Location: LEMON/LEMON-main/lemon/elevator.h - annotation
Load file history
Happy New Year again
- update the copyright headers + run the source unifier
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 | r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r440:88ed40ad0d4f r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r383:a8a22a96d495 r383:a8a22a96d495 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r383:a8a22a96d495 r379:1bab3a47be88 r383:a8a22a96d495 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r381:b04e431907bc r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r382:61fbd77f0f44 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r382:61fbd77f0f44 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r382:61fbd77f0f44 r382:61fbd77f0f44 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r383:a8a22a96d495 r383:a8a22a96d495 r383:a8a22a96d495 r383:a8a22a96d495 r383:a8a22a96d495 r379:1bab3a47be88 r379:1bab3a47be88 r383:a8a22a96d495 r383:a8a22a96d495 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r383:a8a22a96d495 r383:a8a22a96d495 r379:1bab3a47be88 r383:a8a22a96d495 r383:a8a22a96d495 r383:a8a22a96d495 r379:1bab3a47be88 r383:a8a22a96d495 r383:a8a22a96d495 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r383:a8a22a96d495 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r383:a8a22a96d495 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r383:a8a22a96d495 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r383:a8a22a96d495 r379:1bab3a47be88 r383:a8a22a96d495 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r382:61fbd77f0f44 r382:61fbd77f0f44 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r383:a8a22a96d495 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r382:61fbd77f0f44 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r383:a8a22a96d495 r379:1bab3a47be88 r379:1bab3a47be88 r383:a8a22a96d495 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r382:61fbd77f0f44 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r383:a8a22a96d495 r379:1bab3a47be88 r383:a8a22a96d495 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r383:a8a22a96d495 r379:1bab3a47be88 r383:a8a22a96d495 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r382:61fbd77f0f44 r382:61fbd77f0f44 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r383:a8a22a96d495 r379:1bab3a47be88 r383:a8a22a96d495 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r382:61fbd77f0f44 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r383:a8a22a96d495 r379:1bab3a47be88 r383:a8a22a96d495 r383:a8a22a96d495 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r382:61fbd77f0f44 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r382:61fbd77f0f44 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r380:d916b8995e22 r379:1bab3a47be88 r383:a8a22a96d495 r383:a8a22a96d495 r383:a8a22a96d495 r383:a8a22a96d495 r380:d916b8995e22 r380:d916b8995e22 r382:61fbd77f0f44 r379:1bab3a47be88 r379:1bab3a47be88 r383:a8a22a96d495 r379:1bab3a47be88 r383:a8a22a96d495 r383:a8a22a96d495 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r382:61fbd77f0f44 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r383:a8a22a96d495 r379:1bab3a47be88 r383:a8a22a96d495 r383:a8a22a96d495 r383:a8a22a96d495 r383:a8a22a96d495 r383:a8a22a96d495 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r381:b04e431907bc r381:b04e431907bc r381:b04e431907bc r381:b04e431907bc r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r382:61fbd77f0f44 r382:61fbd77f0f44 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r382:61fbd77f0f44 r382:61fbd77f0f44 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r381:b04e431907bc r381:b04e431907bc r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r383:a8a22a96d495 r379:1bab3a47be88 r383:a8a22a96d495 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r383:a8a22a96d495 r383:a8a22a96d495 r383:a8a22a96d495 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r383:a8a22a96d495 r383:a8a22a96d495 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r383:a8a22a96d495 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r383:a8a22a96d495 r383:a8a22a96d495 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r383:a8a22a96d495 r379:1bab3a47be88 r383:a8a22a96d495 r383:a8a22a96d495 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r383:a8a22a96d495 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r383:a8a22a96d495 r379:1bab3a47be88 r379:1bab3a47be88 r383:a8a22a96d495 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r383:a8a22a96d495 r379:1bab3a47be88 r383:a8a22a96d495 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r383:a8a22a96d495 r379:1bab3a47be88 r383:a8a22a96d495 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r383:a8a22a96d495 r383:a8a22a96d495 r383:a8a22a96d495 r383:a8a22a96d495 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r383:a8a22a96d495 r379:1bab3a47be88 r383:a8a22a96d495 r383:a8a22a96d495 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r380:d916b8995e22 r379:1bab3a47be88 r383:a8a22a96d495 r383:a8a22a96d495 r383:a8a22a96d495 r383:a8a22a96d495 r380:d916b8995e22 r380:d916b8995e22 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r383:a8a22a96d495 r379:1bab3a47be88 r383:a8a22a96d495 r383:a8a22a96d495 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r383:a8a22a96d495 r379:1bab3a47be88 r383:a8a22a96d495 r383:a8a22a96d495 r383:a8a22a96d495 r383:a8a22a96d495 r383:a8a22a96d495 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 r379:1bab3a47be88 | /* -*- mode: C++; indent-tabs-mode: nil; -*-
*
* This file is a part of LEMON, a generic C++ optimization library.
*
* Copyright (C) 2003-2009
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
* (Egervary Research Group on Combinatorial Optimization, EGRES).
*
* Permission to use, modify and distribute this software is granted
* provided that this copyright notice appears in all copies. For
* precise terms see the accompanying LICENSE file.
*
* This software is provided "AS IS" with no warranty of any kind,
* express or implied, and with no claim as to its suitability for any
* purpose.
*
*/
#ifndef LEMON_ELEVATOR_H
#define LEMON_ELEVATOR_H
///\ingroup auxdat
///\file
///\brief Elevator class
///
///Elevator class implements an efficient data structure
///for labeling items in push-relabel type algorithms.
///
#include <lemon/bits/traits.h>
namespace lemon {
///Class for handling "labels" in push-relabel type algorithms.
///A class for handling "labels" in push-relabel type algorithms.
///
///\ingroup auxdat
///Using this class you can assign "labels" (nonnegative integer numbers)
///to the edges or nodes of a graph, manipulate and query them through
///operations typically arising in "push-relabel" type algorithms.
///
///Each item is either \em active or not, and you can also choose a
///highest level active item.
///
///\sa LinkedElevator
///
///\param Graph Type of the underlying graph.
///\param Item Type of the items the data is assigned to (Graph::Node,
///Graph::Arc, Graph::Edge).
template<class Graph, class Item>
class Elevator
{
public:
typedef Item Key;
typedef int Value;
private:
typedef Item *Vit;
typedef typename ItemSetTraits<Graph,Item>::template Map<Vit>::Type VitMap;
typedef typename ItemSetTraits<Graph,Item>::template Map<int>::Type IntMap;
const Graph &_g;
int _max_level;
int _item_num;
VitMap _where;
IntMap _level;
std::vector<Item> _items;
std::vector<Vit> _first;
std::vector<Vit> _last_active;
int _highest_active;
void copy(Item i, Vit p)
{
_where.set(*p=i,p);
}
void copy(Vit s, Vit p)
{
if(s!=p)
{
Item i=*s;
*p=i;
_where.set(i,p);
}
}
void swap(Vit i, Vit j)
{
Item ti=*i;
Vit ct = _where[ti];
_where.set(ti,_where[*i=*j]);
_where.set(*j,ct);
*j=ti;
}
public:
///Constructor with given maximum level.
///Constructor with given maximum level.
///
///\param graph The underlying graph.
///\param max_level The maximum allowed level.
///Set the range of the possible labels to <tt>[0..max_level]</tt>.
Elevator(const Graph &graph,int max_level) :
_g(graph),
_max_level(max_level),
_item_num(_max_level),
_where(graph),
_level(graph,0),
_items(_max_level),
_first(_max_level+2),
_last_active(_max_level+2),
_highest_active(-1) {}
///Constructor.
///Constructor.
///
///\param graph The underlying graph.
///Set the range of the possible labels to <tt>[0..max_level]</tt>,
///where \c max_level is equal to the number of labeled items in the graph.
Elevator(const Graph &graph) :
_g(graph),
_max_level(countItems<Graph, Item>(graph)),
_item_num(_max_level),
_where(graph),
_level(graph,0),
_items(_max_level),
_first(_max_level+2),
_last_active(_max_level+2),
_highest_active(-1)
{
}
///Activate item \c i.
///Activate item \c i.
///\pre Item \c i shouldn't be active before.
void activate(Item i)
{
const int l=_level[i];
swap(_where[i],++_last_active[l]);
if(l>_highest_active) _highest_active=l;
}
///Deactivate item \c i.
///Deactivate item \c i.
///\pre Item \c i must be active before.
void deactivate(Item i)
{
swap(_where[i],_last_active[_level[i]]--);
while(_highest_active>=0 &&
_last_active[_highest_active]<_first[_highest_active])
_highest_active--;
}
///Query whether item \c i is active
bool active(Item i) const { return _where[i]<=_last_active[_level[i]]; }
///Return the level of item \c i.
int operator[](Item i) const { return _level[i]; }
///Return the number of items on level \c l.
int onLevel(int l) const
{
return _first[l+1]-_first[l];
}
///Return true if level \c l is empty.
bool emptyLevel(int l) const
{
return _first[l+1]-_first[l]==0;
}
///Return the number of items above level \c l.
int aboveLevel(int l) const
{
return _first[_max_level+1]-_first[l+1];
}
///Return the number of active items on level \c l.
int activesOnLevel(int l) const
{
return _last_active[l]-_first[l]+1;
}
///Return true if there is no active item on level \c l.
bool activeFree(int l) const
{
return _last_active[l]<_first[l];
}
///Return the maximum allowed level.
int maxLevel() const
{
return _max_level;
}
///\name Highest Active Item
///Functions for working with the highest level
///active item.
///@{
///Return a highest level active item.
///Return a highest level active item or INVALID if there is no active
///item.
Item highestActive() const
{
return _highest_active>=0?*_last_active[_highest_active]:INVALID;
}
///Return the highest active level.
///Return the level of the highest active item or -1 if there is no active
///item.
int highestActiveLevel() const
{
return _highest_active;
}
///Lift the highest active item by one.
///Lift the item returned by highestActive() by one.
///
void liftHighestActive()
{
Item it = *_last_active[_highest_active];
_level.set(it,_level[it]+1);
swap(_last_active[_highest_active]--,_last_active[_highest_active+1]);
--_first[++_highest_active];
}
///Lift the highest active item to the given level.
///Lift the item returned by highestActive() to level \c new_level.
///
///\warning \c new_level must be strictly higher
///than the current level.
///
void liftHighestActive(int new_level)
{
const Item li = *_last_active[_highest_active];
copy(--_first[_highest_active+1],_last_active[_highest_active]--);
for(int l=_highest_active+1;l<new_level;l++)
{
copy(--_first[l+1],_first[l]);
--_last_active[l];
}
copy(li,_first[new_level]);
_level.set(li,new_level);
_highest_active=new_level;
}
///Lift the highest active item to the top level.
///Lift the item returned by highestActive() to the top level and
///deactivate it.
void liftHighestActiveToTop()
{
const Item li = *_last_active[_highest_active];
copy(--_first[_highest_active+1],_last_active[_highest_active]--);
for(int l=_highest_active+1;l<_max_level;l++)
{
copy(--_first[l+1],_first[l]);
--_last_active[l];
}
copy(li,_first[_max_level]);
--_last_active[_max_level];
_level.set(li,_max_level);
while(_highest_active>=0 &&
_last_active[_highest_active]<_first[_highest_active])
_highest_active--;
}
///@}
///\name Active Item on Certain Level
///Functions for working with the active items.
///@{
///Return an active item on level \c l.
///Return an active item on level \c l or \ref INVALID if there is no such
///an item. (\c l must be from the range [0...\c max_level].
Item activeOn(int l) const
{
return _last_active[l]>=_first[l]?*_last_active[l]:INVALID;
}
///Lift the active item returned by \c activeOn(level) by one.
///Lift the active item returned by \ref activeOn() "activeOn(level)"
///by one.
Item liftActiveOn(int level)
{
Item it =*_last_active[level];
_level.set(it,_level[it]+1);
swap(_last_active[level]--, --_first[level+1]);
if (level+1>_highest_active) ++_highest_active;
}
///Lift the active item returned by \c activeOn(level) to the given level.
///Lift the active item returned by \ref activeOn() "activeOn(level)"
///to the given level.
void liftActiveOn(int level, int new_level)
{
const Item ai = *_last_active[level];
copy(--_first[level+1], _last_active[level]--);
for(int l=level+1;l<new_level;l++)
{
copy(_last_active[l],_first[l]);
copy(--_first[l+1], _last_active[l]--);
}
copy(ai,_first[new_level]);
_level.set(ai,new_level);
if (new_level>_highest_active) _highest_active=new_level;
}
///Lift the active item returned by \c activeOn(level) to the top level.
///Lift the active item returned by \ref activeOn() "activeOn(level)"
///to the top level and deactivate it.
void liftActiveToTop(int level)
{
const Item ai = *_last_active[level];
copy(--_first[level+1],_last_active[level]--);
for(int l=level+1;l<_max_level;l++)
{
copy(_last_active[l],_first[l]);
copy(--_first[l+1], _last_active[l]--);
}
copy(ai,_first[_max_level]);
--_last_active[_max_level];
_level.set(ai,_max_level);
if (_highest_active==level) {
while(_highest_active>=0 &&
_last_active[_highest_active]<_first[_highest_active])
_highest_active--;
}
}
///@}
///Lift an active item to a higher level.
///Lift an active item to a higher level.
///\param i The item to be lifted. It must be active.
///\param new_level The new level of \c i. It must be strictly higher
///than the current level.
///
void lift(Item i, int new_level)
{
const int lo = _level[i];
const Vit w = _where[i];
copy(_last_active[lo],w);
copy(--_first[lo+1],_last_active[lo]--);
for(int l=lo+1;l<new_level;l++)
{
copy(_last_active[l],_first[l]);
copy(--_first[l+1],_last_active[l]--);
}
copy(i,_first[new_level]);
_level.set(i,new_level);
if(new_level>_highest_active) _highest_active=new_level;
}
///Move an inactive item to the top but one level (in a dirty way).
///This function moves an inactive item from the top level to the top
///but one level (in a dirty way).
///\warning It makes the underlying datastructure corrupt, so use it
///only if you really know what it is for.
///\pre The item is on the top level.
void dirtyTopButOne(Item i) {
_level.set(i,_max_level - 1);
}
///Lift all items on and above the given level to the top level.
///This function lifts all items on and above level \c l to the top
///level and deactivates them.
void liftToTop(int l)
{
const Vit f=_first[l];
const Vit tl=_first[_max_level];
for(Vit i=f;i!=tl;++i)
_level.set(*i,_max_level);
for(int i=l;i<=_max_level;i++)
{
_first[i]=f;
_last_active[i]=f-1;
}
for(_highest_active=l-1;
_highest_active>=0 &&
_last_active[_highest_active]<_first[_highest_active];
_highest_active--) ;
}
private:
int _init_lev;
Vit _init_num;
public:
///\name Initialization
///Using these functions you can initialize the levels of the items.
///\n
///The initialization must be started with calling \c initStart().
///Then the items should be listed level by level starting with the
///lowest one (level 0) using \c initAddItem() and \c initNewLevel().
///Finally \c initFinish() must be called.
///The items not listed are put on the highest level.
///@{
///Start the initialization process.
void initStart()
{
_init_lev=0;
_init_num=&_items[0];
_first[0]=&_items[0];
_last_active[0]=&_items[0]-1;
Vit n=&_items[0];
for(typename ItemSetTraits<Graph,Item>::ItemIt i(_g);i!=INVALID;++i)
{
*n=i;
_where.set(i,n);
_level.set(i,_max_level);
++n;
}
}
///Add an item to the current level.
void initAddItem(Item i)
{
swap(_where[i],_init_num);
_level.set(i,_init_lev);
++_init_num;
}
///Start a new level.
///Start a new level.
///It shouldn't be used before the items on level 0 are listed.
void initNewLevel()
{
_init_lev++;
_first[_init_lev]=_init_num;
_last_active[_init_lev]=_init_num-1;
}
///Finalize the initialization process.
void initFinish()
{
for(_init_lev++;_init_lev<=_max_level;_init_lev++)
{
_first[_init_lev]=_init_num;
_last_active[_init_lev]=_init_num-1;
}
_first[_max_level+1]=&_items[0]+_item_num;
_last_active[_max_level+1]=&_items[0]+_item_num-1;
_highest_active = -1;
}
///@}
};
///Class for handling "labels" in push-relabel type algorithms.
///A class for handling "labels" in push-relabel type algorithms.
///
///\ingroup auxdat
///Using this class you can assign "labels" (nonnegative integer numbers)
///to the edges or nodes of a graph, manipulate and query them through
///operations typically arising in "push-relabel" type algorithms.
///
///Each item is either \em active or not, and you can also choose a
///highest level active item.
///
///\sa Elevator
///
///\param Graph Type of the underlying graph.
///\param Item Type of the items the data is assigned to (Graph::Node,
///Graph::Arc, Graph::Edge).
template <class Graph, class Item>
class LinkedElevator {
public:
typedef Item Key;
typedef int Value;
private:
typedef typename ItemSetTraits<Graph,Item>::
template Map<Item>::Type ItemMap;
typedef typename ItemSetTraits<Graph,Item>::
template Map<int>::Type IntMap;
typedef typename ItemSetTraits<Graph,Item>::
template Map<bool>::Type BoolMap;
const Graph &_graph;
int _max_level;
int _item_num;
std::vector<Item> _first, _last;
ItemMap _prev, _next;
int _highest_active;
IntMap _level;
BoolMap _active;
public:
///Constructor with given maximum level.
///Constructor with given maximum level.
///
///\param graph The underlying graph.
///\param max_level The maximum allowed level.
///Set the range of the possible labels to <tt>[0..max_level]</tt>.
LinkedElevator(const Graph& graph, int max_level)
: _graph(graph), _max_level(max_level), _item_num(_max_level),
_first(_max_level + 1), _last(_max_level + 1),
_prev(graph), _next(graph),
_highest_active(-1), _level(graph), _active(graph) {}
///Constructor.
///Constructor.
///
///\param graph The underlying graph.
///Set the range of the possible labels to <tt>[0..max_level]</tt>,
///where \c max_level is equal to the number of labeled items in the graph.
LinkedElevator(const Graph& graph)
: _graph(graph), _max_level(countItems<Graph, Item>(graph)),
_item_num(_max_level),
_first(_max_level + 1), _last(_max_level + 1),
_prev(graph, INVALID), _next(graph, INVALID),
_highest_active(-1), _level(graph), _active(graph) {}
///Activate item \c i.
///Activate item \c i.
///\pre Item \c i shouldn't be active before.
void activate(Item i) {
_active.set(i, true);
int level = _level[i];
if (level > _highest_active) {
_highest_active = level;
}
if (_prev[i] == INVALID || _active[_prev[i]]) return;
//unlace
_next.set(_prev[i], _next[i]);
if (_next[i] != INVALID) {
_prev.set(_next[i], _prev[i]);
} else {
_last[level] = _prev[i];
}
//lace
_next.set(i, _first[level]);
_prev.set(_first[level], i);
_prev.set(i, INVALID);
_first[level] = i;
}
///Deactivate item \c i.
///Deactivate item \c i.
///\pre Item \c i must be active before.
void deactivate(Item i) {
_active.set(i, false);
int level = _level[i];
if (_next[i] == INVALID || !_active[_next[i]])
goto find_highest_level;
//unlace
_prev.set(_next[i], _prev[i]);
if (_prev[i] != INVALID) {
_next.set(_prev[i], _next[i]);
} else {
_first[_level[i]] = _next[i];
}
//lace
_prev.set(i, _last[level]);
_next.set(_last[level], i);
_next.set(i, INVALID);
_last[level] = i;
find_highest_level:
if (level == _highest_active) {
while (_highest_active >= 0 && activeFree(_highest_active))
--_highest_active;
}
}
///Query whether item \c i is active
bool active(Item i) const { return _active[i]; }
///Return the level of item \c i.
int operator[](Item i) const { return _level[i]; }
///Return the number of items on level \c l.
int onLevel(int l) const {
int num = 0;
Item n = _first[l];
while (n != INVALID) {
++num;
n = _next[n];
}
return num;
}
///Return true if the level is empty.
bool emptyLevel(int l) const {
return _first[l] == INVALID;
}
///Return the number of items above level \c l.
int aboveLevel(int l) const {
int num = 0;
for (int level = l + 1; level < _max_level; ++level)
num += onLevel(level);
return num;
}
///Return the number of active items on level \c l.
int activesOnLevel(int l) const {
int num = 0;
Item n = _first[l];
while (n != INVALID && _active[n]) {
++num;
n = _next[n];
}
return num;
}
///Return true if there is no active item on level \c l.
bool activeFree(int l) const {
return _first[l] == INVALID || !_active[_first[l]];
}
///Return the maximum allowed level.
int maxLevel() const {
return _max_level;
}
///\name Highest Active Item
///Functions for working with the highest level
///active item.
///@{
///Return a highest level active item.
///Return a highest level active item or INVALID if there is no active
///item.
Item highestActive() const {
return _highest_active >= 0 ? _first[_highest_active] : INVALID;
}
///Return the highest active level.
///Return the level of the highest active item or -1 if there is no active
///item.
int highestActiveLevel() const {
return _highest_active;
}
///Lift the highest active item by one.
///Lift the item returned by highestActive() by one.
///
void liftHighestActive() {
Item i = _first[_highest_active];
if (_next[i] != INVALID) {
_prev.set(_next[i], INVALID);
_first[_highest_active] = _next[i];
} else {
_first[_highest_active] = INVALID;
_last[_highest_active] = INVALID;
}
_level.set(i, ++_highest_active);
if (_first[_highest_active] == INVALID) {
_first[_highest_active] = i;
_last[_highest_active] = i;
_prev.set(i, INVALID);
_next.set(i, INVALID);
} else {
_prev.set(_first[_highest_active], i);
_next.set(i, _first[_highest_active]);
_first[_highest_active] = i;
}
}
///Lift the highest active item to the given level.
///Lift the item returned by highestActive() to level \c new_level.
///
///\warning \c new_level must be strictly higher
///than the current level.
///
void liftHighestActive(int new_level) {
Item i = _first[_highest_active];
if (_next[i] != INVALID) {
_prev.set(_next[i], INVALID);
_first[_highest_active] = _next[i];
} else {
_first[_highest_active] = INVALID;
_last[_highest_active] = INVALID;
}
_level.set(i, _highest_active = new_level);
if (_first[_highest_active] == INVALID) {
_first[_highest_active] = _last[_highest_active] = i;
_prev.set(i, INVALID);
_next.set(i, INVALID);
} else {
_prev.set(_first[_highest_active], i);
_next.set(i, _first[_highest_active]);
_first[_highest_active] = i;
}
}
///Lift the highest active item to the top level.
///Lift the item returned by highestActive() to the top level and
///deactivate it.
void liftHighestActiveToTop() {
Item i = _first[_highest_active];
_level.set(i, _max_level);
if (_next[i] != INVALID) {
_prev.set(_next[i], INVALID);
_first[_highest_active] = _next[i];
} else {
_first[_highest_active] = INVALID;
_last[_highest_active] = INVALID;
}
while (_highest_active >= 0 && activeFree(_highest_active))
--_highest_active;
}
///@}
///\name Active Item on Certain Level
///Functions for working with the active items.
///@{
///Return an active item on level \c l.
///Return an active item on level \c l or \ref INVALID if there is no such
///an item. (\c l must be from the range [0...\c max_level].
Item activeOn(int l) const
{
return _active[_first[l]] ? _first[l] : INVALID;
}
///Lift the active item returned by \c activeOn(l) by one.
///Lift the active item returned by \ref activeOn() "activeOn(l)"
///by one.
Item liftActiveOn(int l)
{
Item i = _first[l];
if (_next[i] != INVALID) {
_prev.set(_next[i], INVALID);
_first[l] = _next[i];
} else {
_first[l] = INVALID;
_last[l] = INVALID;
}
_level.set(i, ++l);
if (_first[l] == INVALID) {
_first[l] = _last[l] = i;
_prev.set(i, INVALID);
_next.set(i, INVALID);
} else {
_prev.set(_first[l], i);
_next.set(i, _first[l]);
_first[l] = i;
}
if (_highest_active < l) {
_highest_active = l;
}
}
///Lift the active item returned by \c activeOn(l) to the given level.
///Lift the active item returned by \ref activeOn() "activeOn(l)"
///to the given level.
void liftActiveOn(int l, int new_level)
{
Item i = _first[l];
if (_next[i] != INVALID) {
_prev.set(_next[i], INVALID);
_first[l] = _next[i];
} else {
_first[l] = INVALID;
_last[l] = INVALID;
}
_level.set(i, l = new_level);
if (_first[l] == INVALID) {
_first[l] = _last[l] = i;
_prev.set(i, INVALID);
_next.set(i, INVALID);
} else {
_prev.set(_first[l], i);
_next.set(i, _first[l]);
_first[l] = i;
}
if (_highest_active < l) {
_highest_active = l;
}
}
///Lift the active item returned by \c activeOn(l) to the top level.
///Lift the active item returned by \ref activeOn() "activeOn(l)"
///to the top level and deactivate it.
void liftActiveToTop(int l)
{
Item i = _first[l];
if (_next[i] != INVALID) {
_prev.set(_next[i], INVALID);
_first[l] = _next[i];
} else {
_first[l] = INVALID;
_last[l] = INVALID;
}
_level.set(i, _max_level);
if (l == _highest_active) {
while (_highest_active >= 0 && activeFree(_highest_active))
--_highest_active;
}
}
///@}
/// \brief Lift an active item to a higher level.
///
/// Lift an active item to a higher level.
/// \param i The item to be lifted. It must be active.
/// \param new_level The new level of \c i. It must be strictly higher
/// than the current level.
///
void lift(Item i, int new_level) {
if (_next[i] != INVALID) {
_prev.set(_next[i], _prev[i]);
} else {
_last[new_level] = _prev[i];
}
if (_prev[i] != INVALID) {
_next.set(_prev[i], _next[i]);
} else {
_first[new_level] = _next[i];
}
_level.set(i, new_level);
if (_first[new_level] == INVALID) {
_first[new_level] = _last[new_level] = i;
_prev.set(i, INVALID);
_next.set(i, INVALID);
} else {
_prev.set(_first[new_level], i);
_next.set(i, _first[new_level]);
_first[new_level] = i;
}
if (_highest_active < new_level) {
_highest_active = new_level;
}
}
///Move an inactive item to the top but one level (in a dirty way).
///This function moves an inactive item from the top level to the top
///but one level (in a dirty way).
///\warning It makes the underlying datastructure corrupt, so use it
///only if you really know what it is for.
///\pre The item is on the top level.
void dirtyTopButOne(Item i) {
_level.set(i, _max_level - 1);
}
///Lift all items on and above the given level to the top level.
///This function lifts all items on and above level \c l to the top
///level and deactivates them.
void liftToTop(int l) {
for (int i = l + 1; _first[i] != INVALID; ++i) {
Item n = _first[i];
while (n != INVALID) {
_level.set(n, _max_level);
n = _next[n];
}
_first[i] = INVALID;
_last[i] = INVALID;
}
if (_highest_active > l - 1) {
_highest_active = l - 1;
while (_highest_active >= 0 && activeFree(_highest_active))
--_highest_active;
}
}
private:
int _init_level;
public:
///\name Initialization
///Using these functions you can initialize the levels of the items.
///\n
///The initialization must be started with calling \c initStart().
///Then the items should be listed level by level starting with the
///lowest one (level 0) using \c initAddItem() and \c initNewLevel().
///Finally \c initFinish() must be called.
///The items not listed are put on the highest level.
///@{
///Start the initialization process.
void initStart() {
for (int i = 0; i <= _max_level; ++i) {
_first[i] = _last[i] = INVALID;
}
_init_level = 0;
for(typename ItemSetTraits<Graph,Item>::ItemIt i(_graph);
i != INVALID; ++i) {
_level.set(i, _max_level);
_active.set(i, false);
}
}
///Add an item to the current level.
void initAddItem(Item i) {
_level.set(i, _init_level);
if (_last[_init_level] == INVALID) {
_first[_init_level] = i;
_last[_init_level] = i;
_prev.set(i, INVALID);
_next.set(i, INVALID);
} else {
_prev.set(i, _last[_init_level]);
_next.set(i, INVALID);
_next.set(_last[_init_level], i);
_last[_init_level] = i;
}
}
///Start a new level.
///Start a new level.
///It shouldn't be used before the items on level 0 are listed.
void initNewLevel() {
++_init_level;
}
///Finalize the initialization process.
void initFinish() {
_highest_active = -1;
}
///@}
};
} //END OF NAMESPACE LEMON
#endif
|