap[item]].prio; + } + + /// \brief Deletes the item with minimum priority relative to \c Compare. + /// + /// This method deletes the item with minimum priority relative to \c + /// Compare from the heap. + /// \pre The heap must be non-empty. + void pop() { + /*The first case is that there are only one root.*/ + if ( container[minimum].left_neighbor==minimum ) { + container[minimum].in=false; + if ( container[minimum].degree!=0 ) { + makeroot(container[minimum].child); + minimum=container[minimum].child; + balance(); + } + } else { + int right=container[minimum].right_neighbor; + unlace(minimum); + container[minimum].in=false; + if ( container[minimum].degree > 0 ) { + int left=container[minimum].left_neighbor; + int child=container[minimum].child; + int last_child=container[child].left_neighbor; + + makeroot(child); + + container[left].right_neighbor=child; + container[child].left_neighbor=left; + container[right].left_neighbor=last_child; + container[last_child].right_neighbor=right; + } + minimum=right; + balance(); + } // the case where there are more roots + --num_items; + } + + /// \brief Deletes \c item from the heap. + /// + /// This method deletes \c item from the heap, if \c item was already + /// stored in the heap. It is quite inefficient in Fibonacci heaps. + void erase (const Item& item) { + int i=iimap[item]; + + if ( i >= 0 && container[i].in ) { + if ( container[i].parent!=-1 ) { + int p=container[i].parent; + cut(i,p); + cascade(p); + } + minimum=i; //As if its prio would be -infinity + pop(); + } + } + + /// \brief Decreases the priority of \c item to \c value. + /// + /// This method decreases the priority of \c item to \c value. + /// \pre \c item must be stored in the heap with priority at least \c + /// value relative to \c Compare. + void decrease (Item item, const Prio& value) { + int i=iimap[item]; + container[i].prio=value; + int p=container[i].parent; + + if ( p!=-1 && comp(value, container[p].prio) ) { + cut(i,p); + cascade(p); + } + if ( comp(value, container[minimum].prio) ) minimum=i; + } + + /// \brief Increases the priority of \c item to \c value. + /// + /// This method sets the priority of \c item to \c value. Though + /// there is no precondition on the priority of \c item, this + /// method should be used only if it is indeed necessary to increase + /// (relative to \c Compare) the priority of \c item, because this + /// method is inefficient. + void increase (Item item, const Prio& value) { + erase(item); + push(item, value); + } + + + /// \brief Returns if \c item is in, has already been in, or has never + /// been in the heap. + /// + /// This method returns PRE_HEAP if \c item has never been in the + /// heap, IN_HEAP if it is in the heap at the moment, and POST_HEAP + /// otherwise. In the latter case it is possible that \c item will + /// get back to the heap again. + State state(const Item &item) const { + int i=iimap[item]; + if( i>=0 ) { + if ( container[i].in ) i=0; + else i=-2; + } + return State(i); + } + + /// \brief Sets the state of the \c item in the heap. + /// + /// Sets the state of the \c item in the heap. It can be used to + /// manually clear the heap when it is important to achive the + /// better time complexity. + /// \param i The item. + /// \param st The state. It should not be \c IN_HEAP. + void state(const Item& i, State st) { + switch (st) { + case POST_HEAP: + case PRE_HEAP: + if (state(i) == IN_HEAP) { + erase(i); + } + iimap[i] = st; + break; + case IN_HEAP: + break; + } + } + + private: + + void balance() { + + int maxdeg=int( std::floor( 2.08*log(double(container.size()))))+1; + + std::vector A(maxdeg,-1); + + /* + *Recall that now minimum does not point to the minimum prio element. + *We set minimum to this during balance(). + */ + int anchor=container[minimum].left_neighbor; + int next=minimum; + bool end=false; + + do { + int active=next; + if ( anchor==active ) end=true; + int d=container[active].degree; + next=container[active].right_neighbor; + + while (A[d]!=-1) { + if( comp(container[active].prio, container[A[d]].prio) ) { + fuse(active,A[d]); + } else { + fuse(A[d],active); + active=A[d]; + } + A[d]=-1; + ++d; + } + A[d]=active; + } while ( !end ); + + + while ( container[minimum].parent >=0 ) + minimum=container[minimum].parent; + int s=minimum; + int m=minimum; + do { + if ( comp(container[s].prio, container[minimum].prio) ) minimum=s; + s=container[s].right_neighbor; + } while ( s != m ); + } + + void makeroot(int c) { + int s=c; + do { + container[s].parent=-1; + s=container[s].right_neighbor; + } while ( s != c ); + } + + void cut(int a, int b) { + /* + *Replacing a from the children of b. + */ + --container[b].degree; + + if ( container[b].degree !=0 ) { + int child=container[b].child; + if ( child==a ) + container[b].child=container[child].right_neighbor; + unlace(a); + } + + + /*Lacing a to the roots.*/ + int right=container[minimum].right_neighbor; + container[minimum].right_neighbor=a; + container[a].left_neighbor=minimum; + container[a].right_neighbor=right; + container[right].left_neighbor=a; + + container[a].parent=-1; + container[a].marked=false; + } + + void cascade(int a) { + if ( container[a].parent!=-1 ) { + int p=container[a].parent; + + if ( container[a].marked==false ) container[a].marked=true; + else { + cut(a,p); + cascade(p); + } + } + } + + void fuse(int a, int b) { + unlace(b); + + /*Lacing b under a.*/ + container[b].parent=a; + + if (container[a].degree==0) { + container[b].left_neighbor=b; + container[b].right_neighbor=b; + container[a].child=b; + } else { + int child=container[a].child; + int last_child=container[child].left_neighbor; + container[child].left_neighbor=b; + container[b].right_neighbor=child; + container[last_child].right_neighbor=b; + container[b].left_neighbor=last_child; + } + + ++container[a].degree; + + container[b].marked=false; + } + + /* + *It is invoked only if a has siblings. + */ + void unlace(int a) { + int leftn=container[a].left_neighbor; + int rightn=container[a].right_neighbor; + container[leftn].right_neighbor=rightn; + container[rightn].left_neighbor=leftn; + } + + + class store { + friend class FibHeap; + + Item name; + int parent; + int left_neighbor; + int right_neighbor; + int child; + int degree; + bool marked; + bool in; + Prio prio; + + store() : parent(-1), child(-1), degree(), marked(false), in(true) {} + }; + }; + +} //namespace lemon + +#endif //LEMON_FIB_HEAP_H +