Location: LEMON/LEMON-main/lemon/hartmann_orlin.h - annotation
Load file history
Add HartmannOrlin algorithm class (#179)
This algorithm is an improved version of Karp's original method,
it applies an efficient early termination scheme.
The interface is the same as Karp's and Howard's interface.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 | r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 r766:97744b6dabf8 | /* -*- C++ -*-
*
* This file is a part of LEMON, a generic C++ optimization library
*
* Copyright (C) 2003-2008
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
* (Egervary Research Group on Combinatorial Optimization, EGRES).
*
* Permission to use, modify and distribute this software is granted
* provided that this copyright notice appears in all copies. For
* precise terms see the accompanying LICENSE file.
*
* This software is provided "AS IS" with no warranty of any kind,
* express or implied, and with no claim as to its suitability for any
* purpose.
*
*/
#ifndef LEMON_HARTMANN_ORLIN_H
#define LEMON_HARTMANN_ORLIN_H
/// \ingroup shortest_path
///
/// \file
/// \brief Hartmann-Orlin's algorithm for finding a minimum mean cycle.
#include <vector>
#include <limits>
#include <lemon/core.h>
#include <lemon/path.h>
#include <lemon/tolerance.h>
#include <lemon/connectivity.h>
namespace lemon {
/// \brief Default traits class of HartmannOrlin algorithm.
///
/// Default traits class of HartmannOrlin algorithm.
/// \tparam GR The type of the digraph.
/// \tparam LEN The type of the length map.
/// It must conform to the \ref concepts::Rea_data "Rea_data" concept.
#ifdef DOXYGEN
template <typename GR, typename LEN>
#else
template <typename GR, typename LEN,
bool integer = std::numeric_limits<typename LEN::Value>::is_integer>
#endif
struct HartmannOrlinDefaultTraits
{
/// The type of the digraph
typedef GR Digraph;
/// The type of the length map
typedef LEN LengthMap;
/// The type of the arc lengths
typedef typename LengthMap::Value Value;
/// \brief The large value type used for internal computations
///
/// The large value type used for internal computations.
/// It is \c long \c long if the \c Value type is integer,
/// otherwise it is \c double.
/// \c Value must be convertible to \c LargeValue.
typedef double LargeValue;
/// The tolerance type used for internal computations
typedef lemon::Tolerance<LargeValue> Tolerance;
/// \brief The path type of the found cycles
///
/// The path type of the found cycles.
/// It must conform to the \ref lemon::concepts::Path "Path" concept
/// and it must have an \c addBack() function.
typedef lemon::Path<Digraph> Path;
};
// Default traits class for integer value types
template <typename GR, typename LEN>
struct HartmannOrlinDefaultTraits<GR, LEN, true>
{
typedef GR Digraph;
typedef LEN LengthMap;
typedef typename LengthMap::Value Value;
#ifdef LEMON_HAVE_LONG_LONG
typedef long long LargeValue;
#else
typedef long LargeValue;
#endif
typedef lemon::Tolerance<LargeValue> Tolerance;
typedef lemon::Path<Digraph> Path;
};
/// \addtogroup shortest_path
/// @{
/// \brief Implementation of the Hartmann-Orlin algorithm for finding
/// a minimum mean cycle.
///
/// This class implements the Hartmann-Orlin algorithm for finding
/// a directed cycle of minimum mean length (cost) in a digraph.
/// It is an improved version of \ref Karp "Karp's original algorithm",
/// it applies an efficient early termination scheme.
///
/// \tparam GR The type of the digraph the algorithm runs on.
/// \tparam LEN The type of the length map. The default
/// map type is \ref concepts::Digraph::ArcMap "GR::ArcMap<int>".
#ifdef DOXYGEN
template <typename GR, typename LEN, typename TR>
#else
template < typename GR,
typename LEN = typename GR::template ArcMap<int>,
typename TR = HartmannOrlinDefaultTraits<GR, LEN> >
#endif
class HartmannOrlin
{
public:
/// The type of the digraph
typedef typename TR::Digraph Digraph;
/// The type of the length map
typedef typename TR::LengthMap LengthMap;
/// The type of the arc lengths
typedef typename TR::Value Value;
/// \brief The large value type
///
/// The large value type used for internal computations.
/// Using the \ref HartmannOrlinDefaultTraits "default traits class",
/// it is \c long \c long if the \c Value type is integer,
/// otherwise it is \c double.
typedef typename TR::LargeValue LargeValue;
/// The tolerance type
typedef typename TR::Tolerance Tolerance;
/// \brief The path type of the found cycles
///
/// The path type of the found cycles.
/// Using the \ref HartmannOrlinDefaultTraits "default traits class",
/// it is \ref lemon::Path "Path<Digraph>".
typedef typename TR::Path Path;
/// The \ref HartmannOrlinDefaultTraits "traits class" of the algorithm
typedef TR Traits;
private:
TEMPLATE_DIGRAPH_TYPEDEFS(Digraph);
// Data sturcture for path data
struct PathData
{
bool found;
LargeValue dist;
Arc pred;
PathData(bool f = false, LargeValue d = 0, Arc p = INVALID) :
found(f), dist(d), pred(p) {}
};
typedef typename Digraph::template NodeMap<std::vector<PathData> >
PathDataNodeMap;
private:
// The digraph the algorithm runs on
const Digraph &_gr;
// The length of the arcs
const LengthMap &_length;
// Data for storing the strongly connected components
int _comp_num;
typename Digraph::template NodeMap<int> _comp;
std::vector<std::vector<Node> > _comp_nodes;
std::vector<Node>* _nodes;
typename Digraph::template NodeMap<std::vector<Arc> > _out_arcs;
// Data for the found cycles
bool _curr_found, _best_found;
LargeValue _curr_length, _best_length;
int _curr_size, _best_size;
Node _curr_node, _best_node;
int _curr_level, _best_level;
Path *_cycle_path;
bool _local_path;
// Node map for storing path data
PathDataNodeMap _data;
// The processed nodes in the last round
std::vector<Node> _process;
Tolerance _tolerance;
public:
/// \name Named Template Parameters
/// @{
template <typename T>
struct SetLargeValueTraits : public Traits {
typedef T LargeValue;
typedef lemon::Tolerance<T> Tolerance;
};
/// \brief \ref named-templ-param "Named parameter" for setting
/// \c LargeValue type.
///
/// \ref named-templ-param "Named parameter" for setting \c LargeValue
/// type. It is used for internal computations in the algorithm.
template <typename T>
struct SetLargeValue
: public HartmannOrlin<GR, LEN, SetLargeValueTraits<T> > {
typedef HartmannOrlin<GR, LEN, SetLargeValueTraits<T> > Create;
};
template <typename T>
struct SetPathTraits : public Traits {
typedef T Path;
};
/// \brief \ref named-templ-param "Named parameter" for setting
/// \c %Path type.
///
/// \ref named-templ-param "Named parameter" for setting the \c %Path
/// type of the found cycles.
/// It must conform to the \ref lemon::concepts::Path "Path" concept
/// and it must have an \c addFront() function.
template <typename T>
struct SetPath
: public HartmannOrlin<GR, LEN, SetPathTraits<T> > {
typedef HartmannOrlin<GR, LEN, SetPathTraits<T> > Create;
};
/// @}
public:
/// \brief Constructor.
///
/// The constructor of the class.
///
/// \param digraph The digraph the algorithm runs on.
/// \param length The lengths (costs) of the arcs.
HartmannOrlin( const Digraph &digraph,
const LengthMap &length ) :
_gr(digraph), _length(length), _comp(digraph), _out_arcs(digraph),
_best_found(false), _best_length(0), _best_size(1),
_cycle_path(NULL), _local_path(false), _data(digraph)
{}
/// Destructor.
~HartmannOrlin() {
if (_local_path) delete _cycle_path;
}
/// \brief Set the path structure for storing the found cycle.
///
/// This function sets an external path structure for storing the
/// found cycle.
///
/// If you don't call this function before calling \ref run() or
/// \ref findMinMean(), it will allocate a local \ref Path "path"
/// structure. The destuctor deallocates this automatically
/// allocated object, of course.
///
/// \note The algorithm calls only the \ref lemon::Path::addFront()
/// "addFront()" function of the given path structure.
///
/// \return <tt>(*this)</tt>
HartmannOrlin& cycle(Path &path) {
if (_local_path) {
delete _cycle_path;
_local_path = false;
}
_cycle_path = &path;
return *this;
}
/// \name Execution control
/// The simplest way to execute the algorithm is to call the \ref run()
/// function.\n
/// If you only need the minimum mean length, you may call
/// \ref findMinMean().
/// @{
/// \brief Run the algorithm.
///
/// This function runs the algorithm.
/// It can be called more than once (e.g. if the underlying digraph
/// and/or the arc lengths have been modified).
///
/// \return \c true if a directed cycle exists in the digraph.
///
/// \note <tt>mmc.run()</tt> is just a shortcut of the following code.
/// \code
/// return mmc.findMinMean() && mmc.findCycle();
/// \endcode
bool run() {
return findMinMean() && findCycle();
}
/// \brief Find the minimum cycle mean.
///
/// This function finds the minimum mean length of the directed
/// cycles in the digraph.
///
/// \return \c true if a directed cycle exists in the digraph.
bool findMinMean() {
// Initialization and find strongly connected components
init();
findComponents();
// Find the minimum cycle mean in the components
for (int comp = 0; comp < _comp_num; ++comp) {
if (!initComponent(comp)) continue;
processRounds();
// Update the best cycle (global minimum mean cycle)
if ( _curr_found && (!_best_found ||
_curr_length * _best_size < _best_length * _curr_size) ) {
_best_found = true;
_best_length = _curr_length;
_best_size = _curr_size;
_best_node = _curr_node;
_best_level = _curr_level;
}
}
return _best_found;
}
/// \brief Find a minimum mean directed cycle.
///
/// This function finds a directed cycle of minimum mean length
/// in the digraph using the data computed by findMinMean().
///
/// \return \c true if a directed cycle exists in the digraph.
///
/// \pre \ref findMinMean() must be called before using this function.
bool findCycle() {
if (!_best_found) return false;
IntNodeMap reached(_gr, -1);
int r = _best_level + 1;
Node u = _best_node;
while (reached[u] < 0) {
reached[u] = --r;
u = _gr.source(_data[u][r].pred);
}
r = reached[u];
Arc e = _data[u][r].pred;
_cycle_path->addFront(e);
_best_length = _length[e];
_best_size = 1;
Node v;
while ((v = _gr.source(e)) != u) {
e = _data[v][--r].pred;
_cycle_path->addFront(e);
_best_length += _length[e];
++_best_size;
}
return true;
}
/// @}
/// \name Query Functions
/// The results of the algorithm can be obtained using these
/// functions.\n
/// The algorithm should be executed before using them.
/// @{
/// \brief Return the total length of the found cycle.
///
/// This function returns the total length of the found cycle.
///
/// \pre \ref run() or \ref findMinMean() must be called before
/// using this function.
LargeValue cycleLength() const {
return _best_length;
}
/// \brief Return the number of arcs on the found cycle.
///
/// This function returns the number of arcs on the found cycle.
///
/// \pre \ref run() or \ref findMinMean() must be called before
/// using this function.
int cycleArcNum() const {
return _best_size;
}
/// \brief Return the mean length of the found cycle.
///
/// This function returns the mean length of the found cycle.
///
/// \note <tt>alg.cycleMean()</tt> is just a shortcut of the
/// following code.
/// \code
/// return static_cast<double>(alg.cycleLength()) / alg.cycleArcNum();
/// \endcode
///
/// \pre \ref run() or \ref findMinMean() must be called before
/// using this function.
double cycleMean() const {
return static_cast<double>(_best_length) / _best_size;
}
/// \brief Return the found cycle.
///
/// This function returns a const reference to the path structure
/// storing the found cycle.
///
/// \pre \ref run() or \ref findCycle() must be called before using
/// this function.
const Path& cycle() const {
return *_cycle_path;
}
///@}
private:
// Initialization
void init() {
if (!_cycle_path) {
_local_path = true;
_cycle_path = new Path;
}
_cycle_path->clear();
_best_found = false;
_best_length = 0;
_best_size = 1;
_cycle_path->clear();
for (NodeIt u(_gr); u != INVALID; ++u)
_data[u].clear();
}
// Find strongly connected components and initialize _comp_nodes
// and _out_arcs
void findComponents() {
_comp_num = stronglyConnectedComponents(_gr, _comp);
_comp_nodes.resize(_comp_num);
if (_comp_num == 1) {
_comp_nodes[0].clear();
for (NodeIt n(_gr); n != INVALID; ++n) {
_comp_nodes[0].push_back(n);
_out_arcs[n].clear();
for (OutArcIt a(_gr, n); a != INVALID; ++a) {
_out_arcs[n].push_back(a);
}
}
} else {
for (int i = 0; i < _comp_num; ++i)
_comp_nodes[i].clear();
for (NodeIt n(_gr); n != INVALID; ++n) {
int k = _comp[n];
_comp_nodes[k].push_back(n);
_out_arcs[n].clear();
for (OutArcIt a(_gr, n); a != INVALID; ++a) {
if (_comp[_gr.target(a)] == k) _out_arcs[n].push_back(a);
}
}
}
}
// Initialize path data for the current component
bool initComponent(int comp) {
_nodes = &(_comp_nodes[comp]);
int n = _nodes->size();
if (n < 1 || (n == 1 && _out_arcs[(*_nodes)[0]].size() == 0)) {
return false;
}
for (int i = 0; i < n; ++i) {
_data[(*_nodes)[i]].resize(n + 1);
}
return true;
}
// Process all rounds of computing path data for the current component.
// _data[v][k] is the length of a shortest directed walk from the root
// node to node v containing exactly k arcs.
void processRounds() {
Node start = (*_nodes)[0];
_data[start][0] = PathData(true, 0);
_process.clear();
_process.push_back(start);
int k, n = _nodes->size();
int next_check = 4;
bool terminate = false;
for (k = 1; k <= n && int(_process.size()) < n && !terminate; ++k) {
processNextBuildRound(k);
if (k == next_check || k == n) {
terminate = checkTermination(k);
next_check = next_check * 3 / 2;
}
}
for ( ; k <= n && !terminate; ++k) {
processNextFullRound(k);
if (k == next_check || k == n) {
terminate = checkTermination(k);
next_check = next_check * 3 / 2;
}
}
}
// Process one round and rebuild _process
void processNextBuildRound(int k) {
std::vector<Node> next;
Node u, v;
Arc e;
LargeValue d;
for (int i = 0; i < int(_process.size()); ++i) {
u = _process[i];
for (int j = 0; j < int(_out_arcs[u].size()); ++j) {
e = _out_arcs[u][j];
v = _gr.target(e);
d = _data[u][k-1].dist + _length[e];
if (!_data[v][k].found) {
next.push_back(v);
_data[v][k] = PathData(true, _data[u][k-1].dist + _length[e], e);
}
else if (_tolerance.less(d, _data[v][k].dist)) {
_data[v][k] = PathData(true, d, e);
}
}
}
_process.swap(next);
}
// Process one round using _nodes instead of _process
void processNextFullRound(int k) {
Node u, v;
Arc e;
LargeValue d;
for (int i = 0; i < int(_nodes->size()); ++i) {
u = (*_nodes)[i];
for (int j = 0; j < int(_out_arcs[u].size()); ++j) {
e = _out_arcs[u][j];
v = _gr.target(e);
d = _data[u][k-1].dist + _length[e];
if (!_data[v][k].found || _tolerance.less(d, _data[v][k].dist)) {
_data[v][k] = PathData(true, d, e);
}
}
}
}
// Check early termination
bool checkTermination(int k) {
typedef std::pair<int, int> Pair;
typename GR::template NodeMap<Pair> level(_gr, Pair(-1, 0));
typename GR::template NodeMap<LargeValue> pi(_gr);
int n = _nodes->size();
LargeValue length;
int size;
Node u;
// Search for cycles that are already found
_curr_found = false;
for (int i = 0; i < n; ++i) {
u = (*_nodes)[i];
if (!_data[u][k].found) continue;
for (int j = k; j >= 0; --j) {
if (level[u].first == i && level[u].second > 0) {
// A cycle is found
length = _data[u][level[u].second].dist - _data[u][j].dist;
size = level[u].second - j;
if (!_curr_found || length * _curr_size < _curr_length * size) {
_curr_length = length;
_curr_size = size;
_curr_node = u;
_curr_level = level[u].second;
_curr_found = true;
}
}
level[u] = Pair(i, j);
u = _gr.source(_data[u][j].pred);
}
}
// If at least one cycle is found, check the optimality condition
LargeValue d;
if (_curr_found && k < n) {
// Find node potentials
for (int i = 0; i < n; ++i) {
u = (*_nodes)[i];
pi[u] = std::numeric_limits<LargeValue>::max();
for (int j = 0; j <= k; ++j) {
d = _data[u][j].dist * _curr_size - j * _curr_length;
if (_data[u][j].found && _tolerance.less(d, pi[u])) {
pi[u] = d;
}
}
}
// Check the optimality condition for all arcs
bool done = true;
for (ArcIt a(_gr); a != INVALID; ++a) {
if (_tolerance.less(_length[a] * _curr_size - _curr_length,
pi[_gr.target(a)] - pi[_gr.source(a)]) ) {
done = false;
break;
}
}
return done;
}
return (k == n);
}
}; //class HartmannOrlin
///@}
} //namespace lemon
#endif //LEMON_HARTMANN_ORLIN_H
|