Location: LEMON/LEMON-main/lemon/grosso_locatelli_pullan_mc.h - annotation
Load file history
update-external-tags CMAKE target (#395)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 | r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 r904:c279b19abc62 | /* -*- mode: C++; indent-tabs-mode: nil; -*-
*
* This file is a part of LEMON, a generic C++ optimization library.
*
* Copyright (C) 2003-2010
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
* (Egervary Research Group on Combinatorial Optimization, EGRES).
*
* Permission to use, modify and distribute this software is granted
* provided that this copyright notice appears in all copies. For
* precise terms see the accompanying LICENSE file.
*
* This software is provided "AS IS" with no warranty of any kind,
* express or implied, and with no claim as to its suitability for any
* purpose.
*
*/
#ifndef LEMON_GROSSO_LOCATELLI_PULLAN_MC_H
#define LEMON_GROSSO_LOCATELLI_PULLAN_MC_H
/// \ingroup approx_algs
///
/// \file
/// \brief The iterated local search algorithm of Grosso, Locatelli, and Pullan
/// for the maximum clique problem
#include <vector>
#include <limits>
#include <lemon/core.h>
#include <lemon/random.h>
namespace lemon {
/// \addtogroup approx_algs
/// @{
/// \brief Implementation of the iterated local search algorithm of Grosso,
/// Locatelli, and Pullan for the maximum clique problem
///
/// \ref GrossoLocatelliPullanMc implements the iterated local search
/// algorithm of Grosso, Locatelli, and Pullan for solving the \e maximum
/// \e clique \e problem \ref grosso08maxclique.
/// It is to find the largest complete subgraph (\e clique) in an
/// undirected graph, i.e., the largest set of nodes where each
/// pair of nodes is connected.
///
/// This class provides a simple but highly efficient and robust heuristic
/// method that quickly finds a large clique, but not necessarily the
/// largest one.
///
/// \tparam GR The undirected graph type the algorithm runs on.
///
/// \note %GrossoLocatelliPullanMc provides three different node selection
/// rules, from which the most powerful one is used by default.
/// For more information, see \ref SelectionRule.
template <typename GR>
class GrossoLocatelliPullanMc
{
public:
/// \brief Constants for specifying the node selection rule.
///
/// Enum type containing constants for specifying the node selection rule
/// for the \ref run() function.
///
/// During the algorithm, nodes are selected for addition to the current
/// clique according to the applied rule.
/// In general, the PENALTY_BASED rule turned out to be the most powerful
/// and the most robust, thus it is the default option.
/// However, another selection rule can be specified using the \ref run()
/// function with the proper parameter.
enum SelectionRule {
/// A node is selected randomly without any evaluation at each step.
RANDOM,
/// A node of maximum degree is selected randomly at each step.
DEGREE_BASED,
/// A node of minimum penalty is selected randomly at each step.
/// The node penalties are updated adaptively after each stage of the
/// search process.
PENALTY_BASED
};
private:
TEMPLATE_GRAPH_TYPEDEFS(GR);
typedef std::vector<int> IntVector;
typedef std::vector<char> BoolVector;
typedef std::vector<BoolVector> BoolMatrix;
// Note: vector<char> is used instead of vector<bool> for efficiency reasons
const GR &_graph;
IntNodeMap _id;
// Internal matrix representation of the graph
BoolMatrix _gr;
int _n;
// The current clique
BoolVector _clique;
int _size;
// The best clique found so far
BoolVector _best_clique;
int _best_size;
// The "distances" of the nodes from the current clique.
// _delta[u] is the number of nodes in the clique that are
// not connected with u.
IntVector _delta;
// The current tabu set
BoolVector _tabu;
// Random number generator
Random _rnd;
private:
// Implementation of the RANDOM node selection rule.
class RandomSelectionRule
{
private:
// References to the algorithm instance
const BoolVector &_clique;
const IntVector &_delta;
const BoolVector &_tabu;
Random &_rnd;
// Pivot rule data
int _n;
public:
// Constructor
RandomSelectionRule(GrossoLocatelliPullanMc &mc) :
_clique(mc._clique), _delta(mc._delta), _tabu(mc._tabu),
_rnd(mc._rnd), _n(mc._n)
{}
// Return a node index for a feasible add move or -1 if no one exists
int nextFeasibleAddNode() const {
int start_node = _rnd[_n];
for (int i = start_node; i != _n; i++) {
if (_delta[i] == 0 && !_tabu[i]) return i;
}
for (int i = 0; i != start_node; i++) {
if (_delta[i] == 0 && !_tabu[i]) return i;
}
return -1;
}
// Return a node index for a feasible swap move or -1 if no one exists
int nextFeasibleSwapNode() const {
int start_node = _rnd[_n];
for (int i = start_node; i != _n; i++) {
if (!_clique[i] && _delta[i] == 1 && !_tabu[i]) return i;
}
for (int i = 0; i != start_node; i++) {
if (!_clique[i] && _delta[i] == 1 && !_tabu[i]) return i;
}
return -1;
}
// Return a node index for an add move or -1 if no one exists
int nextAddNode() const {
int start_node = _rnd[_n];
for (int i = start_node; i != _n; i++) {
if (_delta[i] == 0) return i;
}
for (int i = 0; i != start_node; i++) {
if (_delta[i] == 0) return i;
}
return -1;
}
// Update internal data structures between stages (if necessary)
void update() {}
}; //class RandomSelectionRule
// Implementation of the DEGREE_BASED node selection rule.
class DegreeBasedSelectionRule
{
private:
// References to the algorithm instance
const BoolVector &_clique;
const IntVector &_delta;
const BoolVector &_tabu;
Random &_rnd;
// Pivot rule data
int _n;
IntVector _deg;
public:
// Constructor
DegreeBasedSelectionRule(GrossoLocatelliPullanMc &mc) :
_clique(mc._clique), _delta(mc._delta), _tabu(mc._tabu),
_rnd(mc._rnd), _n(mc._n), _deg(_n)
{
for (int i = 0; i != _n; i++) {
int d = 0;
BoolVector &row = mc._gr[i];
for (int j = 0; j != _n; j++) {
if (row[j]) d++;
}
_deg[i] = d;
}
}
// Return a node index for a feasible add move or -1 if no one exists
int nextFeasibleAddNode() const {
int start_node = _rnd[_n];
int node = -1, max_deg = -1;
for (int i = start_node; i != _n; i++) {
if (_delta[i] == 0 && !_tabu[i] && _deg[i] > max_deg) {
node = i;
max_deg = _deg[i];
}
}
for (int i = 0; i != start_node; i++) {
if (_delta[i] == 0 && !_tabu[i] && _deg[i] > max_deg) {
node = i;
max_deg = _deg[i];
}
}
return node;
}
// Return a node index for a feasible swap move or -1 if no one exists
int nextFeasibleSwapNode() const {
int start_node = _rnd[_n];
int node = -1, max_deg = -1;
for (int i = start_node; i != _n; i++) {
if (!_clique[i] && _delta[i] == 1 && !_tabu[i] &&
_deg[i] > max_deg) {
node = i;
max_deg = _deg[i];
}
}
for (int i = 0; i != start_node; i++) {
if (!_clique[i] && _delta[i] == 1 && !_tabu[i] &&
_deg[i] > max_deg) {
node = i;
max_deg = _deg[i];
}
}
return node;
}
// Return a node index for an add move or -1 if no one exists
int nextAddNode() const {
int start_node = _rnd[_n];
int node = -1, max_deg = -1;
for (int i = start_node; i != _n; i++) {
if (_delta[i] == 0 && _deg[i] > max_deg) {
node = i;
max_deg = _deg[i];
}
}
for (int i = 0; i != start_node; i++) {
if (_delta[i] == 0 && _deg[i] > max_deg) {
node = i;
max_deg = _deg[i];
}
}
return node;
}
// Update internal data structures between stages (if necessary)
void update() {}
}; //class DegreeBasedSelectionRule
// Implementation of the PENALTY_BASED node selection rule.
class PenaltyBasedSelectionRule
{
private:
// References to the algorithm instance
const BoolVector &_clique;
const IntVector &_delta;
const BoolVector &_tabu;
Random &_rnd;
// Pivot rule data
int _n;
IntVector _penalty;
public:
// Constructor
PenaltyBasedSelectionRule(GrossoLocatelliPullanMc &mc) :
_clique(mc._clique), _delta(mc._delta), _tabu(mc._tabu),
_rnd(mc._rnd), _n(mc._n), _penalty(_n, 0)
{}
// Return a node index for a feasible add move or -1 if no one exists
int nextFeasibleAddNode() const {
int start_node = _rnd[_n];
int node = -1, min_p = std::numeric_limits<int>::max();
for (int i = start_node; i != _n; i++) {
if (_delta[i] == 0 && !_tabu[i] && _penalty[i] < min_p) {
node = i;
min_p = _penalty[i];
}
}
for (int i = 0; i != start_node; i++) {
if (_delta[i] == 0 && !_tabu[i] && _penalty[i] < min_p) {
node = i;
min_p = _penalty[i];
}
}
return node;
}
// Return a node index for a feasible swap move or -1 if no one exists
int nextFeasibleSwapNode() const {
int start_node = _rnd[_n];
int node = -1, min_p = std::numeric_limits<int>::max();
for (int i = start_node; i != _n; i++) {
if (!_clique[i] && _delta[i] == 1 && !_tabu[i] &&
_penalty[i] < min_p) {
node = i;
min_p = _penalty[i];
}
}
for (int i = 0; i != start_node; i++) {
if (!_clique[i] && _delta[i] == 1 && !_tabu[i] &&
_penalty[i] < min_p) {
node = i;
min_p = _penalty[i];
}
}
return node;
}
// Return a node index for an add move or -1 if no one exists
int nextAddNode() const {
int start_node = _rnd[_n];
int node = -1, min_p = std::numeric_limits<int>::max();
for (int i = start_node; i != _n; i++) {
if (_delta[i] == 0 && _penalty[i] < min_p) {
node = i;
min_p = _penalty[i];
}
}
for (int i = 0; i != start_node; i++) {
if (_delta[i] == 0 && _penalty[i] < min_p) {
node = i;
min_p = _penalty[i];
}
}
return node;
}
// Update internal data structures between stages (if necessary)
void update() {}
}; //class PenaltyBasedSelectionRule
public:
/// \brief Constructor.
///
/// Constructor.
/// The global \ref rnd "random number generator instance" is used
/// during the algorithm.
///
/// \param graph The undirected graph the algorithm runs on.
GrossoLocatelliPullanMc(const GR& graph) :
_graph(graph), _id(_graph), _rnd(rnd)
{}
/// \brief Constructor with random seed.
///
/// Constructor with random seed.
///
/// \param graph The undirected graph the algorithm runs on.
/// \param seed Seed value for the internal random number generator
/// that is used during the algorithm.
GrossoLocatelliPullanMc(const GR& graph, int seed) :
_graph(graph), _id(_graph), _rnd(seed)
{}
/// \brief Constructor with random number generator.
///
/// Constructor with random number generator.
///
/// \param graph The undirected graph the algorithm runs on.
/// \param random A random number generator that is used during the
/// algorithm.
GrossoLocatelliPullanMc(const GR& graph, const Random& random) :
_graph(graph), _id(_graph), _rnd(random)
{}
/// \name Execution Control
/// @{
/// \brief Runs the algorithm.
///
/// This function runs the algorithm.
///
/// \param step_num The maximum number of node selections (steps)
/// during the search process.
/// This parameter controls the running time and the success of the
/// algorithm. For larger values, the algorithm runs slower but it more
/// likely finds larger cliques. For smaller values, the algorithm is
/// faster but probably gives worse results.
/// \param rule The node selection rule. For more information, see
/// \ref SelectionRule.
///
/// \return The size of the found clique.
int run(int step_num = 100000,
SelectionRule rule = PENALTY_BASED)
{
init();
switch (rule) {
case RANDOM:
return start<RandomSelectionRule>(step_num);
case DEGREE_BASED:
return start<DegreeBasedSelectionRule>(step_num);
case PENALTY_BASED:
return start<PenaltyBasedSelectionRule>(step_num);
}
return 0; // avoid warning
}
/// @}
/// \name Query Functions
/// @{
/// \brief The size of the found clique
///
/// This function returns the size of the found clique.
///
/// \pre run() must be called before using this function.
int cliqueSize() const {
return _best_size;
}
/// \brief Gives back the found clique in a \c bool node map
///
/// This function gives back the characteristic vector of the found
/// clique in the given node map.
/// It must be a \ref concepts::WriteMap "writable" node map with
/// \c bool (or convertible) value type.
///
/// \pre run() must be called before using this function.
template <typename CliqueMap>
void cliqueMap(CliqueMap &map) const {
for (NodeIt n(_graph); n != INVALID; ++n) {
map[n] = static_cast<bool>(_best_clique[_id[n]]);
}
}
/// \brief Iterator to list the nodes of the found clique
///
/// This iterator class lists the nodes of the found clique.
/// Before using it, you must allocate a GrossoLocatelliPullanMc instance
/// and call its \ref GrossoLocatelliPullanMc::run() "run()" method.
///
/// The following example prints out the IDs of the nodes in the found
/// clique.
/// \code
/// GrossoLocatelliPullanMc<Graph> mc(g);
/// mc.run();
/// for (GrossoLocatelliPullanMc<Graph>::CliqueNodeIt n(mc);
/// n != INVALID; ++n)
/// {
/// std::cout << g.id(n) << std::endl;
/// }
/// \endcode
class CliqueNodeIt
{
private:
NodeIt _it;
BoolNodeMap _map;
public:
/// Constructor
/// Constructor.
/// \param mc The algorithm instance.
CliqueNodeIt(const GrossoLocatelliPullanMc &mc)
: _map(mc._graph)
{
mc.cliqueMap(_map);
for (_it = NodeIt(mc._graph); _it != INVALID && !_map[_it]; ++_it) ;
}
/// Conversion to \c Node
operator Node() const { return _it; }
bool operator==(Invalid) const { return _it == INVALID; }
bool operator!=(Invalid) const { return _it != INVALID; }
/// Next node
CliqueNodeIt &operator++() {
for (++_it; _it != INVALID && !_map[_it]; ++_it) ;
return *this;
}
/// Postfix incrementation
/// Postfix incrementation.
///
/// \warning This incrementation returns a \c Node, not a
/// \c CliqueNodeIt as one may expect.
typename GR::Node operator++(int) {
Node n=*this;
++(*this);
return n;
}
};
/// @}
private:
// Adds a node to the current clique
void addCliqueNode(int u) {
if (_clique[u]) return;
_clique[u] = true;
_size++;
BoolVector &row = _gr[u];
for (int i = 0; i != _n; i++) {
if (!row[i]) _delta[i]++;
}
}
// Removes a node from the current clique
void delCliqueNode(int u) {
if (!_clique[u]) return;
_clique[u] = false;
_size--;
BoolVector &row = _gr[u];
for (int i = 0; i != _n; i++) {
if (!row[i]) _delta[i]--;
}
}
// Initialize data structures
void init() {
_n = countNodes(_graph);
int ui = 0;
for (NodeIt u(_graph); u != INVALID; ++u) {
_id[u] = ui++;
}
_gr.clear();
_gr.resize(_n, BoolVector(_n, false));
ui = 0;
for (NodeIt u(_graph); u != INVALID; ++u) {
for (IncEdgeIt e(_graph, u); e != INVALID; ++e) {
int vi = _id[_graph.runningNode(e)];
_gr[ui][vi] = true;
_gr[vi][ui] = true;
}
++ui;
}
_clique.clear();
_clique.resize(_n, false);
_size = 0;
_best_clique.clear();
_best_clique.resize(_n, false);
_best_size = 0;
_delta.clear();
_delta.resize(_n, 0);
_tabu.clear();
_tabu.resize(_n, false);
}
// Executes the algorithm
template <typename SelectionRuleImpl>
int start(int max_select) {
// Options for the restart rule
const bool delta_based_restart = true;
const int restart_delta_limit = 4;
if (_n == 0) return 0;
if (_n == 1) {
_best_clique[0] = true;
_best_size = 1;
return _best_size;
}
// Iterated local search
SelectionRuleImpl sel_method(*this);
int select = 0;
IntVector restart_nodes;
while (select < max_select) {
// Perturbation/restart
if (delta_based_restart) {
restart_nodes.clear();
for (int i = 0; i != _n; i++) {
if (_delta[i] >= restart_delta_limit)
restart_nodes.push_back(i);
}
}
int rs_node = -1;
if (restart_nodes.size() > 0) {
rs_node = restart_nodes[_rnd[restart_nodes.size()]];
} else {
rs_node = _rnd[_n];
}
BoolVector &row = _gr[rs_node];
for (int i = 0; i != _n; i++) {
if (_clique[i] && !row[i]) delCliqueNode(i);
}
addCliqueNode(rs_node);
// Local search
_tabu.clear();
_tabu.resize(_n, false);
bool tabu_empty = true;
int max_swap = _size;
while (select < max_select) {
select++;
int u;
if ((u = sel_method.nextFeasibleAddNode()) != -1) {
// Feasible add move
addCliqueNode(u);
if (tabu_empty) max_swap = _size;
}
else if ((u = sel_method.nextFeasibleSwapNode()) != -1) {
// Feasible swap move
int v = -1;
BoolVector &row = _gr[u];
for (int i = 0; i != _n; i++) {
if (_clique[i] && !row[i]) {
v = i;
break;
}
}
addCliqueNode(u);
delCliqueNode(v);
_tabu[v] = true;
tabu_empty = false;
if (--max_swap <= 0) break;
}
else if ((u = sel_method.nextAddNode()) != -1) {
// Non-feasible add move
addCliqueNode(u);
}
else break;
}
if (_size > _best_size) {
_best_clique = _clique;
_best_size = _size;
if (_best_size == _n) return _best_size;
}
sel_method.update();
}
return _best_size;
}
}; //class GrossoLocatelliPullanMc
///@}
} //namespace lemon
#endif //LEMON_GROSSO_LOCATELLI_PULLAN_MC_H
|