Location: LEMON/LEMON-main/lemon/suurballe.h - annotation
Load file history
Rename heap structures (#301)
- KaryHeap --> DHeap
- FouraryHeap --> QuadHeap
- BinomHeap --> BinomialHeap
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 | r440:88ed40ad0d4f r345:2f64c4a692a8 r440:88ed40ad0d4f r345:2f64c4a692a8 r440:88ed40ad0d4f r345:2f64c4a692a8 r345:2f64c4a692a8 r345:2f64c4a692a8 r345:2f64c4a692a8 r345:2f64c4a692a8 r345:2f64c4a692a8 r345:2f64c4a692a8 r345:2f64c4a692a8 r345:2f64c4a692a8 r345:2f64c4a692a8 r345:2f64c4a692a8 r345:2f64c4a692a8 r345:2f64c4a692a8 r345:2f64c4a692a8 r345:2f64c4a692a8 r345:2f64c4a692a8 r345:2f64c4a692a8 r345:2f64c4a692a8 r345:2f64c4a692a8 r345:2f64c4a692a8 r345:2f64c4a692a8 r345:2f64c4a692a8 r623:7c1324b35d89 r345:2f64c4a692a8 r345:2f64c4a692a8 r519:c786cd201266 r519:c786cd201266 r345:2f64c4a692a8 r345:2f64c4a692a8 r345:2f64c4a692a8 r345:2f64c4a692a8 r345:2f64c4a692a8 r345:2f64c4a692a8 r346:7f26c4b32651 r346:7f26c4b32651 r345:2f64c4a692a8 r345:2f64c4a692a8 r345:2f64c4a692a8 r346:7f26c4b32651 r345:2f64c4a692a8 r623:7c1324b35d89 r623:7c1324b35d89 r623:7c1324b35d89 r623:7c1324b35d89 r623:7c1324b35d89 r623:7c1324b35d89 r623:7c1324b35d89 r345:2f64c4a692a8 r559:c5fd2d996909 r623:7c1324b35d89 r623:7c1324b35d89 r345:2f64c4a692a8 r345:2f64c4a692a8 r345:2f64c4a692a8 r345:2f64c4a692a8 r623:7c1324b35d89 r346:7f26c4b32651 r559:c5fd2d996909 r346:7f26c4b32651 r623:7c1324b35d89 r559:c5fd2d996909 r346:7f26c4b32651 r345:2f64c4a692a8 r345:2f64c4a692a8 r559:c5fd2d996909 r345:2f64c4a692a8 r345:2f64c4a692a8 r559:c5fd2d996909 r345:2f64c4a692a8 r345:2f64c4a692a8 r345:2f64c4a692a8 r559:c5fd2d996909 r559:c5fd2d996909 r559:c5fd2d996909 r559:c5fd2d996909 r559:c5fd2d996909 r559:c5fd2d996909 r623:7c1324b35d89 r623:7c1324b35d89 r623:7c1324b35d89 r623:7c1324b35d89 r623:7c1324b35d89 r623:7c1324b35d89 r345:2f64c4a692a8 r345:2f64c4a692a8 r345:2f64c4a692a8 r345:2f64c4a692a8 r623:7c1324b35d89 r623:7c1324b35d89 r345:2f64c4a692a8 r623:7c1324b35d89 r345:2f64c4a692a8 r345:2f64c4a692a8 r440:88ed40ad0d4f r623:7c1324b35d89 r623:7c1324b35d89 r623:7c1324b35d89 r623:7c1324b35d89 r623:7c1324b35d89 r345:2f64c4a692a8 r345:2f64c4a692a8 r345:2f64c4a692a8 r345:2f64c4a692a8 r345:2f64c4a692a8 r345:2f64c4a692a8 r345:2f64c4a692a8 r346:7f26c4b32651 r345:2f64c4a692a8 r345:2f64c4a692a8 r345:2f64c4a692a8 r345:2f64c4a692a8 r345:2f64c4a692a8 r345:2f64c4a692a8 r345:2f64c4a692a8 r345:2f64c4a692a8 r345:2f64c4a692a8 r345:2f64c4a692a8 r345:2f64c4a692a8 r345:2f64c4a692a8 r345:2f64c4a692a8 r440:88ed40ad0d4f r345:2f64c4a692a8 r345:2f64c4a692a8 r345:2f64c4a692a8 r345:2f64c4a692a8 r345:2f64c4a692a8 r345:2f64c4a692a8 r623:7c1324b35d89 r345:2f64c4a692a8 r345:2f64c4a692a8 r345:2f64c4a692a8 r345:2f64c4a692a8 r345:2f64c4a692a8 r623:7c1324b35d89 r623:7c1324b35d89 r345:2f64c4a692a8 r346:7f26c4b32651 r345:2f64c4a692a8 r345:2f64c4a692a8 r345:2f64c4a692a8 r345:2f64c4a692a8 r345:2f64c4a692a8 r345:2f64c4a692a8 r345:2f64c4a692a8 r345:2f64c4a692a8 r346:7f26c4b32651 r345:2f64c4a692a8 r345:2f64c4a692a8 r345:2f64c4a692a8 r345:2f64c4a692a8 r345:2f64c4a692a8 r345:2f64c4a692a8 r345:2f64c4a692a8 r346:7f26c4b32651 r345:2f64c4a692a8 r345:2f64c4a692a8 r345:2f64c4a692a8 r345:2f64c4a692a8 r345:2f64c4a692a8 r345:2f64c4a692a8 r345:2f64c4a692a8 r345:2f64c4a692a8 r345:2f64c4a692a8 r345:2f64c4a692a8 r345:2f64c4a692a8 r345:2f64c4a692a8 r345:2f64c4a692a8 r345:2f64c4a692a8 r345:2f64c4a692a8 r345:2f64c4a692a8 r345:2f64c4a692a8 r345:2f64c4a692a8 r345:2f64c4a692a8 r345:2f64c4a692a8 r345:2f64c4a692a8 r346:7f26c4b32651 r345:2f64c4a692a8 r345:2f64c4a692a8 r345:2f64c4a692a8 r345:2f64c4a692a8 r345:2f64c4a692a8 r345:2f64c4a692a8 r345:2f64c4a692a8 r345:2f64c4a692a8 r345:2f64c4a692a8 r345:2f64c4a692a8 r345:2f64c4a692a8 r345:2f64c4a692a8 r345:2f64c4a692a8 r345:2f64c4a692a8 r345:2f64c4a692a8 r345:2f64c4a692a8 r345:2f64c4a692a8 r345:2f64c4a692a8 r345:2f64c4a692a8 r345:2f64c4a692a8 r345:2f64c4a692a8 r345:2f64c4a692a8 r345:2f64c4a692a8 r346:7f26c4b32651 r345:2f64c4a692a8 r345:2f64c4a692a8 r345:2f64c4a692a8 r345:2f64c4a692a8 r345:2f64c4a692a8 r345:2f64c4a692a8 r345:2f64c4a692a8 r345:2f64c4a692a8 r345:2f64c4a692a8 r345:2f64c4a692a8 r346:7f26c4b32651 r345:2f64c4a692a8 r345:2f64c4a692a8 r345:2f64c4a692a8 r440:88ed40ad0d4f r345:2f64c4a692a8 r345:2f64c4a692a8 r345:2f64c4a692a8 r345:2f64c4a692a8 r345:2f64c4a692a8 r345:2f64c4a692a8 r345:2f64c4a692a8 r345:2f64c4a692a8 r345:2f64c4a692a8 r345:2f64c4a692a8 r345:2f64c4a692a8 r345:2f64c4a692a8 r345:2f64c4a692a8 r345:2f64c4a692a8 r345:2f64c4a692a8 r345:2f64c4a692a8 r345:2f64c4a692a8 r345:2f64c4a692a8 r345:2f64c4a692a8 r345:2f64c4a692a8 r345:2f64c4a692a8 r345:2f64c4a692a8 r345:2f64c4a692a8 r345:2f64c4a692a8 r345:2f64c4a692a8 r345:2f64c4a692a8 r345:2f64c4a692a8 r345:2f64c4a692a8 r623:7c1324b35d89 r345:2f64c4a692a8 r623:7c1324b35d89 r623:7c1324b35d89 r623:7c1324b35d89 r623:7c1324b35d89 r623:7c1324b35d89 r623:7c1324b35d89 r623:7c1324b35d89 r623:7c1324b35d89 r345:2f64c4a692a8 r345:2f64c4a692a8 r345:2f64c4a692a8 r345:2f64c4a692a8 r345:2f64c4a692a8 r345:2f64c4a692a8 r345:2f64c4a692a8 r345:2f64c4a692a8 r346:7f26c4b32651 r345:2f64c4a692a8 r346:7f26c4b32651 r623:7c1324b35d89 r623:7c1324b35d89 r623:7c1324b35d89 r345:2f64c4a692a8 r623:7c1324b35d89 r623:7c1324b35d89 r345:2f64c4a692a8 r559:c5fd2d996909 r345:2f64c4a692a8 r345:2f64c4a692a8 r345:2f64c4a692a8 r345:2f64c4a692a8 r345:2f64c4a692a8 r345:2f64c4a692a8 r345:2f64c4a692a8 r345:2f64c4a692a8 r345:2f64c4a692a8 r346:7f26c4b32651 r345:2f64c4a692a8 r346:7f26c4b32651 r623:7c1324b35d89 r623:7c1324b35d89 r623:7c1324b35d89 r345:2f64c4a692a8 r623:7c1324b35d89 r623:7c1324b35d89 r345:2f64c4a692a8 r559:c5fd2d996909 r345:2f64c4a692a8 r345:2f64c4a692a8 r345:2f64c4a692a8 r345:2f64c4a692a8 r345:2f64c4a692a8 r345:2f64c4a692a8 r345:2f64c4a692a8 r345:2f64c4a692a8 r345:2f64c4a692a8 r584:33c6b6e755cd r345:2f64c4a692a8 r345:2f64c4a692a8 r345:2f64c4a692a8 r345:2f64c4a692a8 r345:2f64c4a692a8 r345:2f64c4a692a8 r345:2f64c4a692a8 r345:2f64c4a692a8 r346:7f26c4b32651 r345:2f64c4a692a8 r346:7f26c4b32651 r345:2f64c4a692a8 r623:7c1324b35d89 r623:7c1324b35d89 r345:2f64c4a692a8 r345:2f64c4a692a8 r346:7f26c4b32651 r346:7f26c4b32651 r345:2f64c4a692a8 r345:2f64c4a692a8 r623:7c1324b35d89 r623:7c1324b35d89 r345:2f64c4a692a8 r623:7c1324b35d89 r623:7c1324b35d89 r345:2f64c4a692a8 r345:2f64c4a692a8 r623:7c1324b35d89 r623:7c1324b35d89 r623:7c1324b35d89 r345:2f64c4a692a8 r345:2f64c4a692a8 r345:2f64c4a692a8 r345:2f64c4a692a8 r346:7f26c4b32651 r345:2f64c4a692a8 r346:7f26c4b32651 r623:7c1324b35d89 r623:7c1324b35d89 r623:7c1324b35d89 r623:7c1324b35d89 r623:7c1324b35d89 r346:7f26c4b32651 r345:2f64c4a692a8 r345:2f64c4a692a8 r345:2f64c4a692a8 r345:2f64c4a692a8 r345:2f64c4a692a8 r345:2f64c4a692a8 r345:2f64c4a692a8 r345:2f64c4a692a8 r345:2f64c4a692a8 r345:2f64c4a692a8 r345:2f64c4a692a8 r345:2f64c4a692a8 r623:7c1324b35d89 r345:2f64c4a692a8 r346:7f26c4b32651 r623:7c1324b35d89 r345:2f64c4a692a8 r345:2f64c4a692a8 r623:7c1324b35d89 r623:7c1324b35d89 r623:7c1324b35d89 r346:7f26c4b32651 r623:7c1324b35d89 r623:7c1324b35d89 r345:2f64c4a692a8 r345:2f64c4a692a8 r623:7c1324b35d89 r623:7c1324b35d89 r623:7c1324b35d89 r623:7c1324b35d89 r623:7c1324b35d89 r623:7c1324b35d89 r346:7f26c4b32651 r345:2f64c4a692a8 r345:2f64c4a692a8 r346:7f26c4b32651 r345:2f64c4a692a8 r345:2f64c4a692a8 r345:2f64c4a692a8 r346:7f26c4b32651 r345:2f64c4a692a8 r345:2f64c4a692a8 r345:2f64c4a692a8 r345:2f64c4a692a8 r345:2f64c4a692a8 r345:2f64c4a692a8 r345:2f64c4a692a8 r345:2f64c4a692a8 r345:2f64c4a692a8 r345:2f64c4a692a8 r345:2f64c4a692a8 r345:2f64c4a692a8 r345:2f64c4a692a8 r345:2f64c4a692a8 r440:88ed40ad0d4f r346:7f26c4b32651 r345:2f64c4a692a8 r623:7c1324b35d89 r623:7c1324b35d89 r345:2f64c4a692a8 r345:2f64c4a692a8 r345:2f64c4a692a8 r345:2f64c4a692a8 r345:2f64c4a692a8 r346:7f26c4b32651 r345:2f64c4a692a8 r345:2f64c4a692a8 r345:2f64c4a692a8 r345:2f64c4a692a8 r345:2f64c4a692a8 r345:2f64c4a692a8 r345:2f64c4a692a8 r345:2f64c4a692a8 r345:2f64c4a692a8 r345:2f64c4a692a8 r345:2f64c4a692a8 r345:2f64c4a692a8 r345:2f64c4a692a8 r345:2f64c4a692a8 r345:2f64c4a692a8 r345:2f64c4a692a8 r345:2f64c4a692a8 r345:2f64c4a692a8 r346:7f26c4b32651 r345:2f64c4a692a8 r345:2f64c4a692a8 r345:2f64c4a692a8 r345:2f64c4a692a8 r345:2f64c4a692a8 r623:7c1324b35d89 r623:7c1324b35d89 r623:7c1324b35d89 r623:7c1324b35d89 r623:7c1324b35d89 r623:7c1324b35d89 r623:7c1324b35d89 r623:7c1324b35d89 r623:7c1324b35d89 r623:7c1324b35d89 r623:7c1324b35d89 r623:7c1324b35d89 r623:7c1324b35d89 r623:7c1324b35d89 r623:7c1324b35d89 r623:7c1324b35d89 r623:7c1324b35d89 r623:7c1324b35d89 r623:7c1324b35d89 r623:7c1324b35d89 r623:7c1324b35d89 r623:7c1324b35d89 r623:7c1324b35d89 r623:7c1324b35d89 r623:7c1324b35d89 r623:7c1324b35d89 r623:7c1324b35d89 r623:7c1324b35d89 r345:2f64c4a692a8 r345:2f64c4a692a8 r623:7c1324b35d89 r346:7f26c4b32651 r345:2f64c4a692a8 r346:7f26c4b32651 r346:7f26c4b32651 r345:2f64c4a692a8 r345:2f64c4a692a8 r345:2f64c4a692a8 r345:2f64c4a692a8 r346:7f26c4b32651 r345:2f64c4a692a8 r346:7f26c4b32651 r623:7c1324b35d89 r623:7c1324b35d89 r345:2f64c4a692a8 r346:7f26c4b32651 r346:7f26c4b32651 r345:2f64c4a692a8 r345:2f64c4a692a8 r345:2f64c4a692a8 r345:2f64c4a692a8 r623:7c1324b35d89 r623:7c1324b35d89 r345:2f64c4a692a8 r623:7c1324b35d89 r623:7c1324b35d89 r623:7c1324b35d89 r345:2f64c4a692a8 r346:7f26c4b32651 r346:7f26c4b32651 r623:7c1324b35d89 r623:7c1324b35d89 r345:2f64c4a692a8 r345:2f64c4a692a8 r346:7f26c4b32651 r345:2f64c4a692a8 r346:7f26c4b32651 r345:2f64c4a692a8 r346:7f26c4b32651 r346:7f26c4b32651 r345:2f64c4a692a8 r345:2f64c4a692a8 r345:2f64c4a692a8 r345:2f64c4a692a8 r346:7f26c4b32651 r345:2f64c4a692a8 r346:7f26c4b32651 r345:2f64c4a692a8 r623:7c1324b35d89 r345:2f64c4a692a8 r345:2f64c4a692a8 r346:7f26c4b32651 r346:7f26c4b32651 r345:2f64c4a692a8 r345:2f64c4a692a8 r345:2f64c4a692a8 r345:2f64c4a692a8 r345:2f64c4a692a8 r345:2f64c4a692a8 r345:2f64c4a692a8 r345:2f64c4a692a8 r345:2f64c4a692a8 r345:2f64c4a692a8 r345:2f64c4a692a8 r345:2f64c4a692a8 r345:2f64c4a692a8 | /* -*- mode: C++; indent-tabs-mode: nil; -*-
*
* This file is a part of LEMON, a generic C++ optimization library.
*
* Copyright (C) 2003-2009
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
* (Egervary Research Group on Combinatorial Optimization, EGRES).
*
* Permission to use, modify and distribute this software is granted
* provided that this copyright notice appears in all copies. For
* precise terms see the accompanying LICENSE file.
*
* This software is provided "AS IS" with no warranty of any kind,
* express or implied, and with no claim as to its suitability for any
* purpose.
*
*/
#ifndef LEMON_SUURBALLE_H
#define LEMON_SUURBALLE_H
///\ingroup shortest_path
///\file
///\brief An algorithm for finding arc-disjoint paths between two
/// nodes having minimum total length.
#include <vector>
#include <limits>
#include <lemon/bin_heap.h>
#include <lemon/path.h>
#include <lemon/list_graph.h>
#include <lemon/maps.h>
namespace lemon {
/// \addtogroup shortest_path
/// @{
/// \brief Algorithm for finding arc-disjoint paths between two nodes
/// having minimum total length.
///
/// \ref lemon::Suurballe "Suurballe" implements an algorithm for
/// finding arc-disjoint paths having minimum total length (cost)
/// from a given source node to a given target node in a digraph.
///
/// Note that this problem is a special case of the \ref min_cost_flow
/// "minimum cost flow problem". This implementation is actually an
/// efficient specialized version of the \ref CapacityScaling
/// "Successive Shortest Path" algorithm directly for this problem.
/// Therefore this class provides query functions for flow values and
/// node potentials (the dual solution) just like the minimum cost flow
/// algorithms.
///
/// \tparam GR The digraph type the algorithm runs on.
/// \tparam LEN The type of the length map.
/// The default value is <tt>GR::ArcMap<int></tt>.
///
/// \warning Length values should be \e non-negative \e integers.
///
/// \note For finding node-disjoint paths this algorithm can be used
/// along with the \ref SplitNodes adaptor.
#ifdef DOXYGEN
template <typename GR, typename LEN>
#else
template < typename GR,
typename LEN = typename GR::template ArcMap<int> >
#endif
class Suurballe
{
TEMPLATE_DIGRAPH_TYPEDEFS(GR);
typedef ConstMap<Arc, int> ConstArcMap;
typedef typename GR::template NodeMap<Arc> PredMap;
public:
/// The type of the digraph the algorithm runs on.
typedef GR Digraph;
/// The type of the length map.
typedef LEN LengthMap;
/// The type of the lengths.
typedef typename LengthMap::Value Length;
#ifdef DOXYGEN
/// The type of the flow map.
typedef GR::ArcMap<int> FlowMap;
/// The type of the potential map.
typedef GR::NodeMap<Length> PotentialMap;
#else
/// The type of the flow map.
typedef typename Digraph::template ArcMap<int> FlowMap;
/// The type of the potential map.
typedef typename Digraph::template NodeMap<Length> PotentialMap;
#endif
/// The type of the path structures.
typedef SimplePath<GR> Path;
private:
// ResidualDijkstra is a special implementation of the
// Dijkstra algorithm for finding shortest paths in the
// residual network with respect to the reduced arc lengths
// and modifying the node potentials according to the
// distance of the nodes.
class ResidualDijkstra
{
typedef typename Digraph::template NodeMap<int> HeapCrossRef;
typedef BinHeap<Length, HeapCrossRef> Heap;
private:
// The digraph the algorithm runs on
const Digraph &_graph;
// The main maps
const FlowMap &_flow;
const LengthMap &_length;
PotentialMap &_potential;
// The distance map
PotentialMap _dist;
// The pred arc map
PredMap &_pred;
// The processed (i.e. permanently labeled) nodes
std::vector<Node> _proc_nodes;
Node _s;
Node _t;
public:
/// Constructor.
ResidualDijkstra( const Digraph &graph,
const FlowMap &flow,
const LengthMap &length,
PotentialMap &potential,
PredMap &pred,
Node s, Node t ) :
_graph(graph), _flow(flow), _length(length), _potential(potential),
_dist(graph), _pred(pred), _s(s), _t(t) {}
/// \brief Run the algorithm. It returns \c true if a path is found
/// from the source node to the target node.
bool run() {
HeapCrossRef heap_cross_ref(_graph, Heap::PRE_HEAP);
Heap heap(heap_cross_ref);
heap.push(_s, 0);
_pred[_s] = INVALID;
_proc_nodes.clear();
// Process nodes
while (!heap.empty() && heap.top() != _t) {
Node u = heap.top(), v;
Length d = heap.prio() + _potential[u], nd;
_dist[u] = heap.prio();
heap.pop();
_proc_nodes.push_back(u);
// Traverse outgoing arcs
for (OutArcIt e(_graph, u); e != INVALID; ++e) {
if (_flow[e] == 0) {
v = _graph.target(e);
switch(heap.state(v)) {
case Heap::PRE_HEAP:
heap.push(v, d + _length[e] - _potential[v]);
_pred[v] = e;
break;
case Heap::IN_HEAP:
nd = d + _length[e] - _potential[v];
if (nd < heap[v]) {
heap.decrease(v, nd);
_pred[v] = e;
}
break;
case Heap::POST_HEAP:
break;
}
}
}
// Traverse incoming arcs
for (InArcIt e(_graph, u); e != INVALID; ++e) {
if (_flow[e] == 1) {
v = _graph.source(e);
switch(heap.state(v)) {
case Heap::PRE_HEAP:
heap.push(v, d - _length[e] - _potential[v]);
_pred[v] = e;
break;
case Heap::IN_HEAP:
nd = d - _length[e] - _potential[v];
if (nd < heap[v]) {
heap.decrease(v, nd);
_pred[v] = e;
}
break;
case Heap::POST_HEAP:
break;
}
}
}
}
if (heap.empty()) return false;
// Update potentials of processed nodes
Length t_dist = heap.prio();
for (int i = 0; i < int(_proc_nodes.size()); ++i)
_potential[_proc_nodes[i]] += _dist[_proc_nodes[i]] - t_dist;
return true;
}
}; //class ResidualDijkstra
private:
// The digraph the algorithm runs on
const Digraph &_graph;
// The length map
const LengthMap &_length;
// Arc map of the current flow
FlowMap *_flow;
bool _local_flow;
// Node map of the current potentials
PotentialMap *_potential;
bool _local_potential;
// The source node
Node _source;
// The target node
Node _target;
// Container to store the found paths
std::vector< SimplePath<Digraph> > paths;
int _path_num;
// The pred arc map
PredMap _pred;
// Implementation of the Dijkstra algorithm for finding augmenting
// shortest paths in the residual network
ResidualDijkstra *_dijkstra;
public:
/// \brief Constructor.
///
/// Constructor.
///
/// \param graph The digraph the algorithm runs on.
/// \param length The length (cost) values of the arcs.
Suurballe( const Digraph &graph,
const LengthMap &length ) :
_graph(graph), _length(length), _flow(0), _local_flow(false),
_potential(0), _local_potential(false), _pred(graph)
{
LEMON_ASSERT(std::numeric_limits<Length>::is_integer,
"The length type of Suurballe must be integer");
}
/// Destructor.
~Suurballe() {
if (_local_flow) delete _flow;
if (_local_potential) delete _potential;
delete _dijkstra;
}
/// \brief Set the flow map.
///
/// This function sets the flow map.
/// If it is not used before calling \ref run() or \ref init(),
/// an instance will be allocated automatically. The destructor
/// deallocates this automatically allocated map, of course.
///
/// The found flow contains only 0 and 1 values, since it is the
/// union of the found arc-disjoint paths.
///
/// \return <tt>(*this)</tt>
Suurballe& flowMap(FlowMap &map) {
if (_local_flow) {
delete _flow;
_local_flow = false;
}
_flow = ↦
return *this;
}
/// \brief Set the potential map.
///
/// This function sets the potential map.
/// If it is not used before calling \ref run() or \ref init(),
/// an instance will be allocated automatically. The destructor
/// deallocates this automatically allocated map, of course.
///
/// The node potentials provide the dual solution of the underlying
/// \ref min_cost_flow "minimum cost flow problem".
///
/// \return <tt>(*this)</tt>
Suurballe& potentialMap(PotentialMap &map) {
if (_local_potential) {
delete _potential;
_local_potential = false;
}
_potential = ↦
return *this;
}
/// \name Execution Control
/// The simplest way to execute the algorithm is to call the run()
/// function.
/// \n
/// If you only need the flow that is the union of the found
/// arc-disjoint paths, you may call init() and findFlow().
/// @{
/// \brief Run the algorithm.
///
/// This function runs the algorithm.
///
/// \param s The source node.
/// \param t The target node.
/// \param k The number of paths to be found.
///
/// \return \c k if there are at least \c k arc-disjoint paths from
/// \c s to \c t in the digraph. Otherwise it returns the number of
/// arc-disjoint paths found.
///
/// \note Apart from the return value, <tt>s.run(s, t, k)</tt> is
/// just a shortcut of the following code.
/// \code
/// s.init(s);
/// s.findFlow(t, k);
/// s.findPaths();
/// \endcode
int run(const Node& s, const Node& t, int k = 2) {
init(s);
findFlow(t, k);
findPaths();
return _path_num;
}
/// \brief Initialize the algorithm.
///
/// This function initializes the algorithm.
///
/// \param s The source node.
void init(const Node& s) {
_source = s;
// Initialize maps
if (!_flow) {
_flow = new FlowMap(_graph);
_local_flow = true;
}
if (!_potential) {
_potential = new PotentialMap(_graph);
_local_potential = true;
}
for (ArcIt e(_graph); e != INVALID; ++e) (*_flow)[e] = 0;
for (NodeIt n(_graph); n != INVALID; ++n) (*_potential)[n] = 0;
}
/// \brief Execute the algorithm to find an optimal flow.
///
/// This function executes the successive shortest path algorithm to
/// find a minimum cost flow, which is the union of \c k (or less)
/// arc-disjoint paths.
///
/// \param t The target node.
/// \param k The number of paths to be found.
///
/// \return \c k if there are at least \c k arc-disjoint paths from
/// the source node to the given node \c t in the digraph.
/// Otherwise it returns the number of arc-disjoint paths found.
///
/// \pre \ref init() must be called before using this function.
int findFlow(const Node& t, int k = 2) {
_target = t;
_dijkstra =
new ResidualDijkstra( _graph, *_flow, _length, *_potential, _pred,
_source, _target );
// Find shortest paths
_path_num = 0;
while (_path_num < k) {
// Run Dijkstra
if (!_dijkstra->run()) break;
++_path_num;
// Set the flow along the found shortest path
Node u = _target;
Arc e;
while ((e = _pred[u]) != INVALID) {
if (u == _graph.target(e)) {
(*_flow)[e] = 1;
u = _graph.source(e);
} else {
(*_flow)[e] = 0;
u = _graph.target(e);
}
}
}
return _path_num;
}
/// \brief Compute the paths from the flow.
///
/// This function computes the paths from the found minimum cost flow,
/// which is the union of some arc-disjoint paths.
///
/// \pre \ref init() and \ref findFlow() must be called before using
/// this function.
void findPaths() {
FlowMap res_flow(_graph);
for(ArcIt a(_graph); a != INVALID; ++a) res_flow[a] = (*_flow)[a];
paths.clear();
paths.resize(_path_num);
for (int i = 0; i < _path_num; ++i) {
Node n = _source;
while (n != _target) {
OutArcIt e(_graph, n);
for ( ; res_flow[e] == 0; ++e) ;
n = _graph.target(e);
paths[i].addBack(e);
res_flow[e] = 0;
}
}
}
/// @}
/// \name Query Functions
/// The results of the algorithm can be obtained using these
/// functions.
/// \n The algorithm should be executed before using them.
/// @{
/// \brief Return the total length of the found paths.
///
/// This function returns the total length of the found paths, i.e.
/// the total cost of the found flow.
/// The complexity of the function is O(e).
///
/// \pre \ref run() or \ref findFlow() must be called before using
/// this function.
Length totalLength() const {
Length c = 0;
for (ArcIt e(_graph); e != INVALID; ++e)
c += (*_flow)[e] * _length[e];
return c;
}
/// \brief Return the flow value on the given arc.
///
/// This function returns the flow value on the given arc.
/// It is \c 1 if the arc is involved in one of the found arc-disjoint
/// paths, otherwise it is \c 0.
///
/// \pre \ref run() or \ref findFlow() must be called before using
/// this function.
int flow(const Arc& arc) const {
return (*_flow)[arc];
}
/// \brief Return a const reference to an arc map storing the
/// found flow.
///
/// This function returns a const reference to an arc map storing
/// the flow that is the union of the found arc-disjoint paths.
///
/// \pre \ref run() or \ref findFlow() must be called before using
/// this function.
const FlowMap& flowMap() const {
return *_flow;
}
/// \brief Return the potential of the given node.
///
/// This function returns the potential of the given node.
/// The node potentials provide the dual solution of the
/// underlying \ref min_cost_flow "minimum cost flow problem".
///
/// \pre \ref run() or \ref findFlow() must be called before using
/// this function.
Length potential(const Node& node) const {
return (*_potential)[node];
}
/// \brief Return a const reference to a node map storing the
/// found potentials (the dual solution).
///
/// This function returns a const reference to a node map storing
/// the found potentials that provide the dual solution of the
/// underlying \ref min_cost_flow "minimum cost flow problem".
///
/// \pre \ref run() or \ref findFlow() must be called before using
/// this function.
const PotentialMap& potentialMap() const {
return *_potential;
}
/// \brief Return the number of the found paths.
///
/// This function returns the number of the found paths.
///
/// \pre \ref run() or \ref findFlow() must be called before using
/// this function.
int pathNum() const {
return _path_num;
}
/// \brief Return a const reference to the specified path.
///
/// This function returns a const reference to the specified path.
///
/// \param i The function returns the <tt>i</tt>-th path.
/// \c i must be between \c 0 and <tt>%pathNum()-1</tt>.
///
/// \pre \ref run() or \ref findPaths() must be called before using
/// this function.
Path path(int i) const {
return paths[i];
}
/// @}
}; //class Suurballe
///@}
} //namespace lemon
#endif //LEMON_SUURBALLE_H
|