Location: LEMON/LEMON-main/lemon/gomory_hu.h - annotation

Load file history
gravatar
alpar (Alpar Juttner)
Unify the sources (#339)
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
 r877:141f9c0db4a3
 r545:e72bacfea6b7
 r877:141f9c0db4a3
 r545:e72bacfea6b7
 r877:141f9c0db4a3
 r545:e72bacfea6b7
 r545:e72bacfea6b7
 r545:e72bacfea6b7
 r545:e72bacfea6b7
 r545:e72bacfea6b7
 r545:e72bacfea6b7
 r545:e72bacfea6b7
 r545:e72bacfea6b7
 r545:e72bacfea6b7
 r545:e72bacfea6b7
 r545:e72bacfea6b7
 r545:e72bacfea6b7
 r545:e72bacfea6b7
 r545:e72bacfea6b7
 r545:e72bacfea6b7
 r545:e72bacfea6b7
 r545:e72bacfea6b7
 r545:e72bacfea6b7
 r545:e72bacfea6b7
 r545:e72bacfea6b7
 r545:e72bacfea6b7
 r545:e72bacfea6b7
 r545:e72bacfea6b7
 r545:e72bacfea6b7
 r877:141f9c0db4a3
 r545:e72bacfea6b7
 r545:e72bacfea6b7
 r545:e72bacfea6b7
 r545:e72bacfea6b7
 r545:e72bacfea6b7
 r545:e72bacfea6b7
 r545:e72bacfea6b7
 r545:e72bacfea6b7
 r546:d6b40ebb2617
 r546:d6b40ebb2617
 r877:141f9c0db4a3
 r546:d6b40ebb2617
 r545:e72bacfea6b7
 r545:e72bacfea6b7
 r545:e72bacfea6b7
 r545:e72bacfea6b7
 r877:141f9c0db4a3
 r545:e72bacfea6b7
 r596:293551ad254f
 r596:293551ad254f
 r596:293551ad254f
 r596:293551ad254f
 r596:293551ad254f
 r546:d6b40ebb2617
 r546:d6b40ebb2617
 r546:d6b40ebb2617
 r545:e72bacfea6b7
 r546:d6b40ebb2617
 r596:293551ad254f
 r596:293551ad254f
 r546:d6b40ebb2617
 r545:e72bacfea6b7
 r877:141f9c0db4a3
 r546:d6b40ebb2617
 r546:d6b40ebb2617
 r877:141f9c0db4a3
 r546:d6b40ebb2617
 r545:e72bacfea6b7
 r545:e72bacfea6b7
 r545:e72bacfea6b7
 r596:293551ad254f
 r545:e72bacfea6b7
 r596:293551ad254f
 r545:e72bacfea6b7
 r545:e72bacfea6b7
 r545:e72bacfea6b7
 r877:141f9c0db4a3
 r545:e72bacfea6b7
 r545:e72bacfea6b7
 r545:e72bacfea6b7
 r545:e72bacfea6b7
 r545:e72bacfea6b7
 r545:e72bacfea6b7
 r545:e72bacfea6b7
 r545:e72bacfea6b7
 r545:e72bacfea6b7
 r545:e72bacfea6b7
 r545:e72bacfea6b7
 r545:e72bacfea6b7
 r545:e72bacfea6b7
 r545:e72bacfea6b7
 r877:141f9c0db4a3
 r545:e72bacfea6b7
 r545:e72bacfea6b7
 r877:141f9c0db4a3
 r545:e72bacfea6b7
 r545:e72bacfea6b7
 r877:141f9c0db4a3
 r545:e72bacfea6b7
 r545:e72bacfea6b7
 r545:e72bacfea6b7
 r545:e72bacfea6b7
 r545:e72bacfea6b7
 r877:141f9c0db4a3
 r545:e72bacfea6b7
 r545:e72bacfea6b7
 r877:141f9c0db4a3
 r545:e72bacfea6b7
 r545:e72bacfea6b7
 r877:141f9c0db4a3
 r545:e72bacfea6b7
 r545:e72bacfea6b7
 r877:141f9c0db4a3
 r545:e72bacfea6b7
 r545:e72bacfea6b7
 r545:e72bacfea6b7
 r545:e72bacfea6b7
 r596:293551ad254f
 r546:d6b40ebb2617
 r546:d6b40ebb2617
 r877:141f9c0db4a3
 r545:e72bacfea6b7
 r877:141f9c0db4a3
 r545:e72bacfea6b7
 r545:e72bacfea6b7
 r545:e72bacfea6b7
 r545:e72bacfea6b7
 r545:e72bacfea6b7
 r545:e72bacfea6b7
 r545:e72bacfea6b7
 r596:293551ad254f
 r545:e72bacfea6b7
 r545:e72bacfea6b7
 r545:e72bacfea6b7
 r545:e72bacfea6b7
 r546:d6b40ebb2617
 r877:141f9c0db4a3
 r546:d6b40ebb2617
 r545:e72bacfea6b7
 r545:e72bacfea6b7
 r545:e72bacfea6b7
 r545:e72bacfea6b7
 r545:e72bacfea6b7
 r581:aa1804409f29
 r581:aa1804409f29
 r545:e72bacfea6b7
 r581:aa1804409f29
 r877:141f9c0db4a3
 r545:e72bacfea6b7
 r545:e72bacfea6b7
 r545:e72bacfea6b7
 r546:d6b40ebb2617
 r545:e72bacfea6b7
 r545:e72bacfea6b7
 r545:e72bacfea6b7
 r545:e72bacfea6b7
 r877:141f9c0db4a3
 r545:e72bacfea6b7
 r877:141f9c0db4a3
 r877:141f9c0db4a3
 r877:141f9c0db4a3
 r545:e72bacfea6b7
 r877:141f9c0db4a3
 r545:e72bacfea6b7
 r877:141f9c0db4a3
 r545:e72bacfea6b7
 r877:141f9c0db4a3
 r877:141f9c0db4a3
 r877:141f9c0db4a3
 r877:141f9c0db4a3
 r877:141f9c0db4a3
 r877:141f9c0db4a3
 r877:141f9c0db4a3
 r877:141f9c0db4a3
 r877:141f9c0db4a3
 r877:141f9c0db4a3
 r877:141f9c0db4a3
 r545:e72bacfea6b7
 r545:e72bacfea6b7
 r581:aa1804409f29
 r545:e72bacfea6b7
 r545:e72bacfea6b7
 r545:e72bacfea6b7
 r877:141f9c0db4a3
 r877:141f9c0db4a3
 r877:141f9c0db4a3
 r877:141f9c0db4a3
 r877:141f9c0db4a3
 r877:141f9c0db4a3
 r877:141f9c0db4a3
 r877:141f9c0db4a3
 r877:141f9c0db4a3
 r877:141f9c0db4a3
 r545:e72bacfea6b7
 r545:e72bacfea6b7
 r545:e72bacfea6b7
 r546:d6b40ebb2617
 r546:d6b40ebb2617
 r545:e72bacfea6b7
 r877:141f9c0db4a3
 r545:e72bacfea6b7
 r545:e72bacfea6b7
 r545:e72bacfea6b7
 r545:e72bacfea6b7
 r545:e72bacfea6b7
 r545:e72bacfea6b7
 r545:e72bacfea6b7
 r545:e72bacfea6b7
 r545:e72bacfea6b7
 r877:141f9c0db4a3
 r545:e72bacfea6b7
 r545:e72bacfea6b7
 r545:e72bacfea6b7
 r545:e72bacfea6b7
 r545:e72bacfea6b7
 r596:293551ad254f
 r546:d6b40ebb2617
 r545:e72bacfea6b7
 r545:e72bacfea6b7
 r545:e72bacfea6b7
 r545:e72bacfea6b7
 r545:e72bacfea6b7
 r596:293551ad254f
 r596:293551ad254f
 r596:293551ad254f
 r596:293551ad254f
 r596:293551ad254f
 r596:293551ad254f
 r545:e72bacfea6b7
 r545:e72bacfea6b7
 r545:e72bacfea6b7
 r545:e72bacfea6b7
 r545:e72bacfea6b7
 r545:e72bacfea6b7
 r877:141f9c0db4a3
 r596:293551ad254f
 r596:293551ad254f
 r596:293551ad254f
 r596:293551ad254f
 r596:293551ad254f
 r545:e72bacfea6b7
 r545:e72bacfea6b7
 r545:e72bacfea6b7
 r596:293551ad254f
 r596:293551ad254f
 r596:293551ad254f
 r596:293551ad254f
 r596:293551ad254f
 r596:293551ad254f
 r596:293551ad254f
 r596:293551ad254f
 r596:293551ad254f
 r596:293551ad254f
 r545:e72bacfea6b7
 r545:e72bacfea6b7
 r596:293551ad254f
 r877:141f9c0db4a3
 r596:293551ad254f
 r596:293551ad254f
 r596:293551ad254f
 r596:293551ad254f
 r596:293551ad254f
 r545:e72bacfea6b7
 r545:e72bacfea6b7
 r545:e72bacfea6b7
 r877:141f9c0db4a3
 r545:e72bacfea6b7
 r877:141f9c0db4a3
 r877:141f9c0db4a3
 r877:141f9c0db4a3
 r877:141f9c0db4a3
 r877:141f9c0db4a3
 r877:141f9c0db4a3
 r877:141f9c0db4a3
 r545:e72bacfea6b7
 r545:e72bacfea6b7
 r545:e72bacfea6b7
 r545:e72bacfea6b7
 r545:e72bacfea6b7
 r545:e72bacfea6b7
 r545:e72bacfea6b7
 r546:d6b40ebb2617
 r546:d6b40ebb2617
 r545:e72bacfea6b7
 r596:293551ad254f
 r596:293551ad254f
 r596:293551ad254f
 r596:293551ad254f
 r596:293551ad254f
 r596:293551ad254f
 r596:293551ad254f
 r596:293551ad254f
 r596:293551ad254f
 r596:293551ad254f
 r596:293551ad254f
 r545:e72bacfea6b7
 r786:e20173729589
 r545:e72bacfea6b7
 r545:e72bacfea6b7
 r545:e72bacfea6b7
 r545:e72bacfea6b7
 r545:e72bacfea6b7
 r545:e72bacfea6b7
 r545:e72bacfea6b7
 r877:141f9c0db4a3
 r545:e72bacfea6b7
 r877:141f9c0db4a3
 r877:141f9c0db4a3
 r877:141f9c0db4a3
 r545:e72bacfea6b7
 r877:141f9c0db4a3
 r877:141f9c0db4a3
 r877:141f9c0db4a3
 r877:141f9c0db4a3
 r877:141f9c0db4a3
 r877:141f9c0db4a3
 r545:e72bacfea6b7
 r877:141f9c0db4a3
 r877:141f9c0db4a3
 r877:141f9c0db4a3
 r877:141f9c0db4a3
 r545:e72bacfea6b7
 r545:e72bacfea6b7
 r545:e72bacfea6b7
 r581:aa1804409f29
 r545:e72bacfea6b7
 r581:aa1804409f29
 r545:e72bacfea6b7
 r545:e72bacfea6b7
 r545:e72bacfea6b7
 r545:e72bacfea6b7
 r877:141f9c0db4a3
 r545:e72bacfea6b7
 r877:141f9c0db4a3
 r877:141f9c0db4a3
 r877:141f9c0db4a3
 r877:141f9c0db4a3
 r877:141f9c0db4a3
 r877:141f9c0db4a3
 r877:141f9c0db4a3
 r877:141f9c0db4a3
 r545:e72bacfea6b7
 r877:141f9c0db4a3
 r545:e72bacfea6b7
 r545:e72bacfea6b7
 r545:e72bacfea6b7
 r545:e72bacfea6b7
 r545:e72bacfea6b7
 r545:e72bacfea6b7
 r545:e72bacfea6b7
 r545:e72bacfea6b7
 r877:141f9c0db4a3
 r545:e72bacfea6b7
 r596:293551ad254f
 r545:e72bacfea6b7
 r545:e72bacfea6b7
 r545:e72bacfea6b7
 r545:e72bacfea6b7
 r545:e72bacfea6b7
 r713:4ac30454f1c1
 r545:e72bacfea6b7
 r546:d6b40ebb2617
 r713:4ac30454f1c1
 r545:e72bacfea6b7
 r545:e72bacfea6b7
 r545:e72bacfea6b7
 r545:e72bacfea6b7
 r545:e72bacfea6b7
 r545:e72bacfea6b7
 r545:e72bacfea6b7
 r545:e72bacfea6b7
 r545:e72bacfea6b7
 r546:d6b40ebb2617
 r545:e72bacfea6b7
 r545:e72bacfea6b7
 r545:e72bacfea6b7
 r545:e72bacfea6b7
 r546:d6b40ebb2617
 r546:d6b40ebb2617
 r545:e72bacfea6b7
 r546:d6b40ebb2617
 r545:e72bacfea6b7
 r545:e72bacfea6b7
 r545:e72bacfea6b7
 r545:e72bacfea6b7
 r545:e72bacfea6b7
 r545:e72bacfea6b7
 r545:e72bacfea6b7
 r545:e72bacfea6b7
 r545:e72bacfea6b7
 r545:e72bacfea6b7
 r545:e72bacfea6b7
 r545:e72bacfea6b7
 r545:e72bacfea6b7
 r786:e20173729589
 r545:e72bacfea6b7
 r545:e72bacfea6b7
 r545:e72bacfea6b7
 r545:e72bacfea6b7
 r545:e72bacfea6b7
 r545:e72bacfea6b7
 r545:e72bacfea6b7
 r545:e72bacfea6b7
 r545:e72bacfea6b7
 r545:e72bacfea6b7
 r545:e72bacfea6b7
 r545:e72bacfea6b7
 r545:e72bacfea6b7
 r545:e72bacfea6b7
 r545:e72bacfea6b7
 r545:e72bacfea6b7
 r546:d6b40ebb2617
 r545:e72bacfea6b7
 r546:d6b40ebb2617
 r545:e72bacfea6b7
 r545:e72bacfea6b7
 r545:e72bacfea6b7
 r545:e72bacfea6b7
 r545:e72bacfea6b7
 r545:e72bacfea6b7
 r545:e72bacfea6b7
 r545:e72bacfea6b7
 r545:e72bacfea6b7
 r546:d6b40ebb2617
 r545:e72bacfea6b7
 r545:e72bacfea6b7
 r545:e72bacfea6b7
 r545:e72bacfea6b7
 r545:e72bacfea6b7
 r545:e72bacfea6b7
 r545:e72bacfea6b7
 r545:e72bacfea6b7
 r546:d6b40ebb2617
 r545:e72bacfea6b7
 r545:e72bacfea6b7
 r546:d6b40ebb2617
 r545:e72bacfea6b7
 r545:e72bacfea6b7
 r545:e72bacfea6b7
 r545:e72bacfea6b7
 r545:e72bacfea6b7
 r545:e72bacfea6b7
 r545:e72bacfea6b7
 r545:e72bacfea6b7
 r877:141f9c0db4a3
 r545:e72bacfea6b7
 r877:141f9c0db4a3
 r545:e72bacfea6b7
 r877:141f9c0db4a3
 r545:e72bacfea6b7
 r596:293551ad254f
 r545:e72bacfea6b7
 r545:e72bacfea6b7
 r545:e72bacfea6b7
 r545:e72bacfea6b7
 r545:e72bacfea6b7
 r713:4ac30454f1c1
 r545:e72bacfea6b7
 r545:e72bacfea6b7
 r713:4ac30454f1c1
 r545:e72bacfea6b7
 r545:e72bacfea6b7
 r596:293551ad254f
 r596:293551ad254f
 r545:e72bacfea6b7
 r545:e72bacfea6b7
 r545:e72bacfea6b7
 r545:e72bacfea6b7
 r545:e72bacfea6b7
 r545:e72bacfea6b7
 r545:e72bacfea6b7
 r545:e72bacfea6b7
 r545:e72bacfea6b7
 r545:e72bacfea6b7
 r545:e72bacfea6b7
 r545:e72bacfea6b7
 r545:e72bacfea6b7
 r545:e72bacfea6b7
 r545:e72bacfea6b7
 r545:e72bacfea6b7
 r545:e72bacfea6b7
 r877:141f9c0db4a3
 r545:e72bacfea6b7
 r596:293551ad254f
 r596:293551ad254f
 r596:293551ad254f
 r596:293551ad254f
 r545:e72bacfea6b7
 r545:e72bacfea6b7
 r545:e72bacfea6b7
 r546:d6b40ebb2617
 r546:d6b40ebb2617
 r545:e72bacfea6b7
 r546:d6b40ebb2617
 r545:e72bacfea6b7
 r545:e72bacfea6b7
 r545:e72bacfea6b7
 r596:293551ad254f
 r545:e72bacfea6b7
 r545:e72bacfea6b7
 r545:e72bacfea6b7
 r545:e72bacfea6b7
 r545:e72bacfea6b7
 r545:e72bacfea6b7
 r545:e72bacfea6b7
 r545:e72bacfea6b7
 r545:e72bacfea6b7
 r545:e72bacfea6b7
 r545:e72bacfea6b7
 r545:e72bacfea6b7
 r545:e72bacfea6b7
 r545:e72bacfea6b7
 r545:e72bacfea6b7
 r545:e72bacfea6b7
 r545:e72bacfea6b7
 r545:e72bacfea6b7
 r545:e72bacfea6b7
 r545:e72bacfea6b7
 r545:e72bacfea6b7
 r545:e72bacfea6b7
 r545:e72bacfea6b7
 r546:d6b40ebb2617
 r545:e72bacfea6b7
 r546:d6b40ebb2617
 r545:e72bacfea6b7
 r545:e72bacfea6b7
 r545:e72bacfea6b7
 r545:e72bacfea6b7
 r545:e72bacfea6b7
 r546:d6b40ebb2617
 r545:e72bacfea6b7
 r546:d6b40ebb2617
 r545:e72bacfea6b7
 r545:e72bacfea6b7
 r545:e72bacfea6b7
 r545:e72bacfea6b7
 r545:e72bacfea6b7
 r545:e72bacfea6b7
 r545:e72bacfea6b7
 r545:e72bacfea6b7
 r545:e72bacfea6b7
 r546:d6b40ebb2617
 r545:e72bacfea6b7
 r545:e72bacfea6b7
 r545:e72bacfea6b7
 r545:e72bacfea6b7
 r545:e72bacfea6b7
 r545:e72bacfea6b7
 r545:e72bacfea6b7
 r545:e72bacfea6b7
 r877:141f9c0db4a3
 r546:d6b40ebb2617
 r545:e72bacfea6b7
 r545:e72bacfea6b7
 r546:d6b40ebb2617
 r545:e72bacfea6b7
 r545:e72bacfea6b7
 r545:e72bacfea6b7
 r545:e72bacfea6b7
 r545:e72bacfea6b7
 r545:e72bacfea6b7
 r545:e72bacfea6b7
 r545:e72bacfea6b7
 r545:e72bacfea6b7
 r545:e72bacfea6b7
 r545:e72bacfea6b7
 r545:e72bacfea6b7
 r545:e72bacfea6b7
/* -*- mode: C++; indent-tabs-mode: nil; -*-
 *
 * This file is a part of LEMON, a generic C++ optimization library.
 *
 * Copyright (C) 2003-2010
 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
 * (Egervary Research Group on Combinatorial Optimization, EGRES).
 *
 * Permission to use, modify and distribute this software is granted
 * provided that this copyright notice appears in all copies. For
 * precise terms see the accompanying LICENSE file.
 *
 * This software is provided "AS IS" with no warranty of any kind,
 * express or implied, and with no claim as to its suitability for any
 * purpose.
 *
 */

#ifndef LEMON_GOMORY_HU_TREE_H
#define LEMON_GOMORY_HU_TREE_H

#include <limits>

#include <lemon/core.h>
#include <lemon/preflow.h>
#include <lemon/concept_check.h>
#include <lemon/concepts/maps.h>

/// \ingroup min_cut
/// \file
/// \brief Gomory-Hu cut tree in graphs.

namespace lemon {

  /// \ingroup min_cut
  ///
  /// \brief Gomory-Hu cut tree algorithm
  ///
  /// The Gomory-Hu tree is a tree on the node set of a given graph, but it
  /// may contain edges which are not in the original graph. It has the
  /// property that the minimum capacity edge of the path between two nodes
  /// in this tree has the same weight as the minimum cut in the graph
  /// between these nodes. Moreover the components obtained by removing
  /// this edge from the tree determine the corresponding minimum cut.
  /// Therefore once this tree is computed, the minimum cut between any pair
  /// of nodes can easily be obtained.
  ///
  /// The algorithm calculates \e n-1 distinct minimum cuts (currently with
  /// the \ref Preflow algorithm), thus it has \f$O(n^3\sqrt{e})\f$ overall
  /// time complexity. It calculates a rooted Gomory-Hu tree.
  /// The structure of the tree and the edge weights can be
  /// obtained using \c predNode(), \c predValue() and \c rootDist().
  /// The functions \c minCutMap() and \c minCutValue() calculate
  /// the minimum cut and the minimum cut value between any two nodes
  /// in the graph. You can also list (iterate on) the nodes and the
  /// edges of the cuts using \c MinCutNodeIt and \c MinCutEdgeIt.
  ///
  /// \tparam GR The type of the undirected graph the algorithm runs on.
  /// \tparam CAP The type of the edge map containing the capacities.
  /// The default map type is \ref concepts::Graph::EdgeMap "GR::EdgeMap<int>".
#ifdef DOXYGEN
  template <typename GR,
            typename CAP>
#else
  template <typename GR,
            typename CAP = typename GR::template EdgeMap<int> >
#endif
  class GomoryHu {
  public:

    /// The graph type of the algorithm
    typedef GR Graph;
    /// The capacity map type of the algorithm
    typedef CAP Capacity;
    /// The value type of capacities
    typedef typename Capacity::Value Value;

  private:

    TEMPLATE_GRAPH_TYPEDEFS(Graph);

    const Graph& _graph;
    const Capacity& _capacity;

    Node _root;
    typename Graph::template NodeMap<Node>* _pred;
    typename Graph::template NodeMap<Value>* _weight;
    typename Graph::template NodeMap<int>* _order;

    void createStructures() {
      if (!_pred) {
        _pred = new typename Graph::template NodeMap<Node>(_graph);
      }
      if (!_weight) {
        _weight = new typename Graph::template NodeMap<Value>(_graph);
      }
      if (!_order) {
        _order = new typename Graph::template NodeMap<int>(_graph);
      }
    }

    void destroyStructures() {
      if (_pred) {
        delete _pred;
      }
      if (_weight) {
        delete _weight;
      }
      if (_order) {
        delete _order;
      }
    }

  public:

    /// \brief Constructor
    ///
    /// Constructor.
    /// \param graph The undirected graph the algorithm runs on.
    /// \param capacity The edge capacity map.
    GomoryHu(const Graph& graph, const Capacity& capacity)
      : _graph(graph), _capacity(capacity),
        _pred(0), _weight(0), _order(0)
    {
      checkConcept<concepts::ReadMap<Edge, Value>, Capacity>();
    }


    /// \brief Destructor
    ///
    /// Destructor.
    ~GomoryHu() {
      destroyStructures();
    }

  private:

    // Initialize the internal data structures
    void init() {
      createStructures();

      _root = NodeIt(_graph);
      for (NodeIt n(_graph); n != INVALID; ++n) {
        (*_pred)[n] = _root;
        (*_order)[n] = -1;
      }
      (*_pred)[_root] = INVALID;
      (*_weight)[_root] = std::numeric_limits<Value>::max();
    }


    // Start the algorithm
    void start() {
      Preflow<Graph, Capacity> fa(_graph, _capacity, _root, INVALID);

      for (NodeIt n(_graph); n != INVALID; ++n) {
        if (n == _root) continue;

        Node pn = (*_pred)[n];
        fa.source(n);
        fa.target(pn);

        fa.runMinCut();

        (*_weight)[n] = fa.flowValue();

        for (NodeIt nn(_graph); nn != INVALID; ++nn) {
          if (nn != n && fa.minCut(nn) && (*_pred)[nn] == pn) {
            (*_pred)[nn] = n;
          }
        }
        if ((*_pred)[pn] != INVALID && fa.minCut((*_pred)[pn])) {
          (*_pred)[n] = (*_pred)[pn];
          (*_pred)[pn] = n;
          (*_weight)[n] = (*_weight)[pn];
          (*_weight)[pn] = fa.flowValue();
        }
      }

      (*_order)[_root] = 0;
      int index = 1;

      for (NodeIt n(_graph); n != INVALID; ++n) {
        std::vector<Node> st;
        Node nn = n;
        while ((*_order)[nn] == -1) {
          st.push_back(nn);
          nn = (*_pred)[nn];
        }
        while (!st.empty()) {
          (*_order)[st.back()] = index++;
          st.pop_back();
        }
      }
    }

  public:

    ///\name Execution Control

    ///@{

    /// \brief Run the Gomory-Hu algorithm.
    ///
    /// This function runs the Gomory-Hu algorithm.
    void run() {
      init();
      start();
    }

    /// @}

    ///\name Query Functions
    ///The results of the algorithm can be obtained using these
    ///functions.\n
    ///\ref run() should be called before using them.\n
    ///See also \ref MinCutNodeIt and \ref MinCutEdgeIt.

    ///@{

    /// \brief Return the predecessor node in the Gomory-Hu tree.
    ///
    /// This function returns the predecessor node of the given node
    /// in the Gomory-Hu tree.
    /// If \c node is the root of the tree, then it returns \c INVALID.
    ///
    /// \pre \ref run() must be called before using this function.
    Node predNode(const Node& node) const {
      return (*_pred)[node];
    }

    /// \brief Return the weight of the predecessor edge in the
    /// Gomory-Hu tree.
    ///
    /// This function returns the weight of the predecessor edge of the
    /// given node in the Gomory-Hu tree.
    /// If \c node is the root of the tree, the result is undefined.
    ///
    /// \pre \ref run() must be called before using this function.
    Value predValue(const Node& node) const {
      return (*_weight)[node];
    }

    /// \brief Return the distance from the root node in the Gomory-Hu tree.
    ///
    /// This function returns the distance of the given node from the root
    /// node in the Gomory-Hu tree.
    ///
    /// \pre \ref run() must be called before using this function.
    int rootDist(const Node& node) const {
      return (*_order)[node];
    }

    /// \brief Return the minimum cut value between two nodes
    ///
    /// This function returns the minimum cut value between the nodes
    /// \c s and \c t.
    /// It finds the nearest common ancestor of the given nodes in the
    /// Gomory-Hu tree and calculates the minimum weight edge on the
    /// paths to the ancestor.
    ///
    /// \pre \ref run() must be called before using this function.
    Value minCutValue(const Node& s, const Node& t) const {
      Node sn = s, tn = t;
      Value value = std::numeric_limits<Value>::max();

      while (sn != tn) {
        if ((*_order)[sn] < (*_order)[tn]) {
          if ((*_weight)[tn] <= value) value = (*_weight)[tn];
          tn = (*_pred)[tn];
        } else {
          if ((*_weight)[sn] <= value) value = (*_weight)[sn];
          sn = (*_pred)[sn];
        }
      }
      return value;
    }

    /// \brief Return the minimum cut between two nodes
    ///
    /// This function returns the minimum cut between the nodes \c s and \c t
    /// in the \c cutMap parameter by setting the nodes in the component of
    /// \c s to \c true and the other nodes to \c false.
    ///
    /// For higher level interfaces see MinCutNodeIt and MinCutEdgeIt.
    ///
    /// \param s The base node.
    /// \param t The node you want to separate from node \c s.
    /// \param cutMap The cut will be returned in this map.
    /// It must be a \c bool (or convertible) \ref concepts::ReadWriteMap
    /// "ReadWriteMap" on the graph nodes.
    ///
    /// \return The value of the minimum cut between \c s and \c t.
    ///
    /// \pre \ref run() must be called before using this function.
    template <typename CutMap>
    Value minCutMap(const Node& s,
                    const Node& t,
                    CutMap& cutMap
                    ) const {
      Node sn = s, tn = t;
      bool s_root=false;
      Node rn = INVALID;
      Value value = std::numeric_limits<Value>::max();

      while (sn != tn) {
        if ((*_order)[sn] < (*_order)[tn]) {
          if ((*_weight)[tn] <= value) {
            rn = tn;
            s_root = false;
            value = (*_weight)[tn];
          }
          tn = (*_pred)[tn];
        } else {
          if ((*_weight)[sn] <= value) {
            rn = sn;
            s_root = true;
            value = (*_weight)[sn];
          }
          sn = (*_pred)[sn];
        }
      }

      typename Graph::template NodeMap<bool> reached(_graph, false);
      reached[_root] = true;
      cutMap.set(_root, !s_root);
      reached[rn] = true;
      cutMap.set(rn, s_root);

      std::vector<Node> st;
      for (NodeIt n(_graph); n != INVALID; ++n) {
        st.clear();
        Node nn = n;
        while (!reached[nn]) {
          st.push_back(nn);
          nn = (*_pred)[nn];
        }
        while (!st.empty()) {
          cutMap.set(st.back(), cutMap[nn]);
          st.pop_back();
        }
      }

      return value;
    }

    ///@}

    friend class MinCutNodeIt;

    /// Iterate on the nodes of a minimum cut

    /// This iterator class lists the nodes of a minimum cut found by
    /// GomoryHu. Before using it, you must allocate a GomoryHu class
    /// and call its \ref GomoryHu::run() "run()" method.
    ///
    /// This example counts the nodes in the minimum cut separating \c s from
    /// \c t.
    /// \code
    /// GomoryHu<Graph> gom(g, capacities);
    /// gom.run();
    /// int cnt=0;
    /// for(GomoryHu<Graph>::MinCutNodeIt n(gom,s,t); n!=INVALID; ++n) ++cnt;
    /// \endcode
    class MinCutNodeIt
    {
      bool _side;
      typename Graph::NodeIt _node_it;
      typename Graph::template NodeMap<bool> _cut;
    public:
      /// Constructor

      /// Constructor.
      ///
      MinCutNodeIt(GomoryHu const &gomory,
                   ///< The GomoryHu class. You must call its
                   ///  run() method
                   ///  before initializing this iterator.
                   const Node& s, ///< The base node.
                   const Node& t,
                   ///< The node you want to separate from node \c s.
                   bool side=true
                   ///< If it is \c true (default) then the iterator lists
                   ///  the nodes of the component containing \c s,
                   ///  otherwise it lists the other component.
                   /// \note As the minimum cut is not always unique,
                   /// \code
                   /// MinCutNodeIt(gomory, s, t, true);
                   /// \endcode
                   /// and
                   /// \code
                   /// MinCutNodeIt(gomory, t, s, false);
                   /// \endcode
                   /// does not necessarily give the same set of nodes.
                   /// However, it is ensured that
                   /// \code
                   /// MinCutNodeIt(gomory, s, t, true);
                   /// \endcode
                   /// and
                   /// \code
                   /// MinCutNodeIt(gomory, s, t, false);
                   /// \endcode
                   /// together list each node exactly once.
                   )
        : _side(side), _cut(gomory._graph)
      {
        gomory.minCutMap(s,t,_cut);
        for(_node_it=typename Graph::NodeIt(gomory._graph);
            _node_it!=INVALID && _cut[_node_it]!=_side;
            ++_node_it) {}
      }
      /// Conversion to \c Node

      /// Conversion to \c Node.
      ///
      operator typename Graph::Node() const
      {
        return _node_it;
      }
      bool operator==(Invalid) { return _node_it==INVALID; }
      bool operator!=(Invalid) { return _node_it!=INVALID; }
      /// Next node

      /// Next node.
      ///
      MinCutNodeIt &operator++()
      {
        for(++_node_it;_node_it!=INVALID&&_cut[_node_it]!=_side;++_node_it) {}
        return *this;
      }
      /// Postfix incrementation

      /// Postfix incrementation.
      ///
      /// \warning This incrementation
      /// returns a \c Node, not a \c MinCutNodeIt, as one may
      /// expect.
      typename Graph::Node operator++(int)
      {
        typename Graph::Node n=*this;
        ++(*this);
        return n;
      }
    };

    friend class MinCutEdgeIt;

    /// Iterate on the edges of a minimum cut

    /// This iterator class lists the edges of a minimum cut found by
    /// GomoryHu. Before using it, you must allocate a GomoryHu class
    /// and call its \ref GomoryHu::run() "run()" method.
    ///
    /// This example computes the value of the minimum cut separating \c s from
    /// \c t.
    /// \code
    /// GomoryHu<Graph> gom(g, capacities);
    /// gom.run();
    /// int value=0;
    /// for(GomoryHu<Graph>::MinCutEdgeIt e(gom,s,t); e!=INVALID; ++e)
    ///   value+=capacities[e];
    /// \endcode
    /// The result will be the same as the value returned by
    /// \ref GomoryHu::minCutValue() "gom.minCutValue(s,t)".
    class MinCutEdgeIt
    {
      bool _side;
      const Graph &_graph;
      typename Graph::NodeIt _node_it;
      typename Graph::OutArcIt _arc_it;
      typename Graph::template NodeMap<bool> _cut;
      void step()
      {
        ++_arc_it;
        while(_node_it!=INVALID && _arc_it==INVALID)
          {
            for(++_node_it;_node_it!=INVALID&&!_cut[_node_it];++_node_it) {}
            if(_node_it!=INVALID)
              _arc_it=typename Graph::OutArcIt(_graph,_node_it);
          }
      }

    public:
      /// Constructor

      /// Constructor.
      ///
      MinCutEdgeIt(GomoryHu const &gomory,
                   ///< The GomoryHu class. You must call its
                   ///  run() method
                   ///  before initializing this iterator.
                   const Node& s,  ///< The base node.
                   const Node& t,
                   ///< The node you want to separate from node \c s.
                   bool side=true
                   ///< If it is \c true (default) then the listed arcs
                   ///  will be oriented from the
                   ///  nodes of the component containing \c s,
                   ///  otherwise they will be oriented in the opposite
                   ///  direction.
                   )
        : _graph(gomory._graph), _cut(_graph)
      {
        gomory.minCutMap(s,t,_cut);
        if(!side)
          for(typename Graph::NodeIt n(_graph);n!=INVALID;++n)
            _cut[n]=!_cut[n];

        for(_node_it=typename Graph::NodeIt(_graph);
            _node_it!=INVALID && !_cut[_node_it];
            ++_node_it) {}
        _arc_it = _node_it!=INVALID ?
          typename Graph::OutArcIt(_graph,_node_it) : INVALID;
        while(_node_it!=INVALID && _arc_it == INVALID)
          {
            for(++_node_it; _node_it!=INVALID&&!_cut[_node_it]; ++_node_it) {}
            if(_node_it!=INVALID)
              _arc_it= typename Graph::OutArcIt(_graph,_node_it);
          }
        while(_arc_it!=INVALID && _cut[_graph.target(_arc_it)]) step();
      }
      /// Conversion to \c Arc

      /// Conversion to \c Arc.
      ///
      operator typename Graph::Arc() const
      {
        return _arc_it;
      }
      /// Conversion to \c Edge

      /// Conversion to \c Edge.
      ///
      operator typename Graph::Edge() const
      {
        return _arc_it;
      }
      bool operator==(Invalid) { return _node_it==INVALID; }
      bool operator!=(Invalid) { return _node_it!=INVALID; }
      /// Next edge

      /// Next edge.
      ///
      MinCutEdgeIt &operator++()
      {
        step();
        while(_arc_it!=INVALID && _cut[_graph.target(_arc_it)]) step();
        return *this;
      }
      /// Postfix incrementation

      /// Postfix incrementation.
      ///
      /// \warning This incrementation
      /// returns an \c Arc, not a \c MinCutEdgeIt, as one may expect.
      typename Graph::Arc operator++(int)
      {
        typename Graph::Arc e=*this;
        ++(*this);
        return e;
      }
    };

  };

}

#endif