# HG changeset patch # User Balazs Dezso # Date 1267694222 -3600 # Node ID 86613aa28a0ce5afcae34ad41acd910079f97394 # Parent 61120524af27864803c669d537d0b9f2484abeb6 Fix documentation issues (#314) diff -r 61120524af27 -r 86613aa28a0c lemon/fractional_matching.h --- a/lemon/fractional_matching.h Sat Sep 26 10:17:31 2009 +0200 +++ b/lemon/fractional_matching.h Thu Mar 04 10:17:02 2010 +0100 @@ -111,7 +111,7 @@ /// solution) can be obtained using the query functions. /// /// The primal solution is multiplied by - /// \ref MaxWeightedMatching::primalScale "2". + /// \ref MaxFractionalMatching::primalScale "2". /// /// \tparam GR The undirected graph type the algorithm runs on. #ifdef DOXYGEN @@ -632,9 +632,8 @@ /// \brief Weighted fractional matching in general graphs /// /// This class provides an efficient implementation of fractional - /// matching algorithm. The implementation is based on extensive use - /// of priority queues and provides \f$O(nm\log n)\f$ time - /// complexity. + /// matching algorithm. The implementation uses priority queues and + /// provides \f$O(nm\log n)\f$ time complexity. /// /// The maximum weighted fractional matching is a relaxation of the /// maximum weighted matching problem where the odd set constraints @@ -653,7 +652,7 @@ /// problem is the following. /// \f[ y_u + y_v \ge w_{uv} \quad \forall uv\in E\f] /// \f[y_u \ge 0 \quad \forall u \in V\f] - /// \f[\min \sum_{u \in V}y_u \f] /// + /// \f[\min \sum_{u \in V}y_u \f] /// /// The algorithm can be executed with the run() function. /// After it the matching (the primal solution) and the dual solution @@ -661,8 +660,8 @@ /// /// If the value type is integer, then the primal and the dual /// solutions are multiplied by - /// \ref MaxWeightedMatching::primalScale "2" and - /// \ref MaxWeightedMatching::dualScale "4" respectively. + /// \ref MaxWeightedFractionalMatching::primalScale "2" and + /// \ref MaxWeightedFractionalMatching::dualScale "4" respectively. /// /// \tparam GR The undirected graph type the algorithm runs on. /// \tparam WM The type edge weight map. The default type is @@ -1270,7 +1269,7 @@ /// \brief Run the algorithm. /// - /// This method runs the \c %MaxWeightedMatching algorithm. + /// This method runs the \c %MaxWeightedFractionalMatching algorithm. /// /// \note mwfm.run() is just a shortcut of the following code. /// \code @@ -1400,9 +1399,8 @@ /// \brief Weighted fractional perfect matching in general graphs /// /// This class provides an efficient implementation of fractional - /// matching algorithm. The implementation is based on extensive use - /// of priority queues and provides \f$O(nm\log n)\f$ time - /// complexity. + /// matching algorithm. The implementation uses priority queues and + /// provides \f$O(nm\log n)\f$ time complexity. /// /// The maximum weighted fractional perfect matching is a relaxation /// of the maximum weighted perfect matching problem where the odd @@ -1420,7 +1418,7 @@ /// used to check the result of the algorithm. The dual linear /// problem is the following. /// \f[ y_u + y_v \ge w_{uv} \quad \forall uv\in E\f] - /// \f[\min \sum_{u \in V}y_u \f] /// + /// \f[\min \sum_{u \in V}y_u \f] /// /// The algorithm can be executed with the run() function. /// After it the matching (the primal solution) and the dual solution @@ -1428,8 +1426,8 @@ /// If the value type is integer, then the primal and the dual /// solutions are multiplied by - /// \ref MaxWeightedMatching::primalScale "2" and - /// \ref MaxWeightedMatching::dualScale "4" respectively. + /// \ref MaxWeightedPerfectFractionalMatching::primalScale "2" and + /// \ref MaxWeightedPerfectFractionalMatching::dualScale "4" respectively. /// /// \tparam GR The undirected graph type the algorithm runs on. /// \tparam WM The type edge weight map. The default type is @@ -2005,7 +2003,8 @@ /// \brief Run the algorithm. /// - /// This method runs the \c %MaxWeightedMatching algorithm. + /// This method runs the \c %MaxWeightedPerfectFractionalMatching + /// algorithm. /// /// \note mwfm.run() is just a shortcut of the following code. /// \code