Location: LEMON/LEMON-main/lemon/hypercube_graph.h - annotation
Load file history
Merge #302
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 | r364:b4a01426c0d9 r364:b4a01426c0d9 r364:b4a01426c0d9 r364:b4a01426c0d9 r440:88ed40ad0d4f r364:b4a01426c0d9 r364:b4a01426c0d9 r364:b4a01426c0d9 r364:b4a01426c0d9 r364:b4a01426c0d9 r364:b4a01426c0d9 r364:b4a01426c0d9 r364:b4a01426c0d9 r364:b4a01426c0d9 r364:b4a01426c0d9 r364:b4a01426c0d9 r364:b4a01426c0d9 r364:b4a01426c0d9 r364:b4a01426c0d9 r364:b4a01426c0d9 r364:b4a01426c0d9 r364:b4a01426c0d9 r364:b4a01426c0d9 r365:a12eef1f82b2 r364:b4a01426c0d9 r364:b4a01426c0d9 r364:b4a01426c0d9 r364:b4a01426c0d9 r365:a12eef1f82b2 r364:b4a01426c0d9 r364:b4a01426c0d9 r364:b4a01426c0d9 r365:a12eef1f82b2 r364:b4a01426c0d9 r364:b4a01426c0d9 r364:b4a01426c0d9 r365:a12eef1f82b2 r364:b4a01426c0d9 r364:b4a01426c0d9 r365:a12eef1f82b2 r364:b4a01426c0d9 r364:b4a01426c0d9 r364:b4a01426c0d9 r364:b4a01426c0d9 r365:a12eef1f82b2 r364:b4a01426c0d9 r364:b4a01426c0d9 r364:b4a01426c0d9 r364:b4a01426c0d9 r365:a12eef1f82b2 r364:b4a01426c0d9 r365:a12eef1f82b2 r372:7b6466ed488a r364:b4a01426c0d9 r364:b4a01426c0d9 r364:b4a01426c0d9 r364:b4a01426c0d9 r364:b4a01426c0d9 r365:a12eef1f82b2 r364:b4a01426c0d9 r364:b4a01426c0d9 r365:a12eef1f82b2 r365:a12eef1f82b2 r365:a12eef1f82b2 r364:b4a01426c0d9 r365:a12eef1f82b2 r365:a12eef1f82b2 r365:a12eef1f82b2 r364:b4a01426c0d9 r365:a12eef1f82b2 r365:a12eef1f82b2 r365:a12eef1f82b2 r365:a12eef1f82b2 r365:a12eef1f82b2 r365:a12eef1f82b2 r365:a12eef1f82b2 r365:a12eef1f82b2 r365:a12eef1f82b2 r372:7b6466ed488a r372:7b6466ed488a r372:7b6466ed488a r364:b4a01426c0d9 r364:b4a01426c0d9 r365:a12eef1f82b2 r372:7b6466ed488a r372:7b6466ed488a r372:7b6466ed488a r364:b4a01426c0d9 r364:b4a01426c0d9 r365:a12eef1f82b2 r365:a12eef1f82b2 r365:a12eef1f82b2 r364:b4a01426c0d9 r365:a12eef1f82b2 r365:a12eef1f82b2 r365:a12eef1f82b2 r364:b4a01426c0d9 r365:a12eef1f82b2 r365:a12eef1f82b2 r365:a12eef1f82b2 r365:a12eef1f82b2 r365:a12eef1f82b2 r365:a12eef1f82b2 r365:a12eef1f82b2 r365:a12eef1f82b2 r365:a12eef1f82b2 r365:a12eef1f82b2 r372:7b6466ed488a r372:7b6466ed488a r365:a12eef1f82b2 r365:a12eef1f82b2 r365:a12eef1f82b2 r365:a12eef1f82b2 r365:a12eef1f82b2 r372:7b6466ed488a r365:a12eef1f82b2 r365:a12eef1f82b2 r364:b4a01426c0d9 r364:b4a01426c0d9 r365:a12eef1f82b2 r365:a12eef1f82b2 r364:b4a01426c0d9 r365:a12eef1f82b2 r365:a12eef1f82b2 r364:b4a01426c0d9 r364:b4a01426c0d9 r365:a12eef1f82b2 r365:a12eef1f82b2 r365:a12eef1f82b2 r365:a12eef1f82b2 r365:a12eef1f82b2 r365:a12eef1f82b2 r365:a12eef1f82b2 r365:a12eef1f82b2 r365:a12eef1f82b2 r365:a12eef1f82b2 r365:a12eef1f82b2 r365:a12eef1f82b2 r365:a12eef1f82b2 r365:a12eef1f82b2 r365:a12eef1f82b2 r365:a12eef1f82b2 r365:a12eef1f82b2 r365:a12eef1f82b2 r365:a12eef1f82b2 r365:a12eef1f82b2 r365:a12eef1f82b2 r364:b4a01426c0d9 r364:b4a01426c0d9 r364:b4a01426c0d9 r365:a12eef1f82b2 r365:a12eef1f82b2 r364:b4a01426c0d9 r365:a12eef1f82b2 r365:a12eef1f82b2 r365:a12eef1f82b2 r365:a12eef1f82b2 r364:b4a01426c0d9 r365:a12eef1f82b2 r365:a12eef1f82b2 r365:a12eef1f82b2 r365:a12eef1f82b2 r365:a12eef1f82b2 r365:a12eef1f82b2 r364:b4a01426c0d9 r364:b4a01426c0d9 r364:b4a01426c0d9 r365:a12eef1f82b2 r364:b4a01426c0d9 r364:b4a01426c0d9 r364:b4a01426c0d9 r365:a12eef1f82b2 r365:a12eef1f82b2 r365:a12eef1f82b2 r365:a12eef1f82b2 r365:a12eef1f82b2 r365:a12eef1f82b2 r365:a12eef1f82b2 r365:a12eef1f82b2 r365:a12eef1f82b2 r364:b4a01426c0d9 r364:b4a01426c0d9 r364:b4a01426c0d9 r365:a12eef1f82b2 r364:b4a01426c0d9 r364:b4a01426c0d9 r364:b4a01426c0d9 r365:a12eef1f82b2 r365:a12eef1f82b2 r365:a12eef1f82b2 r365:a12eef1f82b2 r365:a12eef1f82b2 r365:a12eef1f82b2 r365:a12eef1f82b2 r365:a12eef1f82b2 r365:a12eef1f82b2 r365:a12eef1f82b2 r372:7b6466ed488a r365:a12eef1f82b2 r372:7b6466ed488a r372:7b6466ed488a r365:a12eef1f82b2 r365:a12eef1f82b2 r365:a12eef1f82b2 r365:a12eef1f82b2 r365:a12eef1f82b2 r364:b4a01426c0d9 r364:b4a01426c0d9 r364:b4a01426c0d9 r365:a12eef1f82b2 r364:b4a01426c0d9 r364:b4a01426c0d9 r364:b4a01426c0d9 r365:a12eef1f82b2 r365:a12eef1f82b2 r365:a12eef1f82b2 r372:7b6466ed488a r372:7b6466ed488a r365:a12eef1f82b2 r365:a12eef1f82b2 r365:a12eef1f82b2 r365:a12eef1f82b2 r364:b4a01426c0d9 r364:b4a01426c0d9 r364:b4a01426c0d9 r365:a12eef1f82b2 r364:b4a01426c0d9 r364:b4a01426c0d9 r364:b4a01426c0d9 r365:a12eef1f82b2 r365:a12eef1f82b2 r365:a12eef1f82b2 r372:7b6466ed488a r372:7b6466ed488a r365:a12eef1f82b2 r364:b4a01426c0d9 r365:a12eef1f82b2 r364:b4a01426c0d9 r364:b4a01426c0d9 r364:b4a01426c0d9 r365:a12eef1f82b2 r365:a12eef1f82b2 r365:a12eef1f82b2 r365:a12eef1f82b2 r365:a12eef1f82b2 r365:a12eef1f82b2 r365:a12eef1f82b2 r365:a12eef1f82b2 r364:b4a01426c0d9 r364:b4a01426c0d9 r364:b4a01426c0d9 r364:b4a01426c0d9 r364:b4a01426c0d9 r365:a12eef1f82b2 r365:a12eef1f82b2 r365:a12eef1f82b2 r365:a12eef1f82b2 r372:7b6466ed488a r364:b4a01426c0d9 r364:b4a01426c0d9 r364:b4a01426c0d9 r365:a12eef1f82b2 r364:b4a01426c0d9 r364:b4a01426c0d9 r364:b4a01426c0d9 r365:a12eef1f82b2 r364:b4a01426c0d9 r364:b4a01426c0d9 r364:b4a01426c0d9 r364:b4a01426c0d9 r364:b4a01426c0d9 r364:b4a01426c0d9 r364:b4a01426c0d9 r365:a12eef1f82b2 r365:a12eef1f82b2 r364:b4a01426c0d9 r364:b4a01426c0d9 r364:b4a01426c0d9 r365:a12eef1f82b2 r364:b4a01426c0d9 r365:a12eef1f82b2 r364:b4a01426c0d9 r365:a12eef1f82b2 r364:b4a01426c0d9 r365:a12eef1f82b2 r365:a12eef1f82b2 r365:a12eef1f82b2 r365:a12eef1f82b2 r364:b4a01426c0d9 r365:a12eef1f82b2 r365:a12eef1f82b2 r365:a12eef1f82b2 r364:b4a01426c0d9 r559:c5fd2d996909 r582:7a28e215f715 r365:a12eef1f82b2 r617:4137ef9aacc6 r617:4137ef9aacc6 r364:b4a01426c0d9 r364:b4a01426c0d9 r365:a12eef1f82b2 r364:b4a01426c0d9 r365:a12eef1f82b2 r365:a12eef1f82b2 r364:b4a01426c0d9 r365:a12eef1f82b2 r364:b4a01426c0d9 r365:a12eef1f82b2 r364:b4a01426c0d9 r364:b4a01426c0d9 r364:b4a01426c0d9 r364:b4a01426c0d9 r365:a12eef1f82b2 r364:b4a01426c0d9 r365:a12eef1f82b2 r364:b4a01426c0d9 r364:b4a01426c0d9 r364:b4a01426c0d9 r364:b4a01426c0d9 r365:a12eef1f82b2 r364:b4a01426c0d9 r365:a12eef1f82b2 r365:a12eef1f82b2 r365:a12eef1f82b2 r365:a12eef1f82b2 r365:a12eef1f82b2 r365:a12eef1f82b2 r365:a12eef1f82b2 r365:a12eef1f82b2 r365:a12eef1f82b2 r365:a12eef1f82b2 r364:b4a01426c0d9 r364:b4a01426c0d9 r364:b4a01426c0d9 r364:b4a01426c0d9 r365:a12eef1f82b2 r364:b4a01426c0d9 r365:a12eef1f82b2 r365:a12eef1f82b2 r364:b4a01426c0d9 r364:b4a01426c0d9 r364:b4a01426c0d9 r364:b4a01426c0d9 r365:a12eef1f82b2 r364:b4a01426c0d9 r365:a12eef1f82b2 r364:b4a01426c0d9 r364:b4a01426c0d9 r364:b4a01426c0d9 r364:b4a01426c0d9 r364:b4a01426c0d9 r364:b4a01426c0d9 r365:a12eef1f82b2 r365:a12eef1f82b2 r364:b4a01426c0d9 r364:b4a01426c0d9 r364:b4a01426c0d9 r364:b4a01426c0d9 r364:b4a01426c0d9 r365:a12eef1f82b2 r365:a12eef1f82b2 r365:a12eef1f82b2 r365:a12eef1f82b2 r365:a12eef1f82b2 r365:a12eef1f82b2 r365:a12eef1f82b2 r365:a12eef1f82b2 r364:b4a01426c0d9 r364:b4a01426c0d9 r364:b4a01426c0d9 r365:a12eef1f82b2 r364:b4a01426c0d9 r364:b4a01426c0d9 r364:b4a01426c0d9 r364:b4a01426c0d9 r364:b4a01426c0d9 r365:a12eef1f82b2 r365:a12eef1f82b2 r364:b4a01426c0d9 r364:b4a01426c0d9 r365:a12eef1f82b2 r364:b4a01426c0d9 r364:b4a01426c0d9 r364:b4a01426c0d9 r364:b4a01426c0d9 r365:a12eef1f82b2 r364:b4a01426c0d9 r365:a12eef1f82b2 r364:b4a01426c0d9 r364:b4a01426c0d9 r364:b4a01426c0d9 r364:b4a01426c0d9 r365:a12eef1f82b2 r365:a12eef1f82b2 r365:a12eef1f82b2 r365:a12eef1f82b2 r364:b4a01426c0d9 r365:a12eef1f82b2 r365:a12eef1f82b2 r365:a12eef1f82b2 r364:b4a01426c0d9 r365:a12eef1f82b2 r365:a12eef1f82b2 r365:a12eef1f82b2 r364:b4a01426c0d9 r365:a12eef1f82b2 r365:a12eef1f82b2 r364:b4a01426c0d9 r364:b4a01426c0d9 r365:a12eef1f82b2 r364:b4a01426c0d9 r364:b4a01426c0d9 r365:a12eef1f82b2 r364:b4a01426c0d9 r364:b4a01426c0d9 r364:b4a01426c0d9 r364:b4a01426c0d9 r364:b4a01426c0d9 r364:b4a01426c0d9 r364:b4a01426c0d9 r364:b4a01426c0d9 r364:b4a01426c0d9 r364:b4a01426c0d9 r364:b4a01426c0d9 r364:b4a01426c0d9 r364:b4a01426c0d9 r364:b4a01426c0d9 r365:a12eef1f82b2 r364:b4a01426c0d9 r364:b4a01426c0d9 r364:b4a01426c0d9 r364:b4a01426c0d9 r364:b4a01426c0d9 r364:b4a01426c0d9 r364:b4a01426c0d9 r364:b4a01426c0d9 r364:b4a01426c0d9 r364:b4a01426c0d9 | /* -*- mode: C++; indent-tabs-mode: nil; -*-
*
* This file is a part of LEMON, a generic C++ optimization library.
*
* Copyright (C) 2003-2009
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
* (Egervary Research Group on Combinatorial Optimization, EGRES).
*
* Permission to use, modify and distribute this software is granted
* provided that this copyright notice appears in all copies. For
* precise terms see the accompanying LICENSE file.
*
* This software is provided "AS IS" with no warranty of any kind,
* express or implied, and with no claim as to its suitability for any
* purpose.
*
*/
#ifndef HYPERCUBE_GRAPH_H
#define HYPERCUBE_GRAPH_H
#include <vector>
#include <lemon/core.h>
#include <lemon/assert.h>
#include <lemon/bits/graph_extender.h>
///\ingroup graphs
///\file
///\brief HypercubeGraph class.
namespace lemon {
class HypercubeGraphBase {
public:
typedef HypercubeGraphBase Graph;
class Node;
class Edge;
class Arc;
public:
HypercubeGraphBase() {}
protected:
void construct(int dim) {
LEMON_ASSERT(dim >= 1, "The number of dimensions must be at least 1.");
_dim = dim;
_node_num = 1 << dim;
_edge_num = dim * (1 << (dim-1));
}
public:
typedef True NodeNumTag;
typedef True EdgeNumTag;
typedef True ArcNumTag;
int nodeNum() const { return _node_num; }
int edgeNum() const { return _edge_num; }
int arcNum() const { return 2 * _edge_num; }
int maxNodeId() const { return _node_num - 1; }
int maxEdgeId() const { return _edge_num - 1; }
int maxArcId() const { return 2 * _edge_num - 1; }
static Node nodeFromId(int id) { return Node(id); }
static Edge edgeFromId(int id) { return Edge(id); }
static Arc arcFromId(int id) { return Arc(id); }
static int id(Node node) { return node._id; }
static int id(Edge edge) { return edge._id; }
static int id(Arc arc) { return arc._id; }
Node u(Edge edge) const {
int base = edge._id & ((1 << (_dim-1)) - 1);
int k = edge._id >> (_dim-1);
return ((base >> k) << (k+1)) | (base & ((1 << k) - 1));
}
Node v(Edge edge) const {
int base = edge._id & ((1 << (_dim-1)) - 1);
int k = edge._id >> (_dim-1);
return ((base >> k) << (k+1)) | (base & ((1 << k) - 1)) | (1 << k);
}
Node source(Arc arc) const {
return (arc._id & 1) == 1 ? u(arc) : v(arc);
}
Node target(Arc arc) const {
return (arc._id & 1) == 1 ? v(arc) : u(arc);
}
typedef True FindEdgeTag;
typedef True FindArcTag;
Edge findEdge(Node u, Node v, Edge prev = INVALID) const {
if (prev != INVALID) return INVALID;
int d = u._id ^ v._id;
int k = 0;
if (d == 0) return INVALID;
for ( ; (d & 1) == 0; d >>= 1) ++k;
if (d >> 1 != 0) return INVALID;
return (k << (_dim-1)) | ((u._id >> (k+1)) << k) |
(u._id & ((1 << k) - 1));
}
Arc findArc(Node u, Node v, Arc prev = INVALID) const {
Edge edge = findEdge(u, v, prev);
if (edge == INVALID) return INVALID;
int k = edge._id >> (_dim-1);
return ((u._id >> k) & 1) == 1 ? edge._id << 1 : (edge._id << 1) | 1;
}
class Node {
friend class HypercubeGraphBase;
protected:
int _id;
Node(int id) : _id(id) {}
public:
Node() {}
Node (Invalid) : _id(-1) {}
bool operator==(const Node node) const {return _id == node._id;}
bool operator!=(const Node node) const {return _id != node._id;}
bool operator<(const Node node) const {return _id < node._id;}
};
class Edge {
friend class HypercubeGraphBase;
friend class Arc;
protected:
int _id;
Edge(int id) : _id(id) {}
public:
Edge() {}
Edge (Invalid) : _id(-1) {}
bool operator==(const Edge edge) const {return _id == edge._id;}
bool operator!=(const Edge edge) const {return _id != edge._id;}
bool operator<(const Edge edge) const {return _id < edge._id;}
};
class Arc {
friend class HypercubeGraphBase;
protected:
int _id;
Arc(int id) : _id(id) {}
public:
Arc() {}
Arc (Invalid) : _id(-1) {}
operator Edge() const { return _id != -1 ? Edge(_id >> 1) : INVALID; }
bool operator==(const Arc arc) const {return _id == arc._id;}
bool operator!=(const Arc arc) const {return _id != arc._id;}
bool operator<(const Arc arc) const {return _id < arc._id;}
};
void first(Node& node) const {
node._id = _node_num - 1;
}
static void next(Node& node) {
--node._id;
}
void first(Edge& edge) const {
edge._id = _edge_num - 1;
}
static void next(Edge& edge) {
--edge._id;
}
void first(Arc& arc) const {
arc._id = 2 * _edge_num - 1;
}
static void next(Arc& arc) {
--arc._id;
}
void firstInc(Edge& edge, bool& dir, const Node& node) const {
edge._id = node._id >> 1;
dir = (node._id & 1) == 0;
}
void nextInc(Edge& edge, bool& dir) const {
Node n = dir ? u(edge) : v(edge);
int k = (edge._id >> (_dim-1)) + 1;
if (k < _dim) {
edge._id = (k << (_dim-1)) |
((n._id >> (k+1)) << k) | (n._id & ((1 << k) - 1));
dir = ((n._id >> k) & 1) == 0;
} else {
edge._id = -1;
dir = true;
}
}
void firstOut(Arc& arc, const Node& node) const {
arc._id = ((node._id >> 1) << 1) | (~node._id & 1);
}
void nextOut(Arc& arc) const {
Node n = (arc._id & 1) == 1 ? u(arc) : v(arc);
int k = (arc._id >> _dim) + 1;
if (k < _dim) {
arc._id = (k << (_dim-1)) |
((n._id >> (k+1)) << k) | (n._id & ((1 << k) - 1));
arc._id = (arc._id << 1) | (~(n._id >> k) & 1);
} else {
arc._id = -1;
}
}
void firstIn(Arc& arc, const Node& node) const {
arc._id = ((node._id >> 1) << 1) | (node._id & 1);
}
void nextIn(Arc& arc) const {
Node n = (arc._id & 1) == 1 ? v(arc) : u(arc);
int k = (arc._id >> _dim) + 1;
if (k < _dim) {
arc._id = (k << (_dim-1)) |
((n._id >> (k+1)) << k) | (n._id & ((1 << k) - 1));
arc._id = (arc._id << 1) | ((n._id >> k) & 1);
} else {
arc._id = -1;
}
}
static bool direction(Arc arc) {
return (arc._id & 1) == 1;
}
static Arc direct(Edge edge, bool dir) {
return Arc((edge._id << 1) | (dir ? 1 : 0));
}
int dimension() const {
return _dim;
}
bool projection(Node node, int n) const {
return static_cast<bool>(node._id & (1 << n));
}
int dimension(Edge edge) const {
return edge._id >> (_dim-1);
}
int dimension(Arc arc) const {
return arc._id >> _dim;
}
int index(Node node) const {
return node._id;
}
Node operator()(int ix) const {
return Node(ix);
}
private:
int _dim;
int _node_num, _edge_num;
};
typedef GraphExtender<HypercubeGraphBase> ExtendedHypercubeGraphBase;
/// \ingroup graphs
///
/// \brief Hypercube graph class
///
/// This class implements a special graph type. The nodes of the graph
/// are indiced with integers with at most \c dim binary digits.
/// Two nodes are connected in the graph if and only if their indices
/// differ only on one position in the binary form.
///
/// \note The type of the indices is chosen to \c int for efficiency
/// reasons. Thus the maximum dimension of this implementation is 26
/// (assuming that the size of \c int is 32 bit).
///
/// This graph type fully conforms to the \ref concepts::Graph
/// "Graph concept".
class HypercubeGraph : public ExtendedHypercubeGraphBase {
typedef ExtendedHypercubeGraphBase Parent;
public:
/// \brief Constructs a hypercube graph with \c dim dimensions.
///
/// Constructs a hypercube graph with \c dim dimensions.
HypercubeGraph(int dim) { construct(dim); }
/// \brief The number of dimensions.
///
/// Gives back the number of dimensions.
int dimension() const {
return Parent::dimension();
}
/// \brief Returns \c true if the n'th bit of the node is one.
///
/// Returns \c true if the n'th bit of the node is one.
bool projection(Node node, int n) const {
return Parent::projection(node, n);
}
/// \brief The dimension id of an edge.
///
/// Gives back the dimension id of the given edge.
/// It is in the [0..dim-1] range.
int dimension(Edge edge) const {
return Parent::dimension(edge);
}
/// \brief The dimension id of an arc.
///
/// Gives back the dimension id of the given arc.
/// It is in the [0..dim-1] range.
int dimension(Arc arc) const {
return Parent::dimension(arc);
}
/// \brief The index of a node.
///
/// Gives back the index of the given node.
/// The lower bits of the integer describes the node.
int index(Node node) const {
return Parent::index(node);
}
/// \brief Gives back a node by its index.
///
/// Gives back a node by its index.
Node operator()(int ix) const {
return Parent::operator()(ix);
}
/// \brief Number of nodes.
int nodeNum() const { return Parent::nodeNum(); }
/// \brief Number of edges.
int edgeNum() const { return Parent::edgeNum(); }
/// \brief Number of arcs.
int arcNum() const { return Parent::arcNum(); }
/// \brief Linear combination map.
///
/// This map makes possible to give back a linear combination
/// for each node. It works like the \c std::accumulate function,
/// so it accumulates the \c bf binary function with the \c fv first
/// value. The map accumulates only on that positions (dimensions)
/// where the index of the node is one. The values that have to be
/// accumulated should be given by the \c begin and \c end iterators
/// and the length of this range should be equal to the dimension
/// number of the graph.
///
///\code
/// const int DIM = 3;
/// HypercubeGraph graph(DIM);
/// dim2::Point<double> base[DIM];
/// for (int k = 0; k < DIM; ++k) {
/// base[k].x = rnd();
/// base[k].y = rnd();
/// }
/// HypercubeGraph::HyperMap<dim2::Point<double> >
/// pos(graph, base, base + DIM, dim2::Point<double>(0.0, 0.0));
///\endcode
///
/// \see HypercubeGraph
template <typename T, typename BF = std::plus<T> >
class HyperMap {
public:
/// \brief The key type of the map
typedef Node Key;
/// \brief The value type of the map
typedef T Value;
/// \brief Constructor for HyperMap.
///
/// Construct a HyperMap for the given graph. The values that have
/// to be accumulated should be given by the \c begin and \c end
/// iterators and the length of this range should be equal to the
/// dimension number of the graph.
///
/// This map accumulates the \c bf binary function with the \c fv
/// first value on that positions (dimensions) where the index of
/// the node is one.
template <typename It>
HyperMap(const Graph& graph, It begin, It end,
T fv = 0, const BF& bf = BF())
: _graph(graph), _values(begin, end), _first_value(fv), _bin_func(bf)
{
LEMON_ASSERT(_values.size() == graph.dimension(),
"Wrong size of range");
}
/// \brief The partial accumulated value.
///
/// Gives back the partial accumulated value.
Value operator[](const Key& k) const {
Value val = _first_value;
int id = _graph.index(k);
int n = 0;
while (id != 0) {
if (id & 1) {
val = _bin_func(val, _values[n]);
}
id >>= 1;
++n;
}
return val;
}
private:
const Graph& _graph;
std::vector<T> _values;
T _first_value;
BF _bin_func;
};
};
}
#endif
|