diff -r b67149f0e675 -r a5d8c039f218 lemon/core.h --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/lemon/core.h Tue Jul 15 13:15:39 2008 +0200 @@ -0,0 +1,1851 @@ +/* -*- mode: C++; indent-tabs-mode: nil; -*- + * + * This file is a part of LEMON, a generic C++ optimization library. + * + * Copyright (C) 2003-2008 + * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport + * (Egervary Research Group on Combinatorial Optimization, EGRES). + * + * Permission to use, modify and distribute this software is granted + * provided that this copyright notice appears in all copies. For + * precise terms see the accompanying LICENSE file. + * + * This software is provided "AS IS" with no warranty of any kind, + * express or implied, and with no claim as to its suitability for any + * purpose. + * + */ + +#ifndef LEMON_CORE_H +#define LEMON_CORE_H + +#include +#include + +#include +#include + +///\file +///\brief LEMON core utilities. + +namespace lemon { + + /// \brief Dummy type to make it easier to create invalid iterators. + /// + /// Dummy type to make it easier to create invalid iterators. + /// See \ref INVALID for the usage. + struct Invalid { + public: + bool operator==(Invalid) { return true; } + bool operator!=(Invalid) { return false; } + bool operator< (Invalid) { return false; } + }; + + /// \brief Invalid iterators. + /// + /// \ref Invalid is a global type that converts to each iterator + /// in such a way that the value of the target iterator will be invalid. +#ifdef LEMON_ONLY_TEMPLATES + const Invalid INVALID = Invalid(); +#else + extern const Invalid INVALID; +#endif + + /// \addtogroup gutils + /// @{ + + ///Creates convenience typedefs for the digraph types and iterators + + ///This \c \#define creates convenience typedefs for the following types + ///of \c Digraph: \c Node, \c NodeIt, \c Arc, \c ArcIt, \c InArcIt, + ///\c OutArcIt, \c BoolNodeMap, \c IntNodeMap, \c DoubleNodeMap, + ///\c BoolArcMap, \c IntArcMap, \c DoubleArcMap. + /// + ///\note If the graph type is a dependent type, ie. the graph type depend + ///on a template parameter, then use \c TEMPLATE_DIGRAPH_TYPEDEFS() + ///macro. +#define DIGRAPH_TYPEDEFS(Digraph) \ + typedef Digraph::Node Node; \ + typedef Digraph::NodeIt NodeIt; \ + typedef Digraph::Arc Arc; \ + typedef Digraph::ArcIt ArcIt; \ + typedef Digraph::InArcIt InArcIt; \ + typedef Digraph::OutArcIt OutArcIt; \ + typedef Digraph::NodeMap BoolNodeMap; \ + typedef Digraph::NodeMap IntNodeMap; \ + typedef Digraph::NodeMap DoubleNodeMap; \ + typedef Digraph::ArcMap BoolArcMap; \ + typedef Digraph::ArcMap IntArcMap; \ + typedef Digraph::ArcMap DoubleArcMap + + ///Creates convenience typedefs for the digraph types and iterators + + ///\see DIGRAPH_TYPEDEFS + /// + ///\note Use this macro, if the graph type is a dependent type, + ///ie. the graph type depend on a template parameter. +#define TEMPLATE_DIGRAPH_TYPEDEFS(Digraph) \ + typedef typename Digraph::Node Node; \ + typedef typename Digraph::NodeIt NodeIt; \ + typedef typename Digraph::Arc Arc; \ + typedef typename Digraph::ArcIt ArcIt; \ + typedef typename Digraph::InArcIt InArcIt; \ + typedef typename Digraph::OutArcIt OutArcIt; \ + typedef typename Digraph::template NodeMap BoolNodeMap; \ + typedef typename Digraph::template NodeMap IntNodeMap; \ + typedef typename Digraph::template NodeMap DoubleNodeMap; \ + typedef typename Digraph::template ArcMap BoolArcMap; \ + typedef typename Digraph::template ArcMap IntArcMap; \ + typedef typename Digraph::template ArcMap DoubleArcMap + + ///Creates convenience typedefs for the graph types and iterators + + ///This \c \#define creates the same convenience typedefs as defined + ///by \ref DIGRAPH_TYPEDEFS(Graph) and six more, namely it creates + ///\c Edge, \c EdgeIt, \c IncEdgeIt, \c BoolEdgeMap, \c IntEdgeMap, + ///\c DoubleEdgeMap. + /// + ///\note If the graph type is a dependent type, ie. the graph type depend + ///on a template parameter, then use \c TEMPLATE_DIGRAPH_TYPEDEFS() + ///macro. +#define GRAPH_TYPEDEFS(Graph) \ + DIGRAPH_TYPEDEFS(Graph); \ + typedef Graph::Edge Edge; \ + typedef Graph::EdgeIt EdgeIt; \ + typedef Graph::IncEdgeIt IncEdgeIt; \ + typedef Graph::EdgeMap BoolEdgeMap; \ + typedef Graph::EdgeMap IntEdgeMap; \ + typedef Graph::EdgeMap DoubleEdgeMap + + ///Creates convenience typedefs for the graph types and iterators + + ///\see GRAPH_TYPEDEFS + /// + ///\note Use this macro, if the graph type is a dependent type, + ///ie. the graph type depend on a template parameter. +#define TEMPLATE_GRAPH_TYPEDEFS(Graph) \ + TEMPLATE_DIGRAPH_TYPEDEFS(Graph); \ + typedef typename Graph::Edge Edge; \ + typedef typename Graph::EdgeIt EdgeIt; \ + typedef typename Graph::IncEdgeIt IncEdgeIt; \ + typedef typename Graph::template EdgeMap BoolEdgeMap; \ + typedef typename Graph::template EdgeMap IntEdgeMap; \ + typedef typename Graph::template EdgeMap DoubleEdgeMap + + /// \brief Function to count the items in the graph. + /// + /// This function counts the items (nodes, arcs etc) in the graph. + /// The complexity of the function is O(n) because + /// it iterates on all of the items. + template + inline int countItems(const Graph& g) { + typedef typename ItemSetTraits::ItemIt ItemIt; + int num = 0; + for (ItemIt it(g); it != INVALID; ++it) { + ++num; + } + return num; + } + + // Node counting: + + namespace _core_bits { + + template + struct CountNodesSelector { + static int count(const Graph &g) { + return countItems(g); + } + }; + + template + struct CountNodesSelector< + Graph, typename + enable_if::type> + { + static int count(const Graph &g) { + return g.nodeNum(); + } + }; + } + + /// \brief Function to count the nodes in the graph. + /// + /// This function counts the nodes in the graph. + /// The complexity of the function is O(n) but for some + /// graph structures it is specialized to run in O(1). + /// + /// If the graph contains a \e nodeNum() member function and a + /// \e NodeNumTag tag then this function calls directly the member + /// function to query the cardinality of the node set. + template + inline int countNodes(const Graph& g) { + return _core_bits::CountNodesSelector::count(g); + } + + // Arc counting: + + namespace _core_bits { + + template + struct CountArcsSelector { + static int count(const Graph &g) { + return countItems(g); + } + }; + + template + struct CountArcsSelector< + Graph, + typename enable_if::type> + { + static int count(const Graph &g) { + return g.arcNum(); + } + }; + } + + /// \brief Function to count the arcs in the graph. + /// + /// This function counts the arcs in the graph. + /// The complexity of the function is O(e) but for some + /// graph structures it is specialized to run in O(1). + /// + /// If the graph contains a \e arcNum() member function and a + /// \e EdgeNumTag tag then this function calls directly the member + /// function to query the cardinality of the arc set. + template + inline int countArcs(const Graph& g) { + return _core_bits::CountArcsSelector::count(g); + } + + // Edge counting: + namespace _core_bits { + + template + struct CountEdgesSelector { + static int count(const Graph &g) { + return countItems(g); + } + }; + + template + struct CountEdgesSelector< + Graph, + typename enable_if::type> + { + static int count(const Graph &g) { + return g.edgeNum(); + } + }; + } + + /// \brief Function to count the edges in the graph. + /// + /// This function counts the edges in the graph. + /// The complexity of the function is O(m) but for some + /// graph structures it is specialized to run in O(1). + /// + /// If the graph contains a \e edgeNum() member function and a + /// \e EdgeNumTag tag then this function calls directly the member + /// function to query the cardinality of the edge set. + template + inline int countEdges(const Graph& g) { + return _core_bits::CountEdgesSelector::count(g); + + } + + + template + inline int countNodeDegree(const Graph& _g, const typename Graph::Node& _n) { + int num = 0; + for (DegIt it(_g, _n); it != INVALID; ++it) { + ++num; + } + return num; + } + + /// \brief Function to count the number of the out-arcs from node \c n. + /// + /// This function counts the number of the out-arcs from node \c n + /// in the graph. + template + inline int countOutArcs(const Graph& _g, const typename Graph::Node& _n) { + return countNodeDegree(_g, _n); + } + + /// \brief Function to count the number of the in-arcs to node \c n. + /// + /// This function counts the number of the in-arcs to node \c n + /// in the graph. + template + inline int countInArcs(const Graph& _g, const typename Graph::Node& _n) { + return countNodeDegree(_g, _n); + } + + /// \brief Function to count the number of the inc-edges to node \c n. + /// + /// This function counts the number of the inc-edges to node \c n + /// in the graph. + template + inline int countIncEdges(const Graph& _g, const typename Graph::Node& _n) { + return countNodeDegree(_g, _n); + } + + namespace _core_bits { + + template + class MapCopyBase { + public: + virtual void copy(const Digraph& from, const RefMap& refMap) = 0; + + virtual ~MapCopyBase() {} + }; + + template + class MapCopy : public MapCopyBase { + public: + + MapCopy(ToMap& tmap, const FromMap& map) + : _tmap(tmap), _map(map) {} + + virtual void copy(const Digraph& digraph, const RefMap& refMap) { + typedef typename ItemSetTraits::ItemIt ItemIt; + for (ItemIt it(digraph); it != INVALID; ++it) { + _tmap.set(refMap[it], _map[it]); + } + } + + private: + ToMap& _tmap; + const FromMap& _map; + }; + + template + class ItemCopy : public MapCopyBase { + public: + + ItemCopy(It& it, const Item& item) : _it(it), _item(item) {} + + virtual void copy(const Digraph&, const RefMap& refMap) { + _it = refMap[_item]; + } + + private: + It& _it; + Item _item; + }; + + template + class RefCopy : public MapCopyBase { + public: + + RefCopy(Ref& map) : _map(map) {} + + virtual void copy(const Digraph& digraph, const RefMap& refMap) { + typedef typename ItemSetTraits::ItemIt ItemIt; + for (ItemIt it(digraph); it != INVALID; ++it) { + _map.set(it, refMap[it]); + } + } + + private: + Ref& _map; + }; + + template + class CrossRefCopy : public MapCopyBase { + public: + + CrossRefCopy(CrossRef& cmap) : _cmap(cmap) {} + + virtual void copy(const Digraph& digraph, const RefMap& refMap) { + typedef typename ItemSetTraits::ItemIt ItemIt; + for (ItemIt it(digraph); it != INVALID; ++it) { + _cmap.set(refMap[it], it); + } + } + + private: + CrossRef& _cmap; + }; + + template + struct DigraphCopySelector { + template + static void copy(Digraph &to, const From& from, + NodeRefMap& nodeRefMap, ArcRefMap& arcRefMap) { + for (typename From::NodeIt it(from); it != INVALID; ++it) { + nodeRefMap[it] = to.addNode(); + } + for (typename From::ArcIt it(from); it != INVALID; ++it) { + arcRefMap[it] = to.addArc(nodeRefMap[from.source(it)], + nodeRefMap[from.target(it)]); + } + } + }; + + template + struct DigraphCopySelector< + Digraph, + typename enable_if::type> + { + template + static void copy(Digraph &to, const From& from, + NodeRefMap& nodeRefMap, ArcRefMap& arcRefMap) { + to.build(from, nodeRefMap, arcRefMap); + } + }; + + template + struct GraphCopySelector { + template + static void copy(Graph &to, const From& from, + NodeRefMap& nodeRefMap, EdgeRefMap& edgeRefMap) { + for (typename From::NodeIt it(from); it != INVALID; ++it) { + nodeRefMap[it] = to.addNode(); + } + for (typename From::EdgeIt it(from); it != INVALID; ++it) { + edgeRefMap[it] = to.addEdge(nodeRefMap[from.u(it)], + nodeRefMap[from.v(it)]); + } + } + }; + + template + struct GraphCopySelector< + Graph, + typename enable_if::type> + { + template + static void copy(Graph &to, const From& from, + NodeRefMap& nodeRefMap, EdgeRefMap& edgeRefMap) { + to.build(from, nodeRefMap, edgeRefMap); + } + }; + + } + + /// \brief Class to copy a digraph. + /// + /// Class to copy a digraph to another digraph (duplicate a digraph). The + /// simplest way of using it is through the \c copyDigraph() function. + /// + /// This class not just make a copy of a graph, but it can create + /// references and cross references between the nodes and arcs of + /// the two graphs, it can copy maps for use with the newly created + /// graph and copy nodes and arcs. + /// + /// To make a copy from a graph, first an instance of DigraphCopy + /// should be created, then the data belongs to the graph should + /// assigned to copy. In the end, the \c run() member should be + /// called. + /// + /// The next code copies a graph with several data: + ///\code + /// DigraphCopy dc(new_graph, orig_graph); + /// // create a reference for the nodes + /// OrigGraph::NodeMap nr(orig_graph); + /// dc.nodeRef(nr); + /// // create a cross reference (inverse) for the arcs + /// NewGraph::ArcMap acr(new_graph); + /// dc.arcCrossRef(acr); + /// // copy an arc map + /// OrigGraph::ArcMap oamap(orig_graph); + /// NewGraph::ArcMap namap(new_graph); + /// dc.arcMap(namap, oamap); + /// // copy a node + /// OrigGraph::Node on; + /// NewGraph::Node nn; + /// dc.node(nn, on); + /// // Executions of copy + /// dc.run(); + ///\endcode + template + class DigraphCopy { + private: + + typedef typename From::Node Node; + typedef typename From::NodeIt NodeIt; + typedef typename From::Arc Arc; + typedef typename From::ArcIt ArcIt; + + typedef typename To::Node TNode; + typedef typename To::Arc TArc; + + typedef typename From::template NodeMap NodeRefMap; + typedef typename From::template ArcMap ArcRefMap; + + + public: + + + /// \brief Constructor for the DigraphCopy. + /// + /// It copies the content of the \c _from digraph into the + /// \c _to digraph. + DigraphCopy(To& to, const From& from) + : _from(from), _to(to) {} + + /// \brief Destructor of the DigraphCopy + /// + /// Destructor of the DigraphCopy + ~DigraphCopy() { + for (int i = 0; i < int(_node_maps.size()); ++i) { + delete _node_maps[i]; + } + for (int i = 0; i < int(_arc_maps.size()); ++i) { + delete _arc_maps[i]; + } + + } + + /// \brief Copies the node references into the given map. + /// + /// Copies the node references into the given map. The parameter + /// should be a map, which key type is the Node type of the source + /// graph, while the value type is the Node type of the + /// destination graph. + template + DigraphCopy& nodeRef(NodeRef& map) { + _node_maps.push_back(new _core_bits::RefCopy(map)); + return *this; + } + + /// \brief Copies the node cross references into the given map. + /// + /// Copies the node cross references (reverse references) into + /// the given map. The parameter should be a map, which key type + /// is the Node type of the destination graph, while the value type is + /// the Node type of the source graph. + template + DigraphCopy& nodeCrossRef(NodeCrossRef& map) { + _node_maps.push_back(new _core_bits::CrossRefCopy(map)); + return *this; + } + + /// \brief Make copy of the given map. + /// + /// Makes copy of the given map for the newly created digraph. + /// The new map's key type is the destination graph's node type, + /// and the copied map's key type is the source graph's node type. + template + DigraphCopy& nodeMap(ToMap& tmap, const FromMap& map) { + _node_maps.push_back(new _core_bits::MapCopy(tmap, map)); + return *this; + } + + /// \brief Make a copy of the given node. + /// + /// Make a copy of the given node. + DigraphCopy& node(TNode& tnode, const Node& snode) { + _node_maps.push_back(new _core_bits::ItemCopy(tnode, snode)); + return *this; + } + + /// \brief Copies the arc references into the given map. + /// + /// Copies the arc references into the given map. + template + DigraphCopy& arcRef(ArcRef& map) { + _arc_maps.push_back(new _core_bits::RefCopy(map)); + return *this; + } + + /// \brief Copies the arc cross references into the given map. + /// + /// Copies the arc cross references (reverse references) into + /// the given map. + template + DigraphCopy& arcCrossRef(ArcCrossRef& map) { + _arc_maps.push_back(new _core_bits::CrossRefCopy(map)); + return *this; + } + + /// \brief Make copy of the given map. + /// + /// Makes copy of the given map for the newly created digraph. + /// The new map's key type is the to digraph's arc type, + /// and the copied map's key type is the from digraph's arc + /// type. + template + DigraphCopy& arcMap(ToMap& tmap, const FromMap& map) { + _arc_maps.push_back(new _core_bits::MapCopy(tmap, map)); + return *this; + } + + /// \brief Make a copy of the given arc. + /// + /// Make a copy of the given arc. + DigraphCopy& arc(TArc& tarc, const Arc& sarc) { + _arc_maps.push_back(new _core_bits::ItemCopy(tarc, sarc)); + return *this; + } + + /// \brief Executes the copies. + /// + /// Executes the copies. + void run() { + NodeRefMap nodeRefMap(_from); + ArcRefMap arcRefMap(_from); + _core_bits::DigraphCopySelector:: + copy(_to, _from, nodeRefMap, arcRefMap); + for (int i = 0; i < int(_node_maps.size()); ++i) { + _node_maps[i]->copy(_from, nodeRefMap); + } + for (int i = 0; i < int(_arc_maps.size()); ++i) { + _arc_maps[i]->copy(_from, arcRefMap); + } + } + + protected: + + + const From& _from; + To& _to; + + std::vector<_core_bits::MapCopyBase* > + _node_maps; + + std::vector<_core_bits::MapCopyBase* > + _arc_maps; + + }; + + /// \brief Copy a digraph to another digraph. + /// + /// Copy a digraph to another digraph. The complete usage of the + /// function is detailed in the DigraphCopy class, but a short + /// example shows a basic work: + ///\code + /// copyDigraph(trg, src).nodeRef(nr).arcCrossRef(ecr).run(); + ///\endcode + /// + /// After the copy the \c nr map will contain the mapping from the + /// nodes of the \c from digraph to the nodes of the \c to digraph and + /// \c ecr will contain the mapping from the arcs of the \c to digraph + /// to the arcs of the \c from digraph. + /// + /// \see DigraphCopy + template + DigraphCopy copyDigraph(To& to, const From& from) { + return DigraphCopy(to, from); + } + + /// \brief Class to copy a graph. + /// + /// Class to copy a graph to another graph (duplicate a graph). The + /// simplest way of using it is through the \c copyGraph() function. + /// + /// This class not just make a copy of a graph, but it can create + /// references and cross references between the nodes, edges and arcs of + /// the two graphs, it can copy maps for use with the newly created + /// graph and copy nodes, edges and arcs. + /// + /// To make a copy from a graph, first an instance of GraphCopy + /// should be created, then the data belongs to the graph should + /// assigned to copy. In the end, the \c run() member should be + /// called. + /// + /// The next code copies a graph with several data: + ///\code + /// GraphCopy dc(new_graph, orig_graph); + /// // create a reference for the nodes + /// OrigGraph::NodeMap nr(orig_graph); + /// dc.nodeRef(nr); + /// // create a cross reference (inverse) for the edges + /// NewGraph::EdgeMap ecr(new_graph); + /// dc.edgeCrossRef(ecr); + /// // copy an arc map + /// OrigGraph::ArcMap oamap(orig_graph); + /// NewGraph::ArcMap namap(new_graph); + /// dc.arcMap(namap, oamap); + /// // copy a node + /// OrigGraph::Node on; + /// NewGraph::Node nn; + /// dc.node(nn, on); + /// // Executions of copy + /// dc.run(); + ///\endcode + template + class GraphCopy { + private: + + typedef typename From::Node Node; + typedef typename From::NodeIt NodeIt; + typedef typename From::Arc Arc; + typedef typename From::ArcIt ArcIt; + typedef typename From::Edge Edge; + typedef typename From::EdgeIt EdgeIt; + + typedef typename To::Node TNode; + typedef typename To::Arc TArc; + typedef typename To::Edge TEdge; + + typedef typename From::template NodeMap NodeRefMap; + typedef typename From::template EdgeMap EdgeRefMap; + + struct ArcRefMap { + ArcRefMap(const To& to, const From& from, + const EdgeRefMap& edge_ref, const NodeRefMap& node_ref) + : _to(to), _from(from), + _edge_ref(edge_ref), _node_ref(node_ref) {} + + typedef typename From::Arc Key; + typedef typename To::Arc Value; + + Value operator[](const Key& key) const { + bool forward = _from.u(key) != _from.v(key) ? + _node_ref[_from.source(key)] == + _to.source(_to.direct(_edge_ref[key], true)) : + _from.direction(key); + return _to.direct(_edge_ref[key], forward); + } + + const To& _to; + const From& _from; + const EdgeRefMap& _edge_ref; + const NodeRefMap& _node_ref; + }; + + + public: + + + /// \brief Constructor for the GraphCopy. + /// + /// It copies the content of the \c _from graph into the + /// \c _to graph. + GraphCopy(To& to, const From& from) + : _from(from), _to(to) {} + + /// \brief Destructor of the GraphCopy + /// + /// Destructor of the GraphCopy + ~GraphCopy() { + for (int i = 0; i < int(_node_maps.size()); ++i) { + delete _node_maps[i]; + } + for (int i = 0; i < int(_arc_maps.size()); ++i) { + delete _arc_maps[i]; + } + for (int i = 0; i < int(_edge_maps.size()); ++i) { + delete _edge_maps[i]; + } + + } + + /// \brief Copies the node references into the given map. + /// + /// Copies the node references into the given map. + template + GraphCopy& nodeRef(NodeRef& map) { + _node_maps.push_back(new _core_bits::RefCopy(map)); + return *this; + } + + /// \brief Copies the node cross references into the given map. + /// + /// Copies the node cross references (reverse references) into + /// the given map. + template + GraphCopy& nodeCrossRef(NodeCrossRef& map) { + _node_maps.push_back(new _core_bits::CrossRefCopy(map)); + return *this; + } + + /// \brief Make copy of the given map. + /// + /// Makes copy of the given map for the newly created graph. + /// The new map's key type is the to graph's node type, + /// and the copied map's key type is the from graph's node + /// type. + template + GraphCopy& nodeMap(ToMap& tmap, const FromMap& map) { + _node_maps.push_back(new _core_bits::MapCopy(tmap, map)); + return *this; + } + + /// \brief Make a copy of the given node. + /// + /// Make a copy of the given node. + GraphCopy& node(TNode& tnode, const Node& snode) { + _node_maps.push_back(new _core_bits::ItemCopy(tnode, snode)); + return *this; + } + + /// \brief Copies the arc references into the given map. + /// + /// Copies the arc references into the given map. + template + GraphCopy& arcRef(ArcRef& map) { + _arc_maps.push_back(new _core_bits::RefCopy(map)); + return *this; + } + + /// \brief Copies the arc cross references into the given map. + /// + /// Copies the arc cross references (reverse references) into + /// the given map. + template + GraphCopy& arcCrossRef(ArcCrossRef& map) { + _arc_maps.push_back(new _core_bits::CrossRefCopy(map)); + return *this; + } + + /// \brief Make copy of the given map. + /// + /// Makes copy of the given map for the newly created graph. + /// The new map's key type is the to graph's arc type, + /// and the copied map's key type is the from graph's arc + /// type. + template + GraphCopy& arcMap(ToMap& tmap, const FromMap& map) { + _arc_maps.push_back(new _core_bits::MapCopy(tmap, map)); + return *this; + } + + /// \brief Make a copy of the given arc. + /// + /// Make a copy of the given arc. + GraphCopy& arc(TArc& tarc, const Arc& sarc) { + _arc_maps.push_back(new _core_bits::ItemCopy(tarc, sarc)); + return *this; + } + + /// \brief Copies the edge references into the given map. + /// + /// Copies the edge references into the given map. + template + GraphCopy& edgeRef(EdgeRef& map) { + _edge_maps.push_back(new _core_bits::RefCopy(map)); + return *this; + } + + /// \brief Copies the edge cross references into the given map. + /// + /// Copies the edge cross references (reverse + /// references) into the given map. + template + GraphCopy& edgeCrossRef(EdgeCrossRef& map) { + _edge_maps.push_back(new _core_bits::CrossRefCopy(map)); + return *this; + } + + /// \brief Make copy of the given map. + /// + /// Makes copy of the given map for the newly created graph. + /// The new map's key type is the to graph's edge type, + /// and the copied map's key type is the from graph's edge + /// type. + template + GraphCopy& edgeMap(ToMap& tmap, const FromMap& map) { + _edge_maps.push_back(new _core_bits::MapCopy(tmap, map)); + return *this; + } + + /// \brief Make a copy of the given edge. + /// + /// Make a copy of the given edge. + GraphCopy& edge(TEdge& tedge, const Edge& sedge) { + _edge_maps.push_back(new _core_bits::ItemCopy(tedge, sedge)); + return *this; + } + + /// \brief Executes the copies. + /// + /// Executes the copies. + void run() { + NodeRefMap nodeRefMap(_from); + EdgeRefMap edgeRefMap(_from); + ArcRefMap arcRefMap(_to, _from, edgeRefMap, nodeRefMap); + _core_bits::GraphCopySelector:: + copy(_to, _from, nodeRefMap, edgeRefMap); + for (int i = 0; i < int(_node_maps.size()); ++i) { + _node_maps[i]->copy(_from, nodeRefMap); + } + for (int i = 0; i < int(_edge_maps.size()); ++i) { + _edge_maps[i]->copy(_from, edgeRefMap); + } + for (int i = 0; i < int(_arc_maps.size()); ++i) { + _arc_maps[i]->copy(_from, arcRefMap); + } + } + + private: + + const From& _from; + To& _to; + + std::vector<_core_bits::MapCopyBase* > + _node_maps; + + std::vector<_core_bits::MapCopyBase* > + _arc_maps; + + std::vector<_core_bits::MapCopyBase* > + _edge_maps; + + }; + + /// \brief Copy a graph to another graph. + /// + /// Copy a graph to another graph. The complete usage of the + /// function is detailed in the GraphCopy class, but a short + /// example shows a basic work: + ///\code + /// copyGraph(trg, src).nodeRef(nr).arcCrossRef(ecr).run(); + ///\endcode + /// + /// After the copy the \c nr map will contain the mapping from the + /// nodes of the \c from graph to the nodes of the \c to graph and + /// \c ecr will contain the mapping from the arcs of the \c to graph + /// to the arcs of the \c from graph. + /// + /// \see GraphCopy + template + GraphCopy + copyGraph(To& to, const From& from) { + return GraphCopy(to, from); + } + + namespace _core_bits { + + template + struct FindArcSelector { + typedef typename Graph::Node Node; + typedef typename Graph::Arc Arc; + static Arc find(const Graph &g, Node u, Node v, Arc e) { + if (e == INVALID) { + g.firstOut(e, u); + } else { + g.nextOut(e); + } + while (e != INVALID && g.target(e) != v) { + g.nextOut(e); + } + return e; + } + }; + + template + struct FindArcSelector< + Graph, + typename enable_if::type> + { + typedef typename Graph::Node Node; + typedef typename Graph::Arc Arc; + static Arc find(const Graph &g, Node u, Node v, Arc prev) { + return g.findArc(u, v, prev); + } + }; + } + + /// \brief Finds an arc between two nodes of a graph. + /// + /// Finds an arc from node \c u to node \c v in graph \c g. + /// + /// If \c prev is \ref INVALID (this is the default value), then + /// it finds the first arc from \c u to \c v. Otherwise it looks for + /// the next arc from \c u to \c v after \c prev. + /// \return The found arc or \ref INVALID if there is no such an arc. + /// + /// Thus you can iterate through each arc from \c u to \c v as it follows. + ///\code + /// for(Arc e=findArc(g,u,v);e!=INVALID;e=findArc(g,u,v,e)) { + /// ... + /// } + ///\endcode + /// + ///\sa ArcLookUp + ///\sa AllArcLookUp + ///\sa DynArcLookUp + ///\sa ConArcIt + template + inline typename Graph::Arc + findArc(const Graph &g, typename Graph::Node u, typename Graph::Node v, + typename Graph::Arc prev = INVALID) { + return _core_bits::FindArcSelector::find(g, u, v, prev); + } + + /// \brief Iterator for iterating on arcs connected the same nodes. + /// + /// Iterator for iterating on arcs connected the same nodes. It is + /// higher level interface for the findArc() function. You can + /// use it the following way: + ///\code + /// for (ConArcIt it(g, src, trg); it != INVALID; ++it) { + /// ... + /// } + ///\endcode + /// + ///\sa findArc() + ///\sa ArcLookUp + ///\sa AllArcLookUp + ///\sa DynArcLookUp + template + class ConArcIt : public _Graph::Arc { + public: + + typedef _Graph Graph; + typedef typename Graph::Arc Parent; + + typedef typename Graph::Arc Arc; + typedef typename Graph::Node Node; + + /// \brief Constructor. + /// + /// Construct a new ConArcIt iterating on the arcs which + /// connects the \c u and \c v node. + ConArcIt(const Graph& g, Node u, Node v) : _graph(g) { + Parent::operator=(findArc(_graph, u, v)); + } + + /// \brief Constructor. + /// + /// Construct a new ConArcIt which continues the iterating from + /// the \c e arc. + ConArcIt(const Graph& g, Arc a) : Parent(a), _graph(g) {} + + /// \brief Increment operator. + /// + /// It increments the iterator and gives back the next arc. + ConArcIt& operator++() { + Parent::operator=(findArc(_graph, _graph.source(*this), + _graph.target(*this), *this)); + return *this; + } + private: + const Graph& _graph; + }; + + namespace _core_bits { + + template + struct FindEdgeSelector { + typedef typename Graph::Node Node; + typedef typename Graph::Edge Edge; + static Edge find(const Graph &g, Node u, Node v, Edge e) { + bool b; + if (u != v) { + if (e == INVALID) { + g.firstInc(e, b, u); + } else { + b = g.u(e) == u; + g.nextInc(e, b); + } + while (e != INVALID && (b ? g.v(e) : g.u(e)) != v) { + g.nextInc(e, b); + } + } else { + if (e == INVALID) { + g.firstInc(e, b, u); + } else { + b = true; + g.nextInc(e, b); + } + while (e != INVALID && (!b || g.v(e) != v)) { + g.nextInc(e, b); + } + } + return e; + } + }; + + template + struct FindEdgeSelector< + Graph, + typename enable_if::type> + { + typedef typename Graph::Node Node; + typedef typename Graph::Edge Edge; + static Edge find(const Graph &g, Node u, Node v, Edge prev) { + return g.findEdge(u, v, prev); + } + }; + } + + /// \brief Finds an edge between two nodes of a graph. + /// + /// Finds an edge from node \c u to node \c v in graph \c g. + /// If the node \c u and node \c v is equal then each loop edge + /// will be enumerated once. + /// + /// If \c prev is \ref INVALID (this is the default value), then + /// it finds the first arc from \c u to \c v. Otherwise it looks for + /// the next arc from \c u to \c v after \c prev. + /// \return The found arc or \ref INVALID if there is no such an arc. + /// + /// Thus you can iterate through each arc from \c u to \c v as it follows. + ///\code + /// for(Edge e = findEdge(g,u,v); e != INVALID; + /// e = findEdge(g,u,v,e)) { + /// ... + /// } + ///\endcode + /// + ///\sa ConEdgeIt + + template + inline typename Graph::Edge + findEdge(const Graph &g, typename Graph::Node u, typename Graph::Node v, + typename Graph::Edge p = INVALID) { + return _core_bits::FindEdgeSelector::find(g, u, v, p); + } + + /// \brief Iterator for iterating on edges connected the same nodes. + /// + /// Iterator for iterating on edges connected the same nodes. It is + /// higher level interface for the findEdge() function. You can + /// use it the following way: + ///\code + /// for (ConEdgeIt it(g, src, trg); it != INVALID; ++it) { + /// ... + /// } + ///\endcode + /// + ///\sa findEdge() + template + class ConEdgeIt : public _Graph::Edge { + public: + + typedef _Graph Graph; + typedef typename Graph::Edge Parent; + + typedef typename Graph::Edge Edge; + typedef typename Graph::Node Node; + + /// \brief Constructor. + /// + /// Construct a new ConEdgeIt iterating on the edges which + /// connects the \c u and \c v node. + ConEdgeIt(const Graph& g, Node u, Node v) : _graph(g) { + Parent::operator=(findEdge(_graph, u, v)); + } + + /// \brief Constructor. + /// + /// Construct a new ConEdgeIt which continues the iterating from + /// the \c e edge. + ConEdgeIt(const Graph& g, Edge e) : Parent(e), _graph(g) {} + + /// \brief Increment operator. + /// + /// It increments the iterator and gives back the next edge. + ConEdgeIt& operator++() { + Parent::operator=(findEdge(_graph, _graph.u(*this), + _graph.v(*this), *this)); + return *this; + } + private: + const Graph& _graph; + }; + + + ///Dynamic arc look up between given endpoints. + + ///Using this class, you can find an arc in a digraph from a given + ///source to a given target in amortized time O(log d), + ///where d is the out-degree of the source node. + /// + ///It is possible to find \e all parallel arcs between two nodes with + ///the \c findFirst() and \c findNext() members. + /// + ///See the \ref ArcLookUp and \ref AllArcLookUp classes if your + ///digraph is not changed so frequently. + /// + ///This class uses a self-adjusting binary search tree, Sleator's + ///and Tarjan's Splay tree for guarantee the logarithmic amortized + ///time bound for arc lookups. This class also guarantees the + ///optimal time bound in a constant factor for any distribution of + ///queries. + /// + ///\tparam G The type of the underlying digraph. + /// + ///\sa ArcLookUp + ///\sa AllArcLookUp + template + class DynArcLookUp + : protected ItemSetTraits::ItemNotifier::ObserverBase + { + public: + typedef typename ItemSetTraits + ::ItemNotifier::ObserverBase Parent; + + TEMPLATE_DIGRAPH_TYPEDEFS(G); + typedef G Digraph; + + protected: + + class AutoNodeMap : public ItemSetTraits::template Map::Type { + public: + + typedef typename ItemSetTraits::template Map::Type Parent; + + AutoNodeMap(const G& digraph) : Parent(digraph, INVALID) {} + + virtual void add(const Node& node) { + Parent::add(node); + Parent::set(node, INVALID); + } + + virtual void add(const std::vector& nodes) { + Parent::add(nodes); + for (int i = 0; i < int(nodes.size()); ++i) { + Parent::set(nodes[i], INVALID); + } + } + + virtual void build() { + Parent::build(); + Node it; + typename Parent::Notifier* nf = Parent::notifier(); + for (nf->first(it); it != INVALID; nf->next(it)) { + Parent::set(it, INVALID); + } + } + }; + + const Digraph &_g; + AutoNodeMap _head; + typename Digraph::template ArcMap _parent; + typename Digraph::template ArcMap _left; + typename Digraph::template ArcMap _right; + + class ArcLess { + const Digraph &g; + public: + ArcLess(const Digraph &_g) : g(_g) {} + bool operator()(Arc a,Arc b) const + { + return g.target(a)& arcs) { + for (int i = 0; i < int(arcs.size()); ++i) { + insert(arcs[i]); + } + } + + virtual void erase(const Arc& arc) { + remove(arc); + } + + virtual void erase(const std::vector& arcs) { + for (int i = 0; i < int(arcs.size()); ++i) { + remove(arcs[i]); + } + } + + virtual void build() { + refresh(); + } + + virtual void clear() { + for(NodeIt n(_g);n!=INVALID;++n) { + _head.set(n, INVALID); + } + } + + void insert(Arc arc) { + Node s = _g.source(arc); + Node t = _g.target(arc); + _left.set(arc, INVALID); + _right.set(arc, INVALID); + + Arc e = _head[s]; + if (e == INVALID) { + _head.set(s, arc); + _parent.set(arc, INVALID); + return; + } + while (true) { + if (t < _g.target(e)) { + if (_left[e] == INVALID) { + _left.set(e, arc); + _parent.set(arc, e); + splay(arc); + return; + } else { + e = _left[e]; + } + } else { + if (_right[e] == INVALID) { + _right.set(e, arc); + _parent.set(arc, e); + splay(arc); + return; + } else { + e = _right[e]; + } + } + } + } + + void remove(Arc arc) { + if (_left[arc] == INVALID) { + if (_right[arc] != INVALID) { + _parent.set(_right[arc], _parent[arc]); + } + if (_parent[arc] != INVALID) { + if (_left[_parent[arc]] == arc) { + _left.set(_parent[arc], _right[arc]); + } else { + _right.set(_parent[arc], _right[arc]); + } + } else { + _head.set(_g.source(arc), _right[arc]); + } + } else if (_right[arc] == INVALID) { + _parent.set(_left[arc], _parent[arc]); + if (_parent[arc] != INVALID) { + if (_left[_parent[arc]] == arc) { + _left.set(_parent[arc], _left[arc]); + } else { + _right.set(_parent[arc], _left[arc]); + } + } else { + _head.set(_g.source(arc), _left[arc]); + } + } else { + Arc e = _left[arc]; + if (_right[e] != INVALID) { + e = _right[e]; + while (_right[e] != INVALID) { + e = _right[e]; + } + Arc s = _parent[e]; + _right.set(_parent[e], _left[e]); + if (_left[e] != INVALID) { + _parent.set(_left[e], _parent[e]); + } + + _left.set(e, _left[arc]); + _parent.set(_left[arc], e); + _right.set(e, _right[arc]); + _parent.set(_right[arc], e); + + _parent.set(e, _parent[arc]); + if (_parent[arc] != INVALID) { + if (_left[_parent[arc]] == arc) { + _left.set(_parent[arc], e); + } else { + _right.set(_parent[arc], e); + } + } + splay(s); + } else { + _right.set(e, _right[arc]); + _parent.set(_right[arc], e); + + if (_parent[arc] != INVALID) { + if (_left[_parent[arc]] == arc) { + _left.set(_parent[arc], e); + } else { + _right.set(_parent[arc], e); + } + } else { + _head.set(_g.source(arc), e); + } + } + } + } + + Arc refreshRec(std::vector &v,int a,int b) + { + int m=(a+b)/2; + Arc me=v[m]; + if (a < m) { + Arc left = refreshRec(v,a,m-1); + _left.set(me, left); + _parent.set(left, me); + } else { + _left.set(me, INVALID); + } + if (m < b) { + Arc right = refreshRec(v,m+1,b); + _right.set(me, right); + _parent.set(right, me); + } else { + _right.set(me, INVALID); + } + return me; + } + + void refresh() { + for(NodeIt n(_g);n!=INVALID;++n) { + std::vector v; + for(OutArcIt e(_g,n);e!=INVALID;++e) v.push_back(e); + if(v.size()) { + std::sort(v.begin(),v.end(),ArcLess(_g)); + Arc head = refreshRec(v,0,v.size()-1); + _head.set(n, head); + _parent.set(head, INVALID); + } + else _head.set(n, INVALID); + } + } + + void zig(Arc v) { + Arc w = _parent[v]; + _parent.set(v, _parent[w]); + _parent.set(w, v); + _left.set(w, _right[v]); + _right.set(v, w); + if (_parent[v] != INVALID) { + if (_right[_parent[v]] == w) { + _right.set(_parent[v], v); + } else { + _left.set(_parent[v], v); + } + } + if (_left[w] != INVALID){ + _parent.set(_left[w], w); + } + } + + void zag(Arc v) { + Arc w = _parent[v]; + _parent.set(v, _parent[w]); + _parent.set(w, v); + _right.set(w, _left[v]); + _left.set(v, w); + if (_parent[v] != INVALID){ + if (_left[_parent[v]] == w) { + _left.set(_parent[v], v); + } else { + _right.set(_parent[v], v); + } + } + if (_right[w] != INVALID){ + _parent.set(_right[w], w); + } + } + + void splay(Arc v) { + while (_parent[v] != INVALID) { + if (v == _left[_parent[v]]) { + if (_parent[_parent[v]] == INVALID) { + zig(v); + } else { + if (_parent[v] == _left[_parent[_parent[v]]]) { + zig(_parent[v]); + zig(v); + } else { + zig(v); + zag(v); + } + } + } else { + if (_parent[_parent[v]] == INVALID) { + zag(v); + } else { + if (_parent[v] == _left[_parent[_parent[v]]]) { + zag(v); + zig(v); + } else { + zag(_parent[v]); + zag(v); + } + } + } + } + _head[_g.source(v)] = v; + } + + + public: + + ///Find an arc between two nodes. + + ///Find an arc between two nodes in time O(logd), where + /// d is the number of outgoing arcs of \c s. + ///\param s The source node + ///\param t The target node + ///\return An arc from \c s to \c t if there exists, + ///\ref INVALID otherwise. + Arc operator()(Node s, Node t) const + { + Arc a = _head[s]; + while (true) { + if (_g.target(a) == t) { + const_cast(*this).splay(a); + return a; + } else if (t < _g.target(a)) { + if (_left[a] == INVALID) { + const_cast(*this).splay(a); + return INVALID; + } else { + a = _left[a]; + } + } else { + if (_right[a] == INVALID) { + const_cast(*this).splay(a); + return INVALID; + } else { + a = _right[a]; + } + } + } + } + + ///Find the first arc between two nodes. + + ///Find the first arc between two nodes in time + /// O(logd), where d is the number of + /// outgoing arcs of \c s. + ///\param s The source node + ///\param t The target node + ///\return An arc from \c s to \c t if there exists, \ref INVALID + /// otherwise. + Arc findFirst(Node s, Node t) const + { + Arc a = _head[s]; + Arc r = INVALID; + while (true) { + if (_g.target(a) < t) { + if (_right[a] == INVALID) { + const_cast(*this).splay(a); + return r; + } else { + a = _right[a]; + } + } else { + if (_g.target(a) == t) { + r = a; + } + if (_left[a] == INVALID) { + const_cast(*this).splay(a); + return r; + } else { + a = _left[a]; + } + } + } + } + + ///Find the next arc between two nodes. + + ///Find the next arc between two nodes in time + /// O(logd), where d is the number of + /// outgoing arcs of \c s. + ///\param s The source node + ///\param t The target node + ///\return An arc from \c s to \c t if there exists, \ref INVALID + /// otherwise. + + ///\note If \c e is not the result of the previous \c findFirst() + ///operation then the amorized time bound can not be guaranteed. +#ifdef DOXYGEN + Arc findNext(Node s, Node t, Arc a) const +#else + Arc findNext(Node, Node t, Arc a) const +#endif + { + if (_right[a] != INVALID) { + a = _right[a]; + while (_left[a] != INVALID) { + a = _left[a]; + } + const_cast(*this).splay(a); + } else { + while (_parent[a] != INVALID && _right[_parent[a]] == a) { + a = _parent[a]; + } + if (_parent[a] == INVALID) { + return INVALID; + } else { + a = _parent[a]; + const_cast(*this).splay(a); + } + } + if (_g.target(a) == t) return a; + else return INVALID; + } + + }; + + ///Fast arc look up between given endpoints. + + ///Using this class, you can find an arc in a digraph from a given + ///source to a given target in time O(log d), + ///where d is the out-degree of the source node. + /// + ///It is not possible to find \e all parallel arcs between two nodes. + ///Use \ref AllArcLookUp for this purpose. + /// + ///\warning This class is static, so you should refresh() (or at least + ///refresh(Node)) this data structure + ///whenever the digraph changes. This is a time consuming (superlinearly + ///proportional (O(mlogm)) to the number of arcs). + /// + ///\tparam G The type of the underlying digraph. + /// + ///\sa DynArcLookUp + ///\sa AllArcLookUp + template + class ArcLookUp + { + public: + TEMPLATE_DIGRAPH_TYPEDEFS(G); + typedef G Digraph; + + protected: + const Digraph &_g; + typename Digraph::template NodeMap _head; + typename Digraph::template ArcMap _left; + typename Digraph::template ArcMap _right; + + class ArcLess { + const Digraph &g; + public: + ArcLess(const Digraph &_g) : g(_g) {} + bool operator()(Arc a,Arc b) const + { + return g.target(a) &v,int a,int b) + { + int m=(a+b)/2; + Arc me=v[m]; + _left[me] = aO(dlogd), where d is + ///the number of the outgoing arcs of \c n. + void refresh(Node n) + { + std::vector v; + for(OutArcIt e(_g,n);e!=INVALID;++e) v.push_back(e); + if(v.size()) { + std::sort(v.begin(),v.end(),ArcLess(_g)); + _head[n]=refreshRec(v,0,v.size()-1); + } + else _head[n]=INVALID; + } + ///Refresh the full data structure. + + ///Build up the full search database. In fact, it simply calls + ///\ref refresh(Node) "refresh(n)" for each node \c n. + /// + ///It runs in time O(mlogD), where m is + ///the number of the arcs of \c n and D is the maximum + ///out-degree of the digraph. + + void refresh() + { + for(NodeIt n(_g);n!=INVALID;++n) refresh(n); + } + + ///Find an arc between two nodes. + + ///Find an arc between two nodes in time O(logd), where + /// d is the number of outgoing arcs of \c s. + ///\param s The source node + ///\param t The target node + ///\return An arc from \c s to \c t if there exists, + ///\ref INVALID otherwise. + /// + ///\warning If you change the digraph, refresh() must be called before using + ///this operator. If you change the outgoing arcs of + ///a single node \c n, then + ///\ref refresh(Node) "refresh(n)" is enough. + /// + Arc operator()(Node s, Node t) const + { + Arc e; + for(e=_head[s]; + e!=INVALID&&_g.target(e)!=t; + e = t < _g.target(e)?_left[e]:_right[e]) ; + return e; + } + + }; + + ///Fast look up of all arcs between given endpoints. + + ///This class is the same as \ref ArcLookUp, with the addition + ///that it makes it possible to find all arcs between given endpoints. + /// + ///\warning This class is static, so you should refresh() (or at least + ///refresh(Node)) this data structure + ///whenever the digraph changes. This is a time consuming (superlinearly + ///proportional (O(mlogm)) to the number of arcs). + /// + ///\tparam G The type of the underlying digraph. + /// + ///\sa DynArcLookUp + ///\sa ArcLookUp + template + class AllArcLookUp : public ArcLookUp + { + using ArcLookUp::_g; + using ArcLookUp::_right; + using ArcLookUp::_left; + using ArcLookUp::_head; + + TEMPLATE_DIGRAPH_TYPEDEFS(G); + typedef G Digraph; + + typename Digraph::template ArcMap _next; + + Arc refreshNext(Arc head,Arc next=INVALID) + { + if(head==INVALID) return next; + else { + next=refreshNext(_right[head],next); +// _next[head]=next; + _next[head]=( next!=INVALID && _g.target(next)==_g.target(head)) + ? next : INVALID; + return refreshNext(_left[head],head); + } + } + + void refreshNext() + { + for(NodeIt n(_g);n!=INVALID;++n) refreshNext(_head[n]); + } + + public: + ///Constructor + + ///Constructor. + /// + ///It builds up the search database, which remains valid until the digraph + ///changes. + AllArcLookUp(const Digraph &g) : ArcLookUp(g), _next(g) {refreshNext();} + + ///Refresh the data structure at a node. + + ///Build up the search database of node \c n. + /// + ///It runs in time O(dlogd), where d is + ///the number of the outgoing arcs of \c n. + + void refresh(Node n) + { + ArcLookUp::refresh(n); + refreshNext(_head[n]); + } + + ///Refresh the full data structure. + + ///Build up the full search database. In fact, it simply calls + ///\ref refresh(Node) "refresh(n)" for each node \c n. + /// + ///It runs in time O(mlogD), where m is + ///the number of the arcs of \c n and D is the maximum + ///out-degree of the digraph. + + void refresh() + { + for(NodeIt n(_g);n!=INVALID;++n) refresh(_head[n]); + } + + ///Find an arc between two nodes. + + ///Find an arc between two nodes. + ///\param s The source node + ///\param t The target node + ///\param prev The previous arc between \c s and \c t. It it is INVALID or + ///not given, the operator finds the first appropriate arc. + ///\return An arc from \c s to \c t after \c prev or + ///\ref INVALID if there is no more. + /// + ///For example, you can count the number of arcs from \c u to \c v in the + ///following way. + ///\code + ///AllArcLookUp ae(g); + ///... + ///int n=0; + ///for(Arc e=ae(u,v);e!=INVALID;e=ae(u,v,e)) n++; + ///\endcode + /// + ///Finding the first arc take O(logd) time, where + /// d is the number of outgoing arcs of \c s. Then, the + ///consecutive arcs are found in constant time. + /// + ///\warning If you change the digraph, refresh() must be called before using + ///this operator. If you change the outgoing arcs of + ///a single node \c n, then + ///\ref refresh(Node) "refresh(n)" is enough. + /// +#ifdef DOXYGEN + Arc operator()(Node s, Node t, Arc prev=INVALID) const {} +#else + using ArcLookUp::operator() ; + Arc operator()(Node s, Node t, Arc prev) const + { + return prev==INVALID?(*this)(s,t):_next[prev]; + } +#endif + + }; + + /// @} + +} //namespace lemon + +#endif