Location: LEMON/LEMON-main/lemon/core.h - annotation
Load file history
New queue implementation for HaoOrlin class (#58)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 | r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r319:5e12d7734036 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r229:aebc0161f6e5 r229:aebc0161f6e5 r233:28239207a8a3 r229:aebc0161f6e5 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r300:8c05947fc107 r220:a5d8c039f218 r282:dc9e8d2c0df9 r282:dc9e8d2c0df9 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r300:8c05947fc107 r220:a5d8c039f218 r300:8c05947fc107 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r300:8c05947fc107 r220:a5d8c039f218 r300:8c05947fc107 r220:a5d8c039f218 r282:dc9e8d2c0df9 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r282:dc9e8d2c0df9 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r300:8c05947fc107 r220:a5d8c039f218 r300:8c05947fc107 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r300:8c05947fc107 r220:a5d8c039f218 r282:dc9e8d2c0df9 r220:a5d8c039f218 r282:dc9e8d2c0df9 r282:dc9e8d2c0df9 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r282:dc9e8d2c0df9 r282:dc9e8d2c0df9 r220:a5d8c039f218 r282:dc9e8d2c0df9 r282:dc9e8d2c0df9 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r282:dc9e8d2c0df9 r282:dc9e8d2c0df9 r220:a5d8c039f218 r282:dc9e8d2c0df9 r282:dc9e8d2c0df9 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r282:dc9e8d2c0df9 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r282:dc9e8d2c0df9 r282:dc9e8d2c0df9 r220:a5d8c039f218 r282:dc9e8d2c0df9 r282:dc9e8d2c0df9 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r282:dc9e8d2c0df9 r220:a5d8c039f218 r282:dc9e8d2c0df9 r282:dc9e8d2c0df9 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r282:dc9e8d2c0df9 r220:a5d8c039f218 r282:dc9e8d2c0df9 r282:dc9e8d2c0df9 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r282:dc9e8d2c0df9 r220:a5d8c039f218 r282:dc9e8d2c0df9 r282:dc9e8d2c0df9 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r282:dc9e8d2c0df9 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r282:dc9e8d2c0df9 r282:dc9e8d2c0df9 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r282:dc9e8d2c0df9 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r282:dc9e8d2c0df9 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r282:dc9e8d2c0df9 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r282:dc9e8d2c0df9 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r282:dc9e8d2c0df9 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r282:dc9e8d2c0df9 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r282:dc9e8d2c0df9 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r282:dc9e8d2c0df9 r220:a5d8c039f218 r282:dc9e8d2c0df9 r220:a5d8c039f218 r282:dc9e8d2c0df9 r282:dc9e8d2c0df9 r220:a5d8c039f218 r282:dc9e8d2c0df9 r282:dc9e8d2c0df9 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r282:dc9e8d2c0df9 r220:a5d8c039f218 r282:dc9e8d2c0df9 r282:dc9e8d2c0df9 r220:a5d8c039f218 r282:dc9e8d2c0df9 r282:dc9e8d2c0df9 r220:a5d8c039f218 r282:dc9e8d2c0df9 r282:dc9e8d2c0df9 r220:a5d8c039f218 r220:a5d8c039f218 r282:dc9e8d2c0df9 r282:dc9e8d2c0df9 r220:a5d8c039f218 r220:a5d8c039f218 r282:dc9e8d2c0df9 r282:dc9e8d2c0df9 r282:dc9e8d2c0df9 r220:a5d8c039f218 r282:dc9e8d2c0df9 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r282:dc9e8d2c0df9 r220:a5d8c039f218 r282:dc9e8d2c0df9 r282:dc9e8d2c0df9 r282:dc9e8d2c0df9 r220:a5d8c039f218 r220:a5d8c039f218 r282:dc9e8d2c0df9 r220:a5d8c039f218 r282:dc9e8d2c0df9 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r282:dc9e8d2c0df9 r220:a5d8c039f218 r282:dc9e8d2c0df9 r282:dc9e8d2c0df9 r282:dc9e8d2c0df9 r282:dc9e8d2c0df9 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r282:dc9e8d2c0df9 r220:a5d8c039f218 r282:dc9e8d2c0df9 r282:dc9e8d2c0df9 r282:dc9e8d2c0df9 r282:dc9e8d2c0df9 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r282:dc9e8d2c0df9 r220:a5d8c039f218 r282:dc9e8d2c0df9 r282:dc9e8d2c0df9 r282:dc9e8d2c0df9 r282:dc9e8d2c0df9 r282:dc9e8d2c0df9 r282:dc9e8d2c0df9 r282:dc9e8d2c0df9 r220:a5d8c039f218 r282:dc9e8d2c0df9 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r282:dc9e8d2c0df9 r282:dc9e8d2c0df9 r220:a5d8c039f218 r282:dc9e8d2c0df9 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r282:dc9e8d2c0df9 r220:a5d8c039f218 r282:dc9e8d2c0df9 r282:dc9e8d2c0df9 r282:dc9e8d2c0df9 r282:dc9e8d2c0df9 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r282:dc9e8d2c0df9 r220:a5d8c039f218 r282:dc9e8d2c0df9 r282:dc9e8d2c0df9 r282:dc9e8d2c0df9 r282:dc9e8d2c0df9 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r282:dc9e8d2c0df9 r220:a5d8c039f218 r282:dc9e8d2c0df9 r282:dc9e8d2c0df9 r282:dc9e8d2c0df9 r282:dc9e8d2c0df9 r282:dc9e8d2c0df9 r282:dc9e8d2c0df9 r282:dc9e8d2c0df9 r220:a5d8c039f218 r282:dc9e8d2c0df9 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r282:dc9e8d2c0df9 r282:dc9e8d2c0df9 r220:a5d8c039f218 r282:dc9e8d2c0df9 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r282:dc9e8d2c0df9 r220:a5d8c039f218 r282:dc9e8d2c0df9 r282:dc9e8d2c0df9 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r282:dc9e8d2c0df9 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r282:dc9e8d2c0df9 r220:a5d8c039f218 r220:a5d8c039f218 r282:dc9e8d2c0df9 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r282:dc9e8d2c0df9 r282:dc9e8d2c0df9 r282:dc9e8d2c0df9 r220:a5d8c039f218 r282:dc9e8d2c0df9 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r282:dc9e8d2c0df9 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r282:dc9e8d2c0df9 r282:dc9e8d2c0df9 r282:dc9e8d2c0df9 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r282:dc9e8d2c0df9 r220:a5d8c039f218 r282:dc9e8d2c0df9 r220:a5d8c039f218 r282:dc9e8d2c0df9 r282:dc9e8d2c0df9 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r282:dc9e8d2c0df9 r282:dc9e8d2c0df9 r220:a5d8c039f218 r282:dc9e8d2c0df9 r282:dc9e8d2c0df9 r282:dc9e8d2c0df9 r282:dc9e8d2c0df9 r282:dc9e8d2c0df9 r282:dc9e8d2c0df9 r282:dc9e8d2c0df9 r282:dc9e8d2c0df9 r282:dc9e8d2c0df9 r220:a5d8c039f218 r220:a5d8c039f218 r282:dc9e8d2c0df9 r282:dc9e8d2c0df9 r282:dc9e8d2c0df9 r220:a5d8c039f218 r282:dc9e8d2c0df9 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r282:dc9e8d2c0df9 r220:a5d8c039f218 r282:dc9e8d2c0df9 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r282:dc9e8d2c0df9 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r282:dc9e8d2c0df9 r220:a5d8c039f218 r282:dc9e8d2c0df9 r282:dc9e8d2c0df9 r282:dc9e8d2c0df9 r220:a5d8c039f218 r220:a5d8c039f218 r282:dc9e8d2c0df9 r220:a5d8c039f218 r282:dc9e8d2c0df9 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r282:dc9e8d2c0df9 r220:a5d8c039f218 r282:dc9e8d2c0df9 r282:dc9e8d2c0df9 r282:dc9e8d2c0df9 r282:dc9e8d2c0df9 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r282:dc9e8d2c0df9 r220:a5d8c039f218 r282:dc9e8d2c0df9 r282:dc9e8d2c0df9 r282:dc9e8d2c0df9 r282:dc9e8d2c0df9 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r282:dc9e8d2c0df9 r220:a5d8c039f218 r282:dc9e8d2c0df9 r282:dc9e8d2c0df9 r282:dc9e8d2c0df9 r282:dc9e8d2c0df9 r282:dc9e8d2c0df9 r282:dc9e8d2c0df9 r282:dc9e8d2c0df9 r220:a5d8c039f218 r282:dc9e8d2c0df9 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r282:dc9e8d2c0df9 r282:dc9e8d2c0df9 r220:a5d8c039f218 r282:dc9e8d2c0df9 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r282:dc9e8d2c0df9 r220:a5d8c039f218 r282:dc9e8d2c0df9 r282:dc9e8d2c0df9 r282:dc9e8d2c0df9 r282:dc9e8d2c0df9 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r282:dc9e8d2c0df9 r220:a5d8c039f218 r282:dc9e8d2c0df9 r282:dc9e8d2c0df9 r282:dc9e8d2c0df9 r282:dc9e8d2c0df9 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r282:dc9e8d2c0df9 r220:a5d8c039f218 r282:dc9e8d2c0df9 r282:dc9e8d2c0df9 r282:dc9e8d2c0df9 r282:dc9e8d2c0df9 r282:dc9e8d2c0df9 r282:dc9e8d2c0df9 r282:dc9e8d2c0df9 r220:a5d8c039f218 r282:dc9e8d2c0df9 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r282:dc9e8d2c0df9 r282:dc9e8d2c0df9 r220:a5d8c039f218 r282:dc9e8d2c0df9 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r282:dc9e8d2c0df9 r220:a5d8c039f218 r282:dc9e8d2c0df9 r282:dc9e8d2c0df9 r282:dc9e8d2c0df9 r282:dc9e8d2c0df9 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r282:dc9e8d2c0df9 r220:a5d8c039f218 r282:dc9e8d2c0df9 r282:dc9e8d2c0df9 r282:dc9e8d2c0df9 r282:dc9e8d2c0df9 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r282:dc9e8d2c0df9 r220:a5d8c039f218 r282:dc9e8d2c0df9 r282:dc9e8d2c0df9 r282:dc9e8d2c0df9 r282:dc9e8d2c0df9 r282:dc9e8d2c0df9 r282:dc9e8d2c0df9 r282:dc9e8d2c0df9 r220:a5d8c039f218 r282:dc9e8d2c0df9 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r282:dc9e8d2c0df9 r282:dc9e8d2c0df9 r220:a5d8c039f218 r282:dc9e8d2c0df9 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r282:dc9e8d2c0df9 r220:a5d8c039f218 r282:dc9e8d2c0df9 r282:dc9e8d2c0df9 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r282:dc9e8d2c0df9 r220:a5d8c039f218 r282:dc9e8d2c0df9 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r282:dc9e8d2c0df9 r220:a5d8c039f218 r220:a5d8c039f218 r282:dc9e8d2c0df9 r220:a5d8c039f218 r220:a5d8c039f218 r282:dc9e8d2c0df9 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r282:dc9e8d2c0df9 r282:dc9e8d2c0df9 r282:dc9e8d2c0df9 r220:a5d8c039f218 r282:dc9e8d2c0df9 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r282:dc9e8d2c0df9 r282:dc9e8d2c0df9 r220:a5d8c039f218 r220:a5d8c039f218 r282:dc9e8d2c0df9 r282:dc9e8d2c0df9 r282:dc9e8d2c0df9 r282:dc9e8d2c0df9 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r282:dc9e8d2c0df9 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r282:dc9e8d2c0df9 r220:a5d8c039f218 r282:dc9e8d2c0df9 r282:dc9e8d2c0df9 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r282:dc9e8d2c0df9 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r282:dc9e8d2c0df9 r282:dc9e8d2c0df9 r282:dc9e8d2c0df9 r220:a5d8c039f218 r282:dc9e8d2c0df9 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r282:dc9e8d2c0df9 r220:a5d8c039f218 r282:dc9e8d2c0df9 r282:dc9e8d2c0df9 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r282:dc9e8d2c0df9 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r282:dc9e8d2c0df9 r282:dc9e8d2c0df9 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r282:dc9e8d2c0df9 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r282:dc9e8d2c0df9 r220:a5d8c039f218 r282:dc9e8d2c0df9 r282:dc9e8d2c0df9 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r282:dc9e8d2c0df9 r282:dc9e8d2c0df9 r282:dc9e8d2c0df9 r220:a5d8c039f218 r282:dc9e8d2c0df9 r282:dc9e8d2c0df9 r220:a5d8c039f218 r282:dc9e8d2c0df9 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r282:dc9e8d2c0df9 r282:dc9e8d2c0df9 r282:dc9e8d2c0df9 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r282:dc9e8d2c0df9 r220:a5d8c039f218 r282:dc9e8d2c0df9 r282:dc9e8d2c0df9 r220:a5d8c039f218 r220:a5d8c039f218 r282:dc9e8d2c0df9 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r282:dc9e8d2c0df9 r282:dc9e8d2c0df9 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r282:dc9e8d2c0df9 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r282:dc9e8d2c0df9 r220:a5d8c039f218 r220:a5d8c039f218 r282:dc9e8d2c0df9 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r233:28239207a8a3 r220:a5d8c039f218 r282:dc9e8d2c0df9 r282:dc9e8d2c0df9 r220:a5d8c039f218 r282:dc9e8d2c0df9 r282:dc9e8d2c0df9 r282:dc9e8d2c0df9 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r232:e39056157d24 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r233:28239207a8a3 r233:28239207a8a3 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r233:28239207a8a3 r282:dc9e8d2c0df9 r282:dc9e8d2c0df9 r233:28239207a8a3 r233:28239207a8a3 r233:28239207a8a3 r233:28239207a8a3 r233:28239207a8a3 r233:28239207a8a3 r233:28239207a8a3 r233:28239207a8a3 r233:28239207a8a3 r233:28239207a8a3 r282:dc9e8d2c0df9 r282:dc9e8d2c0df9 r233:28239207a8a3 r233:28239207a8a3 r282:dc9e8d2c0df9 r233:28239207a8a3 r233:28239207a8a3 r233:28239207a8a3 r233:28239207a8a3 r233:28239207a8a3 r282:dc9e8d2c0df9 r282:dc9e8d2c0df9 r313:64f8f7cc6168 r233:28239207a8a3 r233:28239207a8a3 r233:28239207a8a3 r233:28239207a8a3 r233:28239207a8a3 r233:28239207a8a3 r233:28239207a8a3 r233:28239207a8a3 r233:28239207a8a3 r233:28239207a8a3 r233:28239207a8a3 r233:28239207a8a3 r233:28239207a8a3 r233:28239207a8a3 r233:28239207a8a3 r233:28239207a8a3 r233:28239207a8a3 r233:28239207a8a3 r233:28239207a8a3 r233:28239207a8a3 r233:28239207a8a3 r233:28239207a8a3 r233:28239207a8a3 r233:28239207a8a3 r233:28239207a8a3 r233:28239207a8a3 r233:28239207a8a3 r233:28239207a8a3 r233:28239207a8a3 r233:28239207a8a3 r233:28239207a8a3 r233:28239207a8a3 r233:28239207a8a3 r220:a5d8c039f218 r233:28239207a8a3 r233:28239207a8a3 r233:28239207a8a3 r233:28239207a8a3 r233:28239207a8a3 r220:a5d8c039f218 r220:a5d8c039f218 r233:28239207a8a3 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r233:28239207a8a3 r233:28239207a8a3 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r282:dc9e8d2c0df9 r220:a5d8c039f218 r220:a5d8c039f218 r282:dc9e8d2c0df9 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r282:dc9e8d2c0df9 r282:dc9e8d2c0df9 r282:dc9e8d2c0df9 r282:dc9e8d2c0df9 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r282:dc9e8d2c0df9 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r282:dc9e8d2c0df9 r282:dc9e8d2c0df9 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r282:dc9e8d2c0df9 r282:dc9e8d2c0df9 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r313:64f8f7cc6168 r313:64f8f7cc6168 r282:dc9e8d2c0df9 r282:dc9e8d2c0df9 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r282:dc9e8d2c0df9 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r282:dc9e8d2c0df9 r220:a5d8c039f218 r220:a5d8c039f218 r282:dc9e8d2c0df9 r282:dc9e8d2c0df9 r220:a5d8c039f218 r282:dc9e8d2c0df9 r282:dc9e8d2c0df9 r282:dc9e8d2c0df9 r282:dc9e8d2c0df9 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r282:dc9e8d2c0df9 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r282:dc9e8d2c0df9 r282:dc9e8d2c0df9 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r282:dc9e8d2c0df9 r282:dc9e8d2c0df9 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r282:dc9e8d2c0df9 r282:dc9e8d2c0df9 r220:a5d8c039f218 r220:a5d8c039f218 r313:64f8f7cc6168 r313:64f8f7cc6168 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r282:dc9e8d2c0df9 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 r220:a5d8c039f218 | /* -*- mode: C++; indent-tabs-mode: nil; -*-
*
* This file is a part of LEMON, a generic C++ optimization library.
*
* Copyright (C) 2003-2008
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
* (Egervary Research Group on Combinatorial Optimization, EGRES).
*
* Permission to use, modify and distribute this software is granted
* provided that this copyright notice appears in all copies. For
* precise terms see the accompanying LICENSE file.
*
* This software is provided "AS IS" with no warranty of any kind,
* express or implied, and with no claim as to its suitability for any
* purpose.
*
*/
#ifndef LEMON_CORE_H
#define LEMON_CORE_H
#include <vector>
#include <algorithm>
#include <lemon/bits/enable_if.h>
#include <lemon/bits/traits.h>
#include <lemon/assert.h>
///\file
///\brief LEMON core utilities.
///
///This header file contains core utilities for LEMON.
///It is automatically included by all graph types, therefore it usually
///do not have to be included directly.
namespace lemon {
/// \brief Dummy type to make it easier to create invalid iterators.
///
/// Dummy type to make it easier to create invalid iterators.
/// See \ref INVALID for the usage.
struct Invalid {
public:
bool operator==(Invalid) { return true; }
bool operator!=(Invalid) { return false; }
bool operator< (Invalid) { return false; }
};
/// \brief Invalid iterators.
///
/// \ref Invalid is a global type that converts to each iterator
/// in such a way that the value of the target iterator will be invalid.
#ifdef LEMON_ONLY_TEMPLATES
const Invalid INVALID = Invalid();
#else
extern const Invalid INVALID;
#endif
/// \addtogroup gutils
/// @{
///Create convenience typedefs for the digraph types and iterators
///This \c \#define creates convenient type definitions for the following
///types of \c Digraph: \c Node, \c NodeIt, \c Arc, \c ArcIt, \c InArcIt,
///\c OutArcIt, \c BoolNodeMap, \c IntNodeMap, \c DoubleNodeMap,
///\c BoolArcMap, \c IntArcMap, \c DoubleArcMap.
///
///\note If the graph type is a dependent type, ie. the graph type depend
///on a template parameter, then use \c TEMPLATE_DIGRAPH_TYPEDEFS()
///macro.
#define DIGRAPH_TYPEDEFS(Digraph) \
typedef Digraph::Node Node; \
typedef Digraph::NodeIt NodeIt; \
typedef Digraph::Arc Arc; \
typedef Digraph::ArcIt ArcIt; \
typedef Digraph::InArcIt InArcIt; \
typedef Digraph::OutArcIt OutArcIt; \
typedef Digraph::NodeMap<bool> BoolNodeMap; \
typedef Digraph::NodeMap<int> IntNodeMap; \
typedef Digraph::NodeMap<double> DoubleNodeMap; \
typedef Digraph::ArcMap<bool> BoolArcMap; \
typedef Digraph::ArcMap<int> IntArcMap; \
typedef Digraph::ArcMap<double> DoubleArcMap
///Create convenience typedefs for the digraph types and iterators
///\see DIGRAPH_TYPEDEFS
///
///\note Use this macro, if the graph type is a dependent type,
///ie. the graph type depend on a template parameter.
#define TEMPLATE_DIGRAPH_TYPEDEFS(Digraph) \
typedef typename Digraph::Node Node; \
typedef typename Digraph::NodeIt NodeIt; \
typedef typename Digraph::Arc Arc; \
typedef typename Digraph::ArcIt ArcIt; \
typedef typename Digraph::InArcIt InArcIt; \
typedef typename Digraph::OutArcIt OutArcIt; \
typedef typename Digraph::template NodeMap<bool> BoolNodeMap; \
typedef typename Digraph::template NodeMap<int> IntNodeMap; \
typedef typename Digraph::template NodeMap<double> DoubleNodeMap; \
typedef typename Digraph::template ArcMap<bool> BoolArcMap; \
typedef typename Digraph::template ArcMap<int> IntArcMap; \
typedef typename Digraph::template ArcMap<double> DoubleArcMap
///Create convenience typedefs for the graph types and iterators
///This \c \#define creates the same convenient type definitions as defined
///by \ref DIGRAPH_TYPEDEFS(Graph) and six more, namely it creates
///\c Edge, \c EdgeIt, \c IncEdgeIt, \c BoolEdgeMap, \c IntEdgeMap,
///\c DoubleEdgeMap.
///
///\note If the graph type is a dependent type, ie. the graph type depend
///on a template parameter, then use \c TEMPLATE_GRAPH_TYPEDEFS()
///macro.
#define GRAPH_TYPEDEFS(Graph) \
DIGRAPH_TYPEDEFS(Graph); \
typedef Graph::Edge Edge; \
typedef Graph::EdgeIt EdgeIt; \
typedef Graph::IncEdgeIt IncEdgeIt; \
typedef Graph::EdgeMap<bool> BoolEdgeMap; \
typedef Graph::EdgeMap<int> IntEdgeMap; \
typedef Graph::EdgeMap<double> DoubleEdgeMap
///Create convenience typedefs for the graph types and iterators
///\see GRAPH_TYPEDEFS
///
///\note Use this macro, if the graph type is a dependent type,
///ie. the graph type depend on a template parameter.
#define TEMPLATE_GRAPH_TYPEDEFS(Graph) \
TEMPLATE_DIGRAPH_TYPEDEFS(Graph); \
typedef typename Graph::Edge Edge; \
typedef typename Graph::EdgeIt EdgeIt; \
typedef typename Graph::IncEdgeIt IncEdgeIt; \
typedef typename Graph::template EdgeMap<bool> BoolEdgeMap; \
typedef typename Graph::template EdgeMap<int> IntEdgeMap; \
typedef typename Graph::template EdgeMap<double> DoubleEdgeMap
/// \brief Function to count the items in a graph.
///
/// This function counts the items (nodes, arcs etc.) in a graph.
/// The complexity of the function is linear because
/// it iterates on all of the items.
template <typename Graph, typename Item>
inline int countItems(const Graph& g) {
typedef typename ItemSetTraits<Graph, Item>::ItemIt ItemIt;
int num = 0;
for (ItemIt it(g); it != INVALID; ++it) {
++num;
}
return num;
}
// Node counting:
namespace _core_bits {
template <typename Graph, typename Enable = void>
struct CountNodesSelector {
static int count(const Graph &g) {
return countItems<Graph, typename Graph::Node>(g);
}
};
template <typename Graph>
struct CountNodesSelector<
Graph, typename
enable_if<typename Graph::NodeNumTag, void>::type>
{
static int count(const Graph &g) {
return g.nodeNum();
}
};
}
/// \brief Function to count the nodes in the graph.
///
/// This function counts the nodes in the graph.
/// The complexity of the function is <em>O</em>(<em>n</em>), but for some
/// graph structures it is specialized to run in <em>O</em>(1).
///
/// \note If the graph contains a \c nodeNum() member function and a
/// \c NodeNumTag tag then this function calls directly the member
/// function to query the cardinality of the node set.
template <typename Graph>
inline int countNodes(const Graph& g) {
return _core_bits::CountNodesSelector<Graph>::count(g);
}
// Arc counting:
namespace _core_bits {
template <typename Graph, typename Enable = void>
struct CountArcsSelector {
static int count(const Graph &g) {
return countItems<Graph, typename Graph::Arc>(g);
}
};
template <typename Graph>
struct CountArcsSelector<
Graph,
typename enable_if<typename Graph::ArcNumTag, void>::type>
{
static int count(const Graph &g) {
return g.arcNum();
}
};
}
/// \brief Function to count the arcs in the graph.
///
/// This function counts the arcs in the graph.
/// The complexity of the function is <em>O</em>(<em>m</em>), but for some
/// graph structures it is specialized to run in <em>O</em>(1).
///
/// \note If the graph contains a \c arcNum() member function and a
/// \c ArcNumTag tag then this function calls directly the member
/// function to query the cardinality of the arc set.
template <typename Graph>
inline int countArcs(const Graph& g) {
return _core_bits::CountArcsSelector<Graph>::count(g);
}
// Edge counting:
namespace _core_bits {
template <typename Graph, typename Enable = void>
struct CountEdgesSelector {
static int count(const Graph &g) {
return countItems<Graph, typename Graph::Edge>(g);
}
};
template <typename Graph>
struct CountEdgesSelector<
Graph,
typename enable_if<typename Graph::EdgeNumTag, void>::type>
{
static int count(const Graph &g) {
return g.edgeNum();
}
};
}
/// \brief Function to count the edges in the graph.
///
/// This function counts the edges in the graph.
/// The complexity of the function is <em>O</em>(<em>m</em>), but for some
/// graph structures it is specialized to run in <em>O</em>(1).
///
/// \note If the graph contains a \c edgeNum() member function and a
/// \c EdgeNumTag tag then this function calls directly the member
/// function to query the cardinality of the edge set.
template <typename Graph>
inline int countEdges(const Graph& g) {
return _core_bits::CountEdgesSelector<Graph>::count(g);
}
template <typename Graph, typename DegIt>
inline int countNodeDegree(const Graph& _g, const typename Graph::Node& _n) {
int num = 0;
for (DegIt it(_g, _n); it != INVALID; ++it) {
++num;
}
return num;
}
/// \brief Function to count the number of the out-arcs from node \c n.
///
/// This function counts the number of the out-arcs from node \c n
/// in the graph \c g.
template <typename Graph>
inline int countOutArcs(const Graph& g, const typename Graph::Node& n) {
return countNodeDegree<Graph, typename Graph::OutArcIt>(g, n);
}
/// \brief Function to count the number of the in-arcs to node \c n.
///
/// This function counts the number of the in-arcs to node \c n
/// in the graph \c g.
template <typename Graph>
inline int countInArcs(const Graph& g, const typename Graph::Node& n) {
return countNodeDegree<Graph, typename Graph::InArcIt>(g, n);
}
/// \brief Function to count the number of the inc-edges to node \c n.
///
/// This function counts the number of the inc-edges to node \c n
/// in the undirected graph \c g.
template <typename Graph>
inline int countIncEdges(const Graph& g, const typename Graph::Node& n) {
return countNodeDegree<Graph, typename Graph::IncEdgeIt>(g, n);
}
namespace _core_bits {
template <typename Digraph, typename Item, typename RefMap>
class MapCopyBase {
public:
virtual void copy(const Digraph& from, const RefMap& refMap) = 0;
virtual ~MapCopyBase() {}
};
template <typename Digraph, typename Item, typename RefMap,
typename FromMap, typename ToMap>
class MapCopy : public MapCopyBase<Digraph, Item, RefMap> {
public:
MapCopy(const FromMap& map, ToMap& tmap)
: _map(map), _tmap(tmap) {}
virtual void copy(const Digraph& digraph, const RefMap& refMap) {
typedef typename ItemSetTraits<Digraph, Item>::ItemIt ItemIt;
for (ItemIt it(digraph); it != INVALID; ++it) {
_tmap.set(refMap[it], _map[it]);
}
}
private:
const FromMap& _map;
ToMap& _tmap;
};
template <typename Digraph, typename Item, typename RefMap, typename It>
class ItemCopy : public MapCopyBase<Digraph, Item, RefMap> {
public:
ItemCopy(const Item& item, It& it) : _item(item), _it(it) {}
virtual void copy(const Digraph&, const RefMap& refMap) {
_it = refMap[_item];
}
private:
Item _item;
It& _it;
};
template <typename Digraph, typename Item, typename RefMap, typename Ref>
class RefCopy : public MapCopyBase<Digraph, Item, RefMap> {
public:
RefCopy(Ref& map) : _map(map) {}
virtual void copy(const Digraph& digraph, const RefMap& refMap) {
typedef typename ItemSetTraits<Digraph, Item>::ItemIt ItemIt;
for (ItemIt it(digraph); it != INVALID; ++it) {
_map.set(it, refMap[it]);
}
}
private:
Ref& _map;
};
template <typename Digraph, typename Item, typename RefMap,
typename CrossRef>
class CrossRefCopy : public MapCopyBase<Digraph, Item, RefMap> {
public:
CrossRefCopy(CrossRef& cmap) : _cmap(cmap) {}
virtual void copy(const Digraph& digraph, const RefMap& refMap) {
typedef typename ItemSetTraits<Digraph, Item>::ItemIt ItemIt;
for (ItemIt it(digraph); it != INVALID; ++it) {
_cmap.set(refMap[it], it);
}
}
private:
CrossRef& _cmap;
};
template <typename Digraph, typename Enable = void>
struct DigraphCopySelector {
template <typename From, typename NodeRefMap, typename ArcRefMap>
static void copy(const From& from, Digraph &to,
NodeRefMap& nodeRefMap, ArcRefMap& arcRefMap) {
for (typename From::NodeIt it(from); it != INVALID; ++it) {
nodeRefMap[it] = to.addNode();
}
for (typename From::ArcIt it(from); it != INVALID; ++it) {
arcRefMap[it] = to.addArc(nodeRefMap[from.source(it)],
nodeRefMap[from.target(it)]);
}
}
};
template <typename Digraph>
struct DigraphCopySelector<
Digraph,
typename enable_if<typename Digraph::BuildTag, void>::type>
{
template <typename From, typename NodeRefMap, typename ArcRefMap>
static void copy(const From& from, Digraph &to,
NodeRefMap& nodeRefMap, ArcRefMap& arcRefMap) {
to.build(from, nodeRefMap, arcRefMap);
}
};
template <typename Graph, typename Enable = void>
struct GraphCopySelector {
template <typename From, typename NodeRefMap, typename EdgeRefMap>
static void copy(const From& from, Graph &to,
NodeRefMap& nodeRefMap, EdgeRefMap& edgeRefMap) {
for (typename From::NodeIt it(from); it != INVALID; ++it) {
nodeRefMap[it] = to.addNode();
}
for (typename From::EdgeIt it(from); it != INVALID; ++it) {
edgeRefMap[it] = to.addEdge(nodeRefMap[from.u(it)],
nodeRefMap[from.v(it)]);
}
}
};
template <typename Graph>
struct GraphCopySelector<
Graph,
typename enable_if<typename Graph::BuildTag, void>::type>
{
template <typename From, typename NodeRefMap, typename EdgeRefMap>
static void copy(const From& from, Graph &to,
NodeRefMap& nodeRefMap, EdgeRefMap& edgeRefMap) {
to.build(from, nodeRefMap, edgeRefMap);
}
};
}
/// \brief Class to copy a digraph.
///
/// Class to copy a digraph to another digraph (duplicate a digraph). The
/// simplest way of using it is through the \c digraphCopy() function.
///
/// This class not only make a copy of a digraph, but it can create
/// references and cross references between the nodes and arcs of
/// the two digraphs, and it can copy maps to use with the newly created
/// digraph.
///
/// To make a copy from a digraph, first an instance of DigraphCopy
/// should be created, then the data belongs to the digraph should
/// assigned to copy. In the end, the \c run() member should be
/// called.
///
/// The next code copies a digraph with several data:
///\code
/// DigraphCopy<OrigGraph, NewGraph> cg(orig_graph, new_graph);
/// // Create references for the nodes
/// OrigGraph::NodeMap<NewGraph::Node> nr(orig_graph);
/// cg.nodeRef(nr);
/// // Create cross references (inverse) for the arcs
/// NewGraph::ArcMap<OrigGraph::Arc> acr(new_graph);
/// cg.arcCrossRef(acr);
/// // Copy an arc map
/// OrigGraph::ArcMap<double> oamap(orig_graph);
/// NewGraph::ArcMap<double> namap(new_graph);
/// cg.arcMap(oamap, namap);
/// // Copy a node
/// OrigGraph::Node on;
/// NewGraph::Node nn;
/// cg.node(on, nn);
/// // Execute copying
/// cg.run();
///\endcode
template <typename From, typename To>
class DigraphCopy {
private:
typedef typename From::Node Node;
typedef typename From::NodeIt NodeIt;
typedef typename From::Arc Arc;
typedef typename From::ArcIt ArcIt;
typedef typename To::Node TNode;
typedef typename To::Arc TArc;
typedef typename From::template NodeMap<TNode> NodeRefMap;
typedef typename From::template ArcMap<TArc> ArcRefMap;
public:
/// \brief Constructor of DigraphCopy.
///
/// Constructor of DigraphCopy for copying the content of the
/// \c from digraph into the \c to digraph.
DigraphCopy(const From& from, To& to)
: _from(from), _to(to) {}
/// \brief Destructor of DigraphCopy
///
/// Destructor of DigraphCopy.
~DigraphCopy() {
for (int i = 0; i < int(_node_maps.size()); ++i) {
delete _node_maps[i];
}
for (int i = 0; i < int(_arc_maps.size()); ++i) {
delete _arc_maps[i];
}
}
/// \brief Copy the node references into the given map.
///
/// This function copies the node references into the given map.
/// The parameter should be a map, whose key type is the Node type of
/// the source digraph, while the value type is the Node type of the
/// destination digraph.
template <typename NodeRef>
DigraphCopy& nodeRef(NodeRef& map) {
_node_maps.push_back(new _core_bits::RefCopy<From, Node,
NodeRefMap, NodeRef>(map));
return *this;
}
/// \brief Copy the node cross references into the given map.
///
/// This function copies the node cross references (reverse references)
/// into the given map. The parameter should be a map, whose key type
/// is the Node type of the destination digraph, while the value type is
/// the Node type of the source digraph.
template <typename NodeCrossRef>
DigraphCopy& nodeCrossRef(NodeCrossRef& map) {
_node_maps.push_back(new _core_bits::CrossRefCopy<From, Node,
NodeRefMap, NodeCrossRef>(map));
return *this;
}
/// \brief Make a copy of the given node map.
///
/// This function makes a copy of the given node map for the newly
/// created digraph.
/// The key type of the new map \c tmap should be the Node type of the
/// destination digraph, and the key type of the original map \c map
/// should be the Node type of the source digraph.
template <typename FromMap, typename ToMap>
DigraphCopy& nodeMap(const FromMap& map, ToMap& tmap) {
_node_maps.push_back(new _core_bits::MapCopy<From, Node,
NodeRefMap, FromMap, ToMap>(map, tmap));
return *this;
}
/// \brief Make a copy of the given node.
///
/// This function makes a copy of the given node.
DigraphCopy& node(const Node& node, TNode& tnode) {
_node_maps.push_back(new _core_bits::ItemCopy<From, Node,
NodeRefMap, TNode>(node, tnode));
return *this;
}
/// \brief Copy the arc references into the given map.
///
/// This function copies the arc references into the given map.
/// The parameter should be a map, whose key type is the Arc type of
/// the source digraph, while the value type is the Arc type of the
/// destination digraph.
template <typename ArcRef>
DigraphCopy& arcRef(ArcRef& map) {
_arc_maps.push_back(new _core_bits::RefCopy<From, Arc,
ArcRefMap, ArcRef>(map));
return *this;
}
/// \brief Copy the arc cross references into the given map.
///
/// This function copies the arc cross references (reverse references)
/// into the given map. The parameter should be a map, whose key type
/// is the Arc type of the destination digraph, while the value type is
/// the Arc type of the source digraph.
template <typename ArcCrossRef>
DigraphCopy& arcCrossRef(ArcCrossRef& map) {
_arc_maps.push_back(new _core_bits::CrossRefCopy<From, Arc,
ArcRefMap, ArcCrossRef>(map));
return *this;
}
/// \brief Make a copy of the given arc map.
///
/// This function makes a copy of the given arc map for the newly
/// created digraph.
/// The key type of the new map \c tmap should be the Arc type of the
/// destination digraph, and the key type of the original map \c map
/// should be the Arc type of the source digraph.
template <typename FromMap, typename ToMap>
DigraphCopy& arcMap(const FromMap& map, ToMap& tmap) {
_arc_maps.push_back(new _core_bits::MapCopy<From, Arc,
ArcRefMap, FromMap, ToMap>(map, tmap));
return *this;
}
/// \brief Make a copy of the given arc.
///
/// This function makes a copy of the given arc.
DigraphCopy& arc(const Arc& arc, TArc& tarc) {
_arc_maps.push_back(new _core_bits::ItemCopy<From, Arc,
ArcRefMap, TArc>(arc, tarc));
return *this;
}
/// \brief Execute copying.
///
/// This function executes the copying of the digraph along with the
/// copying of the assigned data.
void run() {
NodeRefMap nodeRefMap(_from);
ArcRefMap arcRefMap(_from);
_core_bits::DigraphCopySelector<To>::
copy(_from, _to, nodeRefMap, arcRefMap);
for (int i = 0; i < int(_node_maps.size()); ++i) {
_node_maps[i]->copy(_from, nodeRefMap);
}
for (int i = 0; i < int(_arc_maps.size()); ++i) {
_arc_maps[i]->copy(_from, arcRefMap);
}
}
protected:
const From& _from;
To& _to;
std::vector<_core_bits::MapCopyBase<From, Node, NodeRefMap>* >
_node_maps;
std::vector<_core_bits::MapCopyBase<From, Arc, ArcRefMap>* >
_arc_maps;
};
/// \brief Copy a digraph to another digraph.
///
/// This function copies a digraph to another digraph.
/// The complete usage of it is detailed in the DigraphCopy class, but
/// a short example shows a basic work:
///\code
/// digraphCopy(src, trg).nodeRef(nr).arcCrossRef(acr).run();
///\endcode
///
/// After the copy the \c nr map will contain the mapping from the
/// nodes of the \c from digraph to the nodes of the \c to digraph and
/// \c acr will contain the mapping from the arcs of the \c to digraph
/// to the arcs of the \c from digraph.
///
/// \see DigraphCopy
template <typename From, typename To>
DigraphCopy<From, To> digraphCopy(const From& from, To& to) {
return DigraphCopy<From, To>(from, to);
}
/// \brief Class to copy a graph.
///
/// Class to copy a graph to another graph (duplicate a graph). The
/// simplest way of using it is through the \c graphCopy() function.
///
/// This class not only make a copy of a graph, but it can create
/// references and cross references between the nodes, edges and arcs of
/// the two graphs, and it can copy maps for using with the newly created
/// graph.
///
/// To make a copy from a graph, first an instance of GraphCopy
/// should be created, then the data belongs to the graph should
/// assigned to copy. In the end, the \c run() member should be
/// called.
///
/// The next code copies a graph with several data:
///\code
/// GraphCopy<OrigGraph, NewGraph> cg(orig_graph, new_graph);
/// // Create references for the nodes
/// OrigGraph::NodeMap<NewGraph::Node> nr(orig_graph);
/// cg.nodeRef(nr);
/// // Create cross references (inverse) for the edges
/// NewGraph::EdgeMap<OrigGraph::Edge> ecr(new_graph);
/// cg.edgeCrossRef(ecr);
/// // Copy an edge map
/// OrigGraph::EdgeMap<double> oemap(orig_graph);
/// NewGraph::EdgeMap<double> nemap(new_graph);
/// cg.edgeMap(oemap, nemap);
/// // Copy a node
/// OrigGraph::Node on;
/// NewGraph::Node nn;
/// cg.node(on, nn);
/// // Execute copying
/// cg.run();
///\endcode
template <typename From, typename To>
class GraphCopy {
private:
typedef typename From::Node Node;
typedef typename From::NodeIt NodeIt;
typedef typename From::Arc Arc;
typedef typename From::ArcIt ArcIt;
typedef typename From::Edge Edge;
typedef typename From::EdgeIt EdgeIt;
typedef typename To::Node TNode;
typedef typename To::Arc TArc;
typedef typename To::Edge TEdge;
typedef typename From::template NodeMap<TNode> NodeRefMap;
typedef typename From::template EdgeMap<TEdge> EdgeRefMap;
struct ArcRefMap {
ArcRefMap(const From& from, const To& to,
const EdgeRefMap& edge_ref, const NodeRefMap& node_ref)
: _from(from), _to(to),
_edge_ref(edge_ref), _node_ref(node_ref) {}
typedef typename From::Arc Key;
typedef typename To::Arc Value;
Value operator[](const Key& key) const {
bool forward = _from.u(key) != _from.v(key) ?
_node_ref[_from.source(key)] ==
_to.source(_to.direct(_edge_ref[key], true)) :
_from.direction(key);
return _to.direct(_edge_ref[key], forward);
}
const From& _from;
const To& _to;
const EdgeRefMap& _edge_ref;
const NodeRefMap& _node_ref;
};
public:
/// \brief Constructor of GraphCopy.
///
/// Constructor of GraphCopy for copying the content of the
/// \c from graph into the \c to graph.
GraphCopy(const From& from, To& to)
: _from(from), _to(to) {}
/// \brief Destructor of GraphCopy
///
/// Destructor of GraphCopy.
~GraphCopy() {
for (int i = 0; i < int(_node_maps.size()); ++i) {
delete _node_maps[i];
}
for (int i = 0; i < int(_arc_maps.size()); ++i) {
delete _arc_maps[i];
}
for (int i = 0; i < int(_edge_maps.size()); ++i) {
delete _edge_maps[i];
}
}
/// \brief Copy the node references into the given map.
///
/// This function copies the node references into the given map.
/// The parameter should be a map, whose key type is the Node type of
/// the source graph, while the value type is the Node type of the
/// destination graph.
template <typename NodeRef>
GraphCopy& nodeRef(NodeRef& map) {
_node_maps.push_back(new _core_bits::RefCopy<From, Node,
NodeRefMap, NodeRef>(map));
return *this;
}
/// \brief Copy the node cross references into the given map.
///
/// This function copies the node cross references (reverse references)
/// into the given map. The parameter should be a map, whose key type
/// is the Node type of the destination graph, while the value type is
/// the Node type of the source graph.
template <typename NodeCrossRef>
GraphCopy& nodeCrossRef(NodeCrossRef& map) {
_node_maps.push_back(new _core_bits::CrossRefCopy<From, Node,
NodeRefMap, NodeCrossRef>(map));
return *this;
}
/// \brief Make a copy of the given node map.
///
/// This function makes a copy of the given node map for the newly
/// created graph.
/// The key type of the new map \c tmap should be the Node type of the
/// destination graph, and the key type of the original map \c map
/// should be the Node type of the source graph.
template <typename FromMap, typename ToMap>
GraphCopy& nodeMap(const FromMap& map, ToMap& tmap) {
_node_maps.push_back(new _core_bits::MapCopy<From, Node,
NodeRefMap, FromMap, ToMap>(map, tmap));
return *this;
}
/// \brief Make a copy of the given node.
///
/// This function makes a copy of the given node.
GraphCopy& node(const Node& node, TNode& tnode) {
_node_maps.push_back(new _core_bits::ItemCopy<From, Node,
NodeRefMap, TNode>(node, tnode));
return *this;
}
/// \brief Copy the arc references into the given map.
///
/// This function copies the arc references into the given map.
/// The parameter should be a map, whose key type is the Arc type of
/// the source graph, while the value type is the Arc type of the
/// destination graph.
template <typename ArcRef>
GraphCopy& arcRef(ArcRef& map) {
_arc_maps.push_back(new _core_bits::RefCopy<From, Arc,
ArcRefMap, ArcRef>(map));
return *this;
}
/// \brief Copy the arc cross references into the given map.
///
/// This function copies the arc cross references (reverse references)
/// into the given map. The parameter should be a map, whose key type
/// is the Arc type of the destination graph, while the value type is
/// the Arc type of the source graph.
template <typename ArcCrossRef>
GraphCopy& arcCrossRef(ArcCrossRef& map) {
_arc_maps.push_back(new _core_bits::CrossRefCopy<From, Arc,
ArcRefMap, ArcCrossRef>(map));
return *this;
}
/// \brief Make a copy of the given arc map.
///
/// This function makes a copy of the given arc map for the newly
/// created graph.
/// The key type of the new map \c tmap should be the Arc type of the
/// destination graph, and the key type of the original map \c map
/// should be the Arc type of the source graph.
template <typename FromMap, typename ToMap>
GraphCopy& arcMap(const FromMap& map, ToMap& tmap) {
_arc_maps.push_back(new _core_bits::MapCopy<From, Arc,
ArcRefMap, FromMap, ToMap>(map, tmap));
return *this;
}
/// \brief Make a copy of the given arc.
///
/// This function makes a copy of the given arc.
GraphCopy& arc(const Arc& arc, TArc& tarc) {
_arc_maps.push_back(new _core_bits::ItemCopy<From, Arc,
ArcRefMap, TArc>(arc, tarc));
return *this;
}
/// \brief Copy the edge references into the given map.
///
/// This function copies the edge references into the given map.
/// The parameter should be a map, whose key type is the Edge type of
/// the source graph, while the value type is the Edge type of the
/// destination graph.
template <typename EdgeRef>
GraphCopy& edgeRef(EdgeRef& map) {
_edge_maps.push_back(new _core_bits::RefCopy<From, Edge,
EdgeRefMap, EdgeRef>(map));
return *this;
}
/// \brief Copy the edge cross references into the given map.
///
/// This function copies the edge cross references (reverse references)
/// into the given map. The parameter should be a map, whose key type
/// is the Edge type of the destination graph, while the value type is
/// the Edge type of the source graph.
template <typename EdgeCrossRef>
GraphCopy& edgeCrossRef(EdgeCrossRef& map) {
_edge_maps.push_back(new _core_bits::CrossRefCopy<From,
Edge, EdgeRefMap, EdgeCrossRef>(map));
return *this;
}
/// \brief Make a copy of the given edge map.
///
/// This function makes a copy of the given edge map for the newly
/// created graph.
/// The key type of the new map \c tmap should be the Edge type of the
/// destination graph, and the key type of the original map \c map
/// should be the Edge type of the source graph.
template <typename FromMap, typename ToMap>
GraphCopy& edgeMap(const FromMap& map, ToMap& tmap) {
_edge_maps.push_back(new _core_bits::MapCopy<From, Edge,
EdgeRefMap, FromMap, ToMap>(map, tmap));
return *this;
}
/// \brief Make a copy of the given edge.
///
/// This function makes a copy of the given edge.
GraphCopy& edge(const Edge& edge, TEdge& tedge) {
_edge_maps.push_back(new _core_bits::ItemCopy<From, Edge,
EdgeRefMap, TEdge>(edge, tedge));
return *this;
}
/// \brief Execute copying.
///
/// This function executes the copying of the graph along with the
/// copying of the assigned data.
void run() {
NodeRefMap nodeRefMap(_from);
EdgeRefMap edgeRefMap(_from);
ArcRefMap arcRefMap(_from, _to, edgeRefMap, nodeRefMap);
_core_bits::GraphCopySelector<To>::
copy(_from, _to, nodeRefMap, edgeRefMap);
for (int i = 0; i < int(_node_maps.size()); ++i) {
_node_maps[i]->copy(_from, nodeRefMap);
}
for (int i = 0; i < int(_edge_maps.size()); ++i) {
_edge_maps[i]->copy(_from, edgeRefMap);
}
for (int i = 0; i < int(_arc_maps.size()); ++i) {
_arc_maps[i]->copy(_from, arcRefMap);
}
}
private:
const From& _from;
To& _to;
std::vector<_core_bits::MapCopyBase<From, Node, NodeRefMap>* >
_node_maps;
std::vector<_core_bits::MapCopyBase<From, Arc, ArcRefMap>* >
_arc_maps;
std::vector<_core_bits::MapCopyBase<From, Edge, EdgeRefMap>* >
_edge_maps;
};
/// \brief Copy a graph to another graph.
///
/// This function copies a graph to another graph.
/// The complete usage of it is detailed in the GraphCopy class,
/// but a short example shows a basic work:
///\code
/// graphCopy(src, trg).nodeRef(nr).edgeCrossRef(ecr).run();
///\endcode
///
/// After the copy the \c nr map will contain the mapping from the
/// nodes of the \c from graph to the nodes of the \c to graph and
/// \c ecr will contain the mapping from the edges of the \c to graph
/// to the edges of the \c from graph.
///
/// \see GraphCopy
template <typename From, typename To>
GraphCopy<From, To>
graphCopy(const From& from, To& to) {
return GraphCopy<From, To>(from, to);
}
namespace _core_bits {
template <typename Graph, typename Enable = void>
struct FindArcSelector {
typedef typename Graph::Node Node;
typedef typename Graph::Arc Arc;
static Arc find(const Graph &g, Node u, Node v, Arc e) {
if (e == INVALID) {
g.firstOut(e, u);
} else {
g.nextOut(e);
}
while (e != INVALID && g.target(e) != v) {
g.nextOut(e);
}
return e;
}
};
template <typename Graph>
struct FindArcSelector<
Graph,
typename enable_if<typename Graph::FindArcTag, void>::type>
{
typedef typename Graph::Node Node;
typedef typename Graph::Arc Arc;
static Arc find(const Graph &g, Node u, Node v, Arc prev) {
return g.findArc(u, v, prev);
}
};
}
/// \brief Find an arc between two nodes of a digraph.
///
/// This function finds an arc from node \c u to node \c v in the
/// digraph \c g.
///
/// If \c prev is \ref INVALID (this is the default value), then
/// it finds the first arc from \c u to \c v. Otherwise it looks for
/// the next arc from \c u to \c v after \c prev.
/// \return The found arc or \ref INVALID if there is no such an arc.
///
/// Thus you can iterate through each arc from \c u to \c v as it follows.
///\code
/// for(Arc e = findArc(g,u,v); e != INVALID; e = findArc(g,u,v,e)) {
/// ...
/// }
///\endcode
///
/// \note \ref ConArcIt provides iterator interface for the same
/// functionality.
///
///\sa ConArcIt
///\sa ArcLookUp, AllArcLookUp, DynArcLookUp
template <typename Graph>
inline typename Graph::Arc
findArc(const Graph &g, typename Graph::Node u, typename Graph::Node v,
typename Graph::Arc prev = INVALID) {
return _core_bits::FindArcSelector<Graph>::find(g, u, v, prev);
}
/// \brief Iterator for iterating on parallel arcs connecting the same nodes.
///
/// Iterator for iterating on parallel arcs connecting the same nodes. It is
/// a higher level interface for the \ref findArc() function. You can
/// use it the following way:
///\code
/// for (ConArcIt<Graph> it(g, src, trg); it != INVALID; ++it) {
/// ...
/// }
///\endcode
///
///\sa findArc()
///\sa ArcLookUp, AllArcLookUp, DynArcLookUp
template <typename _Graph>
class ConArcIt : public _Graph::Arc {
public:
typedef _Graph Graph;
typedef typename Graph::Arc Parent;
typedef typename Graph::Arc Arc;
typedef typename Graph::Node Node;
/// \brief Constructor.
///
/// Construct a new ConArcIt iterating on the arcs that
/// connects nodes \c u and \c v.
ConArcIt(const Graph& g, Node u, Node v) : _graph(g) {
Parent::operator=(findArc(_graph, u, v));
}
/// \brief Constructor.
///
/// Construct a new ConArcIt that continues the iterating from arc \c a.
ConArcIt(const Graph& g, Arc a) : Parent(a), _graph(g) {}
/// \brief Increment operator.
///
/// It increments the iterator and gives back the next arc.
ConArcIt& operator++() {
Parent::operator=(findArc(_graph, _graph.source(*this),
_graph.target(*this), *this));
return *this;
}
private:
const Graph& _graph;
};
namespace _core_bits {
template <typename Graph, typename Enable = void>
struct FindEdgeSelector {
typedef typename Graph::Node Node;
typedef typename Graph::Edge Edge;
static Edge find(const Graph &g, Node u, Node v, Edge e) {
bool b;
if (u != v) {
if (e == INVALID) {
g.firstInc(e, b, u);
} else {
b = g.u(e) == u;
g.nextInc(e, b);
}
while (e != INVALID && (b ? g.v(e) : g.u(e)) != v) {
g.nextInc(e, b);
}
} else {
if (e == INVALID) {
g.firstInc(e, b, u);
} else {
b = true;
g.nextInc(e, b);
}
while (e != INVALID && (!b || g.v(e) != v)) {
g.nextInc(e, b);
}
}
return e;
}
};
template <typename Graph>
struct FindEdgeSelector<
Graph,
typename enable_if<typename Graph::FindEdgeTag, void>::type>
{
typedef typename Graph::Node Node;
typedef typename Graph::Edge Edge;
static Edge find(const Graph &g, Node u, Node v, Edge prev) {
return g.findEdge(u, v, prev);
}
};
}
/// \brief Find an edge between two nodes of a graph.
///
/// This function finds an edge from node \c u to node \c v in graph \c g.
/// If node \c u and node \c v is equal then each loop edge
/// will be enumerated once.
///
/// If \c prev is \ref INVALID (this is the default value), then
/// it finds the first edge from \c u to \c v. Otherwise it looks for
/// the next edge from \c u to \c v after \c prev.
/// \return The found edge or \ref INVALID if there is no such an edge.
///
/// Thus you can iterate through each edge between \c u and \c v
/// as it follows.
///\code
/// for(Edge e = findEdge(g,u,v); e != INVALID; e = findEdge(g,u,v,e)) {
/// ...
/// }
///\endcode
///
/// \note \ref ConEdgeIt provides iterator interface for the same
/// functionality.
///
///\sa ConEdgeIt
template <typename Graph>
inline typename Graph::Edge
findEdge(const Graph &g, typename Graph::Node u, typename Graph::Node v,
typename Graph::Edge p = INVALID) {
return _core_bits::FindEdgeSelector<Graph>::find(g, u, v, p);
}
/// \brief Iterator for iterating on parallel edges connecting the same nodes.
///
/// Iterator for iterating on parallel edges connecting the same nodes.
/// It is a higher level interface for the findEdge() function. You can
/// use it the following way:
///\code
/// for (ConEdgeIt<Graph> it(g, u, v); it != INVALID; ++it) {
/// ...
/// }
///\endcode
///
///\sa findEdge()
template <typename _Graph>
class ConEdgeIt : public _Graph::Edge {
public:
typedef _Graph Graph;
typedef typename Graph::Edge Parent;
typedef typename Graph::Edge Edge;
typedef typename Graph::Node Node;
/// \brief Constructor.
///
/// Construct a new ConEdgeIt iterating on the edges that
/// connects nodes \c u and \c v.
ConEdgeIt(const Graph& g, Node u, Node v) : _graph(g) {
Parent::operator=(findEdge(_graph, u, v));
}
/// \brief Constructor.
///
/// Construct a new ConEdgeIt that continues iterating from edge \c e.
ConEdgeIt(const Graph& g, Edge e) : Parent(e), _graph(g) {}
/// \brief Increment operator.
///
/// It increments the iterator and gives back the next edge.
ConEdgeIt& operator++() {
Parent::operator=(findEdge(_graph, _graph.u(*this),
_graph.v(*this), *this));
return *this;
}
private:
const Graph& _graph;
};
///Dynamic arc look-up between given endpoints.
///Using this class, you can find an arc in a digraph from a given
///source to a given target in amortized time <em>O</em>(log<em>d</em>),
///where <em>d</em> is the out-degree of the source node.
///
///It is possible to find \e all parallel arcs between two nodes with
///the \c operator() member.
///
///This is a dynamic data structure. Consider to use \ref ArcLookUp or
///\ref AllArcLookUp if your digraph is not changed so frequently.
///
///This class uses a self-adjusting binary search tree, the Splay tree
///of Sleator and Tarjan to guarantee the logarithmic amortized
///time bound for arc look-ups. This class also guarantees the
///optimal time bound in a constant factor for any distribution of
///queries.
///
///\tparam G The type of the underlying digraph.
///
///\sa ArcLookUp
///\sa AllArcLookUp
template<class G>
class DynArcLookUp
: protected ItemSetTraits<G, typename G::Arc>::ItemNotifier::ObserverBase
{
public:
typedef typename ItemSetTraits<G, typename G::Arc>
::ItemNotifier::ObserverBase Parent;
TEMPLATE_DIGRAPH_TYPEDEFS(G);
typedef G Digraph;
protected:
class AutoNodeMap : public ItemSetTraits<G, Node>::template Map<Arc>::Type {
public:
typedef typename ItemSetTraits<G, Node>::template Map<Arc>::Type Parent;
AutoNodeMap(const G& digraph) : Parent(digraph, INVALID) {}
virtual void add(const Node& node) {
Parent::add(node);
Parent::set(node, INVALID);
}
virtual void add(const std::vector<Node>& nodes) {
Parent::add(nodes);
for (int i = 0; i < int(nodes.size()); ++i) {
Parent::set(nodes[i], INVALID);
}
}
virtual void build() {
Parent::build();
Node it;
typename Parent::Notifier* nf = Parent::notifier();
for (nf->first(it); it != INVALID; nf->next(it)) {
Parent::set(it, INVALID);
}
}
};
const Digraph &_g;
AutoNodeMap _head;
typename Digraph::template ArcMap<Arc> _parent;
typename Digraph::template ArcMap<Arc> _left;
typename Digraph::template ArcMap<Arc> _right;
class ArcLess {
const Digraph &g;
public:
ArcLess(const Digraph &_g) : g(_g) {}
bool operator()(Arc a,Arc b) const
{
return g.target(a)<g.target(b);
}
};
public:
///Constructor
///Constructor.
///
///It builds up the search database.
DynArcLookUp(const Digraph &g)
: _g(g),_head(g),_parent(g),_left(g),_right(g)
{
Parent::attach(_g.notifier(typename Digraph::Arc()));
refresh();
}
protected:
virtual void add(const Arc& arc) {
insert(arc);
}
virtual void add(const std::vector<Arc>& arcs) {
for (int i = 0; i < int(arcs.size()); ++i) {
insert(arcs[i]);
}
}
virtual void erase(const Arc& arc) {
remove(arc);
}
virtual void erase(const std::vector<Arc>& arcs) {
for (int i = 0; i < int(arcs.size()); ++i) {
remove(arcs[i]);
}
}
virtual void build() {
refresh();
}
virtual void clear() {
for(NodeIt n(_g);n!=INVALID;++n) {
_head.set(n, INVALID);
}
}
void insert(Arc arc) {
Node s = _g.source(arc);
Node t = _g.target(arc);
_left.set(arc, INVALID);
_right.set(arc, INVALID);
Arc e = _head[s];
if (e == INVALID) {
_head.set(s, arc);
_parent.set(arc, INVALID);
return;
}
while (true) {
if (t < _g.target(e)) {
if (_left[e] == INVALID) {
_left.set(e, arc);
_parent.set(arc, e);
splay(arc);
return;
} else {
e = _left[e];
}
} else {
if (_right[e] == INVALID) {
_right.set(e, arc);
_parent.set(arc, e);
splay(arc);
return;
} else {
e = _right[e];
}
}
}
}
void remove(Arc arc) {
if (_left[arc] == INVALID) {
if (_right[arc] != INVALID) {
_parent.set(_right[arc], _parent[arc]);
}
if (_parent[arc] != INVALID) {
if (_left[_parent[arc]] == arc) {
_left.set(_parent[arc], _right[arc]);
} else {
_right.set(_parent[arc], _right[arc]);
}
} else {
_head.set(_g.source(arc), _right[arc]);
}
} else if (_right[arc] == INVALID) {
_parent.set(_left[arc], _parent[arc]);
if (_parent[arc] != INVALID) {
if (_left[_parent[arc]] == arc) {
_left.set(_parent[arc], _left[arc]);
} else {
_right.set(_parent[arc], _left[arc]);
}
} else {
_head.set(_g.source(arc), _left[arc]);
}
} else {
Arc e = _left[arc];
if (_right[e] != INVALID) {
e = _right[e];
while (_right[e] != INVALID) {
e = _right[e];
}
Arc s = _parent[e];
_right.set(_parent[e], _left[e]);
if (_left[e] != INVALID) {
_parent.set(_left[e], _parent[e]);
}
_left.set(e, _left[arc]);
_parent.set(_left[arc], e);
_right.set(e, _right[arc]);
_parent.set(_right[arc], e);
_parent.set(e, _parent[arc]);
if (_parent[arc] != INVALID) {
if (_left[_parent[arc]] == arc) {
_left.set(_parent[arc], e);
} else {
_right.set(_parent[arc], e);
}
}
splay(s);
} else {
_right.set(e, _right[arc]);
_parent.set(_right[arc], e);
_parent.set(e, _parent[arc]);
if (_parent[arc] != INVALID) {
if (_left[_parent[arc]] == arc) {
_left.set(_parent[arc], e);
} else {
_right.set(_parent[arc], e);
}
} else {
_head.set(_g.source(arc), e);
}
}
}
}
Arc refreshRec(std::vector<Arc> &v,int a,int b)
{
int m=(a+b)/2;
Arc me=v[m];
if (a < m) {
Arc left = refreshRec(v,a,m-1);
_left.set(me, left);
_parent.set(left, me);
} else {
_left.set(me, INVALID);
}
if (m < b) {
Arc right = refreshRec(v,m+1,b);
_right.set(me, right);
_parent.set(right, me);
} else {
_right.set(me, INVALID);
}
return me;
}
void refresh() {
for(NodeIt n(_g);n!=INVALID;++n) {
std::vector<Arc> v;
for(OutArcIt a(_g,n);a!=INVALID;++a) v.push_back(a);
if (!v.empty()) {
std::sort(v.begin(),v.end(),ArcLess(_g));
Arc head = refreshRec(v,0,v.size()-1);
_head.set(n, head);
_parent.set(head, INVALID);
}
else _head.set(n, INVALID);
}
}
void zig(Arc v) {
Arc w = _parent[v];
_parent.set(v, _parent[w]);
_parent.set(w, v);
_left.set(w, _right[v]);
_right.set(v, w);
if (_parent[v] != INVALID) {
if (_right[_parent[v]] == w) {
_right.set(_parent[v], v);
} else {
_left.set(_parent[v], v);
}
}
if (_left[w] != INVALID){
_parent.set(_left[w], w);
}
}
void zag(Arc v) {
Arc w = _parent[v];
_parent.set(v, _parent[w]);
_parent.set(w, v);
_right.set(w, _left[v]);
_left.set(v, w);
if (_parent[v] != INVALID){
if (_left[_parent[v]] == w) {
_left.set(_parent[v], v);
} else {
_right.set(_parent[v], v);
}
}
if (_right[w] != INVALID){
_parent.set(_right[w], w);
}
}
void splay(Arc v) {
while (_parent[v] != INVALID) {
if (v == _left[_parent[v]]) {
if (_parent[_parent[v]] == INVALID) {
zig(v);
} else {
if (_parent[v] == _left[_parent[_parent[v]]]) {
zig(_parent[v]);
zig(v);
} else {
zig(v);
zag(v);
}
}
} else {
if (_parent[_parent[v]] == INVALID) {
zag(v);
} else {
if (_parent[v] == _left[_parent[_parent[v]]]) {
zag(v);
zig(v);
} else {
zag(_parent[v]);
zag(v);
}
}
}
}
_head[_g.source(v)] = v;
}
public:
///Find an arc between two nodes.
///Find an arc between two nodes.
///\param s The source node.
///\param t The target node.
///\param p The previous arc between \c s and \c t. It it is INVALID or
///not given, the operator finds the first appropriate arc.
///\return An arc from \c s to \c t after \c p or
///\ref INVALID if there is no more.
///
///For example, you can count the number of arcs from \c u to \c v in the
///following way.
///\code
///DynArcLookUp<ListDigraph> ae(g);
///...
///int n = 0;
///for(Arc a = ae(u,v); a != INVALID; a = ae(u,v,a)) n++;
///\endcode
///
///Finding the arcs take at most <em>O</em>(log<em>d</em>)
///amortized time, specifically, the time complexity of the lookups
///is equal to the optimal search tree implementation for the
///current query distribution in a constant factor.
///
///\note This is a dynamic data structure, therefore the data
///structure is updated after each graph alteration. Thus although
///this data structure is theoretically faster than \ref ArcLookUp
///and \ref AllArcLookUp, it often provides worse performance than
///them.
Arc operator()(Node s, Node t, Arc p = INVALID) const {
if (p == INVALID) {
Arc a = _head[s];
if (a == INVALID) return INVALID;
Arc r = INVALID;
while (true) {
if (_g.target(a) < t) {
if (_right[a] == INVALID) {
const_cast<DynArcLookUp&>(*this).splay(a);
return r;
} else {
a = _right[a];
}
} else {
if (_g.target(a) == t) {
r = a;
}
if (_left[a] == INVALID) {
const_cast<DynArcLookUp&>(*this).splay(a);
return r;
} else {
a = _left[a];
}
}
}
} else {
Arc a = p;
if (_right[a] != INVALID) {
a = _right[a];
while (_left[a] != INVALID) {
a = _left[a];
}
const_cast<DynArcLookUp&>(*this).splay(a);
} else {
while (_parent[a] != INVALID && _right[_parent[a]] == a) {
a = _parent[a];
}
if (_parent[a] == INVALID) {
return INVALID;
} else {
a = _parent[a];
const_cast<DynArcLookUp&>(*this).splay(a);
}
}
if (_g.target(a) == t) return a;
else return INVALID;
}
}
};
///Fast arc look-up between given endpoints.
///Using this class, you can find an arc in a digraph from a given
///source to a given target in time <em>O</em>(log<em>d</em>),
///where <em>d</em> is the out-degree of the source node.
///
///It is not possible to find \e all parallel arcs between two nodes.
///Use \ref AllArcLookUp for this purpose.
///
///\warning This class is static, so you should call refresh() (or at
///least refresh(Node)) to refresh this data structure whenever the
///digraph changes. This is a time consuming (superlinearly proportional
///(<em>O</em>(<em>m</em> log<em>m</em>)) to the number of arcs).
///
///\tparam G The type of the underlying digraph.
///
///\sa DynArcLookUp
///\sa AllArcLookUp
template<class G>
class ArcLookUp
{
public:
TEMPLATE_DIGRAPH_TYPEDEFS(G);
typedef G Digraph;
protected:
const Digraph &_g;
typename Digraph::template NodeMap<Arc> _head;
typename Digraph::template ArcMap<Arc> _left;
typename Digraph::template ArcMap<Arc> _right;
class ArcLess {
const Digraph &g;
public:
ArcLess(const Digraph &_g) : g(_g) {}
bool operator()(Arc a,Arc b) const
{
return g.target(a)<g.target(b);
}
};
public:
///Constructor
///Constructor.
///
///It builds up the search database, which remains valid until the digraph
///changes.
ArcLookUp(const Digraph &g) :_g(g),_head(g),_left(g),_right(g) {refresh();}
private:
Arc refreshRec(std::vector<Arc> &v,int a,int b)
{
int m=(a+b)/2;
Arc me=v[m];
_left[me] = a<m?refreshRec(v,a,m-1):INVALID;
_right[me] = m<b?refreshRec(v,m+1,b):INVALID;
return me;
}
public:
///Refresh the search data structure at a node.
///Build up the search database of node \c n.
///
///It runs in time <em>O</em>(<em>d</em> log<em>d</em>), where <em>d</em>
///is the number of the outgoing arcs of \c n.
void refresh(Node n)
{
std::vector<Arc> v;
for(OutArcIt e(_g,n);e!=INVALID;++e) v.push_back(e);
if(v.size()) {
std::sort(v.begin(),v.end(),ArcLess(_g));
_head[n]=refreshRec(v,0,v.size()-1);
}
else _head[n]=INVALID;
}
///Refresh the full data structure.
///Build up the full search database. In fact, it simply calls
///\ref refresh(Node) "refresh(n)" for each node \c n.
///
///It runs in time <em>O</em>(<em>m</em> log<em>D</em>), where <em>m</em> is
///the number of the arcs in the digraph and <em>D</em> is the maximum
///out-degree of the digraph.
void refresh()
{
for(NodeIt n(_g);n!=INVALID;++n) refresh(n);
}
///Find an arc between two nodes.
///Find an arc between two nodes in time <em>O</em>(log<em>d</em>),
///where <em>d</em> is the number of outgoing arcs of \c s.
///\param s The source node.
///\param t The target node.
///\return An arc from \c s to \c t if there exists,
///\ref INVALID otherwise.
///
///\warning If you change the digraph, refresh() must be called before using
///this operator. If you change the outgoing arcs of
///a single node \c n, then \ref refresh(Node) "refresh(n)" is enough.
Arc operator()(Node s, Node t) const
{
Arc e;
for(e=_head[s];
e!=INVALID&&_g.target(e)!=t;
e = t < _g.target(e)?_left[e]:_right[e]) ;
return e;
}
};
///Fast look-up of all arcs between given endpoints.
///This class is the same as \ref ArcLookUp, with the addition
///that it makes it possible to find all parallel arcs between given
///endpoints.
///
///\warning This class is static, so you should call refresh() (or at
///least refresh(Node)) to refresh this data structure whenever the
///digraph changes. This is a time consuming (superlinearly proportional
///(<em>O</em>(<em>m</em> log<em>m</em>)) to the number of arcs).
///
///\tparam G The type of the underlying digraph.
///
///\sa DynArcLookUp
///\sa ArcLookUp
template<class G>
class AllArcLookUp : public ArcLookUp<G>
{
using ArcLookUp<G>::_g;
using ArcLookUp<G>::_right;
using ArcLookUp<G>::_left;
using ArcLookUp<G>::_head;
TEMPLATE_DIGRAPH_TYPEDEFS(G);
typedef G Digraph;
typename Digraph::template ArcMap<Arc> _next;
Arc refreshNext(Arc head,Arc next=INVALID)
{
if(head==INVALID) return next;
else {
next=refreshNext(_right[head],next);
_next[head]=( next!=INVALID && _g.target(next)==_g.target(head))
? next : INVALID;
return refreshNext(_left[head],head);
}
}
void refreshNext()
{
for(NodeIt n(_g);n!=INVALID;++n) refreshNext(_head[n]);
}
public:
///Constructor
///Constructor.
///
///It builds up the search database, which remains valid until the digraph
///changes.
AllArcLookUp(const Digraph &g) : ArcLookUp<G>(g), _next(g) {refreshNext();}
///Refresh the data structure at a node.
///Build up the search database of node \c n.
///
///It runs in time <em>O</em>(<em>d</em> log<em>d</em>), where <em>d</em> is
///the number of the outgoing arcs of \c n.
void refresh(Node n)
{
ArcLookUp<G>::refresh(n);
refreshNext(_head[n]);
}
///Refresh the full data structure.
///Build up the full search database. In fact, it simply calls
///\ref refresh(Node) "refresh(n)" for each node \c n.
///
///It runs in time <em>O</em>(<em>m</em> log<em>D</em>), where <em>m</em> is
///the number of the arcs in the digraph and <em>D</em> is the maximum
///out-degree of the digraph.
void refresh()
{
for(NodeIt n(_g);n!=INVALID;++n) refresh(_head[n]);
}
///Find an arc between two nodes.
///Find an arc between two nodes.
///\param s The source node.
///\param t The target node.
///\param prev The previous arc between \c s and \c t. It it is INVALID or
///not given, the operator finds the first appropriate arc.
///\return An arc from \c s to \c t after \c prev or
///\ref INVALID if there is no more.
///
///For example, you can count the number of arcs from \c u to \c v in the
///following way.
///\code
///AllArcLookUp<ListDigraph> ae(g);
///...
///int n = 0;
///for(Arc a = ae(u,v); a != INVALID; a=ae(u,v,a)) n++;
///\endcode
///
///Finding the first arc take <em>O</em>(log<em>d</em>) time,
///where <em>d</em> is the number of outgoing arcs of \c s. Then the
///consecutive arcs are found in constant time.
///
///\warning If you change the digraph, refresh() must be called before using
///this operator. If you change the outgoing arcs of
///a single node \c n, then \ref refresh(Node) "refresh(n)" is enough.
///
#ifdef DOXYGEN
Arc operator()(Node s, Node t, Arc prev=INVALID) const {}
#else
using ArcLookUp<G>::operator() ;
Arc operator()(Node s, Node t, Arc prev) const
{
return prev==INVALID?(*this)(s,t):_next[prev];
}
#endif
};
/// @}
} //namespace lemon
#endif
|