Location: LEMON/LEMON-main/lemon/min_mean_cycle.h - annotation
Load file history
Rework and fix the implementation of MinMeanCycle (#179)
- Fix the handling of the cycle means.
- Many implementation improvements:
- More efficient data storage for the strongly connected
components.
- Better handling of BFS queues.
- Merge consecutive BFS searches (perform two BFS searches
instead of three).
This version is about two times faster on average and an order of
magnitude faster if there are a lot of strongly connected components.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 | r758:b31e130db13d r758:b31e130db13d r758:b31e130db13d r758:b31e130db13d r758:b31e130db13d r758:b31e130db13d r758:b31e130db13d r758:b31e130db13d r758:b31e130db13d r758:b31e130db13d r758:b31e130db13d r758:b31e130db13d r758:b31e130db13d r758:b31e130db13d r758:b31e130db13d r758:b31e130db13d r758:b31e130db13d r758:b31e130db13d r758:b31e130db13d r758:b31e130db13d r758:b31e130db13d r758:b31e130db13d r758:b31e130db13d r758:b31e130db13d r758:b31e130db13d r758:b31e130db13d r758:b31e130db13d r758:b31e130db13d r758:b31e130db13d r758:b31e130db13d r758:b31e130db13d r758:b31e130db13d r758:b31e130db13d r758:b31e130db13d r758:b31e130db13d r758:b31e130db13d r758:b31e130db13d r758:b31e130db13d r758:b31e130db13d r758:b31e130db13d r758:b31e130db13d r758:b31e130db13d r758:b31e130db13d r758:b31e130db13d r758:b31e130db13d r758:b31e130db13d r758:b31e130db13d r758:b31e130db13d r758:b31e130db13d r758:b31e130db13d r758:b31e130db13d r758:b31e130db13d r758:b31e130db13d r758:b31e130db13d r758:b31e130db13d r758:b31e130db13d r758:b31e130db13d r758:b31e130db13d r758:b31e130db13d r758:b31e130db13d r758:b31e130db13d r758:b31e130db13d r758:b31e130db13d r758:b31e130db13d r758:b31e130db13d r758:b31e130db13d r758:b31e130db13d r758:b31e130db13d r758:b31e130db13d r758:b31e130db13d r758:b31e130db13d r758:b31e130db13d r758:b31e130db13d r758:b31e130db13d r758:b31e130db13d r758:b31e130db13d r760:83ce7ce39f21 r760:83ce7ce39f21 r760:83ce7ce39f21 r760:83ce7ce39f21 r760:83ce7ce39f21 r760:83ce7ce39f21 r758:b31e130db13d r760:83ce7ce39f21 r758:b31e130db13d r760:83ce7ce39f21 r760:83ce7ce39f21 r760:83ce7ce39f21 r760:83ce7ce39f21 r760:83ce7ce39f21 r758:b31e130db13d r760:83ce7ce39f21 r760:83ce7ce39f21 r758:b31e130db13d r760:83ce7ce39f21 r760:83ce7ce39f21 r760:83ce7ce39f21 r760:83ce7ce39f21 r760:83ce7ce39f21 r760:83ce7ce39f21 r760:83ce7ce39f21 r760:83ce7ce39f21 r758:b31e130db13d r758:b31e130db13d r758:b31e130db13d r758:b31e130db13d r758:b31e130db13d r758:b31e130db13d r758:b31e130db13d r758:b31e130db13d r758:b31e130db13d r758:b31e130db13d r758:b31e130db13d r758:b31e130db13d r760:83ce7ce39f21 r760:83ce7ce39f21 r760:83ce7ce39f21 r758:b31e130db13d r758:b31e130db13d r758:b31e130db13d r758:b31e130db13d r758:b31e130db13d r758:b31e130db13d r758:b31e130db13d r758:b31e130db13d r758:b31e130db13d r758:b31e130db13d r758:b31e130db13d r758:b31e130db13d r758:b31e130db13d r759:d66ff32624e2 r758:b31e130db13d r758:b31e130db13d r758:b31e130db13d r758:b31e130db13d r758:b31e130db13d r758:b31e130db13d r758:b31e130db13d r758:b31e130db13d r758:b31e130db13d r758:b31e130db13d r758:b31e130db13d r758:b31e130db13d r758:b31e130db13d r758:b31e130db13d r758:b31e130db13d r758:b31e130db13d r758:b31e130db13d r758:b31e130db13d r758:b31e130db13d r758:b31e130db13d r758:b31e130db13d r759:d66ff32624e2 r759:d66ff32624e2 r758:b31e130db13d r758:b31e130db13d r758:b31e130db13d r758:b31e130db13d r758:b31e130db13d r758:b31e130db13d r759:d66ff32624e2 r759:d66ff32624e2 r758:b31e130db13d r758:b31e130db13d r758:b31e130db13d r759:d66ff32624e2 r758:b31e130db13d r759:d66ff32624e2 r758:b31e130db13d r758:b31e130db13d r758:b31e130db13d r758:b31e130db13d r758:b31e130db13d r759:d66ff32624e2 r758:b31e130db13d r759:d66ff32624e2 r759:d66ff32624e2 r758:b31e130db13d r759:d66ff32624e2 r759:d66ff32624e2 r760:83ce7ce39f21 r760:83ce7ce39f21 r760:83ce7ce39f21 r760:83ce7ce39f21 r759:d66ff32624e2 r758:b31e130db13d r760:83ce7ce39f21 r760:83ce7ce39f21 r758:b31e130db13d r760:83ce7ce39f21 r758:b31e130db13d r758:b31e130db13d r760:83ce7ce39f21 r760:83ce7ce39f21 r760:83ce7ce39f21 r760:83ce7ce39f21 r760:83ce7ce39f21 r760:83ce7ce39f21 r760:83ce7ce39f21 r760:83ce7ce39f21 r758:b31e130db13d r760:83ce7ce39f21 r758:b31e130db13d r758:b31e130db13d r758:b31e130db13d r758:b31e130db13d r758:b31e130db13d r758:b31e130db13d r758:b31e130db13d r758:b31e130db13d r758:b31e130db13d r759:d66ff32624e2 r758:b31e130db13d r760:83ce7ce39f21 r760:83ce7ce39f21 r760:83ce7ce39f21 r760:83ce7ce39f21 r758:b31e130db13d r758:b31e130db13d r758:b31e130db13d r758:b31e130db13d r758:b31e130db13d r758:b31e130db13d r758:b31e130db13d r758:b31e130db13d r759:d66ff32624e2 r758:b31e130db13d r758:b31e130db13d r758:b31e130db13d r758:b31e130db13d r758:b31e130db13d r758:b31e130db13d r758:b31e130db13d r758:b31e130db13d r758:b31e130db13d r760:83ce7ce39f21 r758:b31e130db13d r758:b31e130db13d r760:83ce7ce39f21 r758:b31e130db13d r758:b31e130db13d r758:b31e130db13d r758:b31e130db13d r758:b31e130db13d r758:b31e130db13d r760:83ce7ce39f21 r758:b31e130db13d r758:b31e130db13d r760:83ce7ce39f21 r758:b31e130db13d r758:b31e130db13d r758:b31e130db13d r758:b31e130db13d r758:b31e130db13d r758:b31e130db13d r760:83ce7ce39f21 r758:b31e130db13d r758:b31e130db13d r760:83ce7ce39f21 r758:b31e130db13d r758:b31e130db13d r758:b31e130db13d r758:b31e130db13d r758:b31e130db13d r760:83ce7ce39f21 r758:b31e130db13d r758:b31e130db13d r758:b31e130db13d r758:b31e130db13d r758:b31e130db13d r758:b31e130db13d r758:b31e130db13d r758:b31e130db13d r758:b31e130db13d r758:b31e130db13d r758:b31e130db13d r758:b31e130db13d r758:b31e130db13d r758:b31e130db13d r758:b31e130db13d r758:b31e130db13d r758:b31e130db13d r758:b31e130db13d r758:b31e130db13d r760:83ce7ce39f21 r760:83ce7ce39f21 r760:83ce7ce39f21 r760:83ce7ce39f21 r760:83ce7ce39f21 r760:83ce7ce39f21 r758:b31e130db13d r760:83ce7ce39f21 r760:83ce7ce39f21 r760:83ce7ce39f21 r760:83ce7ce39f21 r760:83ce7ce39f21 r760:83ce7ce39f21 r760:83ce7ce39f21 r760:83ce7ce39f21 r760:83ce7ce39f21 r760:83ce7ce39f21 r760:83ce7ce39f21 r760:83ce7ce39f21 r760:83ce7ce39f21 r760:83ce7ce39f21 r760:83ce7ce39f21 r760:83ce7ce39f21 r760:83ce7ce39f21 r760:83ce7ce39f21 r760:83ce7ce39f21 r760:83ce7ce39f21 r760:83ce7ce39f21 r760:83ce7ce39f21 r760:83ce7ce39f21 r760:83ce7ce39f21 r760:83ce7ce39f21 r760:83ce7ce39f21 r760:83ce7ce39f21 r760:83ce7ce39f21 r760:83ce7ce39f21 r760:83ce7ce39f21 r760:83ce7ce39f21 r760:83ce7ce39f21 r758:b31e130db13d r760:83ce7ce39f21 r760:83ce7ce39f21 r760:83ce7ce39f21 r760:83ce7ce39f21 r760:83ce7ce39f21 r760:83ce7ce39f21 r760:83ce7ce39f21 r760:83ce7ce39f21 r760:83ce7ce39f21 r758:b31e130db13d r760:83ce7ce39f21 r760:83ce7ce39f21 r760:83ce7ce39f21 r760:83ce7ce39f21 r760:83ce7ce39f21 r760:83ce7ce39f21 r760:83ce7ce39f21 r760:83ce7ce39f21 r760:83ce7ce39f21 r760:83ce7ce39f21 r760:83ce7ce39f21 r760:83ce7ce39f21 r760:83ce7ce39f21 r760:83ce7ce39f21 r758:b31e130db13d r758:b31e130db13d r758:b31e130db13d r758:b31e130db13d r758:b31e130db13d r760:83ce7ce39f21 r760:83ce7ce39f21 r760:83ce7ce39f21 r760:83ce7ce39f21 r760:83ce7ce39f21 r758:b31e130db13d r758:b31e130db13d r758:b31e130db13d r760:83ce7ce39f21 r760:83ce7ce39f21 r760:83ce7ce39f21 r760:83ce7ce39f21 r760:83ce7ce39f21 r760:83ce7ce39f21 r760:83ce7ce39f21 r760:83ce7ce39f21 r760:83ce7ce39f21 r760:83ce7ce39f21 r760:83ce7ce39f21 r760:83ce7ce39f21 r760:83ce7ce39f21 r760:83ce7ce39f21 r758:b31e130db13d r760:83ce7ce39f21 r760:83ce7ce39f21 r760:83ce7ce39f21 r760:83ce7ce39f21 r760:83ce7ce39f21 r760:83ce7ce39f21 r758:b31e130db13d r758:b31e130db13d r758:b31e130db13d r758:b31e130db13d r758:b31e130db13d r760:83ce7ce39f21 r758:b31e130db13d r760:83ce7ce39f21 r760:83ce7ce39f21 r760:83ce7ce39f21 r760:83ce7ce39f21 r760:83ce7ce39f21 r760:83ce7ce39f21 r760:83ce7ce39f21 r760:83ce7ce39f21 r760:83ce7ce39f21 r760:83ce7ce39f21 r758:b31e130db13d r760:83ce7ce39f21 r760:83ce7ce39f21 r760:83ce7ce39f21 r760:83ce7ce39f21 r760:83ce7ce39f21 r758:b31e130db13d r760:83ce7ce39f21 r760:83ce7ce39f21 r760:83ce7ce39f21 r760:83ce7ce39f21 r758:b31e130db13d r758:b31e130db13d r758:b31e130db13d r760:83ce7ce39f21 r760:83ce7ce39f21 r760:83ce7ce39f21 r760:83ce7ce39f21 r760:83ce7ce39f21 r760:83ce7ce39f21 r760:83ce7ce39f21 r760:83ce7ce39f21 r760:83ce7ce39f21 r760:83ce7ce39f21 r760:83ce7ce39f21 r760:83ce7ce39f21 r760:83ce7ce39f21 r760:83ce7ce39f21 r760:83ce7ce39f21 r760:83ce7ce39f21 r760:83ce7ce39f21 r760:83ce7ce39f21 r760:83ce7ce39f21 r758:b31e130db13d r760:83ce7ce39f21 r760:83ce7ce39f21 r760:83ce7ce39f21 r760:83ce7ce39f21 r760:83ce7ce39f21 r760:83ce7ce39f21 r760:83ce7ce39f21 r760:83ce7ce39f21 r760:83ce7ce39f21 r760:83ce7ce39f21 r760:83ce7ce39f21 r758:b31e130db13d r758:b31e130db13d r758:b31e130db13d r758:b31e130db13d r758:b31e130db13d r758:b31e130db13d r758:b31e130db13d r758:b31e130db13d r758:b31e130db13d r758:b31e130db13d r758:b31e130db13d r758:b31e130db13d | /* -*- C++ -*-
*
* This file is a part of LEMON, a generic C++ optimization library
*
* Copyright (C) 2003-2008
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
* (Egervary Research Group on Combinatorial Optimization, EGRES).
*
* Permission to use, modify and distribute this software is granted
* provided that this copyright notice appears in all copies. For
* precise terms see the accompanying LICENSE file.
*
* This software is provided "AS IS" with no warranty of any kind,
* express or implied, and with no claim as to its suitability for any
* purpose.
*
*/
#ifndef LEMON_MIN_MEAN_CYCLE_H
#define LEMON_MIN_MEAN_CYCLE_H
/// \ingroup shortest_path
///
/// \file
/// \brief Howard's algorithm for finding a minimum mean cycle.
#include <vector>
#include <lemon/core.h>
#include <lemon/path.h>
#include <lemon/tolerance.h>
#include <lemon/connectivity.h>
namespace lemon {
/// \addtogroup shortest_path
/// @{
/// \brief Implementation of Howard's algorithm for finding a minimum
/// mean cycle.
///
/// \ref MinMeanCycle implements Howard's algorithm for finding a
/// directed cycle of minimum mean length (cost) in a digraph.
///
/// \tparam GR The type of the digraph the algorithm runs on.
/// \tparam LEN The type of the length map. The default
/// map type is \ref concepts::Digraph::ArcMap "GR::ArcMap<int>".
///
/// \warning \c LEN::Value must be convertible to \c double.
#ifdef DOXYGEN
template <typename GR, typename LEN>
#else
template < typename GR,
typename LEN = typename GR::template ArcMap<int> >
#endif
class MinMeanCycle
{
public:
/// The type of the digraph the algorithm runs on
typedef GR Digraph;
/// The type of the length map
typedef LEN LengthMap;
/// The type of the arc lengths
typedef typename LengthMap::Value Value;
/// The type of the paths
typedef lemon::Path<Digraph> Path;
private:
TEMPLATE_DIGRAPH_TYPEDEFS(Digraph);
// The digraph the algorithm runs on
const Digraph &_gr;
// The length of the arcs
const LengthMap &_length;
// Data for the found cycles
bool _curr_found, _best_found;
Value _curr_length, _best_length;
int _curr_size, _best_size;
Node _curr_node, _best_node;
Path *_cycle_path;
bool _local_path;
// Internal data used by the algorithm
typename Digraph::template NodeMap<Arc> _policy;
typename Digraph::template NodeMap<bool> _reached;
typename Digraph::template NodeMap<int> _level;
typename Digraph::template NodeMap<double> _dist;
// Data for storing the strongly connected components
int _comp_num;
typename Digraph::template NodeMap<int> _comp;
std::vector<std::vector<Node> > _comp_nodes;
std::vector<Node>* _nodes;
typename Digraph::template NodeMap<std::vector<Arc> > _in_arcs;
// Queue used for BFS search
std::vector<Node> _queue;
int _qfront, _qback;
Tolerance<double> _tol;
public:
/// \brief Constructor.
///
/// The constructor of the class.
///
/// \param digraph The digraph the algorithm runs on.
/// \param length The lengths (costs) of the arcs.
MinMeanCycle( const Digraph &digraph,
const LengthMap &length ) :
_gr(digraph), _length(length), _cycle_path(NULL), _local_path(false),
_policy(digraph), _reached(digraph), _level(digraph), _dist(digraph),
_comp(digraph), _in_arcs(digraph)
{}
/// Destructor.
~MinMeanCycle() {
if (_local_path) delete _cycle_path;
}
/// \brief Set the path structure for storing the found cycle.
///
/// This function sets an external path structure for storing the
/// found cycle.
///
/// If you don't call this function before calling \ref run() or
/// \ref findMinMean(), it will allocate a local \ref Path "path"
/// structure. The destuctor deallocates this automatically
/// allocated object, of course.
///
/// \note The algorithm calls only the \ref lemon::Path::addBack()
/// "addBack()" function of the given path structure.
///
/// \return <tt>(*this)</tt>
///
/// \sa cycle()
MinMeanCycle& cyclePath(Path &path) {
if (_local_path) {
delete _cycle_path;
_local_path = false;
}
_cycle_path = &path;
return *this;
}
/// \name Execution control
/// The simplest way to execute the algorithm is to call the \ref run()
/// function.\n
/// If you only need the minimum mean length, you may call
/// \ref findMinMean().
/// @{
/// \brief Run the algorithm.
///
/// This function runs the algorithm.
/// It can be called more than once (e.g. if the underlying digraph
/// and/or the arc lengths have been modified).
///
/// \return \c true if a directed cycle exists in the digraph.
///
/// \note <tt>mmc.run()</tt> is just a shortcut of the following code.
/// \code
/// return mmc.findMinMean() && mmc.findCycle();
/// \endcode
bool run() {
return findMinMean() && findCycle();
}
/// \brief Find the minimum cycle mean.
///
/// This function finds the minimum mean length of the directed
/// cycles in the digraph.
///
/// \return \c true if a directed cycle exists in the digraph.
bool findMinMean() {
// Initialize and find strongly connected components
init();
findComponents();
// Find the minimum cycle mean in the components
for (int comp = 0; comp < _comp_num; ++comp) {
// Find the minimum mean cycle in the current component
if (!buildPolicyGraph(comp)) continue;
while (true) {
findPolicyCycle();
if (!computeNodeDistances()) break;
}
// Update the best cycle (global minimum mean cycle)
if ( !_best_found || (_curr_found &&
_curr_length * _best_size < _best_length * _curr_size) ) {
_best_found = true;
_best_length = _curr_length;
_best_size = _curr_size;
_best_node = _curr_node;
}
}
return _best_found;
}
/// \brief Find a minimum mean directed cycle.
///
/// This function finds a directed cycle of minimum mean length
/// in the digraph using the data computed by findMinMean().
///
/// \return \c true if a directed cycle exists in the digraph.
///
/// \pre \ref findMinMean() must be called before using this function.
bool findCycle() {
if (!_best_found) return false;
_cycle_path->addBack(_policy[_best_node]);
for ( Node v = _best_node;
(v = _gr.target(_policy[v])) != _best_node; ) {
_cycle_path->addBack(_policy[v]);
}
return true;
}
/// @}
/// \name Query Functions
/// The results of the algorithm can be obtained using these
/// functions.\n
/// The algorithm should be executed before using them.
/// @{
/// \brief Return the total length of the found cycle.
///
/// This function returns the total length of the found cycle.
///
/// \pre \ref run() or \ref findMinMean() must be called before
/// using this function.
Value cycleLength() const {
return _best_length;
}
/// \brief Return the number of arcs on the found cycle.
///
/// This function returns the number of arcs on the found cycle.
///
/// \pre \ref run() or \ref findMinMean() must be called before
/// using this function.
int cycleArcNum() const {
return _best_size;
}
/// \brief Return the mean length of the found cycle.
///
/// This function returns the mean length of the found cycle.
///
/// \note <tt>alg.cycleMean()</tt> is just a shortcut of the
/// following code.
/// \code
/// return static_cast<double>(alg.cycleLength()) / alg.cycleArcNum();
/// \endcode
///
/// \pre \ref run() or \ref findMinMean() must be called before
/// using this function.
double cycleMean() const {
return static_cast<double>(_best_length) / _best_size;
}
/// \brief Return the found cycle.
///
/// This function returns a const reference to the path structure
/// storing the found cycle.
///
/// \pre \ref run() or \ref findCycle() must be called before using
/// this function.
///
/// \sa cyclePath()
const Path& cycle() const {
return *_cycle_path;
}
///@}
private:
// Initialize
void init() {
_tol.epsilon(1e-6);
if (!_cycle_path) {
_local_path = true;
_cycle_path = new Path;
}
_queue.resize(countNodes(_gr));
_best_found = false;
_best_length = 0;
_best_size = 1;
_cycle_path->clear();
}
// Find strongly connected components and initialize _comp_nodes
// and _in_arcs
void findComponents() {
_comp_num = stronglyConnectedComponents(_gr, _comp);
_comp_nodes.resize(_comp_num);
if (_comp_num == 1) {
_comp_nodes[0].clear();
for (NodeIt n(_gr); n != INVALID; ++n) {
_comp_nodes[0].push_back(n);
_in_arcs[n].clear();
for (InArcIt a(_gr, n); a != INVALID; ++a) {
_in_arcs[n].push_back(a);
}
}
} else {
for (int i = 0; i < _comp_num; ++i)
_comp_nodes[i].clear();
for (NodeIt n(_gr); n != INVALID; ++n) {
int k = _comp[n];
_comp_nodes[k].push_back(n);
_in_arcs[n].clear();
for (InArcIt a(_gr, n); a != INVALID; ++a) {
if (_comp[_gr.source(a)] == k) _in_arcs[n].push_back(a);
}
}
}
}
// Build the policy graph in the given strongly connected component
// (the out-degree of every node is 1)
bool buildPolicyGraph(int comp) {
_nodes = &(_comp_nodes[comp]);
if (_nodes->size() < 1 ||
(_nodes->size() == 1 && _in_arcs[(*_nodes)[0]].size() == 0)) {
return false;
}
for (int i = 0; i < int(_nodes->size()); ++i) {
_dist[(*_nodes)[i]] = std::numeric_limits<double>::max();
}
Node u, v;
Arc e;
for (int i = 0; i < int(_nodes->size()); ++i) {
v = (*_nodes)[i];
for (int j = 0; j < int(_in_arcs[v].size()); ++j) {
e = _in_arcs[v][j];
u = _gr.source(e);
if (_length[e] < _dist[u]) {
_dist[u] = _length[e];
_policy[u] = e;
}
}
}
return true;
}
// Find the minimum mean cycle in the policy graph
void findPolicyCycle() {
for (int i = 0; i < int(_nodes->size()); ++i) {
_level[(*_nodes)[i]] = -1;
}
Value clength;
int csize;
Node u, v;
_curr_found = false;
for (int i = 0; i < int(_nodes->size()); ++i) {
u = (*_nodes)[i];
if (_level[u] >= 0) continue;
for (; _level[u] < 0; u = _gr.target(_policy[u])) {
_level[u] = i;
}
if (_level[u] == i) {
// A cycle is found
clength = _length[_policy[u]];
csize = 1;
for (v = u; (v = _gr.target(_policy[v])) != u; ) {
clength += _length[_policy[v]];
++csize;
}
if ( !_curr_found ||
(clength * _curr_size < _curr_length * csize) ) {
_curr_found = true;
_curr_length = clength;
_curr_size = csize;
_curr_node = u;
}
}
}
}
// Contract the policy graph and compute node distances
bool computeNodeDistances() {
// Find the component of the main cycle and compute node distances
// using reverse BFS
for (int i = 0; i < int(_nodes->size()); ++i) {
_reached[(*_nodes)[i]] = false;
}
double curr_mean = double(_curr_length) / _curr_size;
_qfront = _qback = 0;
_queue[0] = _curr_node;
_reached[_curr_node] = true;
_dist[_curr_node] = 0;
Node u, v;
Arc e;
while (_qfront <= _qback) {
v = _queue[_qfront++];
for (int j = 0; j < int(_in_arcs[v].size()); ++j) {
e = _in_arcs[v][j];
u = _gr.source(e);
if (_policy[u] == e && !_reached[u]) {
_reached[u] = true;
_dist[u] = _dist[v] + _length[e] - curr_mean;
_queue[++_qback] = u;
}
}
}
// Connect all other nodes to this component and compute node
// distances using reverse BFS
_qfront = 0;
while (_qback < int(_nodes->size())-1) {
v = _queue[_qfront++];
for (int j = 0; j < int(_in_arcs[v].size()); ++j) {
e = _in_arcs[v][j];
u = _gr.source(e);
if (!_reached[u]) {
_reached[u] = true;
_policy[u] = e;
_dist[u] = _dist[v] + _length[e] - curr_mean;
_queue[++_qback] = u;
}
}
}
// Improve node distances
bool improved = false;
for (int i = 0; i < int(_nodes->size()); ++i) {
v = (*_nodes)[i];
for (int j = 0; j < int(_in_arcs[v].size()); ++j) {
e = _in_arcs[v][j];
u = _gr.source(e);
double delta = _dist[v] + _length[e] - curr_mean;
if (_tol.less(delta, _dist[u])) {
_dist[u] = delta;
_policy[u] = e;
improved = true;
}
}
}
return improved;
}
}; //class MinMeanCycle
///@}
} //namespace lemon
#endif //LEMON_MIN_MEAN_CYCLE_H
|