Location: LEMON/LEMON-main/lemon/concepts/graph_components.h - annotation
Load file history
Add images + fixes in the doc of connectivity tools (#262)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 | r209:765619b7cbb2 r57:c1acf0018c0a r209:765619b7cbb2 r57:c1acf0018c0a r440:88ed40ad0d4f r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r529:f5bc148f7e1f r529:f5bc148f7e1f r57:c1acf0018c0a r220:a5d8c039f218 r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r579:d11bf7998905 r57:c1acf0018c0a r579:d11bf7998905 r579:d11bf7998905 r57:c1acf0018c0a r57:c1acf0018c0a r579:d11bf7998905 r579:d11bf7998905 r579:d11bf7998905 r579:d11bf7998905 r57:c1acf0018c0a r559:c5fd2d996909 r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r209:765619b7cbb2 r579:d11bf7998905 r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r579:d11bf7998905 r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r579:d11bf7998905 r579:d11bf7998905 r579:d11bf7998905 r57:c1acf0018c0a r579:d11bf7998905 r579:d11bf7998905 r57:c1acf0018c0a r57:c1acf0018c0a r579:d11bf7998905 r579:d11bf7998905 r57:c1acf0018c0a r579:d11bf7998905 r579:d11bf7998905 r579:d11bf7998905 r57:c1acf0018c0a r57:c1acf0018c0a r579:d11bf7998905 r579:d11bf7998905 r579:d11bf7998905 r57:c1acf0018c0a r57:c1acf0018c0a r579:d11bf7998905 r579:d11bf7998905 r579:d11bf7998905 r579:d11bf7998905 r57:c1acf0018c0a r579:d11bf7998905 r579:d11bf7998905 r579:d11bf7998905 r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r579:d11bf7998905 r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r209:765619b7cbb2 r209:765619b7cbb2 r209:765619b7cbb2 r209:765619b7cbb2 r57:c1acf0018c0a r209:765619b7cbb2 r209:765619b7cbb2 r209:765619b7cbb2 r209:765619b7cbb2 r209:765619b7cbb2 r57:c1acf0018c0a r209:765619b7cbb2 r57:c1acf0018c0a r209:765619b7cbb2 r209:765619b7cbb2 r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r579:d11bf7998905 r209:765619b7cbb2 r579:d11bf7998905 r579:d11bf7998905 r579:d11bf7998905 r579:d11bf7998905 r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r209:765619b7cbb2 r57:c1acf0018c0a r57:c1acf0018c0a r579:d11bf7998905 r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r579:d11bf7998905 r579:d11bf7998905 r579:d11bf7998905 r579:d11bf7998905 r57:c1acf0018c0a r579:d11bf7998905 r579:d11bf7998905 r57:c1acf0018c0a r579:d11bf7998905 r57:c1acf0018c0a r579:d11bf7998905 r579:d11bf7998905 r579:d11bf7998905 r579:d11bf7998905 r57:c1acf0018c0a r579:d11bf7998905 r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r209:765619b7cbb2 r209:765619b7cbb2 r209:765619b7cbb2 r209:765619b7cbb2 r209:765619b7cbb2 r209:765619b7cbb2 r209:765619b7cbb2 r209:765619b7cbb2 r209:765619b7cbb2 r209:765619b7cbb2 r209:765619b7cbb2 r57:c1acf0018c0a r209:765619b7cbb2 r209:765619b7cbb2 r209:765619b7cbb2 r209:765619b7cbb2 r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r579:d11bf7998905 r209:765619b7cbb2 r579:d11bf7998905 r579:d11bf7998905 r579:d11bf7998905 r579:d11bf7998905 r579:d11bf7998905 r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r579:d11bf7998905 r579:d11bf7998905 r57:c1acf0018c0a r579:d11bf7998905 r579:d11bf7998905 r579:d11bf7998905 r579:d11bf7998905 r57:c1acf0018c0a r579:d11bf7998905 r579:d11bf7998905 r57:c1acf0018c0a r209:765619b7cbb2 r579:d11bf7998905 r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r579:d11bf7998905 r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r579:d11bf7998905 r579:d11bf7998905 r579:d11bf7998905 r57:c1acf0018c0a r579:d11bf7998905 r579:d11bf7998905 r57:c1acf0018c0a r57:c1acf0018c0a r579:d11bf7998905 r579:d11bf7998905 r57:c1acf0018c0a r579:d11bf7998905 r57:c1acf0018c0a r209:765619b7cbb2 r57:c1acf0018c0a r579:d11bf7998905 r579:d11bf7998905 r57:c1acf0018c0a r579:d11bf7998905 r57:c1acf0018c0a r209:765619b7cbb2 r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r579:d11bf7998905 r579:d11bf7998905 r579:d11bf7998905 r579:d11bf7998905 r579:d11bf7998905 r579:d11bf7998905 r579:d11bf7998905 r579:d11bf7998905 r579:d11bf7998905 r579:d11bf7998905 r579:d11bf7998905 r579:d11bf7998905 r579:d11bf7998905 r579:d11bf7998905 r579:d11bf7998905 r579:d11bf7998905 r579:d11bf7998905 r579:d11bf7998905 r579:d11bf7998905 r579:d11bf7998905 r579:d11bf7998905 r579:d11bf7998905 r579:d11bf7998905 r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r579:d11bf7998905 r57:c1acf0018c0a r579:d11bf7998905 r579:d11bf7998905 r579:d11bf7998905 r209:765619b7cbb2 r57:c1acf0018c0a r57:c1acf0018c0a r209:765619b7cbb2 r209:765619b7cbb2 r209:765619b7cbb2 r209:765619b7cbb2 r209:765619b7cbb2 r57:c1acf0018c0a r579:d11bf7998905 r209:765619b7cbb2 r209:765619b7cbb2 r209:765619b7cbb2 r57:c1acf0018c0a r209:765619b7cbb2 r209:765619b7cbb2 r57:c1acf0018c0a r579:d11bf7998905 r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r209:765619b7cbb2 r209:765619b7cbb2 r209:765619b7cbb2 r209:765619b7cbb2 r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r579:d11bf7998905 r209:765619b7cbb2 r579:d11bf7998905 r579:d11bf7998905 r579:d11bf7998905 r579:d11bf7998905 r559:c5fd2d996909 r559:c5fd2d996909 r57:c1acf0018c0a r57:c1acf0018c0a r559:c5fd2d996909 r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r579:d11bf7998905 r57:c1acf0018c0a r579:d11bf7998905 r579:d11bf7998905 r579:d11bf7998905 r579:d11bf7998905 r57:c1acf0018c0a r579:d11bf7998905 r579:d11bf7998905 r579:d11bf7998905 r579:d11bf7998905 r57:c1acf0018c0a r579:d11bf7998905 r57:c1acf0018c0a r579:d11bf7998905 r579:d11bf7998905 r57:c1acf0018c0a r579:d11bf7998905 r57:c1acf0018c0a r579:d11bf7998905 r579:d11bf7998905 r579:d11bf7998905 r579:d11bf7998905 r579:d11bf7998905 r579:d11bf7998905 r579:d11bf7998905 r57:c1acf0018c0a r579:d11bf7998905 r579:d11bf7998905 r579:d11bf7998905 r57:c1acf0018c0a r579:d11bf7998905 r579:d11bf7998905 r57:c1acf0018c0a r579:d11bf7998905 r579:d11bf7998905 r579:d11bf7998905 r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r209:765619b7cbb2 r209:765619b7cbb2 r209:765619b7cbb2 r209:765619b7cbb2 r209:765619b7cbb2 r209:765619b7cbb2 r209:765619b7cbb2 r209:765619b7cbb2 r209:765619b7cbb2 r209:765619b7cbb2 r57:c1acf0018c0a r209:765619b7cbb2 r209:765619b7cbb2 r209:765619b7cbb2 r209:765619b7cbb2 r209:765619b7cbb2 r57:c1acf0018c0a r209:765619b7cbb2 r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r579:d11bf7998905 r209:765619b7cbb2 r579:d11bf7998905 r579:d11bf7998905 r579:d11bf7998905 r579:d11bf7998905 r579:d11bf7998905 r559:c5fd2d996909 r559:c5fd2d996909 r57:c1acf0018c0a r57:c1acf0018c0a r559:c5fd2d996909 r57:c1acf0018c0a r57:c1acf0018c0a r559:c5fd2d996909 r57:c1acf0018c0a r579:d11bf7998905 r57:c1acf0018c0a r579:d11bf7998905 r579:d11bf7998905 r579:d11bf7998905 r579:d11bf7998905 r57:c1acf0018c0a r579:d11bf7998905 r579:d11bf7998905 r579:d11bf7998905 r579:d11bf7998905 r57:c1acf0018c0a r579:d11bf7998905 r579:d11bf7998905 r57:c1acf0018c0a r579:d11bf7998905 r579:d11bf7998905 r579:d11bf7998905 r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r209:765619b7cbb2 r209:765619b7cbb2 r209:765619b7cbb2 r209:765619b7cbb2 r209:765619b7cbb2 r209:765619b7cbb2 r209:765619b7cbb2 r209:765619b7cbb2 r209:765619b7cbb2 r57:c1acf0018c0a r209:765619b7cbb2 r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r579:d11bf7998905 r57:c1acf0018c0a r579:d11bf7998905 r579:d11bf7998905 r559:c5fd2d996909 r559:c5fd2d996909 r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r579:d11bf7998905 r579:d11bf7998905 r579:d11bf7998905 r579:d11bf7998905 r57:c1acf0018c0a r579:d11bf7998905 r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r579:d11bf7998905 r579:d11bf7998905 r579:d11bf7998905 r57:c1acf0018c0a r579:d11bf7998905 r579:d11bf7998905 r579:d11bf7998905 r579:d11bf7998905 r57:c1acf0018c0a r579:d11bf7998905 r579:d11bf7998905 r57:c1acf0018c0a r57:c1acf0018c0a r579:d11bf7998905 r579:d11bf7998905 r57:c1acf0018c0a r579:d11bf7998905 r579:d11bf7998905 r579:d11bf7998905 r579:d11bf7998905 r57:c1acf0018c0a r579:d11bf7998905 r579:d11bf7998905 r57:c1acf0018c0a r579:d11bf7998905 r57:c1acf0018c0a r209:765619b7cbb2 r579:d11bf7998905 r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r579:d11bf7998905 r57:c1acf0018c0a r209:765619b7cbb2 r579:d11bf7998905 r579:d11bf7998905 r579:d11bf7998905 r57:c1acf0018c0a r209:765619b7cbb2 r57:c1acf0018c0a r57:c1acf0018c0a r209:765619b7cbb2 r579:d11bf7998905 r209:765619b7cbb2 r209:765619b7cbb2 r579:d11bf7998905 r579:d11bf7998905 r57:c1acf0018c0a r209:765619b7cbb2 r209:765619b7cbb2 r209:765619b7cbb2 r57:c1acf0018c0a r559:c5fd2d996909 r209:765619b7cbb2 r209:765619b7cbb2 r579:d11bf7998905 r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r579:d11bf7998905 r579:d11bf7998905 r57:c1acf0018c0a r579:d11bf7998905 r579:d11bf7998905 r579:d11bf7998905 r579:d11bf7998905 r579:d11bf7998905 r579:d11bf7998905 r579:d11bf7998905 r559:c5fd2d996909 r559:c5fd2d996909 r559:c5fd2d996909 r559:c5fd2d996909 r559:c5fd2d996909 r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r579:d11bf7998905 r579:d11bf7998905 r579:d11bf7998905 r579:d11bf7998905 r57:c1acf0018c0a r579:d11bf7998905 r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r579:d11bf7998905 r579:d11bf7998905 r579:d11bf7998905 r579:d11bf7998905 r57:c1acf0018c0a r579:d11bf7998905 r579:d11bf7998905 r579:d11bf7998905 r579:d11bf7998905 r579:d11bf7998905 r57:c1acf0018c0a r579:d11bf7998905 r579:d11bf7998905 r57:c1acf0018c0a r57:c1acf0018c0a r579:d11bf7998905 r579:d11bf7998905 r57:c1acf0018c0a r579:d11bf7998905 r579:d11bf7998905 r579:d11bf7998905 r579:d11bf7998905 r57:c1acf0018c0a r579:d11bf7998905 r579:d11bf7998905 r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r579:d11bf7998905 r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r579:d11bf7998905 r579:d11bf7998905 r579:d11bf7998905 r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r209:765619b7cbb2 r559:c5fd2d996909 r209:765619b7cbb2 r209:765619b7cbb2 r579:d11bf7998905 r579:d11bf7998905 r57:c1acf0018c0a r209:765619b7cbb2 r209:765619b7cbb2 r209:765619b7cbb2 r559:c5fd2d996909 r209:765619b7cbb2 r209:765619b7cbb2 r579:d11bf7998905 r579:d11bf7998905 r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r579:d11bf7998905 r57:c1acf0018c0a r579:d11bf7998905 r579:d11bf7998905 r579:d11bf7998905 r57:c1acf0018c0a r559:c5fd2d996909 r559:c5fd2d996909 r57:c1acf0018c0a r57:c1acf0018c0a r209:765619b7cbb2 r559:c5fd2d996909 r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r209:765619b7cbb2 r579:d11bf7998905 r57:c1acf0018c0a r209:765619b7cbb2 r57:c1acf0018c0a r579:d11bf7998905 r209:765619b7cbb2 r579:d11bf7998905 r57:c1acf0018c0a r57:c1acf0018c0a r579:d11bf7998905 r57:c1acf0018c0a r579:d11bf7998905 r57:c1acf0018c0a r57:c1acf0018c0a r579:d11bf7998905 r57:c1acf0018c0a r579:d11bf7998905 r57:c1acf0018c0a r57:c1acf0018c0a r579:d11bf7998905 r57:c1acf0018c0a r579:d11bf7998905 r57:c1acf0018c0a r57:c1acf0018c0a r579:d11bf7998905 r57:c1acf0018c0a r579:d11bf7998905 r579:d11bf7998905 r57:c1acf0018c0a r57:c1acf0018c0a r579:d11bf7998905 r57:c1acf0018c0a r579:d11bf7998905 r579:d11bf7998905 r57:c1acf0018c0a r57:c1acf0018c0a r579:d11bf7998905 r579:d11bf7998905 r579:d11bf7998905 r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r579:d11bf7998905 r57:c1acf0018c0a r579:d11bf7998905 r579:d11bf7998905 r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r209:765619b7cbb2 r579:d11bf7998905 r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r579:d11bf7998905 r57:c1acf0018c0a r579:d11bf7998905 r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r579:d11bf7998905 r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r579:d11bf7998905 r579:d11bf7998905 r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r579:d11bf7998905 r579:d11bf7998905 r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r579:d11bf7998905 r579:d11bf7998905 r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r579:d11bf7998905 r579:d11bf7998905 r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r209:765619b7cbb2 r57:c1acf0018c0a r209:765619b7cbb2 r209:765619b7cbb2 r57:c1acf0018c0a r57:c1acf0018c0a r209:765619b7cbb2 r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r209:765619b7cbb2 r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r209:765619b7cbb2 r57:c1acf0018c0a r209:765619b7cbb2 r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r579:d11bf7998905 r579:d11bf7998905 r579:d11bf7998905 r579:d11bf7998905 r579:d11bf7998905 r579:d11bf7998905 r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r209:765619b7cbb2 r209:765619b7cbb2 r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r579:d11bf7998905 r57:c1acf0018c0a r579:d11bf7998905 r579:d11bf7998905 r579:d11bf7998905 r57:c1acf0018c0a r559:c5fd2d996909 r559:c5fd2d996909 r57:c1acf0018c0a r57:c1acf0018c0a r559:c5fd2d996909 r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r209:765619b7cbb2 r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r209:765619b7cbb2 r579:d11bf7998905 r579:d11bf7998905 r209:765619b7cbb2 r57:c1acf0018c0a r559:c5fd2d996909 r559:c5fd2d996909 r57:c1acf0018c0a r579:d11bf7998905 r57:c1acf0018c0a r579:d11bf7998905 r57:c1acf0018c0a r57:c1acf0018c0a r579:d11bf7998905 r57:c1acf0018c0a r579:d11bf7998905 r57:c1acf0018c0a r57:c1acf0018c0a r579:d11bf7998905 r579:d11bf7998905 r579:d11bf7998905 r579:d11bf7998905 r579:d11bf7998905 r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r579:d11bf7998905 r579:d11bf7998905 r57:c1acf0018c0a r57:c1acf0018c0a r559:c5fd2d996909 r559:c5fd2d996909 r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r209:765619b7cbb2 r579:d11bf7998905 r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r579:d11bf7998905 r57:c1acf0018c0a r579:d11bf7998905 r57:c1acf0018c0a r579:d11bf7998905 r579:d11bf7998905 r57:c1acf0018c0a r57:c1acf0018c0a r579:d11bf7998905 r57:c1acf0018c0a r579:d11bf7998905 r579:d11bf7998905 r57:c1acf0018c0a r57:c1acf0018c0a r579:d11bf7998905 r78:c46b3453455f r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r579:d11bf7998905 r78:c46b3453455f r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r209:765619b7cbb2 r57:c1acf0018c0a r209:765619b7cbb2 r209:765619b7cbb2 r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r209:765619b7cbb2 r209:765619b7cbb2 r209:765619b7cbb2 r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r209:765619b7cbb2 r579:d11bf7998905 r209:765619b7cbb2 r57:c1acf0018c0a r579:d11bf7998905 r579:d11bf7998905 r579:d11bf7998905 r57:c1acf0018c0a r57:c1acf0018c0a r209:765619b7cbb2 r209:765619b7cbb2 r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r579:d11bf7998905 r209:765619b7cbb2 r579:d11bf7998905 r579:d11bf7998905 r579:d11bf7998905 r57:c1acf0018c0a r57:c1acf0018c0a r579:d11bf7998905 r57:c1acf0018c0a r559:c5fd2d996909 r559:c5fd2d996909 r57:c1acf0018c0a r57:c1acf0018c0a r559:c5fd2d996909 r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r579:d11bf7998905 r209:765619b7cbb2 r57:c1acf0018c0a r579:d11bf7998905 r209:765619b7cbb2 r57:c1acf0018c0a r209:765619b7cbb2 r579:d11bf7998905 r57:c1acf0018c0a r579:d11bf7998905 r57:c1acf0018c0a r579:d11bf7998905 r57:c1acf0018c0a r209:765619b7cbb2 r579:d11bf7998905 r57:c1acf0018c0a r579:d11bf7998905 r57:c1acf0018c0a r209:765619b7cbb2 r57:c1acf0018c0a r57:c1acf0018c0a r209:765619b7cbb2 r57:c1acf0018c0a r209:765619b7cbb2 r209:765619b7cbb2 r209:765619b7cbb2 r57:c1acf0018c0a r57:c1acf0018c0a r209:765619b7cbb2 r57:c1acf0018c0a r209:765619b7cbb2 r57:c1acf0018c0a r57:c1acf0018c0a r209:765619b7cbb2 r209:765619b7cbb2 r209:765619b7cbb2 r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r579:d11bf7998905 r209:765619b7cbb2 r579:d11bf7998905 r579:d11bf7998905 r579:d11bf7998905 r579:d11bf7998905 r57:c1acf0018c0a r579:d11bf7998905 r57:c1acf0018c0a r559:c5fd2d996909 r559:c5fd2d996909 r57:c1acf0018c0a r57:c1acf0018c0a r559:c5fd2d996909 r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r579:d11bf7998905 r209:765619b7cbb2 r57:c1acf0018c0a r209:765619b7cbb2 r579:d11bf7998905 r57:c1acf0018c0a r579:d11bf7998905 r57:c1acf0018c0a r209:765619b7cbb2 r57:c1acf0018c0a r57:c1acf0018c0a r209:765619b7cbb2 r57:c1acf0018c0a r209:765619b7cbb2 r579:d11bf7998905 r209:765619b7cbb2 r57:c1acf0018c0a r57:c1acf0018c0a r209:765619b7cbb2 r209:765619b7cbb2 r209:765619b7cbb2 r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r579:d11bf7998905 r209:765619b7cbb2 r579:d11bf7998905 r579:d11bf7998905 r579:d11bf7998905 r580:2313edd0db0b r559:c5fd2d996909 r580:2313edd0db0b r57:c1acf0018c0a r57:c1acf0018c0a r559:c5fd2d996909 r57:c1acf0018c0a r57:c1acf0018c0a r559:c5fd2d996909 r57:c1acf0018c0a r559:c5fd2d996909 r57:c1acf0018c0a r559:c5fd2d996909 r580:2313edd0db0b r580:2313edd0db0b r580:2313edd0db0b r580:2313edd0db0b r580:2313edd0db0b r580:2313edd0db0b r580:2313edd0db0b r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r579:d11bf7998905 r57:c1acf0018c0a r263:be8a861d3bb7 r263:be8a861d3bb7 r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r209:765619b7cbb2 r579:d11bf7998905 r57:c1acf0018c0a r579:d11bf7998905 r57:c1acf0018c0a r209:765619b7cbb2 r57:c1acf0018c0a r209:765619b7cbb2 r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r263:be8a861d3bb7 r57:c1acf0018c0a r57:c1acf0018c0a r209:765619b7cbb2 r580:2313edd0db0b r580:2313edd0db0b r579:d11bf7998905 r579:d11bf7998905 r579:d11bf7998905 r579:d11bf7998905 r579:d11bf7998905 r209:765619b7cbb2 r579:d11bf7998905 r263:be8a861d3bb7 r579:d11bf7998905 r57:c1acf0018c0a r579:d11bf7998905 r579:d11bf7998905 r579:d11bf7998905 r209:765619b7cbb2 r57:c1acf0018c0a r579:d11bf7998905 r209:765619b7cbb2 r209:765619b7cbb2 r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r579:d11bf7998905 r57:c1acf0018c0a r579:d11bf7998905 r579:d11bf7998905 r579:d11bf7998905 r57:c1acf0018c0a r559:c5fd2d996909 r559:c5fd2d996909 r57:c1acf0018c0a r57:c1acf0018c0a r559:c5fd2d996909 r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r579:d11bf7998905 r57:c1acf0018c0a r579:d11bf7998905 r580:2313edd0db0b r559:c5fd2d996909 r579:d11bf7998905 r57:c1acf0018c0a r559:c5fd2d996909 r57:c1acf0018c0a r209:765619b7cbb2 r209:765619b7cbb2 r209:765619b7cbb2 r209:765619b7cbb2 r57:c1acf0018c0a r57:c1acf0018c0a r209:765619b7cbb2 r209:765619b7cbb2 r579:d11bf7998905 r559:c5fd2d996909 r57:c1acf0018c0a r57:c1acf0018c0a r263:be8a861d3bb7 r209:765619b7cbb2 r209:765619b7cbb2 r209:765619b7cbb2 r209:765619b7cbb2 r57:c1acf0018c0a r579:d11bf7998905 r209:765619b7cbb2 r579:d11bf7998905 r57:c1acf0018c0a r209:765619b7cbb2 r559:c5fd2d996909 r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r579:d11bf7998905 r57:c1acf0018c0a r579:d11bf7998905 r580:2313edd0db0b r559:c5fd2d996909 r579:d11bf7998905 r57:c1acf0018c0a r559:c5fd2d996909 r57:c1acf0018c0a r209:765619b7cbb2 r209:765619b7cbb2 r209:765619b7cbb2 r209:765619b7cbb2 r57:c1acf0018c0a r57:c1acf0018c0a r209:765619b7cbb2 r209:765619b7cbb2 r579:d11bf7998905 r559:c5fd2d996909 r57:c1acf0018c0a r57:c1acf0018c0a r263:be8a861d3bb7 r209:765619b7cbb2 r209:765619b7cbb2 r209:765619b7cbb2 r209:765619b7cbb2 r57:c1acf0018c0a r579:d11bf7998905 r209:765619b7cbb2 r579:d11bf7998905 r57:c1acf0018c0a r209:765619b7cbb2 r559:c5fd2d996909 r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r209:765619b7cbb2 r209:765619b7cbb2 r209:765619b7cbb2 r209:765619b7cbb2 r209:765619b7cbb2 r57:c1acf0018c0a r209:765619b7cbb2 r209:765619b7cbb2 r209:765619b7cbb2 r209:765619b7cbb2 r209:765619b7cbb2 r209:765619b7cbb2 r209:765619b7cbb2 r209:765619b7cbb2 r209:765619b7cbb2 r209:765619b7cbb2 r209:765619b7cbb2 r209:765619b7cbb2 r209:765619b7cbb2 r209:765619b7cbb2 r209:765619b7cbb2 r57:c1acf0018c0a r209:765619b7cbb2 r209:765619b7cbb2 r209:765619b7cbb2 r209:765619b7cbb2 r209:765619b7cbb2 r209:765619b7cbb2 r209:765619b7cbb2 r209:765619b7cbb2 r209:765619b7cbb2 r209:765619b7cbb2 r209:765619b7cbb2 r209:765619b7cbb2 r209:765619b7cbb2 r209:765619b7cbb2 r57:c1acf0018c0a r579:d11bf7998905 r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r579:d11bf7998905 r57:c1acf0018c0a r579:d11bf7998905 r579:d11bf7998905 r579:d11bf7998905 r57:c1acf0018c0a r559:c5fd2d996909 r559:c5fd2d996909 r57:c1acf0018c0a r57:c1acf0018c0a r559:c5fd2d996909 r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r579:d11bf7998905 r57:c1acf0018c0a r579:d11bf7998905 r580:2313edd0db0b r559:c5fd2d996909 r579:d11bf7998905 r57:c1acf0018c0a r559:c5fd2d996909 r57:c1acf0018c0a r209:765619b7cbb2 r209:765619b7cbb2 r209:765619b7cbb2 r209:765619b7cbb2 r57:c1acf0018c0a r57:c1acf0018c0a r209:765619b7cbb2 r209:765619b7cbb2 r579:d11bf7998905 r559:c5fd2d996909 r57:c1acf0018c0a r57:c1acf0018c0a r263:be8a861d3bb7 r209:765619b7cbb2 r209:765619b7cbb2 r209:765619b7cbb2 r209:765619b7cbb2 r57:c1acf0018c0a r579:d11bf7998905 r209:765619b7cbb2 r579:d11bf7998905 r57:c1acf0018c0a r209:765619b7cbb2 r559:c5fd2d996909 r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r209:765619b7cbb2 r209:765619b7cbb2 r209:765619b7cbb2 r209:765619b7cbb2 r209:765619b7cbb2 r57:c1acf0018c0a r209:765619b7cbb2 r579:d11bf7998905 r57:c1acf0018c0a r209:765619b7cbb2 r209:765619b7cbb2 r209:765619b7cbb2 r209:765619b7cbb2 r209:765619b7cbb2 r209:765619b7cbb2 r209:765619b7cbb2 r209:765619b7cbb2 r209:765619b7cbb2 r209:765619b7cbb2 r209:765619b7cbb2 r209:765619b7cbb2 r209:765619b7cbb2 r209:765619b7cbb2 r57:c1acf0018c0a r579:d11bf7998905 r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r579:d11bf7998905 r57:c1acf0018c0a r579:d11bf7998905 r579:d11bf7998905 r579:d11bf7998905 r579:d11bf7998905 r559:c5fd2d996909 r559:c5fd2d996909 r57:c1acf0018c0a r559:c5fd2d996909 r57:c1acf0018c0a r559:c5fd2d996909 r559:c5fd2d996909 r57:c1acf0018c0a r579:d11bf7998905 r57:c1acf0018c0a r579:d11bf7998905 r57:c1acf0018c0a r209:765619b7cbb2 r57:c1acf0018c0a r209:765619b7cbb2 r579:d11bf7998905 r57:c1acf0018c0a r579:d11bf7998905 r579:d11bf7998905 r57:c1acf0018c0a r209:765619b7cbb2 r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r209:765619b7cbb2 r57:c1acf0018c0a r209:765619b7cbb2 r209:765619b7cbb2 r209:765619b7cbb2 r209:765619b7cbb2 r209:765619b7cbb2 r209:765619b7cbb2 r57:c1acf0018c0a r209:765619b7cbb2 r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r579:d11bf7998905 r57:c1acf0018c0a r579:d11bf7998905 r579:d11bf7998905 r579:d11bf7998905 r579:d11bf7998905 r559:c5fd2d996909 r559:c5fd2d996909 r57:c1acf0018c0a r57:c1acf0018c0a r559:c5fd2d996909 r559:c5fd2d996909 r559:c5fd2d996909 r57:c1acf0018c0a r579:d11bf7998905 r57:c1acf0018c0a r579:d11bf7998905 r57:c1acf0018c0a r209:765619b7cbb2 r57:c1acf0018c0a r209:765619b7cbb2 r579:d11bf7998905 r57:c1acf0018c0a r579:d11bf7998905 r579:d11bf7998905 r579:d11bf7998905 r209:765619b7cbb2 r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r209:765619b7cbb2 r209:765619b7cbb2 r209:765619b7cbb2 r209:765619b7cbb2 r209:765619b7cbb2 r209:765619b7cbb2 r209:765619b7cbb2 r209:765619b7cbb2 r57:c1acf0018c0a r209:765619b7cbb2 r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r579:d11bf7998905 r209:765619b7cbb2 r579:d11bf7998905 r579:d11bf7998905 r579:d11bf7998905 r579:d11bf7998905 r559:c5fd2d996909 r559:c5fd2d996909 r57:c1acf0018c0a r57:c1acf0018c0a r559:c5fd2d996909 r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r579:d11bf7998905 r579:d11bf7998905 r209:765619b7cbb2 r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r579:d11bf7998905 r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r209:765619b7cbb2 r57:c1acf0018c0a r579:d11bf7998905 r209:765619b7cbb2 r579:d11bf7998905 r209:765619b7cbb2 r209:765619b7cbb2 r57:c1acf0018c0a r209:765619b7cbb2 r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r579:d11bf7998905 r209:765619b7cbb2 r579:d11bf7998905 r579:d11bf7998905 r579:d11bf7998905 r579:d11bf7998905 r559:c5fd2d996909 r559:c5fd2d996909 r57:c1acf0018c0a r57:c1acf0018c0a r559:c5fd2d996909 r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r579:d11bf7998905 r579:d11bf7998905 r209:765619b7cbb2 r57:c1acf0018c0a r579:d11bf7998905 r57:c1acf0018c0a r579:d11bf7998905 r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r209:765619b7cbb2 r57:c1acf0018c0a r579:d11bf7998905 r209:765619b7cbb2 r579:d11bf7998905 r209:765619b7cbb2 r209:765619b7cbb2 r57:c1acf0018c0a r209:765619b7cbb2 r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r579:d11bf7998905 r57:c1acf0018c0a r579:d11bf7998905 r579:d11bf7998905 r579:d11bf7998905 r579:d11bf7998905 r559:c5fd2d996909 r559:c5fd2d996909 r57:c1acf0018c0a r57:c1acf0018c0a r559:c5fd2d996909 r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r579:d11bf7998905 r209:765619b7cbb2 r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r209:765619b7cbb2 r57:c1acf0018c0a r209:765619b7cbb2 r209:765619b7cbb2 r57:c1acf0018c0a r579:d11bf7998905 r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r579:d11bf7998905 r57:c1acf0018c0a r579:d11bf7998905 r579:d11bf7998905 r579:d11bf7998905 r579:d11bf7998905 r559:c5fd2d996909 r559:c5fd2d996909 r57:c1acf0018c0a r57:c1acf0018c0a r559:c5fd2d996909 r57:c1acf0018c0a r579:d11bf7998905 r579:d11bf7998905 r579:d11bf7998905 r579:d11bf7998905 r579:d11bf7998905 r57:c1acf0018c0a r57:c1acf0018c0a r209:765619b7cbb2 r579:d11bf7998905 r579:d11bf7998905 r209:765619b7cbb2 r57:c1acf0018c0a r579:d11bf7998905 r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a | /* -*- mode: C++; indent-tabs-mode: nil; -*-
*
* This file is a part of LEMON, a generic C++ optimization library.
*
* Copyright (C) 2003-2009
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
* (Egervary Research Group on Combinatorial Optimization, EGRES).
*
* Permission to use, modify and distribute this software is granted
* provided that this copyright notice appears in all copies. For
* precise terms see the accompanying LICENSE file.
*
* This software is provided "AS IS" with no warranty of any kind,
* express or implied, and with no claim as to its suitability for any
* purpose.
*
*/
///\ingroup graph_concepts
///\file
///\brief The concept of graph components.
#ifndef LEMON_CONCEPTS_GRAPH_COMPONENTS_H
#define LEMON_CONCEPTS_GRAPH_COMPONENTS_H
#include <lemon/core.h>
#include <lemon/concepts/maps.h>
#include <lemon/bits/alteration_notifier.h>
namespace lemon {
namespace concepts {
/// \brief Concept class for \c Node, \c Arc and \c Edge types.
///
/// This class describes the concept of \c Node, \c Arc and \c Edge
/// subtypes of digraph and graph types.
///
/// \note This class is a template class so that we can use it to
/// create graph skeleton classes. The reason for this is that \c Node
/// and \c Arc (or \c Edge) types should \e not derive from the same
/// base class. For \c Node you should instantiate it with character
/// \c 'n', for \c Arc with \c 'a' and for \c Edge with \c 'e'.
#ifndef DOXYGEN
template <char sel = '0'>
#endif
class GraphItem {
public:
/// \brief Default constructor.
///
/// Default constructor.
/// \warning The default constructor is not required to set
/// the item to some well-defined value. So you should consider it
/// as uninitialized.
GraphItem() {}
/// \brief Copy constructor.
///
/// Copy constructor.
GraphItem(const GraphItem &) {}
/// \brief Constructor for conversion from \c INVALID.
///
/// Constructor for conversion from \c INVALID.
/// It initializes the item to be invalid.
/// \sa Invalid for more details.
GraphItem(Invalid) {}
/// \brief Assignment operator.
///
/// Assignment operator for the item.
GraphItem& operator=(const GraphItem&) { return *this; }
/// \brief Equality operator.
///
/// Equality operator.
bool operator==(const GraphItem&) const { return false; }
/// \brief Inequality operator.
///
/// Inequality operator.
bool operator!=(const GraphItem&) const { return false; }
/// \brief Ordering operator.
///
/// This operator defines an ordering of the items.
/// It makes possible to use graph item types as key types in
/// associative containers (e.g. \c std::map).
///
/// \note This operator only have to define some strict ordering of
/// the items; this order has nothing to do with the iteration
/// ordering of the items.
bool operator<(const GraphItem&) const { return false; }
template<typename _GraphItem>
struct Constraints {
void constraints() {
_GraphItem i1;
_GraphItem i2 = i1;
_GraphItem i3 = INVALID;
i1 = i2 = i3;
bool b;
b = (ia == ib) && (ia != ib);
b = (ia == INVALID) && (ib != INVALID);
b = (ia < ib);
}
const _GraphItem &ia;
const _GraphItem &ib;
};
};
/// \brief Base skeleton class for directed graphs.
///
/// This class describes the base interface of directed graph types.
/// All digraph %concepts have to conform to this class.
/// It just provides types for nodes and arcs and functions
/// to get the source and the target nodes of arcs.
class BaseDigraphComponent {
public:
typedef BaseDigraphComponent Digraph;
/// \brief Node class of the digraph.
///
/// This class represents the nodes of the digraph.
typedef GraphItem<'n'> Node;
/// \brief Arc class of the digraph.
///
/// This class represents the arcs of the digraph.
typedef GraphItem<'a'> Arc;
/// \brief Return the source node of an arc.
///
/// This function returns the source node of an arc.
Node source(const Arc&) const { return INVALID; }
/// \brief Return the target node of an arc.
///
/// This function returns the target node of an arc.
Node target(const Arc&) const { return INVALID; }
/// \brief Return the opposite node on the given arc.
///
/// This function returns the opposite node on the given arc.
Node oppositeNode(const Node&, const Arc&) const {
return INVALID;
}
template <typename _Digraph>
struct Constraints {
typedef typename _Digraph::Node Node;
typedef typename _Digraph::Arc Arc;
void constraints() {
checkConcept<GraphItem<'n'>, Node>();
checkConcept<GraphItem<'a'>, Arc>();
{
Node n;
Arc e(INVALID);
n = digraph.source(e);
n = digraph.target(e);
n = digraph.oppositeNode(n, e);
}
}
const _Digraph& digraph;
};
};
/// \brief Base skeleton class for undirected graphs.
///
/// This class describes the base interface of undirected graph types.
/// All graph %concepts have to conform to this class.
/// It extends the interface of \ref BaseDigraphComponent with an
/// \c Edge type and functions to get the end nodes of edges,
/// to convert from arcs to edges and to get both direction of edges.
class BaseGraphComponent : public BaseDigraphComponent {
public:
typedef BaseDigraphComponent::Node Node;
typedef BaseDigraphComponent::Arc Arc;
/// \brief Undirected edge class of the graph.
///
/// This class represents the undirected edges of the graph.
/// Undirected graphs can be used as directed graphs, each edge is
/// represented by two opposite directed arcs.
class Edge : public GraphItem<'e'> {
public:
typedef GraphItem<'e'> Parent;
/// \brief Default constructor.
///
/// Default constructor.
/// \warning The default constructor is not required to set
/// the item to some well-defined value. So you should consider it
/// as uninitialized.
Edge() {}
/// \brief Copy constructor.
///
/// Copy constructor.
Edge(const Edge &) : Parent() {}
/// \brief Constructor for conversion from \c INVALID.
///
/// Constructor for conversion from \c INVALID.
/// It initializes the item to be invalid.
/// \sa Invalid for more details.
Edge(Invalid) {}
/// \brief Constructor for conversion from an arc.
///
/// Constructor for conversion from an arc.
/// Besides the core graph item functionality each arc should
/// be convertible to the represented edge.
Edge(const Arc&) {}
/// \brief Assign an arc to an edge.
///
/// This function assigns an arc to an edge.
/// Besides the core graph item functionality each arc should
/// be convertible to the represented edge.
Edge& operator=(const Arc&) { return *this; }
};
/// \brief Return one end node of an edge.
///
/// This function returns one end node of an edge.
Node u(const Edge&) const { return INVALID; }
/// \brief Return the other end node of an edge.
///
/// This function returns the other end node of an edge.
Node v(const Edge&) const { return INVALID; }
/// \brief Return a directed arc related to an edge.
///
/// This function returns a directed arc from its direction and the
/// represented edge.
Arc direct(const Edge&, bool) const { return INVALID; }
/// \brief Return a directed arc related to an edge.
///
/// This function returns a directed arc from its source node and the
/// represented edge.
Arc direct(const Edge&, const Node&) const { return INVALID; }
/// \brief Return the direction of the arc.
///
/// Returns the direction of the arc. Each arc represents an
/// edge with a direction. It gives back the
/// direction.
bool direction(const Arc&) const { return true; }
/// \brief Return the opposite arc.
///
/// This function returns the opposite arc, i.e. the arc representing
/// the same edge and has opposite direction.
Arc oppositeArc(const Arc&) const { return INVALID; }
template <typename _Graph>
struct Constraints {
typedef typename _Graph::Node Node;
typedef typename _Graph::Arc Arc;
typedef typename _Graph::Edge Edge;
void constraints() {
checkConcept<BaseDigraphComponent, _Graph>();
checkConcept<GraphItem<'e'>, Edge>();
{
Node n;
Edge ue(INVALID);
Arc e;
n = graph.u(ue);
n = graph.v(ue);
e = graph.direct(ue, true);
e = graph.direct(ue, false);
e = graph.direct(ue, n);
e = graph.oppositeArc(e);
ue = e;
bool d = graph.direction(e);
ignore_unused_variable_warning(d);
}
}
const _Graph& graph;
};
};
/// \brief Skeleton class for \e idable directed graphs.
///
/// This class describes the interface of \e idable directed graphs.
/// It extends \ref BaseDigraphComponent with the core ID functions.
/// The ids of the items must be unique and immutable.
/// This concept is part of the Digraph concept.
template <typename BAS = BaseDigraphComponent>
class IDableDigraphComponent : public BAS {
public:
typedef BAS Base;
typedef typename Base::Node Node;
typedef typename Base::Arc Arc;
/// \brief Return a unique integer id for the given node.
///
/// This function returns a unique integer id for the given node.
int id(const Node&) const { return -1; }
/// \brief Return the node by its unique id.
///
/// This function returns the node by its unique id.
/// If the digraph does not contain a node with the given id,
/// then the result of the function is undefined.
Node nodeFromId(int) const { return INVALID; }
/// \brief Return a unique integer id for the given arc.
///
/// This function returns a unique integer id for the given arc.
int id(const Arc&) const { return -1; }
/// \brief Return the arc by its unique id.
///
/// This function returns the arc by its unique id.
/// If the digraph does not contain an arc with the given id,
/// then the result of the function is undefined.
Arc arcFromId(int) const { return INVALID; }
/// \brief Return an integer greater or equal to the maximum
/// node id.
///
/// This function returns an integer greater or equal to the
/// maximum node id.
int maxNodeId() const { return -1; }
/// \brief Return an integer greater or equal to the maximum
/// arc id.
///
/// This function returns an integer greater or equal to the
/// maximum arc id.
int maxArcId() const { return -1; }
template <typename _Digraph>
struct Constraints {
void constraints() {
checkConcept<Base, _Digraph >();
typename _Digraph::Node node;
int nid = digraph.id(node);
nid = digraph.id(node);
node = digraph.nodeFromId(nid);
typename _Digraph::Arc arc;
int eid = digraph.id(arc);
eid = digraph.id(arc);
arc = digraph.arcFromId(eid);
nid = digraph.maxNodeId();
ignore_unused_variable_warning(nid);
eid = digraph.maxArcId();
ignore_unused_variable_warning(eid);
}
const _Digraph& digraph;
};
};
/// \brief Skeleton class for \e idable undirected graphs.
///
/// This class describes the interface of \e idable undirected
/// graphs. It extends \ref IDableDigraphComponent with the core ID
/// functions of undirected graphs.
/// The ids of the items must be unique and immutable.
/// This concept is part of the Graph concept.
template <typename BAS = BaseGraphComponent>
class IDableGraphComponent : public IDableDigraphComponent<BAS> {
public:
typedef BAS Base;
typedef typename Base::Edge Edge;
using IDableDigraphComponent<Base>::id;
/// \brief Return a unique integer id for the given edge.
///
/// This function returns a unique integer id for the given edge.
int id(const Edge&) const { return -1; }
/// \brief Return the edge by its unique id.
///
/// This function returns the edge by its unique id.
/// If the graph does not contain an edge with the given id,
/// then the result of the function is undefined.
Edge edgeFromId(int) const { return INVALID; }
/// \brief Return an integer greater or equal to the maximum
/// edge id.
///
/// This function returns an integer greater or equal to the
/// maximum edge id.
int maxEdgeId() const { return -1; }
template <typename _Graph>
struct Constraints {
void constraints() {
checkConcept<IDableDigraphComponent<Base>, _Graph >();
typename _Graph::Edge edge;
int ueid = graph.id(edge);
ueid = graph.id(edge);
edge = graph.edgeFromId(ueid);
ueid = graph.maxEdgeId();
ignore_unused_variable_warning(ueid);
}
const _Graph& graph;
};
};
/// \brief Concept class for \c NodeIt, \c ArcIt and \c EdgeIt types.
///
/// This class describes the concept of \c NodeIt, \c ArcIt and
/// \c EdgeIt subtypes of digraph and graph types.
template <typename GR, typename Item>
class GraphItemIt : public Item {
public:
/// \brief Default constructor.
///
/// Default constructor.
/// \warning The default constructor is not required to set
/// the iterator to some well-defined value. So you should consider it
/// as uninitialized.
GraphItemIt() {}
/// \brief Copy constructor.
///
/// Copy constructor.
GraphItemIt(const GraphItemIt& it) : Item(it) {}
/// \brief Constructor that sets the iterator to the first item.
///
/// Constructor that sets the iterator to the first item.
explicit GraphItemIt(const GR&) {}
/// \brief Constructor for conversion from \c INVALID.
///
/// Constructor for conversion from \c INVALID.
/// It initializes the iterator to be invalid.
/// \sa Invalid for more details.
GraphItemIt(Invalid) {}
/// \brief Assignment operator.
///
/// Assignment operator for the iterator.
GraphItemIt& operator=(const GraphItemIt&) { return *this; }
/// \brief Increment the iterator.
///
/// This operator increments the iterator, i.e. assigns it to the
/// next item.
GraphItemIt& operator++() { return *this; }
/// \brief Equality operator
///
/// Equality operator.
/// Two iterators are equal if and only if they point to the
/// same object or both are invalid.
bool operator==(const GraphItemIt&) const { return true;}
/// \brief Inequality operator
///
/// Inequality operator.
/// Two iterators are equal if and only if they point to the
/// same object or both are invalid.
bool operator!=(const GraphItemIt&) const { return true;}
template<typename _GraphItemIt>
struct Constraints {
void constraints() {
checkConcept<GraphItem<>, _GraphItemIt>();
_GraphItemIt it1(g);
_GraphItemIt it2;
_GraphItemIt it3 = it1;
_GraphItemIt it4 = INVALID;
it2 = ++it1;
++it2 = it1;
++(++it1);
Item bi = it1;
bi = it2;
}
const GR& g;
};
};
/// \brief Concept class for \c InArcIt, \c OutArcIt and
/// \c IncEdgeIt types.
///
/// This class describes the concept of \c InArcIt, \c OutArcIt
/// and \c IncEdgeIt subtypes of digraph and graph types.
///
/// \note Since these iterator classes do not inherit from the same
/// base class, there is an additional template parameter (selector)
/// \c sel. For \c InArcIt you should instantiate it with character
/// \c 'i', for \c OutArcIt with \c 'o' and for \c IncEdgeIt with \c 'e'.
template <typename GR,
typename Item = typename GR::Arc,
typename Base = typename GR::Node,
char sel = '0'>
class GraphIncIt : public Item {
public:
/// \brief Default constructor.
///
/// Default constructor.
/// \warning The default constructor is not required to set
/// the iterator to some well-defined value. So you should consider it
/// as uninitialized.
GraphIncIt() {}
/// \brief Copy constructor.
///
/// Copy constructor.
GraphIncIt(const GraphIncIt& it) : Item(it) {}
/// \brief Constructor that sets the iterator to the first
/// incoming or outgoing arc.
///
/// Constructor that sets the iterator to the first arc
/// incoming to or outgoing from the given node.
explicit GraphIncIt(const GR&, const Base&) {}
/// \brief Constructor for conversion from \c INVALID.
///
/// Constructor for conversion from \c INVALID.
/// It initializes the iterator to be invalid.
/// \sa Invalid for more details.
GraphIncIt(Invalid) {}
/// \brief Assignment operator.
///
/// Assignment operator for the iterator.
GraphIncIt& operator=(const GraphIncIt&) { return *this; }
/// \brief Increment the iterator.
///
/// This operator increments the iterator, i.e. assigns it to the
/// next arc incoming to or outgoing from the given node.
GraphIncIt& operator++() { return *this; }
/// \brief Equality operator
///
/// Equality operator.
/// Two iterators are equal if and only if they point to the
/// same object or both are invalid.
bool operator==(const GraphIncIt&) const { return true;}
/// \brief Inequality operator
///
/// Inequality operator.
/// Two iterators are equal if and only if they point to the
/// same object or both are invalid.
bool operator!=(const GraphIncIt&) const { return true;}
template <typename _GraphIncIt>
struct Constraints {
void constraints() {
checkConcept<GraphItem<sel>, _GraphIncIt>();
_GraphIncIt it1(graph, node);
_GraphIncIt it2;
_GraphIncIt it3 = it1;
_GraphIncIt it4 = INVALID;
it2 = ++it1;
++it2 = it1;
++(++it1);
Item e = it1;
e = it2;
}
const Base& node;
const GR& graph;
};
};
/// \brief Skeleton class for iterable directed graphs.
///
/// This class describes the interface of iterable directed
/// graphs. It extends \ref BaseDigraphComponent with the core
/// iterable interface.
/// This concept is part of the Digraph concept.
template <typename BAS = BaseDigraphComponent>
class IterableDigraphComponent : public BAS {
public:
typedef BAS Base;
typedef typename Base::Node Node;
typedef typename Base::Arc Arc;
typedef IterableDigraphComponent Digraph;
/// \name Base iteration
///
/// This interface provides functions for iteration on digraph items.
///
/// @{
/// \brief Return the first node.
///
/// This function gives back the first node in the iteration order.
void first(Node&) const {}
/// \brief Return the next node.
///
/// This function gives back the next node in the iteration order.
void next(Node&) const {}
/// \brief Return the first arc.
///
/// This function gives back the first arc in the iteration order.
void first(Arc&) const {}
/// \brief Return the next arc.
///
/// This function gives back the next arc in the iteration order.
void next(Arc&) const {}
/// \brief Return the first arc incomming to the given node.
///
/// This function gives back the first arc incomming to the
/// given node.
void firstIn(Arc&, const Node&) const {}
/// \brief Return the next arc incomming to the given node.
///
/// This function gives back the next arc incomming to the
/// given node.
void nextIn(Arc&) const {}
/// \brief Return the first arc outgoing form the given node.
///
/// This function gives back the first arc outgoing form the
/// given node.
void firstOut(Arc&, const Node&) const {}
/// \brief Return the next arc outgoing form the given node.
///
/// This function gives back the next arc outgoing form the
/// given node.
void nextOut(Arc&) const {}
/// @}
/// \name Class based iteration
///
/// This interface provides iterator classes for digraph items.
///
/// @{
/// \brief This iterator goes through each node.
///
/// This iterator goes through each node.
///
typedef GraphItemIt<Digraph, Node> NodeIt;
/// \brief This iterator goes through each arc.
///
/// This iterator goes through each arc.
///
typedef GraphItemIt<Digraph, Arc> ArcIt;
/// \brief This iterator goes trough the incoming arcs of a node.
///
/// This iterator goes trough the \e incoming arcs of a certain node
/// of a digraph.
typedef GraphIncIt<Digraph, Arc, Node, 'i'> InArcIt;
/// \brief This iterator goes trough the outgoing arcs of a node.
///
/// This iterator goes trough the \e outgoing arcs of a certain node
/// of a digraph.
typedef GraphIncIt<Digraph, Arc, Node, 'o'> OutArcIt;
/// \brief The base node of the iterator.
///
/// This function gives back the base node of the iterator.
/// It is always the target node of the pointed arc.
Node baseNode(const InArcIt&) const { return INVALID; }
/// \brief The running node of the iterator.
///
/// This function gives back the running node of the iterator.
/// It is always the source node of the pointed arc.
Node runningNode(const InArcIt&) const { return INVALID; }
/// \brief The base node of the iterator.
///
/// This function gives back the base node of the iterator.
/// It is always the source node of the pointed arc.
Node baseNode(const OutArcIt&) const { return INVALID; }
/// \brief The running node of the iterator.
///
/// This function gives back the running node of the iterator.
/// It is always the target node of the pointed arc.
Node runningNode(const OutArcIt&) const { return INVALID; }
/// @}
template <typename _Digraph>
struct Constraints {
void constraints() {
checkConcept<Base, _Digraph>();
{
typename _Digraph::Node node(INVALID);
typename _Digraph::Arc arc(INVALID);
{
digraph.first(node);
digraph.next(node);
}
{
digraph.first(arc);
digraph.next(arc);
}
{
digraph.firstIn(arc, node);
digraph.nextIn(arc);
}
{
digraph.firstOut(arc, node);
digraph.nextOut(arc);
}
}
{
checkConcept<GraphItemIt<_Digraph, typename _Digraph::Arc>,
typename _Digraph::ArcIt >();
checkConcept<GraphItemIt<_Digraph, typename _Digraph::Node>,
typename _Digraph::NodeIt >();
checkConcept<GraphIncIt<_Digraph, typename _Digraph::Arc,
typename _Digraph::Node, 'i'>, typename _Digraph::InArcIt>();
checkConcept<GraphIncIt<_Digraph, typename _Digraph::Arc,
typename _Digraph::Node, 'o'>, typename _Digraph::OutArcIt>();
typename _Digraph::Node n;
const typename _Digraph::InArcIt iait(INVALID);
const typename _Digraph::OutArcIt oait(INVALID);
n = digraph.baseNode(iait);
n = digraph.runningNode(iait);
n = digraph.baseNode(oait);
n = digraph.runningNode(oait);
ignore_unused_variable_warning(n);
}
}
const _Digraph& digraph;
};
};
/// \brief Skeleton class for iterable undirected graphs.
///
/// This class describes the interface of iterable undirected
/// graphs. It extends \ref IterableDigraphComponent with the core
/// iterable interface of undirected graphs.
/// This concept is part of the Graph concept.
template <typename BAS = BaseGraphComponent>
class IterableGraphComponent : public IterableDigraphComponent<BAS> {
public:
typedef BAS Base;
typedef typename Base::Node Node;
typedef typename Base::Arc Arc;
typedef typename Base::Edge Edge;
typedef IterableGraphComponent Graph;
/// \name Base iteration
///
/// This interface provides functions for iteration on edges.
///
/// @{
using IterableDigraphComponent<Base>::first;
using IterableDigraphComponent<Base>::next;
/// \brief Return the first edge.
///
/// This function gives back the first edge in the iteration order.
void first(Edge&) const {}
/// \brief Return the next edge.
///
/// This function gives back the next edge in the iteration order.
void next(Edge&) const {}
/// \brief Return the first edge incident to the given node.
///
/// This function gives back the first edge incident to the given
/// node. The bool parameter gives back the direction for which the
/// source node of the directed arc representing the edge is the
/// given node.
void firstInc(Edge&, bool&, const Node&) const {}
/// \brief Gives back the next of the edges from the
/// given node.
///
/// This function gives back the next edge incident to the given
/// node. The bool parameter should be used as \c firstInc() use it.
void nextInc(Edge&, bool&) const {}
using IterableDigraphComponent<Base>::baseNode;
using IterableDigraphComponent<Base>::runningNode;
/// @}
/// \name Class based iteration
///
/// This interface provides iterator classes for edges.
///
/// @{
/// \brief This iterator goes through each edge.
///
/// This iterator goes through each edge.
typedef GraphItemIt<Graph, Edge> EdgeIt;
/// \brief This iterator goes trough the incident edges of a
/// node.
///
/// This iterator goes trough the incident edges of a certain
/// node of a graph.
typedef GraphIncIt<Graph, Edge, Node, 'e'> IncEdgeIt;
/// \brief The base node of the iterator.
///
/// This function gives back the base node of the iterator.
Node baseNode(const IncEdgeIt&) const { return INVALID; }
/// \brief The running node of the iterator.
///
/// This function gives back the running node of the iterator.
Node runningNode(const IncEdgeIt&) const { return INVALID; }
/// @}
template <typename _Graph>
struct Constraints {
void constraints() {
checkConcept<IterableDigraphComponent<Base>, _Graph>();
{
typename _Graph::Node node(INVALID);
typename _Graph::Edge edge(INVALID);
bool dir;
{
graph.first(edge);
graph.next(edge);
}
{
graph.firstInc(edge, dir, node);
graph.nextInc(edge, dir);
}
}
{
checkConcept<GraphItemIt<_Graph, typename _Graph::Edge>,
typename _Graph::EdgeIt >();
checkConcept<GraphIncIt<_Graph, typename _Graph::Edge,
typename _Graph::Node, 'e'>, typename _Graph::IncEdgeIt>();
typename _Graph::Node n;
const typename _Graph::IncEdgeIt ieit(INVALID);
n = graph.baseNode(ieit);
n = graph.runningNode(ieit);
}
}
const _Graph& graph;
};
};
/// \brief Skeleton class for alterable directed graphs.
///
/// This class describes the interface of alterable directed
/// graphs. It extends \ref BaseDigraphComponent with the alteration
/// notifier interface. It implements
/// an observer-notifier pattern for each digraph item. More
/// obsevers can be registered into the notifier and whenever an
/// alteration occured in the digraph all the observers will be
/// notified about it.
template <typename BAS = BaseDigraphComponent>
class AlterableDigraphComponent : public BAS {
public:
typedef BAS Base;
typedef typename Base::Node Node;
typedef typename Base::Arc Arc;
/// Node alteration notifier class.
typedef AlterationNotifier<AlterableDigraphComponent, Node>
NodeNotifier;
/// Arc alteration notifier class.
typedef AlterationNotifier<AlterableDigraphComponent, Arc>
ArcNotifier;
/// \brief Return the node alteration notifier.
///
/// This function gives back the node alteration notifier.
NodeNotifier& notifier(Node) const {
return NodeNotifier();
}
/// \brief Return the arc alteration notifier.
///
/// This function gives back the arc alteration notifier.
ArcNotifier& notifier(Arc) const {
return ArcNotifier();
}
template <typename _Digraph>
struct Constraints {
void constraints() {
checkConcept<Base, _Digraph>();
typename _Digraph::NodeNotifier& nn
= digraph.notifier(typename _Digraph::Node());
typename _Digraph::ArcNotifier& en
= digraph.notifier(typename _Digraph::Arc());
ignore_unused_variable_warning(nn);
ignore_unused_variable_warning(en);
}
const _Digraph& digraph;
};
};
/// \brief Skeleton class for alterable undirected graphs.
///
/// This class describes the interface of alterable undirected
/// graphs. It extends \ref AlterableDigraphComponent with the alteration
/// notifier interface of undirected graphs. It implements
/// an observer-notifier pattern for the edges. More
/// obsevers can be registered into the notifier and whenever an
/// alteration occured in the graph all the observers will be
/// notified about it.
template <typename BAS = BaseGraphComponent>
class AlterableGraphComponent : public AlterableDigraphComponent<BAS> {
public:
typedef BAS Base;
typedef typename Base::Edge Edge;
/// Edge alteration notifier class.
typedef AlterationNotifier<AlterableGraphComponent, Edge>
EdgeNotifier;
/// \brief Return the edge alteration notifier.
///
/// This function gives back the edge alteration notifier.
EdgeNotifier& notifier(Edge) const {
return EdgeNotifier();
}
template <typename _Graph>
struct Constraints {
void constraints() {
checkConcept<AlterableDigraphComponent<Base>, _Graph>();
typename _Graph::EdgeNotifier& uen
= graph.notifier(typename _Graph::Edge());
ignore_unused_variable_warning(uen);
}
const _Graph& graph;
};
};
/// \brief Concept class for standard graph maps.
///
/// This class describes the concept of standard graph maps, i.e.
/// the \c NodeMap, \c ArcMap and \c EdgeMap subtypes of digraph and
/// graph types, which can be used for associating data to graph items.
/// The standard graph maps must conform to the ReferenceMap concept.
template <typename GR, typename K, typename V>
class GraphMap : public ReferenceMap<K, V, V&, const V&> {
public:
typedef ReadWriteMap<K, V> Parent;
/// The graph type of the map.
typedef GR Graph;
/// The key type of the map.
typedef K Key;
/// The value type of the map.
typedef V Value;
/// The reference type of the map.
typedef Value& Reference;
/// The const reference type of the map.
typedef const Value& ConstReference;
// The reference map tag.
typedef True ReferenceMapTag;
/// \brief Construct a new map.
///
/// Construct a new map for the graph.
explicit GraphMap(const Graph&) {}
/// \brief Construct a new map with default value.
///
/// Construct a new map for the graph and initalize the values.
GraphMap(const Graph&, const Value&) {}
private:
/// \brief Copy constructor.
///
/// Copy Constructor.
GraphMap(const GraphMap&) : Parent() {}
/// \brief Assignment operator.
///
/// Assignment operator. It does not mofify the underlying graph,
/// it just iterates on the current item set and set the map
/// with the value returned by the assigned map.
template <typename CMap>
GraphMap& operator=(const CMap&) {
checkConcept<ReadMap<Key, Value>, CMap>();
return *this;
}
public:
template<typename _Map>
struct Constraints {
void constraints() {
checkConcept
<ReferenceMap<Key, Value, Value&, const Value&>, _Map>();
_Map m1(g);
_Map m2(g,t);
// Copy constructor
// _Map m3(m);
// Assignment operator
// ReadMap<Key, Value> cmap;
// m3 = cmap;
ignore_unused_variable_warning(m1);
ignore_unused_variable_warning(m2);
// ignore_unused_variable_warning(m3);
}
const _Map &m;
const Graph &g;
const typename GraphMap::Value &t;
};
};
/// \brief Skeleton class for mappable directed graphs.
///
/// This class describes the interface of mappable directed graphs.
/// It extends \ref BaseDigraphComponent with the standard digraph
/// map classes, namely \c NodeMap and \c ArcMap.
/// This concept is part of the Digraph concept.
template <typename BAS = BaseDigraphComponent>
class MappableDigraphComponent : public BAS {
public:
typedef BAS Base;
typedef typename Base::Node Node;
typedef typename Base::Arc Arc;
typedef MappableDigraphComponent Digraph;
/// \brief Standard graph map for the nodes.
///
/// Standard graph map for the nodes.
/// It conforms to the ReferenceMap concept.
template <typename V>
class NodeMap : public GraphMap<MappableDigraphComponent, Node, V> {
public:
typedef GraphMap<MappableDigraphComponent, Node, V> Parent;
/// \brief Construct a new map.
///
/// Construct a new map for the digraph.
explicit NodeMap(const MappableDigraphComponent& digraph)
: Parent(digraph) {}
/// \brief Construct a new map with default value.
///
/// Construct a new map for the digraph and initalize the values.
NodeMap(const MappableDigraphComponent& digraph, const V& value)
: Parent(digraph, value) {}
private:
/// \brief Copy constructor.
///
/// Copy Constructor.
NodeMap(const NodeMap& nm) : Parent(nm) {}
/// \brief Assignment operator.
///
/// Assignment operator.
template <typename CMap>
NodeMap& operator=(const CMap&) {
checkConcept<ReadMap<Node, V>, CMap>();
return *this;
}
};
/// \brief Standard graph map for the arcs.
///
/// Standard graph map for the arcs.
/// It conforms to the ReferenceMap concept.
template <typename V>
class ArcMap : public GraphMap<MappableDigraphComponent, Arc, V> {
public:
typedef GraphMap<MappableDigraphComponent, Arc, V> Parent;
/// \brief Construct a new map.
///
/// Construct a new map for the digraph.
explicit ArcMap(const MappableDigraphComponent& digraph)
: Parent(digraph) {}
/// \brief Construct a new map with default value.
///
/// Construct a new map for the digraph and initalize the values.
ArcMap(const MappableDigraphComponent& digraph, const V& value)
: Parent(digraph, value) {}
private:
/// \brief Copy constructor.
///
/// Copy Constructor.
ArcMap(const ArcMap& nm) : Parent(nm) {}
/// \brief Assignment operator.
///
/// Assignment operator.
template <typename CMap>
ArcMap& operator=(const CMap&) {
checkConcept<ReadMap<Arc, V>, CMap>();
return *this;
}
};
template <typename _Digraph>
struct Constraints {
struct Dummy {
int value;
Dummy() : value(0) {}
Dummy(int _v) : value(_v) {}
};
void constraints() {
checkConcept<Base, _Digraph>();
{ // int map test
typedef typename _Digraph::template NodeMap<int> IntNodeMap;
checkConcept<GraphMap<_Digraph, typename _Digraph::Node, int>,
IntNodeMap >();
} { // bool map test
typedef typename _Digraph::template NodeMap<bool> BoolNodeMap;
checkConcept<GraphMap<_Digraph, typename _Digraph::Node, bool>,
BoolNodeMap >();
} { // Dummy map test
typedef typename _Digraph::template NodeMap<Dummy> DummyNodeMap;
checkConcept<GraphMap<_Digraph, typename _Digraph::Node, Dummy>,
DummyNodeMap >();
}
{ // int map test
typedef typename _Digraph::template ArcMap<int> IntArcMap;
checkConcept<GraphMap<_Digraph, typename _Digraph::Arc, int>,
IntArcMap >();
} { // bool map test
typedef typename _Digraph::template ArcMap<bool> BoolArcMap;
checkConcept<GraphMap<_Digraph, typename _Digraph::Arc, bool>,
BoolArcMap >();
} { // Dummy map test
typedef typename _Digraph::template ArcMap<Dummy> DummyArcMap;
checkConcept<GraphMap<_Digraph, typename _Digraph::Arc, Dummy>,
DummyArcMap >();
}
}
const _Digraph& digraph;
};
};
/// \brief Skeleton class for mappable undirected graphs.
///
/// This class describes the interface of mappable undirected graphs.
/// It extends \ref MappableDigraphComponent with the standard graph
/// map class for edges (\c EdgeMap).
/// This concept is part of the Graph concept.
template <typename BAS = BaseGraphComponent>
class MappableGraphComponent : public MappableDigraphComponent<BAS> {
public:
typedef BAS Base;
typedef typename Base::Edge Edge;
typedef MappableGraphComponent Graph;
/// \brief Standard graph map for the edges.
///
/// Standard graph map for the edges.
/// It conforms to the ReferenceMap concept.
template <typename V>
class EdgeMap : public GraphMap<MappableGraphComponent, Edge, V> {
public:
typedef GraphMap<MappableGraphComponent, Edge, V> Parent;
/// \brief Construct a new map.
///
/// Construct a new map for the graph.
explicit EdgeMap(const MappableGraphComponent& graph)
: Parent(graph) {}
/// \brief Construct a new map with default value.
///
/// Construct a new map for the graph and initalize the values.
EdgeMap(const MappableGraphComponent& graph, const V& value)
: Parent(graph, value) {}
private:
/// \brief Copy constructor.
///
/// Copy Constructor.
EdgeMap(const EdgeMap& nm) : Parent(nm) {}
/// \brief Assignment operator.
///
/// Assignment operator.
template <typename CMap>
EdgeMap& operator=(const CMap&) {
checkConcept<ReadMap<Edge, V>, CMap>();
return *this;
}
};
template <typename _Graph>
struct Constraints {
struct Dummy {
int value;
Dummy() : value(0) {}
Dummy(int _v) : value(_v) {}
};
void constraints() {
checkConcept<MappableDigraphComponent<Base>, _Graph>();
{ // int map test
typedef typename _Graph::template EdgeMap<int> IntEdgeMap;
checkConcept<GraphMap<_Graph, typename _Graph::Edge, int>,
IntEdgeMap >();
} { // bool map test
typedef typename _Graph::template EdgeMap<bool> BoolEdgeMap;
checkConcept<GraphMap<_Graph, typename _Graph::Edge, bool>,
BoolEdgeMap >();
} { // Dummy map test
typedef typename _Graph::template EdgeMap<Dummy> DummyEdgeMap;
checkConcept<GraphMap<_Graph, typename _Graph::Edge, Dummy>,
DummyEdgeMap >();
}
}
const _Graph& graph;
};
};
/// \brief Skeleton class for extendable directed graphs.
///
/// This class describes the interface of extendable directed graphs.
/// It extends \ref BaseDigraphComponent with functions for adding
/// nodes and arcs to the digraph.
/// This concept requires \ref AlterableDigraphComponent.
template <typename BAS = BaseDigraphComponent>
class ExtendableDigraphComponent : public BAS {
public:
typedef BAS Base;
typedef typename Base::Node Node;
typedef typename Base::Arc Arc;
/// \brief Add a new node to the digraph.
///
/// This function adds a new node to the digraph.
Node addNode() {
return INVALID;
}
/// \brief Add a new arc connecting the given two nodes.
///
/// This function adds a new arc connecting the given two nodes
/// of the digraph.
Arc addArc(const Node&, const Node&) {
return INVALID;
}
template <typename _Digraph>
struct Constraints {
void constraints() {
checkConcept<Base, _Digraph>();
typename _Digraph::Node node_a, node_b;
node_a = digraph.addNode();
node_b = digraph.addNode();
typename _Digraph::Arc arc;
arc = digraph.addArc(node_a, node_b);
}
_Digraph& digraph;
};
};
/// \brief Skeleton class for extendable undirected graphs.
///
/// This class describes the interface of extendable undirected graphs.
/// It extends \ref BaseGraphComponent with functions for adding
/// nodes and edges to the graph.
/// This concept requires \ref AlterableGraphComponent.
template <typename BAS = BaseGraphComponent>
class ExtendableGraphComponent : public BAS {
public:
typedef BAS Base;
typedef typename Base::Node Node;
typedef typename Base::Edge Edge;
/// \brief Add a new node to the digraph.
///
/// This function adds a new node to the digraph.
Node addNode() {
return INVALID;
}
/// \brief Add a new edge connecting the given two nodes.
///
/// This function adds a new edge connecting the given two nodes
/// of the graph.
Edge addEdge(const Node&, const Node&) {
return INVALID;
}
template <typename _Graph>
struct Constraints {
void constraints() {
checkConcept<Base, _Graph>();
typename _Graph::Node node_a, node_b;
node_a = graph.addNode();
node_b = graph.addNode();
typename _Graph::Edge edge;
edge = graph.addEdge(node_a, node_b);
}
_Graph& graph;
};
};
/// \brief Skeleton class for erasable directed graphs.
///
/// This class describes the interface of erasable directed graphs.
/// It extends \ref BaseDigraphComponent with functions for removing
/// nodes and arcs from the digraph.
/// This concept requires \ref AlterableDigraphComponent.
template <typename BAS = BaseDigraphComponent>
class ErasableDigraphComponent : public BAS {
public:
typedef BAS Base;
typedef typename Base::Node Node;
typedef typename Base::Arc Arc;
/// \brief Erase a node from the digraph.
///
/// This function erases the given node from the digraph and all arcs
/// connected to the node.
void erase(const Node&) {}
/// \brief Erase an arc from the digraph.
///
/// This function erases the given arc from the digraph.
void erase(const Arc&) {}
template <typename _Digraph>
struct Constraints {
void constraints() {
checkConcept<Base, _Digraph>();
const typename _Digraph::Node node(INVALID);
digraph.erase(node);
const typename _Digraph::Arc arc(INVALID);
digraph.erase(arc);
}
_Digraph& digraph;
};
};
/// \brief Skeleton class for erasable undirected graphs.
///
/// This class describes the interface of erasable undirected graphs.
/// It extends \ref BaseGraphComponent with functions for removing
/// nodes and edges from the graph.
/// This concept requires \ref AlterableGraphComponent.
template <typename BAS = BaseGraphComponent>
class ErasableGraphComponent : public BAS {
public:
typedef BAS Base;
typedef typename Base::Node Node;
typedef typename Base::Edge Edge;
/// \brief Erase a node from the graph.
///
/// This function erases the given node from the graph and all edges
/// connected to the node.
void erase(const Node&) {}
/// \brief Erase an edge from the digraph.
///
/// This function erases the given edge from the digraph.
void erase(const Edge&) {}
template <typename _Graph>
struct Constraints {
void constraints() {
checkConcept<Base, _Graph>();
const typename _Graph::Node node(INVALID);
graph.erase(node);
const typename _Graph::Edge edge(INVALID);
graph.erase(edge);
}
_Graph& graph;
};
};
/// \brief Skeleton class for clearable directed graphs.
///
/// This class describes the interface of clearable directed graphs.
/// It extends \ref BaseDigraphComponent with a function for clearing
/// the digraph.
/// This concept requires \ref AlterableDigraphComponent.
template <typename BAS = BaseDigraphComponent>
class ClearableDigraphComponent : public BAS {
public:
typedef BAS Base;
/// \brief Erase all nodes and arcs from the digraph.
///
/// This function erases all nodes and arcs from the digraph.
void clear() {}
template <typename _Digraph>
struct Constraints {
void constraints() {
checkConcept<Base, _Digraph>();
digraph.clear();
}
_Digraph& digraph;
};
};
/// \brief Skeleton class for clearable undirected graphs.
///
/// This class describes the interface of clearable undirected graphs.
/// It extends \ref BaseGraphComponent with a function for clearing
/// the graph.
/// This concept requires \ref AlterableGraphComponent.
template <typename BAS = BaseGraphComponent>
class ClearableGraphComponent : public ClearableDigraphComponent<BAS> {
public:
typedef BAS Base;
/// \brief Erase all nodes and edges from the graph.
///
/// This function erases all nodes and edges from the graph.
void clear() {}
template <typename _Graph>
struct Constraints {
void constraints() {
checkConcept<Base, _Graph>();
graph.clear();
}
_Graph& graph;
};
};
}
}
#endif
|