Location: LEMON/LEMON-main/lemon/list_graph.h - annotation
Load file history
Unify the sources (#339)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 | r209:765619b7cbb2 r39:0a01d811071f r209:765619b7cbb2 r39:0a01d811071f r877:141f9c0db4a3 r39:0a01d811071f r39:0a01d811071f r39:0a01d811071f r39:0a01d811071f r39:0a01d811071f r39:0a01d811071f r39:0a01d811071f r39:0a01d811071f r39:0a01d811071f r39:0a01d811071f r39:0a01d811071f r39:0a01d811071f r39:0a01d811071f r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r735:853fcddcf282 r57:c1acf0018c0a r220:a5d8c039f218 r220:a5d8c039f218 r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r738:456fa5bc3256 r738:456fa5bc3256 r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r209:765619b7cbb2 r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r209:765619b7cbb2 r57:c1acf0018c0a r209:765619b7cbb2 r57:c1acf0018c0a r209:765619b7cbb2 r57:c1acf0018c0a r57:c1acf0018c0a r738:456fa5bc3256 r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r738:456fa5bc3256 r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r209:765619b7cbb2 r57:c1acf0018c0a r209:765619b7cbb2 r209:765619b7cbb2 r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r209:765619b7cbb2 r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r209:765619b7cbb2 r57:c1acf0018c0a r209:765619b7cbb2 r739:32baeb8e5c8f r209:765619b7cbb2 r739:32baeb8e5c8f r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r739:32baeb8e5c8f r739:32baeb8e5c8f r57:c1acf0018c0a r209:765619b7cbb2 r739:32baeb8e5c8f r739:32baeb8e5c8f r209:765619b7cbb2 r739:32baeb8e5c8f r209:765619b7cbb2 r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r209:765619b7cbb2 r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r209:765619b7cbb2 r209:765619b7cbb2 r209:765619b7cbb2 r149:2f7ae34e1333 r149:2f7ae34e1333 r209:765619b7cbb2 r209:765619b7cbb2 r209:765619b7cbb2 r149:2f7ae34e1333 r149:2f7ae34e1333 r209:765619b7cbb2 r57:c1acf0018c0a r209:765619b7cbb2 r57:c1acf0018c0a r209:765619b7cbb2 r209:765619b7cbb2 r57:c1acf0018c0a r209:765619b7cbb2 r209:765619b7cbb2 r57:c1acf0018c0a r209:765619b7cbb2 r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r209:765619b7cbb2 r57:c1acf0018c0a r209:765619b7cbb2 r57:c1acf0018c0a r57:c1acf0018c0a r209:765619b7cbb2 r57:c1acf0018c0a r209:765619b7cbb2 r57:c1acf0018c0a r57:c1acf0018c0a r209:765619b7cbb2 r209:765619b7cbb2 r57:c1acf0018c0a r209:765619b7cbb2 r209:765619b7cbb2 r57:c1acf0018c0a r209:765619b7cbb2 r209:765619b7cbb2 r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r209:765619b7cbb2 r57:c1acf0018c0a r209:765619b7cbb2 r57:c1acf0018c0a r57:c1acf0018c0a r209:765619b7cbb2 r57:c1acf0018c0a r209:765619b7cbb2 r57:c1acf0018c0a r209:765619b7cbb2 r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r209:765619b7cbb2 r57:c1acf0018c0a r57:c1acf0018c0a r209:765619b7cbb2 r57:c1acf0018c0a r209:765619b7cbb2 r57:c1acf0018c0a r209:765619b7cbb2 r57:c1acf0018c0a r209:765619b7cbb2 r57:c1acf0018c0a r209:765619b7cbb2 r57:c1acf0018c0a r209:765619b7cbb2 r57:c1acf0018c0a r57:c1acf0018c0a r149:2f7ae34e1333 r57:c1acf0018c0a r57:c1acf0018c0a r209:765619b7cbb2 r57:c1acf0018c0a r57:c1acf0018c0a r209:765619b7cbb2 r57:c1acf0018c0a r209:765619b7cbb2 r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r209:765619b7cbb2 r57:c1acf0018c0a r209:765619b7cbb2 r57:c1acf0018c0a r57:c1acf0018c0a r209:765619b7cbb2 r57:c1acf0018c0a r209:765619b7cbb2 r209:765619b7cbb2 r57:c1acf0018c0a r57:c1acf0018c0a r209:765619b7cbb2 r57:c1acf0018c0a r209:765619b7cbb2 r57:c1acf0018c0a r209:765619b7cbb2 r57:c1acf0018c0a r149:2f7ae34e1333 r149:2f7ae34e1333 r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r209:765619b7cbb2 r57:c1acf0018c0a r57:c1acf0018c0a r209:765619b7cbb2 r57:c1acf0018c0a r209:765619b7cbb2 r57:c1acf0018c0a r57:c1acf0018c0a r209:765619b7cbb2 r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r209:765619b7cbb2 r57:c1acf0018c0a r57:c1acf0018c0a r209:765619b7cbb2 r57:c1acf0018c0a r209:765619b7cbb2 r57:c1acf0018c0a r57:c1acf0018c0a r209:765619b7cbb2 r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r73:c56b7389dc78 r57:c1acf0018c0a r57:c1acf0018c0a r209:765619b7cbb2 r57:c1acf0018c0a r735:853fcddcf282 r735:853fcddcf282 r209:765619b7cbb2 r57:c1acf0018c0a r735:853fcddcf282 r735:853fcddcf282 r735:853fcddcf282 r73:c56b7389dc78 r57:c1acf0018c0a r787:c2230649a493 r787:c2230649a493 r73:c56b7389dc78 r735:853fcddcf282 r57:c1acf0018c0a r617:4137ef9aacc6 r617:4137ef9aacc6 r57:c1acf0018c0a r735:853fcddcf282 r57:c1acf0018c0a r735:853fcddcf282 r735:853fcddcf282 r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r209:765619b7cbb2 r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r209:765619b7cbb2 r735:853fcddcf282 r559:c5fd2d996909 r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r209:765619b7cbb2 r735:853fcddcf282 r57:c1acf0018c0a r559:c5fd2d996909 r735:853fcddcf282 r209:765619b7cbb2 r57:c1acf0018c0a r57:c1acf0018c0a r234:ad6b8c47bd56 r234:ad6b8c47bd56 r787:c2230649a493 r787:c2230649a493 r787:c2230649a493 r787:c2230649a493 r787:c2230649a493 r735:853fcddcf282 r234:ad6b8c47bd56 r234:ad6b8c47bd56 r234:ad6b8c47bd56 r735:853fcddcf282 r787:c2230649a493 r787:c2230649a493 r787:c2230649a493 r735:853fcddcf282 r234:ad6b8c47bd56 r149:2f7ae34e1333 r149:2f7ae34e1333 r735:853fcddcf282 r735:853fcddcf282 r149:2f7ae34e1333 r735:853fcddcf282 r735:853fcddcf282 r149:2f7ae34e1333 r149:2f7ae34e1333 r149:2f7ae34e1333 r149:2f7ae34e1333 r735:853fcddcf282 r735:853fcddcf282 r149:2f7ae34e1333 r735:853fcddcf282 r735:853fcddcf282 r149:2f7ae34e1333 r149:2f7ae34e1333 r735:853fcddcf282 r57:c1acf0018c0a r735:853fcddcf282 r57:c1acf0018c0a r735:853fcddcf282 r786:e20173729589 r73:c56b7389dc78 r57:c1acf0018c0a r57:c1acf0018c0a r235:b46d2787e9c2 r235:b46d2787e9c2 r57:c1acf0018c0a r735:853fcddcf282 r57:c1acf0018c0a r735:853fcddcf282 r57:c1acf0018c0a r735:853fcddcf282 r786:e20173729589 r73:c56b7389dc78 r57:c1acf0018c0a r57:c1acf0018c0a r235:b46d2787e9c2 r235:b46d2787e9c2 r57:c1acf0018c0a r57:c1acf0018c0a r735:853fcddcf282 r57:c1acf0018c0a r735:853fcddcf282 r735:853fcddcf282 r735:853fcddcf282 r73:c56b7389dc78 r57:c1acf0018c0a r57:c1acf0018c0a r735:853fcddcf282 r735:853fcddcf282 r735:853fcddcf282 r735:853fcddcf282 r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r735:853fcddcf282 r735:853fcddcf282 r735:853fcddcf282 r735:853fcddcf282 r735:853fcddcf282 r57:c1acf0018c0a r735:853fcddcf282 r735:853fcddcf282 r735:853fcddcf282 r735:853fcddcf282 r877:141f9c0db4a3 r735:853fcddcf282 r73:c56b7389dc78 r57:c1acf0018c0a r57:c1acf0018c0a r735:853fcddcf282 r57:c1acf0018c0a r735:853fcddcf282 r209:765619b7cbb2 r209:765619b7cbb2 r735:853fcddcf282 r735:853fcddcf282 r209:765619b7cbb2 r57:c1acf0018c0a r735:853fcddcf282 r209:765619b7cbb2 r209:765619b7cbb2 r735:853fcddcf282 r735:853fcddcf282 r209:765619b7cbb2 r57:c1acf0018c0a r735:853fcddcf282 r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r735:853fcddcf282 r735:853fcddcf282 r735:853fcddcf282 r735:853fcddcf282 r735:853fcddcf282 r735:853fcddcf282 r57:c1acf0018c0a r57:c1acf0018c0a r738:456fa5bc3256 r57:c1acf0018c0a r735:853fcddcf282 r73:c56b7389dc78 r57:c1acf0018c0a r57:c1acf0018c0a r738:456fa5bc3256 r738:456fa5bc3256 r738:456fa5bc3256 r738:456fa5bc3256 r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r209:765619b7cbb2 r57:c1acf0018c0a r57:c1acf0018c0a r735:853fcddcf282 r735:853fcddcf282 r735:853fcddcf282 r735:853fcddcf282 r735:853fcddcf282 r73:c56b7389dc78 r735:853fcddcf282 r735:853fcddcf282 r73:c56b7389dc78 r73:c56b7389dc78 r73:c56b7389dc78 r735:853fcddcf282 r735:853fcddcf282 r735:853fcddcf282 r735:853fcddcf282 r735:853fcddcf282 r57:c1acf0018c0a r209:765619b7cbb2 r735:853fcddcf282 r735:853fcddcf282 r735:853fcddcf282 r735:853fcddcf282 r787:c2230649a493 r735:853fcddcf282 r735:853fcddcf282 r735:853fcddcf282 r735:853fcddcf282 r735:853fcddcf282 r735:853fcddcf282 r735:853fcddcf282 r735:853fcddcf282 r735:853fcddcf282 r735:853fcddcf282 r735:853fcddcf282 r735:853fcddcf282 r735:853fcddcf282 r735:853fcddcf282 r735:853fcddcf282 r735:853fcddcf282 r735:853fcddcf282 r735:853fcddcf282 r735:853fcddcf282 r735:853fcddcf282 r735:853fcddcf282 r735:853fcddcf282 r735:853fcddcf282 r735:853fcddcf282 r57:c1acf0018c0a r73:c56b7389dc78 r57:c1acf0018c0a r73:c56b7389dc78 r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r877:141f9c0db4a3 r735:853fcddcf282 r735:853fcddcf282 r735:853fcddcf282 r735:853fcddcf282 r735:853fcddcf282 r209:765619b7cbb2 r786:e20173729589 r735:853fcddcf282 r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r209:765619b7cbb2 r57:c1acf0018c0a r209:765619b7cbb2 r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r209:765619b7cbb2 r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r209:765619b7cbb2 r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r209:765619b7cbb2 r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r209:765619b7cbb2 r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r209:765619b7cbb2 r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r209:765619b7cbb2 r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r209:765619b7cbb2 r57:c1acf0018c0a r57:c1acf0018c0a r209:765619b7cbb2 r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r209:765619b7cbb2 r57:c1acf0018c0a r57:c1acf0018c0a r209:765619b7cbb2 r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r209:765619b7cbb2 r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r209:765619b7cbb2 r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r209:765619b7cbb2 r209:765619b7cbb2 r57:c1acf0018c0a r57:c1acf0018c0a r209:765619b7cbb2 r57:c1acf0018c0a r209:765619b7cbb2 r209:765619b7cbb2 r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r209:765619b7cbb2 r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r735:853fcddcf282 r209:765619b7cbb2 r209:765619b7cbb2 r57:c1acf0018c0a r209:765619b7cbb2 r57:c1acf0018c0a r209:765619b7cbb2 r735:853fcddcf282 r735:853fcddcf282 r209:765619b7cbb2 r57:c1acf0018c0a r735:853fcddcf282 r57:c1acf0018c0a r209:765619b7cbb2 r57:c1acf0018c0a r57:c1acf0018c0a r735:853fcddcf282 r735:853fcddcf282 r57:c1acf0018c0a r735:853fcddcf282 r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r735:853fcddcf282 r57:c1acf0018c0a r209:765619b7cbb2 r57:c1acf0018c0a r735:853fcddcf282 r735:853fcddcf282 r735:853fcddcf282 r740:819ca5b50de0 r740:819ca5b50de0 r740:819ca5b50de0 r57:c1acf0018c0a r209:765619b7cbb2 r209:765619b7cbb2 r57:c1acf0018c0a r209:765619b7cbb2 r209:765619b7cbb2 r209:765619b7cbb2 r57:c1acf0018c0a r209:765619b7cbb2 r209:765619b7cbb2 r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r735:853fcddcf282 r57:c1acf0018c0a r735:853fcddcf282 r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r209:765619b7cbb2 r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r209:765619b7cbb2 r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r209:765619b7cbb2 r57:c1acf0018c0a r209:765619b7cbb2 r617:4137ef9aacc6 r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r73:c56b7389dc78 r73:c56b7389dc78 r73:c56b7389dc78 r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r329:d900fd1e760f r329:d900fd1e760f r238:79643f6e8c52 r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r209:765619b7cbb2 r57:c1acf0018c0a r209:765619b7cbb2 r209:765619b7cbb2 r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r209:765619b7cbb2 r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r209:765619b7cbb2 r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r209:765619b7cbb2 r57:c1acf0018c0a r209:765619b7cbb2 r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r209:765619b7cbb2 r209:765619b7cbb2 r57:c1acf0018c0a r57:c1acf0018c0a r209:765619b7cbb2 r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r209:765619b7cbb2 r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r209:765619b7cbb2 r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r209:765619b7cbb2 r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r73:c56b7389dc78 r73:c56b7389dc78 r73:c56b7389dc78 r73:c56b7389dc78 r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r73:c56b7389dc78 r73:c56b7389dc78 r73:c56b7389dc78 r73:c56b7389dc78 r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r209:765619b7cbb2 r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r209:765619b7cbb2 r209:765619b7cbb2 r209:765619b7cbb2 r149:2f7ae34e1333 r149:2f7ae34e1333 r209:765619b7cbb2 r209:765619b7cbb2 r209:765619b7cbb2 r149:2f7ae34e1333 r149:2f7ae34e1333 r209:765619b7cbb2 r209:765619b7cbb2 r209:765619b7cbb2 r149:2f7ae34e1333 r149:2f7ae34e1333 r209:765619b7cbb2 r57:c1acf0018c0a r209:765619b7cbb2 r57:c1acf0018c0a r209:765619b7cbb2 r209:765619b7cbb2 r57:c1acf0018c0a r209:765619b7cbb2 r209:765619b7cbb2 r57:c1acf0018c0a r209:765619b7cbb2 r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r209:765619b7cbb2 r57:c1acf0018c0a r209:765619b7cbb2 r57:c1acf0018c0a r57:c1acf0018c0a r209:765619b7cbb2 r57:c1acf0018c0a r209:765619b7cbb2 r57:c1acf0018c0a r57:c1acf0018c0a r209:765619b7cbb2 r209:765619b7cbb2 r209:765619b7cbb2 r57:c1acf0018c0a r209:765619b7cbb2 r209:765619b7cbb2 r57:c1acf0018c0a r209:765619b7cbb2 r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r209:765619b7cbb2 r209:765619b7cbb2 r57:c1acf0018c0a r57:c1acf0018c0a r209:765619b7cbb2 r57:c1acf0018c0a r57:c1acf0018c0a r209:765619b7cbb2 r57:c1acf0018c0a r209:765619b7cbb2 r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r209:765619b7cbb2 r57:c1acf0018c0a r57:c1acf0018c0a r209:765619b7cbb2 r57:c1acf0018c0a r209:765619b7cbb2 r57:c1acf0018c0a r209:765619b7cbb2 r57:c1acf0018c0a r209:765619b7cbb2 r57:c1acf0018c0a r209:765619b7cbb2 r57:c1acf0018c0a r209:765619b7cbb2 r57:c1acf0018c0a r57:c1acf0018c0a r149:2f7ae34e1333 r57:c1acf0018c0a r209:765619b7cbb2 r73:c56b7389dc78 r73:c56b7389dc78 r209:765619b7cbb2 r57:c1acf0018c0a r209:765619b7cbb2 r209:765619b7cbb2 r57:c1acf0018c0a r57:c1acf0018c0a r209:765619b7cbb2 r57:c1acf0018c0a r209:765619b7cbb2 r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r209:765619b7cbb2 r209:765619b7cbb2 r57:c1acf0018c0a r57:c1acf0018c0a r209:765619b7cbb2 r57:c1acf0018c0a r209:765619b7cbb2 r57:c1acf0018c0a r209:765619b7cbb2 r57:c1acf0018c0a r209:765619b7cbb2 r149:2f7ae34e1333 r149:2f7ae34e1333 r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r235:b46d2787e9c2 r57:c1acf0018c0a r209:765619b7cbb2 r57:c1acf0018c0a r57:c1acf0018c0a r209:765619b7cbb2 r57:c1acf0018c0a r57:c1acf0018c0a r209:765619b7cbb2 r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r209:765619b7cbb2 r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r235:b46d2787e9c2 r57:c1acf0018c0a r209:765619b7cbb2 r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r209:765619b7cbb2 r57:c1acf0018c0a r57:c1acf0018c0a r209:765619b7cbb2 r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r209:765619b7cbb2 r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r73:c56b7389dc78 r57:c1acf0018c0a r57:c1acf0018c0a r73:c56b7389dc78 r57:c1acf0018c0a r735:853fcddcf282 r735:853fcddcf282 r209:765619b7cbb2 r57:c1acf0018c0a r735:853fcddcf282 r735:853fcddcf282 r735:853fcddcf282 r73:c56b7389dc78 r73:c56b7389dc78 r787:c2230649a493 r787:c2230649a493 r73:c56b7389dc78 r735:853fcddcf282 r57:c1acf0018c0a r617:4137ef9aacc6 r617:4137ef9aacc6 r57:c1acf0018c0a r735:853fcddcf282 r57:c1acf0018c0a r735:853fcddcf282 r735:853fcddcf282 r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r209:765619b7cbb2 r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r73:c56b7389dc78 r57:c1acf0018c0a r73:c56b7389dc78 r57:c1acf0018c0a r735:853fcddcf282 r559:c5fd2d996909 r57:c1acf0018c0a r57:c1acf0018c0a r73:c56b7389dc78 r57:c1acf0018c0a r735:853fcddcf282 r735:853fcddcf282 r735:853fcddcf282 r559:c5fd2d996909 r735:853fcddcf282 r735:853fcddcf282 r57:c1acf0018c0a r234:ad6b8c47bd56 r735:853fcddcf282 r234:ad6b8c47bd56 r787:c2230649a493 r787:c2230649a493 r787:c2230649a493 r787:c2230649a493 r787:c2230649a493 r735:853fcddcf282 r735:853fcddcf282 r735:853fcddcf282 r234:ad6b8c47bd56 r735:853fcddcf282 r787:c2230649a493 r787:c2230649a493 r787:c2230649a493 r735:853fcddcf282 r149:2f7ae34e1333 r149:2f7ae34e1333 r735:853fcddcf282 r735:853fcddcf282 r149:2f7ae34e1333 r735:853fcddcf282 r149:2f7ae34e1333 r149:2f7ae34e1333 r735:853fcddcf282 r735:853fcddcf282 r735:853fcddcf282 r735:853fcddcf282 r735:853fcddcf282 r735:853fcddcf282 r735:853fcddcf282 r735:853fcddcf282 r149:2f7ae34e1333 r149:2f7ae34e1333 r735:853fcddcf282 r735:853fcddcf282 r149:2f7ae34e1333 r735:853fcddcf282 r149:2f7ae34e1333 r149:2f7ae34e1333 r149:2f7ae34e1333 r735:853fcddcf282 r149:2f7ae34e1333 r735:853fcddcf282 r57:c1acf0018c0a r735:853fcddcf282 r735:853fcddcf282 r735:853fcddcf282 r73:c56b7389dc78 r73:c56b7389dc78 r73:c56b7389dc78 r235:b46d2787e9c2 r235:b46d2787e9c2 r209:765619b7cbb2 r735:853fcddcf282 r57:c1acf0018c0a r735:853fcddcf282 r57:c1acf0018c0a r735:853fcddcf282 r786:e20173729589 r735:853fcddcf282 r735:853fcddcf282 r73:c56b7389dc78 r73:c56b7389dc78 r73:c56b7389dc78 r235:b46d2787e9c2 r235:b46d2787e9c2 r57:c1acf0018c0a r735:853fcddcf282 r57:c1acf0018c0a r57:c1acf0018c0a r735:853fcddcf282 r735:853fcddcf282 r735:853fcddcf282 r735:853fcddcf282 r735:853fcddcf282 r57:c1acf0018c0a r735:853fcddcf282 r735:853fcddcf282 r735:853fcddcf282 r877:141f9c0db4a3 r735:853fcddcf282 r73:c56b7389dc78 r73:c56b7389dc78 r73:c56b7389dc78 r57:c1acf0018c0a r73:c56b7389dc78 r209:765619b7cbb2 r209:765619b7cbb2 r209:765619b7cbb2 r235:b46d2787e9c2 r235:b46d2787e9c2 r209:765619b7cbb2 r235:b46d2787e9c2 r209:765619b7cbb2 r209:765619b7cbb2 r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r735:853fcddcf282 r735:853fcddcf282 r735:853fcddcf282 r735:853fcddcf282 r787:c2230649a493 r735:853fcddcf282 r735:853fcddcf282 r735:853fcddcf282 r617:4137ef9aacc6 r736:2e20aad15754 r736:2e20aad15754 r736:2e20aad15754 r736:2e20aad15754 r736:2e20aad15754 r736:2e20aad15754 r736:2e20aad15754 r736:2e20aad15754 r736:2e20aad15754 r736:2e20aad15754 r736:2e20aad15754 r736:2e20aad15754 r736:2e20aad15754 r736:2e20aad15754 r736:2e20aad15754 r736:2e20aad15754 r736:2e20aad15754 r736:2e20aad15754 r736:2e20aad15754 r57:c1acf0018c0a r73:c56b7389dc78 r73:c56b7389dc78 r57:c1acf0018c0a r73:c56b7389dc78 r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r877:141f9c0db4a3 r735:853fcddcf282 r735:853fcddcf282 r735:853fcddcf282 r735:853fcddcf282 r735:853fcddcf282 r735:853fcddcf282 r786:e20173729589 r735:853fcddcf282 r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r209:765619b7cbb2 r57:c1acf0018c0a r209:765619b7cbb2 r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r209:765619b7cbb2 r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r209:765619b7cbb2 r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r209:765619b7cbb2 r57:c1acf0018c0a r57:c1acf0018c0a r73:c56b7389dc78 r73:c56b7389dc78 r57:c1acf0018c0a r73:c56b7389dc78 r73:c56b7389dc78 r73:c56b7389dc78 r57:c1acf0018c0a r57:c1acf0018c0a r73:c56b7389dc78 r73:c56b7389dc78 r57:c1acf0018c0a r73:c56b7389dc78 r73:c56b7389dc78 r73:c56b7389dc78 r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r73:c56b7389dc78 r73:c56b7389dc78 r209:765619b7cbb2 r73:c56b7389dc78 r73:c56b7389dc78 r57:c1acf0018c0a r73:c56b7389dc78 r73:c56b7389dc78 r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r73:c56b7389dc78 r209:765619b7cbb2 r73:c56b7389dc78 r73:c56b7389dc78 r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r73:c56b7389dc78 r73:c56b7389dc78 r57:c1acf0018c0a r57:c1acf0018c0a r73:c56b7389dc78 r57:c1acf0018c0a r57:c1acf0018c0a r73:c56b7389dc78 r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r209:765619b7cbb2 r57:c1acf0018c0a r57:c1acf0018c0a r209:765619b7cbb2 r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r73:c56b7389dc78 r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r73:c56b7389dc78 r209:765619b7cbb2 r57:c1acf0018c0a r73:c56b7389dc78 r209:765619b7cbb2 r73:c56b7389dc78 r73:c56b7389dc78 r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r73:c56b7389dc78 r73:c56b7389dc78 r57:c1acf0018c0a r57:c1acf0018c0a r73:c56b7389dc78 r209:765619b7cbb2 r209:765619b7cbb2 r73:c56b7389dc78 r57:c1acf0018c0a r209:765619b7cbb2 r57:c1acf0018c0a r209:765619b7cbb2 r209:765619b7cbb2 r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r209:765619b7cbb2 r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r735:853fcddcf282 r209:765619b7cbb2 r209:765619b7cbb2 r73:c56b7389dc78 r209:765619b7cbb2 r57:c1acf0018c0a r209:765619b7cbb2 r735:853fcddcf282 r735:853fcddcf282 r209:765619b7cbb2 r73:c56b7389dc78 r735:853fcddcf282 r57:c1acf0018c0a r209:765619b7cbb2 r57:c1acf0018c0a r57:c1acf0018c0a r735:853fcddcf282 r735:853fcddcf282 r57:c1acf0018c0a r735:853fcddcf282 r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r735:853fcddcf282 r57:c1acf0018c0a r209:765619b7cbb2 r57:c1acf0018c0a r735:853fcddcf282 r735:853fcddcf282 r735:853fcddcf282 r740:819ca5b50de0 r740:819ca5b50de0 r740:819ca5b50de0 r57:c1acf0018c0a r209:765619b7cbb2 r209:765619b7cbb2 r73:c56b7389dc78 r209:765619b7cbb2 r209:765619b7cbb2 r209:765619b7cbb2 r57:c1acf0018c0a r209:765619b7cbb2 r209:765619b7cbb2 r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r735:853fcddcf282 r57:c1acf0018c0a r735:853fcddcf282 r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r209:765619b7cbb2 r209:765619b7cbb2 r57:c1acf0018c0a r209:765619b7cbb2 r57:c1acf0018c0a r57:c1acf0018c0a | /* -*- mode: C++; indent-tabs-mode: nil; -*-
*
* This file is a part of LEMON, a generic C++ optimization library.
*
* Copyright (C) 2003-2010
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
* (Egervary Research Group on Combinatorial Optimization, EGRES).
*
* Permission to use, modify and distribute this software is granted
* provided that this copyright notice appears in all copies. For
* precise terms see the accompanying LICENSE file.
*
* This software is provided "AS IS" with no warranty of any kind,
* express or implied, and with no claim as to its suitability for any
* purpose.
*
*/
#ifndef LEMON_LIST_GRAPH_H
#define LEMON_LIST_GRAPH_H
///\ingroup graphs
///\file
///\brief ListDigraph and ListGraph classes.
#include <lemon/core.h>
#include <lemon/error.h>
#include <lemon/bits/graph_extender.h>
#include <vector>
#include <list>
namespace lemon {
class ListDigraph;
class ListDigraphBase {
protected:
struct NodeT {
int first_in, first_out;
int prev, next;
};
struct ArcT {
int target, source;
int prev_in, prev_out;
int next_in, next_out;
};
std::vector<NodeT> nodes;
int first_node;
int first_free_node;
std::vector<ArcT> arcs;
int first_free_arc;
public:
typedef ListDigraphBase Digraph;
class Node {
friend class ListDigraphBase;
friend class ListDigraph;
protected:
int id;
explicit Node(int pid) { id = pid;}
public:
Node() {}
Node (Invalid) { id = -1; }
bool operator==(const Node& node) const {return id == node.id;}
bool operator!=(const Node& node) const {return id != node.id;}
bool operator<(const Node& node) const {return id < node.id;}
};
class Arc {
friend class ListDigraphBase;
friend class ListDigraph;
protected:
int id;
explicit Arc(int pid) { id = pid;}
public:
Arc() {}
Arc (Invalid) { id = -1; }
bool operator==(const Arc& arc) const {return id == arc.id;}
bool operator!=(const Arc& arc) const {return id != arc.id;}
bool operator<(const Arc& arc) const {return id < arc.id;}
};
ListDigraphBase()
: nodes(), first_node(-1),
first_free_node(-1), arcs(), first_free_arc(-1) {}
int maxNodeId() const { return nodes.size()-1; }
int maxArcId() const { return arcs.size()-1; }
Node source(Arc e) const { return Node(arcs[e.id].source); }
Node target(Arc e) const { return Node(arcs[e.id].target); }
void first(Node& node) const {
node.id = first_node;
}
void next(Node& node) const {
node.id = nodes[node.id].next;
}
void first(Arc& arc) const {
int n;
for(n = first_node;
n != -1 && nodes[n].first_out == -1;
n = nodes[n].next) {}
arc.id = (n == -1) ? -1 : nodes[n].first_out;
}
void next(Arc& arc) const {
if (arcs[arc.id].next_out != -1) {
arc.id = arcs[arc.id].next_out;
} else {
int n;
for(n = nodes[arcs[arc.id].source].next;
n != -1 && nodes[n].first_out == -1;
n = nodes[n].next) {}
arc.id = (n == -1) ? -1 : nodes[n].first_out;
}
}
void firstOut(Arc &e, const Node& v) const {
e.id = nodes[v.id].first_out;
}
void nextOut(Arc &e) const {
e.id=arcs[e.id].next_out;
}
void firstIn(Arc &e, const Node& v) const {
e.id = nodes[v.id].first_in;
}
void nextIn(Arc &e) const {
e.id=arcs[e.id].next_in;
}
static int id(Node v) { return v.id; }
static int id(Arc e) { return e.id; }
static Node nodeFromId(int id) { return Node(id);}
static Arc arcFromId(int id) { return Arc(id);}
bool valid(Node n) const {
return n.id >= 0 && n.id < static_cast<int>(nodes.size()) &&
nodes[n.id].prev != -2;
}
bool valid(Arc a) const {
return a.id >= 0 && a.id < static_cast<int>(arcs.size()) &&
arcs[a.id].prev_in != -2;
}
Node addNode() {
int n;
if(first_free_node==-1) {
n = nodes.size();
nodes.push_back(NodeT());
} else {
n = first_free_node;
first_free_node = nodes[n].next;
}
nodes[n].next = first_node;
if(first_node != -1) nodes[first_node].prev = n;
first_node = n;
nodes[n].prev = -1;
nodes[n].first_in = nodes[n].first_out = -1;
return Node(n);
}
Arc addArc(Node u, Node v) {
int n;
if (first_free_arc == -1) {
n = arcs.size();
arcs.push_back(ArcT());
} else {
n = first_free_arc;
first_free_arc = arcs[n].next_in;
}
arcs[n].source = u.id;
arcs[n].target = v.id;
arcs[n].next_out = nodes[u.id].first_out;
if(nodes[u.id].first_out != -1) {
arcs[nodes[u.id].first_out].prev_out = n;
}
arcs[n].next_in = nodes[v.id].first_in;
if(nodes[v.id].first_in != -1) {
arcs[nodes[v.id].first_in].prev_in = n;
}
arcs[n].prev_in = arcs[n].prev_out = -1;
nodes[u.id].first_out = nodes[v.id].first_in = n;
return Arc(n);
}
void erase(const Node& node) {
int n = node.id;
if(nodes[n].next != -1) {
nodes[nodes[n].next].prev = nodes[n].prev;
}
if(nodes[n].prev != -1) {
nodes[nodes[n].prev].next = nodes[n].next;
} else {
first_node = nodes[n].next;
}
nodes[n].next = first_free_node;
first_free_node = n;
nodes[n].prev = -2;
}
void erase(const Arc& arc) {
int n = arc.id;
if(arcs[n].next_in!=-1) {
arcs[arcs[n].next_in].prev_in = arcs[n].prev_in;
}
if(arcs[n].prev_in!=-1) {
arcs[arcs[n].prev_in].next_in = arcs[n].next_in;
} else {
nodes[arcs[n].target].first_in = arcs[n].next_in;
}
if(arcs[n].next_out!=-1) {
arcs[arcs[n].next_out].prev_out = arcs[n].prev_out;
}
if(arcs[n].prev_out!=-1) {
arcs[arcs[n].prev_out].next_out = arcs[n].next_out;
} else {
nodes[arcs[n].source].first_out = arcs[n].next_out;
}
arcs[n].next_in = first_free_arc;
first_free_arc = n;
arcs[n].prev_in = -2;
}
void clear() {
arcs.clear();
nodes.clear();
first_node = first_free_node = first_free_arc = -1;
}
protected:
void changeTarget(Arc e, Node n)
{
if(arcs[e.id].next_in != -1)
arcs[arcs[e.id].next_in].prev_in = arcs[e.id].prev_in;
if(arcs[e.id].prev_in != -1)
arcs[arcs[e.id].prev_in].next_in = arcs[e.id].next_in;
else nodes[arcs[e.id].target].first_in = arcs[e.id].next_in;
if (nodes[n.id].first_in != -1) {
arcs[nodes[n.id].first_in].prev_in = e.id;
}
arcs[e.id].target = n.id;
arcs[e.id].prev_in = -1;
arcs[e.id].next_in = nodes[n.id].first_in;
nodes[n.id].first_in = e.id;
}
void changeSource(Arc e, Node n)
{
if(arcs[e.id].next_out != -1)
arcs[arcs[e.id].next_out].prev_out = arcs[e.id].prev_out;
if(arcs[e.id].prev_out != -1)
arcs[arcs[e.id].prev_out].next_out = arcs[e.id].next_out;
else nodes[arcs[e.id].source].first_out = arcs[e.id].next_out;
if (nodes[n.id].first_out != -1) {
arcs[nodes[n.id].first_out].prev_out = e.id;
}
arcs[e.id].source = n.id;
arcs[e.id].prev_out = -1;
arcs[e.id].next_out = nodes[n.id].first_out;
nodes[n.id].first_out = e.id;
}
};
typedef DigraphExtender<ListDigraphBase> ExtendedListDigraphBase;
/// \addtogroup graphs
/// @{
///A general directed graph structure.
///\ref ListDigraph is a versatile and fast directed graph
///implementation based on linked lists that are stored in
///\c std::vector structures.
///
///This type fully conforms to the \ref concepts::Digraph "Digraph concept"
///and it also provides several useful additional functionalities.
///Most of its member functions and nested classes are documented
///only in the concept class.
///
///This class provides only linear time counting for nodes and arcs.
///
///\sa concepts::Digraph
///\sa ListGraph
class ListDigraph : public ExtendedListDigraphBase {
typedef ExtendedListDigraphBase Parent;
private:
/// Digraphs are \e not copy constructible. Use DigraphCopy instead.
ListDigraph(const ListDigraph &) :ExtendedListDigraphBase() {};
/// \brief Assignment of a digraph to another one is \e not allowed.
/// Use DigraphCopy instead.
void operator=(const ListDigraph &) {}
public:
/// Constructor
/// Constructor.
///
ListDigraph() {}
///Add a new node to the digraph.
///This function adds a new node to the digraph.
///\return The new node.
Node addNode() { return Parent::addNode(); }
///Add a new arc to the digraph.
///This function adds a new arc to the digraph with source node \c s
///and target node \c t.
///\return The new arc.
Arc addArc(Node s, Node t) {
return Parent::addArc(s, t);
}
///\brief Erase a node from the digraph.
///
///This function erases the given node along with its outgoing and
///incoming arcs from the digraph.
///
///\note All iterators referencing the removed node or the connected
///arcs are invalidated, of course.
void erase(Node n) { Parent::erase(n); }
///\brief Erase an arc from the digraph.
///
///This function erases the given arc from the digraph.
///
///\note All iterators referencing the removed arc are invalidated,
///of course.
void erase(Arc a) { Parent::erase(a); }
/// Node validity check
/// This function gives back \c true if the given node is valid,
/// i.e. it is a real node of the digraph.
///
/// \warning A removed node could become valid again if new nodes are
/// added to the digraph.
bool valid(Node n) const { return Parent::valid(n); }
/// Arc validity check
/// This function gives back \c true if the given arc is valid,
/// i.e. it is a real arc of the digraph.
///
/// \warning A removed arc could become valid again if new arcs are
/// added to the digraph.
bool valid(Arc a) const { return Parent::valid(a); }
/// Change the target node of an arc
/// This function changes the target node of the given arc \c a to \c n.
///
///\note \c ArcIt and \c OutArcIt iterators referencing the changed
///arc remain valid, but \c InArcIt iterators are invalidated.
///
///\warning This functionality cannot be used together with the Snapshot
///feature.
void changeTarget(Arc a, Node n) {
Parent::changeTarget(a,n);
}
/// Change the source node of an arc
/// This function changes the source node of the given arc \c a to \c n.
///
///\note \c InArcIt iterators referencing the changed arc remain
///valid, but \c ArcIt and \c OutArcIt iterators are invalidated.
///
///\warning This functionality cannot be used together with the Snapshot
///feature.
void changeSource(Arc a, Node n) {
Parent::changeSource(a,n);
}
/// Reverse the direction of an arc.
/// This function reverses the direction of the given arc.
///\note \c ArcIt, \c OutArcIt and \c InArcIt iterators referencing
///the changed arc are invalidated.
///
///\warning This functionality cannot be used together with the Snapshot
///feature.
void reverseArc(Arc a) {
Node t=target(a);
changeTarget(a,source(a));
changeSource(a,t);
}
///Contract two nodes.
///This function contracts the given two nodes.
///Node \c v is removed, but instead of deleting its
///incident arcs, they are joined to node \c u.
///If the last parameter \c r is \c true (this is the default value),
///then the newly created loops are removed.
///
///\note The moved arcs are joined to node \c u using changeSource()
///or changeTarget(), thus \c ArcIt and \c OutArcIt iterators are
///invalidated for the outgoing arcs of node \c v and \c InArcIt
///iterators are invalidated for the incomming arcs of \c v.
///Moreover all iterators referencing node \c v or the removed
///loops are also invalidated. Other iterators remain valid.
///
///\warning This functionality cannot be used together with the Snapshot
///feature.
void contract(Node u, Node v, bool r = true)
{
for(OutArcIt e(*this,v);e!=INVALID;) {
OutArcIt f=e;
++f;
if(r && target(e)==u) erase(e);
else changeSource(e,u);
e=f;
}
for(InArcIt e(*this,v);e!=INVALID;) {
InArcIt f=e;
++f;
if(r && source(e)==u) erase(e);
else changeTarget(e,u);
e=f;
}
erase(v);
}
///Split a node.
///This function splits the given node. First, a new node is added
///to the digraph, then the source of each outgoing arc of node \c n
///is moved to this new node.
///If the second parameter \c connect is \c true (this is the default
///value), then a new arc from node \c n to the newly created node
///is also added.
///\return The newly created node.
///
///\note All iterators remain valid.
///
///\warning This functionality cannot be used together with the
///Snapshot feature.
Node split(Node n, bool connect = true) {
Node b = addNode();
nodes[b.id].first_out=nodes[n.id].first_out;
nodes[n.id].first_out=-1;
for(int i=nodes[b.id].first_out; i!=-1; i=arcs[i].next_out) {
arcs[i].source=b.id;
}
if (connect) addArc(n,b);
return b;
}
///Split an arc.
///This function splits the given arc. First, a new node \c v is
///added to the digraph, then the target node of the original arc
///is set to \c v. Finally, an arc from \c v to the original target
///is added.
///\return The newly created node.
///
///\note \c InArcIt iterators referencing the original arc are
///invalidated. Other iterators remain valid.
///
///\warning This functionality cannot be used together with the
///Snapshot feature.
Node split(Arc a) {
Node v = addNode();
addArc(v,target(a));
changeTarget(a,v);
return v;
}
///Clear the digraph.
///This function erases all nodes and arcs from the digraph.
///
///\note All iterators of the digraph are invalidated, of course.
void clear() {
Parent::clear();
}
/// Reserve memory for nodes.
/// Using this function, it is possible to avoid superfluous memory
/// allocation: if you know that the digraph you want to build will
/// be large (e.g. it will contain millions of nodes and/or arcs),
/// then it is worth reserving space for this amount before starting
/// to build the digraph.
/// \sa reserveArc()
void reserveNode(int n) { nodes.reserve(n); };
/// Reserve memory for arcs.
/// Using this function, it is possible to avoid superfluous memory
/// allocation: if you know that the digraph you want to build will
/// be large (e.g. it will contain millions of nodes and/or arcs),
/// then it is worth reserving space for this amount before starting
/// to build the digraph.
/// \sa reserveNode()
void reserveArc(int m) { arcs.reserve(m); };
/// \brief Class to make a snapshot of the digraph and restore
/// it later.
///
/// Class to make a snapshot of the digraph and restore it later.
///
/// The newly added nodes and arcs can be removed using the
/// restore() function.
///
/// \note After a state is restored, you cannot restore a later state,
/// i.e. you cannot add the removed nodes and arcs again using
/// another Snapshot instance.
///
/// \warning Node and arc deletions and other modifications (e.g.
/// reversing, contracting, splitting arcs or nodes) cannot be
/// restored. These events invalidate the snapshot.
/// However, the arcs and nodes that were added to the digraph after
/// making the current snapshot can be removed without invalidating it.
class Snapshot {
protected:
typedef Parent::NodeNotifier NodeNotifier;
class NodeObserverProxy : public NodeNotifier::ObserverBase {
public:
NodeObserverProxy(Snapshot& _snapshot)
: snapshot(_snapshot) {}
using NodeNotifier::ObserverBase::attach;
using NodeNotifier::ObserverBase::detach;
using NodeNotifier::ObserverBase::attached;
protected:
virtual void add(const Node& node) {
snapshot.addNode(node);
}
virtual void add(const std::vector<Node>& nodes) {
for (int i = nodes.size() - 1; i >= 0; ++i) {
snapshot.addNode(nodes[i]);
}
}
virtual void erase(const Node& node) {
snapshot.eraseNode(node);
}
virtual void erase(const std::vector<Node>& nodes) {
for (int i = 0; i < int(nodes.size()); ++i) {
snapshot.eraseNode(nodes[i]);
}
}
virtual void build() {
Node node;
std::vector<Node> nodes;
for (notifier()->first(node); node != INVALID;
notifier()->next(node)) {
nodes.push_back(node);
}
for (int i = nodes.size() - 1; i >= 0; --i) {
snapshot.addNode(nodes[i]);
}
}
virtual void clear() {
Node node;
for (notifier()->first(node); node != INVALID;
notifier()->next(node)) {
snapshot.eraseNode(node);
}
}
Snapshot& snapshot;
};
class ArcObserverProxy : public ArcNotifier::ObserverBase {
public:
ArcObserverProxy(Snapshot& _snapshot)
: snapshot(_snapshot) {}
using ArcNotifier::ObserverBase::attach;
using ArcNotifier::ObserverBase::detach;
using ArcNotifier::ObserverBase::attached;
protected:
virtual void add(const Arc& arc) {
snapshot.addArc(arc);
}
virtual void add(const std::vector<Arc>& arcs) {
for (int i = arcs.size() - 1; i >= 0; ++i) {
snapshot.addArc(arcs[i]);
}
}
virtual void erase(const Arc& arc) {
snapshot.eraseArc(arc);
}
virtual void erase(const std::vector<Arc>& arcs) {
for (int i = 0; i < int(arcs.size()); ++i) {
snapshot.eraseArc(arcs[i]);
}
}
virtual void build() {
Arc arc;
std::vector<Arc> arcs;
for (notifier()->first(arc); arc != INVALID;
notifier()->next(arc)) {
arcs.push_back(arc);
}
for (int i = arcs.size() - 1; i >= 0; --i) {
snapshot.addArc(arcs[i]);
}
}
virtual void clear() {
Arc arc;
for (notifier()->first(arc); arc != INVALID;
notifier()->next(arc)) {
snapshot.eraseArc(arc);
}
}
Snapshot& snapshot;
};
ListDigraph *digraph;
NodeObserverProxy node_observer_proxy;
ArcObserverProxy arc_observer_proxy;
std::list<Node> added_nodes;
std::list<Arc> added_arcs;
void addNode(const Node& node) {
added_nodes.push_front(node);
}
void eraseNode(const Node& node) {
std::list<Node>::iterator it =
std::find(added_nodes.begin(), added_nodes.end(), node);
if (it == added_nodes.end()) {
clear();
arc_observer_proxy.detach();
throw NodeNotifier::ImmediateDetach();
} else {
added_nodes.erase(it);
}
}
void addArc(const Arc& arc) {
added_arcs.push_front(arc);
}
void eraseArc(const Arc& arc) {
std::list<Arc>::iterator it =
std::find(added_arcs.begin(), added_arcs.end(), arc);
if (it == added_arcs.end()) {
clear();
node_observer_proxy.detach();
throw ArcNotifier::ImmediateDetach();
} else {
added_arcs.erase(it);
}
}
void attach(ListDigraph &_digraph) {
digraph = &_digraph;
node_observer_proxy.attach(digraph->notifier(Node()));
arc_observer_proxy.attach(digraph->notifier(Arc()));
}
void detach() {
node_observer_proxy.detach();
arc_observer_proxy.detach();
}
bool attached() const {
return node_observer_proxy.attached();
}
void clear() {
added_nodes.clear();
added_arcs.clear();
}
public:
/// \brief Default constructor.
///
/// Default constructor.
/// You have to call save() to actually make a snapshot.
Snapshot()
: digraph(0), node_observer_proxy(*this),
arc_observer_proxy(*this) {}
/// \brief Constructor that immediately makes a snapshot.
///
/// This constructor immediately makes a snapshot of the given digraph.
Snapshot(ListDigraph &gr)
: node_observer_proxy(*this),
arc_observer_proxy(*this) {
attach(gr);
}
/// \brief Make a snapshot.
///
/// This function makes a snapshot of the given digraph.
/// It can be called more than once. In case of a repeated
/// call, the previous snapshot gets lost.
void save(ListDigraph &gr) {
if (attached()) {
detach();
clear();
}
attach(gr);
}
/// \brief Undo the changes until the last snapshot.
///
/// This function undos the changes until the last snapshot
/// created by save() or Snapshot(ListDigraph&).
///
/// \warning This method invalidates the snapshot, i.e. repeated
/// restoring is not supported unless you call save() again.
void restore() {
detach();
for(std::list<Arc>::iterator it = added_arcs.begin();
it != added_arcs.end(); ++it) {
digraph->erase(*it);
}
for(std::list<Node>::iterator it = added_nodes.begin();
it != added_nodes.end(); ++it) {
digraph->erase(*it);
}
clear();
}
/// \brief Returns \c true if the snapshot is valid.
///
/// This function returns \c true if the snapshot is valid.
bool valid() const {
return attached();
}
};
};
///@}
class ListGraphBase {
protected:
struct NodeT {
int first_out;
int prev, next;
};
struct ArcT {
int target;
int prev_out, next_out;
};
std::vector<NodeT> nodes;
int first_node;
int first_free_node;
std::vector<ArcT> arcs;
int first_free_arc;
public:
typedef ListGraphBase Graph;
class Node {
friend class ListGraphBase;
protected:
int id;
explicit Node(int pid) { id = pid;}
public:
Node() {}
Node (Invalid) { id = -1; }
bool operator==(const Node& node) const {return id == node.id;}
bool operator!=(const Node& node) const {return id != node.id;}
bool operator<(const Node& node) const {return id < node.id;}
};
class Edge {
friend class ListGraphBase;
protected:
int id;
explicit Edge(int pid) { id = pid;}
public:
Edge() {}
Edge (Invalid) { id = -1; }
bool operator==(const Edge& edge) const {return id == edge.id;}
bool operator!=(const Edge& edge) const {return id != edge.id;}
bool operator<(const Edge& edge) const {return id < edge.id;}
};
class Arc {
friend class ListGraphBase;
protected:
int id;
explicit Arc(int pid) { id = pid;}
public:
operator Edge() const {
return id != -1 ? edgeFromId(id / 2) : INVALID;
}
Arc() {}
Arc (Invalid) { id = -1; }
bool operator==(const Arc& arc) const {return id == arc.id;}
bool operator!=(const Arc& arc) const {return id != arc.id;}
bool operator<(const Arc& arc) const {return id < arc.id;}
};
ListGraphBase()
: nodes(), first_node(-1),
first_free_node(-1), arcs(), first_free_arc(-1) {}
int maxNodeId() const { return nodes.size()-1; }
int maxEdgeId() const { return arcs.size() / 2 - 1; }
int maxArcId() const { return arcs.size()-1; }
Node source(Arc e) const { return Node(arcs[e.id ^ 1].target); }
Node target(Arc e) const { return Node(arcs[e.id].target); }
Node u(Edge e) const { return Node(arcs[2 * e.id].target); }
Node v(Edge e) const { return Node(arcs[2 * e.id + 1].target); }
static bool direction(Arc e) {
return (e.id & 1) == 1;
}
static Arc direct(Edge e, bool d) {
return Arc(e.id * 2 + (d ? 1 : 0));
}
void first(Node& node) const {
node.id = first_node;
}
void next(Node& node) const {
node.id = nodes[node.id].next;
}
void first(Arc& e) const {
int n = first_node;
while (n != -1 && nodes[n].first_out == -1) {
n = nodes[n].next;
}
e.id = (n == -1) ? -1 : nodes[n].first_out;
}
void next(Arc& e) const {
if (arcs[e.id].next_out != -1) {
e.id = arcs[e.id].next_out;
} else {
int n = nodes[arcs[e.id ^ 1].target].next;
while(n != -1 && nodes[n].first_out == -1) {
n = nodes[n].next;
}
e.id = (n == -1) ? -1 : nodes[n].first_out;
}
}
void first(Edge& e) const {
int n = first_node;
while (n != -1) {
e.id = nodes[n].first_out;
while ((e.id & 1) != 1) {
e.id = arcs[e.id].next_out;
}
if (e.id != -1) {
e.id /= 2;
return;
}
n = nodes[n].next;
}
e.id = -1;
}
void next(Edge& e) const {
int n = arcs[e.id * 2].target;
e.id = arcs[(e.id * 2) | 1].next_out;
while ((e.id & 1) != 1) {
e.id = arcs[e.id].next_out;
}
if (e.id != -1) {
e.id /= 2;
return;
}
n = nodes[n].next;
while (n != -1) {
e.id = nodes[n].first_out;
while ((e.id & 1) != 1) {
e.id = arcs[e.id].next_out;
}
if (e.id != -1) {
e.id /= 2;
return;
}
n = nodes[n].next;
}
e.id = -1;
}
void firstOut(Arc &e, const Node& v) const {
e.id = nodes[v.id].first_out;
}
void nextOut(Arc &e) const {
e.id = arcs[e.id].next_out;
}
void firstIn(Arc &e, const Node& v) const {
e.id = ((nodes[v.id].first_out) ^ 1);
if (e.id == -2) e.id = -1;
}
void nextIn(Arc &e) const {
e.id = ((arcs[e.id ^ 1].next_out) ^ 1);
if (e.id == -2) e.id = -1;
}
void firstInc(Edge &e, bool& d, const Node& v) const {
int a = nodes[v.id].first_out;
if (a != -1 ) {
e.id = a / 2;
d = ((a & 1) == 1);
} else {
e.id = -1;
d = true;
}
}
void nextInc(Edge &e, bool& d) const {
int a = (arcs[(e.id * 2) | (d ? 1 : 0)].next_out);
if (a != -1 ) {
e.id = a / 2;
d = ((a & 1) == 1);
} else {
e.id = -1;
d = true;
}
}
static int id(Node v) { return v.id; }
static int id(Arc e) { return e.id; }
static int id(Edge e) { return e.id; }
static Node nodeFromId(int id) { return Node(id);}
static Arc arcFromId(int id) { return Arc(id);}
static Edge edgeFromId(int id) { return Edge(id);}
bool valid(Node n) const {
return n.id >= 0 && n.id < static_cast<int>(nodes.size()) &&
nodes[n.id].prev != -2;
}
bool valid(Arc a) const {
return a.id >= 0 && a.id < static_cast<int>(arcs.size()) &&
arcs[a.id].prev_out != -2;
}
bool valid(Edge e) const {
return e.id >= 0 && 2 * e.id < static_cast<int>(arcs.size()) &&
arcs[2 * e.id].prev_out != -2;
}
Node addNode() {
int n;
if(first_free_node==-1) {
n = nodes.size();
nodes.push_back(NodeT());
} else {
n = first_free_node;
first_free_node = nodes[n].next;
}
nodes[n].next = first_node;
if (first_node != -1) nodes[first_node].prev = n;
first_node = n;
nodes[n].prev = -1;
nodes[n].first_out = -1;
return Node(n);
}
Edge addEdge(Node u, Node v) {
int n;
if (first_free_arc == -1) {
n = arcs.size();
arcs.push_back(ArcT());
arcs.push_back(ArcT());
} else {
n = first_free_arc;
first_free_arc = arcs[n].next_out;
}
arcs[n].target = u.id;
arcs[n | 1].target = v.id;
arcs[n].next_out = nodes[v.id].first_out;
if (nodes[v.id].first_out != -1) {
arcs[nodes[v.id].first_out].prev_out = n;
}
arcs[n].prev_out = -1;
nodes[v.id].first_out = n;
arcs[n | 1].next_out = nodes[u.id].first_out;
if (nodes[u.id].first_out != -1) {
arcs[nodes[u.id].first_out].prev_out = (n | 1);
}
arcs[n | 1].prev_out = -1;
nodes[u.id].first_out = (n | 1);
return Edge(n / 2);
}
void erase(const Node& node) {
int n = node.id;
if(nodes[n].next != -1) {
nodes[nodes[n].next].prev = nodes[n].prev;
}
if(nodes[n].prev != -1) {
nodes[nodes[n].prev].next = nodes[n].next;
} else {
first_node = nodes[n].next;
}
nodes[n].next = first_free_node;
first_free_node = n;
nodes[n].prev = -2;
}
void erase(const Edge& edge) {
int n = edge.id * 2;
if (arcs[n].next_out != -1) {
arcs[arcs[n].next_out].prev_out = arcs[n].prev_out;
}
if (arcs[n].prev_out != -1) {
arcs[arcs[n].prev_out].next_out = arcs[n].next_out;
} else {
nodes[arcs[n | 1].target].first_out = arcs[n].next_out;
}
if (arcs[n | 1].next_out != -1) {
arcs[arcs[n | 1].next_out].prev_out = arcs[n | 1].prev_out;
}
if (arcs[n | 1].prev_out != -1) {
arcs[arcs[n | 1].prev_out].next_out = arcs[n | 1].next_out;
} else {
nodes[arcs[n].target].first_out = arcs[n | 1].next_out;
}
arcs[n].next_out = first_free_arc;
first_free_arc = n;
arcs[n].prev_out = -2;
arcs[n | 1].prev_out = -2;
}
void clear() {
arcs.clear();
nodes.clear();
first_node = first_free_node = first_free_arc = -1;
}
protected:
void changeV(Edge e, Node n) {
if(arcs[2 * e.id].next_out != -1) {
arcs[arcs[2 * e.id].next_out].prev_out = arcs[2 * e.id].prev_out;
}
if(arcs[2 * e.id].prev_out != -1) {
arcs[arcs[2 * e.id].prev_out].next_out =
arcs[2 * e.id].next_out;
} else {
nodes[arcs[(2 * e.id) | 1].target].first_out =
arcs[2 * e.id].next_out;
}
if (nodes[n.id].first_out != -1) {
arcs[nodes[n.id].first_out].prev_out = 2 * e.id;
}
arcs[(2 * e.id) | 1].target = n.id;
arcs[2 * e.id].prev_out = -1;
arcs[2 * e.id].next_out = nodes[n.id].first_out;
nodes[n.id].first_out = 2 * e.id;
}
void changeU(Edge e, Node n) {
if(arcs[(2 * e.id) | 1].next_out != -1) {
arcs[arcs[(2 * e.id) | 1].next_out].prev_out =
arcs[(2 * e.id) | 1].prev_out;
}
if(arcs[(2 * e.id) | 1].prev_out != -1) {
arcs[arcs[(2 * e.id) | 1].prev_out].next_out =
arcs[(2 * e.id) | 1].next_out;
} else {
nodes[arcs[2 * e.id].target].first_out =
arcs[(2 * e.id) | 1].next_out;
}
if (nodes[n.id].first_out != -1) {
arcs[nodes[n.id].first_out].prev_out = ((2 * e.id) | 1);
}
arcs[2 * e.id].target = n.id;
arcs[(2 * e.id) | 1].prev_out = -1;
arcs[(2 * e.id) | 1].next_out = nodes[n.id].first_out;
nodes[n.id].first_out = ((2 * e.id) | 1);
}
};
typedef GraphExtender<ListGraphBase> ExtendedListGraphBase;
/// \addtogroup graphs
/// @{
///A general undirected graph structure.
///\ref ListGraph is a versatile and fast undirected graph
///implementation based on linked lists that are stored in
///\c std::vector structures.
///
///This type fully conforms to the \ref concepts::Graph "Graph concept"
///and it also provides several useful additional functionalities.
///Most of its member functions and nested classes are documented
///only in the concept class.
///
///This class provides only linear time counting for nodes, edges and arcs.
///
///\sa concepts::Graph
///\sa ListDigraph
class ListGraph : public ExtendedListGraphBase {
typedef ExtendedListGraphBase Parent;
private:
/// Graphs are \e not copy constructible. Use GraphCopy instead.
ListGraph(const ListGraph &) :ExtendedListGraphBase() {};
/// \brief Assignment of a graph to another one is \e not allowed.
/// Use GraphCopy instead.
void operator=(const ListGraph &) {}
public:
/// Constructor
/// Constructor.
///
ListGraph() {}
typedef Parent::OutArcIt IncEdgeIt;
/// \brief Add a new node to the graph.
///
/// This function adds a new node to the graph.
/// \return The new node.
Node addNode() { return Parent::addNode(); }
/// \brief Add a new edge to the graph.
///
/// This function adds a new edge to the graph between nodes
/// \c u and \c v with inherent orientation from node \c u to
/// node \c v.
/// \return The new edge.
Edge addEdge(Node u, Node v) {
return Parent::addEdge(u, v);
}
///\brief Erase a node from the graph.
///
/// This function erases the given node along with its incident arcs
/// from the graph.
///
/// \note All iterators referencing the removed node or the incident
/// edges are invalidated, of course.
void erase(Node n) { Parent::erase(n); }
///\brief Erase an edge from the graph.
///
/// This function erases the given edge from the graph.
///
/// \note All iterators referencing the removed edge are invalidated,
/// of course.
void erase(Edge e) { Parent::erase(e); }
/// Node validity check
/// This function gives back \c true if the given node is valid,
/// i.e. it is a real node of the graph.
///
/// \warning A removed node could become valid again if new nodes are
/// added to the graph.
bool valid(Node n) const { return Parent::valid(n); }
/// Edge validity check
/// This function gives back \c true if the given edge is valid,
/// i.e. it is a real edge of the graph.
///
/// \warning A removed edge could become valid again if new edges are
/// added to the graph.
bool valid(Edge e) const { return Parent::valid(e); }
/// Arc validity check
/// This function gives back \c true if the given arc is valid,
/// i.e. it is a real arc of the graph.
///
/// \warning A removed arc could become valid again if new edges are
/// added to the graph.
bool valid(Arc a) const { return Parent::valid(a); }
/// \brief Change the first node of an edge.
///
/// This function changes the first node of the given edge \c e to \c n.
///
///\note \c EdgeIt and \c ArcIt iterators referencing the
///changed edge are invalidated and all other iterators whose
///base node is the changed node are also invalidated.
///
///\warning This functionality cannot be used together with the
///Snapshot feature.
void changeU(Edge e, Node n) {
Parent::changeU(e,n);
}
/// \brief Change the second node of an edge.
///
/// This function changes the second node of the given edge \c e to \c n.
///
///\note \c EdgeIt iterators referencing the changed edge remain
///valid, but \c ArcIt iterators referencing the changed edge and
///all other iterators whose base node is the changed node are also
///invalidated.
///
///\warning This functionality cannot be used together with the
///Snapshot feature.
void changeV(Edge e, Node n) {
Parent::changeV(e,n);
}
/// \brief Contract two nodes.
///
/// This function contracts the given two nodes.
/// Node \c b is removed, but instead of deleting
/// its incident edges, they are joined to node \c a.
/// If the last parameter \c r is \c true (this is the default value),
/// then the newly created loops are removed.
///
/// \note The moved edges are joined to node \c a using changeU()
/// or changeV(), thus all edge and arc iterators whose base node is
/// \c b are invalidated.
/// Moreover all iterators referencing node \c b or the removed
/// loops are also invalidated. Other iterators remain valid.
///
///\warning This functionality cannot be used together with the
///Snapshot feature.
void contract(Node a, Node b, bool r = true) {
for(IncEdgeIt e(*this, b); e!=INVALID;) {
IncEdgeIt f = e; ++f;
if (r && runningNode(e) == a) {
erase(e);
} else if (u(e) == b) {
changeU(e, a);
} else {
changeV(e, a);
}
e = f;
}
erase(b);
}
///Clear the graph.
///This function erases all nodes and arcs from the graph.
///
///\note All iterators of the graph are invalidated, of course.
void clear() {
Parent::clear();
}
/// Reserve memory for nodes.
/// Using this function, it is possible to avoid superfluous memory
/// allocation: if you know that the graph you want to build will
/// be large (e.g. it will contain millions of nodes and/or edges),
/// then it is worth reserving space for this amount before starting
/// to build the graph.
/// \sa reserveEdge()
void reserveNode(int n) { nodes.reserve(n); };
/// Reserve memory for edges.
/// Using this function, it is possible to avoid superfluous memory
/// allocation: if you know that the graph you want to build will
/// be large (e.g. it will contain millions of nodes and/or edges),
/// then it is worth reserving space for this amount before starting
/// to build the graph.
/// \sa reserveNode()
void reserveEdge(int m) { arcs.reserve(2 * m); };
/// \brief Class to make a snapshot of the graph and restore
/// it later.
///
/// Class to make a snapshot of the graph and restore it later.
///
/// The newly added nodes and edges can be removed
/// using the restore() function.
///
/// \note After a state is restored, you cannot restore a later state,
/// i.e. you cannot add the removed nodes and edges again using
/// another Snapshot instance.
///
/// \warning Node and edge deletions and other modifications
/// (e.g. changing the end-nodes of edges or contracting nodes)
/// cannot be restored. These events invalidate the snapshot.
/// However, the edges and nodes that were added to the graph after
/// making the current snapshot can be removed without invalidating it.
class Snapshot {
protected:
typedef Parent::NodeNotifier NodeNotifier;
class NodeObserverProxy : public NodeNotifier::ObserverBase {
public:
NodeObserverProxy(Snapshot& _snapshot)
: snapshot(_snapshot) {}
using NodeNotifier::ObserverBase::attach;
using NodeNotifier::ObserverBase::detach;
using NodeNotifier::ObserverBase::attached;
protected:
virtual void add(const Node& node) {
snapshot.addNode(node);
}
virtual void add(const std::vector<Node>& nodes) {
for (int i = nodes.size() - 1; i >= 0; ++i) {
snapshot.addNode(nodes[i]);
}
}
virtual void erase(const Node& node) {
snapshot.eraseNode(node);
}
virtual void erase(const std::vector<Node>& nodes) {
for (int i = 0; i < int(nodes.size()); ++i) {
snapshot.eraseNode(nodes[i]);
}
}
virtual void build() {
Node node;
std::vector<Node> nodes;
for (notifier()->first(node); node != INVALID;
notifier()->next(node)) {
nodes.push_back(node);
}
for (int i = nodes.size() - 1; i >= 0; --i) {
snapshot.addNode(nodes[i]);
}
}
virtual void clear() {
Node node;
for (notifier()->first(node); node != INVALID;
notifier()->next(node)) {
snapshot.eraseNode(node);
}
}
Snapshot& snapshot;
};
class EdgeObserverProxy : public EdgeNotifier::ObserverBase {
public:
EdgeObserverProxy(Snapshot& _snapshot)
: snapshot(_snapshot) {}
using EdgeNotifier::ObserverBase::attach;
using EdgeNotifier::ObserverBase::detach;
using EdgeNotifier::ObserverBase::attached;
protected:
virtual void add(const Edge& edge) {
snapshot.addEdge(edge);
}
virtual void add(const std::vector<Edge>& edges) {
for (int i = edges.size() - 1; i >= 0; ++i) {
snapshot.addEdge(edges[i]);
}
}
virtual void erase(const Edge& edge) {
snapshot.eraseEdge(edge);
}
virtual void erase(const std::vector<Edge>& edges) {
for (int i = 0; i < int(edges.size()); ++i) {
snapshot.eraseEdge(edges[i]);
}
}
virtual void build() {
Edge edge;
std::vector<Edge> edges;
for (notifier()->first(edge); edge != INVALID;
notifier()->next(edge)) {
edges.push_back(edge);
}
for (int i = edges.size() - 1; i >= 0; --i) {
snapshot.addEdge(edges[i]);
}
}
virtual void clear() {
Edge edge;
for (notifier()->first(edge); edge != INVALID;
notifier()->next(edge)) {
snapshot.eraseEdge(edge);
}
}
Snapshot& snapshot;
};
ListGraph *graph;
NodeObserverProxy node_observer_proxy;
EdgeObserverProxy edge_observer_proxy;
std::list<Node> added_nodes;
std::list<Edge> added_edges;
void addNode(const Node& node) {
added_nodes.push_front(node);
}
void eraseNode(const Node& node) {
std::list<Node>::iterator it =
std::find(added_nodes.begin(), added_nodes.end(), node);
if (it == added_nodes.end()) {
clear();
edge_observer_proxy.detach();
throw NodeNotifier::ImmediateDetach();
} else {
added_nodes.erase(it);
}
}
void addEdge(const Edge& edge) {
added_edges.push_front(edge);
}
void eraseEdge(const Edge& edge) {
std::list<Edge>::iterator it =
std::find(added_edges.begin(), added_edges.end(), edge);
if (it == added_edges.end()) {
clear();
node_observer_proxy.detach();
throw EdgeNotifier::ImmediateDetach();
} else {
added_edges.erase(it);
}
}
void attach(ListGraph &_graph) {
graph = &_graph;
node_observer_proxy.attach(graph->notifier(Node()));
edge_observer_proxy.attach(graph->notifier(Edge()));
}
void detach() {
node_observer_proxy.detach();
edge_observer_proxy.detach();
}
bool attached() const {
return node_observer_proxy.attached();
}
void clear() {
added_nodes.clear();
added_edges.clear();
}
public:
/// \brief Default constructor.
///
/// Default constructor.
/// You have to call save() to actually make a snapshot.
Snapshot()
: graph(0), node_observer_proxy(*this),
edge_observer_proxy(*this) {}
/// \brief Constructor that immediately makes a snapshot.
///
/// This constructor immediately makes a snapshot of the given graph.
Snapshot(ListGraph &gr)
: node_observer_proxy(*this),
edge_observer_proxy(*this) {
attach(gr);
}
/// \brief Make a snapshot.
///
/// This function makes a snapshot of the given graph.
/// It can be called more than once. In case of a repeated
/// call, the previous snapshot gets lost.
void save(ListGraph &gr) {
if (attached()) {
detach();
clear();
}
attach(gr);
}
/// \brief Undo the changes until the last snapshot.
///
/// This function undos the changes until the last snapshot
/// created by save() or Snapshot(ListGraph&).
///
/// \warning This method invalidates the snapshot, i.e. repeated
/// restoring is not supported unless you call save() again.
void restore() {
detach();
for(std::list<Edge>::iterator it = added_edges.begin();
it != added_edges.end(); ++it) {
graph->erase(*it);
}
for(std::list<Node>::iterator it = added_nodes.begin();
it != added_nodes.end(); ++it) {
graph->erase(*it);
}
clear();
}
/// \brief Returns \c true if the snapshot is valid.
///
/// This function returns \c true if the snapshot is valid.
bool valid() const {
return attached();
}
};
};
/// @}
} //namespace lemon
#endif
|