Location: LEMON/LEMON-main/lemon/concepts/graph.h - annotation
Load file history
Merge
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 | r209:765619b7cbb2 r57:c1acf0018c0a r209:765619b7cbb2 r57:c1acf0018c0a r440:88ed40ad0d4f r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r734:bd72f8d20f33 r57:c1acf0018c0a r529:f5bc148f7e1f r529:f5bc148f7e1f r57:c1acf0018c0a r57:c1acf0018c0a r734:bd72f8d20f33 r734:bd72f8d20f33 r220:a5d8c039f218 r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r734:bd72f8d20f33 r57:c1acf0018c0a r734:bd72f8d20f33 r734:bd72f8d20f33 r57:c1acf0018c0a r734:bd72f8d20f33 r734:bd72f8d20f33 r734:bd72f8d20f33 r57:c1acf0018c0a r734:bd72f8d20f33 r734:bd72f8d20f33 r57:c1acf0018c0a r734:bd72f8d20f33 r734:bd72f8d20f33 r734:bd72f8d20f33 r734:bd72f8d20f33 r734:bd72f8d20f33 r734:bd72f8d20f33 r734:bd72f8d20f33 r734:bd72f8d20f33 r734:bd72f8d20f33 r734:bd72f8d20f33 r734:bd72f8d20f33 r734:bd72f8d20f33 r734:bd72f8d20f33 r57:c1acf0018c0a r734:bd72f8d20f33 r734:bd72f8d20f33 r734:bd72f8d20f33 r734:bd72f8d20f33 r734:bd72f8d20f33 r734:bd72f8d20f33 r57:c1acf0018c0a r734:bd72f8d20f33 r734:bd72f8d20f33 r734:bd72f8d20f33 r734:bd72f8d20f33 r57:c1acf0018c0a r734:bd72f8d20f33 r734:bd72f8d20f33 r734:bd72f8d20f33 r734:bd72f8d20f33 r734:bd72f8d20f33 r734:bd72f8d20f33 r734:bd72f8d20f33 r57:c1acf0018c0a r734:bd72f8d20f33 r734:bd72f8d20f33 r734:bd72f8d20f33 r734:bd72f8d20f33 r57:c1acf0018c0a r734:bd72f8d20f33 r734:bd72f8d20f33 r734:bd72f8d20f33 r209:765619b7cbb2 r57:c1acf0018c0a r57:c1acf0018c0a r734:bd72f8d20f33 r734:bd72f8d20f33 r734:bd72f8d20f33 r734:bd72f8d20f33 r734:bd72f8d20f33 r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r734:bd72f8d20f33 r734:bd72f8d20f33 r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r734:bd72f8d20f33 r57:c1acf0018c0a r734:bd72f8d20f33 r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r734:bd72f8d20f33 r734:bd72f8d20f33 r57:c1acf0018c0a r734:bd72f8d20f33 r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r209:765619b7cbb2 r734:bd72f8d20f33 r57:c1acf0018c0a r57:c1acf0018c0a r209:765619b7cbb2 r209:765619b7cbb2 r734:bd72f8d20f33 r209:765619b7cbb2 r734:bd72f8d20f33 r209:765619b7cbb2 r209:765619b7cbb2 r209:765619b7cbb2 r57:c1acf0018c0a r57:c1acf0018c0a r209:765619b7cbb2 r734:bd72f8d20f33 r57:c1acf0018c0a r734:bd72f8d20f33 r786:e20173729589 r734:bd72f8d20f33 r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r734:bd72f8d20f33 r734:bd72f8d20f33 r57:c1acf0018c0a r57:c1acf0018c0a r209:765619b7cbb2 r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r734:bd72f8d20f33 r57:c1acf0018c0a r734:bd72f8d20f33 r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r734:bd72f8d20f33 r57:c1acf0018c0a r734:bd72f8d20f33 r734:bd72f8d20f33 r57:c1acf0018c0a r734:bd72f8d20f33 r734:bd72f8d20f33 r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r209:765619b7cbb2 r209:765619b7cbb2 r734:bd72f8d20f33 r57:c1acf0018c0a r734:bd72f8d20f33 r734:bd72f8d20f33 r734:bd72f8d20f33 r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r734:bd72f8d20f33 r734:bd72f8d20f33 r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r734:bd72f8d20f33 r57:c1acf0018c0a r734:bd72f8d20f33 r734:bd72f8d20f33 r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r734:bd72f8d20f33 r734:bd72f8d20f33 r57:c1acf0018c0a r734:bd72f8d20f33 r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r734:bd72f8d20f33 r57:c1acf0018c0a r57:c1acf0018c0a r209:765619b7cbb2 r209:765619b7cbb2 r734:bd72f8d20f33 r209:765619b7cbb2 r734:bd72f8d20f33 r734:bd72f8d20f33 r734:bd72f8d20f33 r209:765619b7cbb2 r57:c1acf0018c0a r57:c1acf0018c0a r734:bd72f8d20f33 r57:c1acf0018c0a r734:bd72f8d20f33 r786:e20173729589 r734:bd72f8d20f33 r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r734:bd72f8d20f33 r734:bd72f8d20f33 r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r734:bd72f8d20f33 r57:c1acf0018c0a r734:bd72f8d20f33 r734:bd72f8d20f33 r734:bd72f8d20f33 r734:bd72f8d20f33 r734:bd72f8d20f33 r734:bd72f8d20f33 r57:c1acf0018c0a r734:bd72f8d20f33 r734:bd72f8d20f33 r209:765619b7cbb2 r734:bd72f8d20f33 r734:bd72f8d20f33 r209:765619b7cbb2 r57:c1acf0018c0a r209:765619b7cbb2 r57:c1acf0018c0a r734:bd72f8d20f33 r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r734:bd72f8d20f33 r734:bd72f8d20f33 r734:bd72f8d20f33 r734:bd72f8d20f33 r786:e20173729589 r734:bd72f8d20f33 r734:bd72f8d20f33 r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r78:c46b3453455f r57:c1acf0018c0a r734:bd72f8d20f33 r734:bd72f8d20f33 r78:c46b3453455f r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r734:bd72f8d20f33 r734:bd72f8d20f33 r78:c46b3453455f r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r78:c46b3453455f r734:bd72f8d20f33 r57:c1acf0018c0a r734:bd72f8d20f33 r734:bd72f8d20f33 r734:bd72f8d20f33 r734:bd72f8d20f33 r734:bd72f8d20f33 r734:bd72f8d20f33 r57:c1acf0018c0a r734:bd72f8d20f33 r734:bd72f8d20f33 r209:765619b7cbb2 r734:bd72f8d20f33 r734:bd72f8d20f33 r734:bd72f8d20f33 r734:bd72f8d20f33 r57:c1acf0018c0a r734:bd72f8d20f33 r209:765619b7cbb2 r78:c46b3453455f r57:c1acf0018c0a r57:c1acf0018c0a r734:bd72f8d20f33 r57:c1acf0018c0a r734:bd72f8d20f33 r734:bd72f8d20f33 r734:bd72f8d20f33 r657:bf7928412136 r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r734:bd72f8d20f33 r734:bd72f8d20f33 r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r657:bf7928412136 r734:bd72f8d20f33 r57:c1acf0018c0a r734:bd72f8d20f33 r734:bd72f8d20f33 r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r734:bd72f8d20f33 r734:bd72f8d20f33 r57:c1acf0018c0a r734:bd72f8d20f33 r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r734:bd72f8d20f33 r57:c1acf0018c0a r57:c1acf0018c0a r209:765619b7cbb2 r209:765619b7cbb2 r734:bd72f8d20f33 r209:765619b7cbb2 r734:bd72f8d20f33 r734:bd72f8d20f33 r734:bd72f8d20f33 r209:765619b7cbb2 r209:765619b7cbb2 r734:bd72f8d20f33 r734:bd72f8d20f33 r734:bd72f8d20f33 r734:bd72f8d20f33 r657:bf7928412136 r209:765619b7cbb2 r57:c1acf0018c0a r734:bd72f8d20f33 r734:bd72f8d20f33 r734:bd72f8d20f33 r786:e20173729589 r734:bd72f8d20f33 r57:c1acf0018c0a r57:c1acf0018c0a r734:bd72f8d20f33 r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r734:bd72f8d20f33 r734:bd72f8d20f33 r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r734:bd72f8d20f33 r57:c1acf0018c0a r734:bd72f8d20f33 r734:bd72f8d20f33 r734:bd72f8d20f33 r734:bd72f8d20f33 r734:bd72f8d20f33 r734:bd72f8d20f33 r57:c1acf0018c0a r734:bd72f8d20f33 r734:bd72f8d20f33 r209:765619b7cbb2 r734:bd72f8d20f33 r734:bd72f8d20f33 r209:765619b7cbb2 r734:bd72f8d20f33 r209:765619b7cbb2 r57:c1acf0018c0a r734:bd72f8d20f33 r57:c1acf0018c0a r57:c1acf0018c0a r209:765619b7cbb2 r734:bd72f8d20f33 r57:c1acf0018c0a r734:bd72f8d20f33 r734:bd72f8d20f33 r786:e20173729589 r57:c1acf0018c0a r734:bd72f8d20f33 r57:c1acf0018c0a r57:c1acf0018c0a r734:bd72f8d20f33 r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r734:bd72f8d20f33 r734:bd72f8d20f33 r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r734:bd72f8d20f33 r57:c1acf0018c0a r734:bd72f8d20f33 r734:bd72f8d20f33 r734:bd72f8d20f33 r734:bd72f8d20f33 r734:bd72f8d20f33 r734:bd72f8d20f33 r57:c1acf0018c0a r57:c1acf0018c0a r209:765619b7cbb2 r209:765619b7cbb2 r209:765619b7cbb2 r734:bd72f8d20f33 r57:c1acf0018c0a r734:bd72f8d20f33 r734:bd72f8d20f33 r57:c1acf0018c0a r734:bd72f8d20f33 r209:765619b7cbb2 r209:765619b7cbb2 r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r734:bd72f8d20f33 r57:c1acf0018c0a r734:bd72f8d20f33 r734:bd72f8d20f33 r786:e20173729589 r734:bd72f8d20f33 r734:bd72f8d20f33 r57:c1acf0018c0a r57:c1acf0018c0a r734:bd72f8d20f33 r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r734:bd72f8d20f33 r734:bd72f8d20f33 r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r734:bd72f8d20f33 r57:c1acf0018c0a r734:bd72f8d20f33 r734:bd72f8d20f33 r734:bd72f8d20f33 r734:bd72f8d20f33 r734:bd72f8d20f33 r734:bd72f8d20f33 r57:c1acf0018c0a r209:765619b7cbb2 r209:765619b7cbb2 r209:765619b7cbb2 r209:765619b7cbb2 r734:bd72f8d20f33 r57:c1acf0018c0a r734:bd72f8d20f33 r734:bd72f8d20f33 r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r734:bd72f8d20f33 r734:bd72f8d20f33 r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r734:bd72f8d20f33 r209:765619b7cbb2 r734:bd72f8d20f33 r734:bd72f8d20f33 r209:765619b7cbb2 r580:2313edd0db0b r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r734:bd72f8d20f33 r734:bd72f8d20f33 r734:bd72f8d20f33 r57:c1acf0018c0a r57:c1acf0018c0a r263:be8a861d3bb7 r57:c1acf0018c0a r580:2313edd0db0b r580:2313edd0db0b r57:c1acf0018c0a r57:c1acf0018c0a r209:765619b7cbb2 r57:c1acf0018c0a r209:765619b7cbb2 r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r734:bd72f8d20f33 r57:c1acf0018c0a r734:bd72f8d20f33 r734:bd72f8d20f33 r209:765619b7cbb2 r580:2313edd0db0b r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r734:bd72f8d20f33 r734:bd72f8d20f33 r734:bd72f8d20f33 r57:c1acf0018c0a r734:bd72f8d20f33 r263:be8a861d3bb7 r57:c1acf0018c0a r580:2313edd0db0b r580:2313edd0db0b r57:c1acf0018c0a r57:c1acf0018c0a r209:765619b7cbb2 r57:c1acf0018c0a r209:765619b7cbb2 r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r734:bd72f8d20f33 r734:bd72f8d20f33 r734:bd72f8d20f33 r734:bd72f8d20f33 r209:765619b7cbb2 r580:2313edd0db0b r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r734:bd72f8d20f33 r734:bd72f8d20f33 r734:bd72f8d20f33 r57:c1acf0018c0a r734:bd72f8d20f33 r263:be8a861d3bb7 r57:c1acf0018c0a r580:2313edd0db0b r580:2313edd0db0b r57:c1acf0018c0a r57:c1acf0018c0a r209:765619b7cbb2 r57:c1acf0018c0a r209:765619b7cbb2 r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r734:bd72f8d20f33 r57:c1acf0018c0a r734:bd72f8d20f33 r57:c1acf0018c0a r786:e20173729589 r734:bd72f8d20f33 r734:bd72f8d20f33 r734:bd72f8d20f33 r734:bd72f8d20f33 r559:c5fd2d996909 r559:c5fd2d996909 r57:c1acf0018c0a r57:c1acf0018c0a r734:bd72f8d20f33 r559:c5fd2d996909 r734:bd72f8d20f33 r559:c5fd2d996909 r786:e20173729589 r734:bd72f8d20f33 r734:bd72f8d20f33 r734:bd72f8d20f33 r734:bd72f8d20f33 r559:c5fd2d996909 r559:c5fd2d996909 r57:c1acf0018c0a r57:c1acf0018c0a r734:bd72f8d20f33 r734:bd72f8d20f33 r734:bd72f8d20f33 r57:c1acf0018c0a r57:c1acf0018c0a r734:bd72f8d20f33 r734:bd72f8d20f33 r734:bd72f8d20f33 r57:c1acf0018c0a r57:c1acf0018c0a r734:bd72f8d20f33 r734:bd72f8d20f33 r734:bd72f8d20f33 r209:765619b7cbb2 r61:d718974f1290 r734:bd72f8d20f33 r734:bd72f8d20f33 r734:bd72f8d20f33 r209:765619b7cbb2 r61:d718974f1290 r734:bd72f8d20f33 r734:bd72f8d20f33 r734:bd72f8d20f33 r209:765619b7cbb2 r61:d718974f1290 r734:bd72f8d20f33 r61:d718974f1290 r734:bd72f8d20f33 r734:bd72f8d20f33 r209:765619b7cbb2 r61:d718974f1290 r734:bd72f8d20f33 r61:d718974f1290 r734:bd72f8d20f33 r734:bd72f8d20f33 r209:765619b7cbb2 r61:d718974f1290 r734:bd72f8d20f33 r61:d718974f1290 r734:bd72f8d20f33 r734:bd72f8d20f33 r209:765619b7cbb2 r61:d718974f1290 r734:bd72f8d20f33 r734:bd72f8d20f33 r734:bd72f8d20f33 r209:765619b7cbb2 r61:d718974f1290 r734:bd72f8d20f33 r734:bd72f8d20f33 r734:bd72f8d20f33 r209:765619b7cbb2 r61:d718974f1290 r734:bd72f8d20f33 r734:bd72f8d20f33 r734:bd72f8d20f33 r209:765619b7cbb2 r61:d718974f1290 r734:bd72f8d20f33 r734:bd72f8d20f33 r734:bd72f8d20f33 r734:bd72f8d20f33 r734:bd72f8d20f33 r734:bd72f8d20f33 r734:bd72f8d20f33 r734:bd72f8d20f33 r734:bd72f8d20f33 r734:bd72f8d20f33 r734:bd72f8d20f33 r734:bd72f8d20f33 r734:bd72f8d20f33 r734:bd72f8d20f33 r734:bd72f8d20f33 r734:bd72f8d20f33 r734:bd72f8d20f33 r734:bd72f8d20f33 r734:bd72f8d20f33 r734:bd72f8d20f33 r734:bd72f8d20f33 r734:bd72f8d20f33 r734:bd72f8d20f33 r734:bd72f8d20f33 r734:bd72f8d20f33 r734:bd72f8d20f33 r734:bd72f8d20f33 r734:bd72f8d20f33 r734:bd72f8d20f33 r734:bd72f8d20f33 r734:bd72f8d20f33 r734:bd72f8d20f33 r734:bd72f8d20f33 r734:bd72f8d20f33 r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r61:d718974f1290 r61:d718974f1290 r61:d718974f1290 r61:d718974f1290 r61:d718974f1290 r61:d718974f1290 r61:d718974f1290 r61:d718974f1290 r209:765619b7cbb2 r61:d718974f1290 r209:765619b7cbb2 r61:d718974f1290 r209:765619b7cbb2 r61:d718974f1290 r734:bd72f8d20f33 r57:c1acf0018c0a r734:bd72f8d20f33 r734:bd72f8d20f33 r734:bd72f8d20f33 r734:bd72f8d20f33 r57:c1acf0018c0a r734:bd72f8d20f33 r734:bd72f8d20f33 r57:c1acf0018c0a r734:bd72f8d20f33 r57:c1acf0018c0a r734:bd72f8d20f33 r734:bd72f8d20f33 r734:bd72f8d20f33 r734:bd72f8d20f33 r734:bd72f8d20f33 r57:c1acf0018c0a r734:bd72f8d20f33 r734:bd72f8d20f33 r734:bd72f8d20f33 r57:c1acf0018c0a r734:bd72f8d20f33 r57:c1acf0018c0a r734:bd72f8d20f33 r734:bd72f8d20f33 r734:bd72f8d20f33 r209:765619b7cbb2 r734:bd72f8d20f33 r57:c1acf0018c0a r734:bd72f8d20f33 r734:bd72f8d20f33 r734:bd72f8d20f33 r57:c1acf0018c0a r125:19e82bda606a r57:c1acf0018c0a r209:765619b7cbb2 r580:2313edd0db0b r209:765619b7cbb2 r209:765619b7cbb2 r209:765619b7cbb2 r209:765619b7cbb2 r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a | /* -*- mode: C++; indent-tabs-mode: nil; -*-
*
* This file is a part of LEMON, a generic C++ optimization library.
*
* Copyright (C) 2003-2009
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
* (Egervary Research Group on Combinatorial Optimization, EGRES).
*
* Permission to use, modify and distribute this software is granted
* provided that this copyright notice appears in all copies. For
* precise terms see the accompanying LICENSE file.
*
* This software is provided "AS IS" with no warranty of any kind,
* express or implied, and with no claim as to its suitability for any
* purpose.
*
*/
///\ingroup graph_concepts
///\file
///\brief The concept of undirected graphs.
#ifndef LEMON_CONCEPTS_GRAPH_H
#define LEMON_CONCEPTS_GRAPH_H
#include <lemon/concepts/graph_components.h>
#include <lemon/concepts/maps.h>
#include <lemon/concept_check.h>
#include <lemon/core.h>
namespace lemon {
namespace concepts {
/// \ingroup graph_concepts
///
/// \brief Class describing the concept of undirected graphs.
///
/// This class describes the common interface of all undirected
/// graphs.
///
/// Like all concept classes, it only provides an interface
/// without any sensible implementation. So any general algorithm for
/// undirected graphs should compile with this class, but it will not
/// run properly, of course.
/// An actual graph implementation like \ref ListGraph or
/// \ref SmartGraph may have additional functionality.
///
/// The undirected graphs also fulfill the concept of \ref Digraph
/// "directed graphs", since each edge can also be regarded as two
/// oppositely directed arcs.
/// Undirected graphs provide an Edge type for the undirected edges and
/// an Arc type for the directed arcs. The Arc type is convertible to
/// Edge or inherited from it, i.e. the corresponding edge can be
/// obtained from an arc.
/// EdgeIt and EdgeMap classes can be used for the edges, while ArcIt
/// and ArcMap classes can be used for the arcs (just like in digraphs).
/// Both InArcIt and OutArcIt iterates on the same edges but with
/// opposite direction. IncEdgeIt also iterates on the same edges
/// as OutArcIt and InArcIt, but it is not convertible to Arc,
/// only to Edge.
///
/// In LEMON, each undirected edge has an inherent orientation.
/// Thus it can defined if an arc is forward or backward oriented in
/// an undirected graph with respect to this default oriantation of
/// the represented edge.
/// With the direction() and direct() functions the direction
/// of an arc can be obtained and set, respectively.
///
/// Only nodes and edges can be added to or removed from an undirected
/// graph and the corresponding arcs are added or removed automatically.
///
/// \sa Digraph
class Graph {
private:
/// Graphs are \e not copy constructible. Use DigraphCopy instead.
Graph(const Graph&) {}
/// \brief Assignment of a graph to another one is \e not allowed.
/// Use DigraphCopy instead.
void operator=(const Graph&) {}
public:
/// Default constructor.
Graph() {}
/// \brief Undirected graphs should be tagged with \c UndirectedTag.
///
/// Undirected graphs should be tagged with \c UndirectedTag.
///
/// This tag helps the \c enable_if technics to make compile time
/// specializations for undirected graphs.
typedef True UndirectedTag;
/// The node type of the graph
/// This class identifies a node of the graph. It also serves
/// as a base class of the node iterators,
/// thus they convert to this type.
class Node {
public:
/// Default constructor
/// Default constructor.
/// \warning It sets the object to an undefined value.
Node() { }
/// Copy constructor.
/// Copy constructor.
///
Node(const Node&) { }
/// %Invalid constructor \& conversion.
/// Initializes the object to be invalid.
/// \sa Invalid for more details.
Node(Invalid) { }
/// Equality operator
/// Equality operator.
///
/// Two iterators are equal if and only if they point to the
/// same object or both are \c INVALID.
bool operator==(Node) const { return true; }
/// Inequality operator
/// Inequality operator.
bool operator!=(Node) const { return true; }
/// Artificial ordering operator.
/// Artificial ordering operator.
///
/// \note This operator only has to define some strict ordering of
/// the items; this order has nothing to do with the iteration
/// ordering of the items.
bool operator<(Node) const { return false; }
};
/// Iterator class for the nodes.
/// This iterator goes through each node of the graph.
/// Its usage is quite simple, for example, you can count the number
/// of nodes in a graph \c g of type \c %Graph like this:
///\code
/// int count=0;
/// for (Graph::NodeIt n(g); n!=INVALID; ++n) ++count;
///\endcode
class NodeIt : public Node {
public:
/// Default constructor
/// Default constructor.
/// \warning It sets the iterator to an undefined value.
NodeIt() { }
/// Copy constructor.
/// Copy constructor.
///
NodeIt(const NodeIt& n) : Node(n) { }
/// %Invalid constructor \& conversion.
/// Initializes the iterator to be invalid.
/// \sa Invalid for more details.
NodeIt(Invalid) { }
/// Sets the iterator to the first node.
/// Sets the iterator to the first node of the given digraph.
///
explicit NodeIt(const Graph&) { }
/// Sets the iterator to the given node.
/// Sets the iterator to the given node of the given digraph.
///
NodeIt(const Graph&, const Node&) { }
/// Next node.
/// Assign the iterator to the next node.
///
NodeIt& operator++() { return *this; }
};
/// The edge type of the graph
/// This class identifies an edge of the graph. It also serves
/// as a base class of the edge iterators,
/// thus they will convert to this type.
class Edge {
public:
/// Default constructor
/// Default constructor.
/// \warning It sets the object to an undefined value.
Edge() { }
/// Copy constructor.
/// Copy constructor.
///
Edge(const Edge&) { }
/// %Invalid constructor \& conversion.
/// Initializes the object to be invalid.
/// \sa Invalid for more details.
Edge(Invalid) { }
/// Equality operator
/// Equality operator.
///
/// Two iterators are equal if and only if they point to the
/// same object or both are \c INVALID.
bool operator==(Edge) const { return true; }
/// Inequality operator
/// Inequality operator.
bool operator!=(Edge) const { return true; }
/// Artificial ordering operator.
/// Artificial ordering operator.
///
/// \note This operator only has to define some strict ordering of
/// the edges; this order has nothing to do with the iteration
/// ordering of the edges.
bool operator<(Edge) const { return false; }
};
/// Iterator class for the edges.
/// This iterator goes through each edge of the graph.
/// Its usage is quite simple, for example, you can count the number
/// of edges in a graph \c g of type \c %Graph as follows:
///\code
/// int count=0;
/// for(Graph::EdgeIt e(g); e!=INVALID; ++e) ++count;
///\endcode
class EdgeIt : public Edge {
public:
/// Default constructor
/// Default constructor.
/// \warning It sets the iterator to an undefined value.
EdgeIt() { }
/// Copy constructor.
/// Copy constructor.
///
EdgeIt(const EdgeIt& e) : Edge(e) { }
/// %Invalid constructor \& conversion.
/// Initializes the iterator to be invalid.
/// \sa Invalid for more details.
EdgeIt(Invalid) { }
/// Sets the iterator to the first edge.
/// Sets the iterator to the first edge of the given graph.
///
explicit EdgeIt(const Graph&) { }
/// Sets the iterator to the given edge.
/// Sets the iterator to the given edge of the given graph.
///
EdgeIt(const Graph&, const Edge&) { }
/// Next edge
/// Assign the iterator to the next edge.
///
EdgeIt& operator++() { return *this; }
};
/// Iterator class for the incident edges of a node.
/// This iterator goes trough the incident undirected edges
/// of a certain node of a graph.
/// Its usage is quite simple, for example, you can compute the
/// degree (i.e. the number of incident edges) of a node \c n
/// in a graph \c g of type \c %Graph as follows.
///
///\code
/// int count=0;
/// for(Graph::IncEdgeIt e(g, n); e!=INVALID; ++e) ++count;
///\endcode
///
/// \warning Loop edges will be iterated twice.
class IncEdgeIt : public Edge {
public:
/// Default constructor
/// Default constructor.
/// \warning It sets the iterator to an undefined value.
IncEdgeIt() { }
/// Copy constructor.
/// Copy constructor.
///
IncEdgeIt(const IncEdgeIt& e) : Edge(e) { }
/// %Invalid constructor \& conversion.
/// Initializes the iterator to be invalid.
/// \sa Invalid for more details.
IncEdgeIt(Invalid) { }
/// Sets the iterator to the first incident edge.
/// Sets the iterator to the first incident edge of the given node.
///
IncEdgeIt(const Graph&, const Node&) { }
/// Sets the iterator to the given edge.
/// Sets the iterator to the given edge of the given graph.
///
IncEdgeIt(const Graph&, const Edge&) { }
/// Next incident edge
/// Assign the iterator to the next incident edge
/// of the corresponding node.
IncEdgeIt& operator++() { return *this; }
};
/// The arc type of the graph
/// This class identifies a directed arc of the graph. It also serves
/// as a base class of the arc iterators,
/// thus they will convert to this type.
class Arc {
public:
/// Default constructor
/// Default constructor.
/// \warning It sets the object to an undefined value.
Arc() { }
/// Copy constructor.
/// Copy constructor.
///
Arc(const Arc&) { }
/// %Invalid constructor \& conversion.
/// Initializes the object to be invalid.
/// \sa Invalid for more details.
Arc(Invalid) { }
/// Equality operator
/// Equality operator.
///
/// Two iterators are equal if and only if they point to the
/// same object or both are \c INVALID.
bool operator==(Arc) const { return true; }
/// Inequality operator
/// Inequality operator.
bool operator!=(Arc) const { return true; }
/// Artificial ordering operator.
/// Artificial ordering operator.
///
/// \note This operator only has to define some strict ordering of
/// the arcs; this order has nothing to do with the iteration
/// ordering of the arcs.
bool operator<(Arc) const { return false; }
/// Converison to \c Edge
/// Converison to \c Edge.
///
operator Edge() const { return Edge(); }
};
/// Iterator class for the arcs.
/// This iterator goes through each directed arc of the graph.
/// Its usage is quite simple, for example, you can count the number
/// of arcs in a graph \c g of type \c %Graph as follows:
///\code
/// int count=0;
/// for(Graph::ArcIt a(g); a!=INVALID; ++a) ++count;
///\endcode
class ArcIt : public Arc {
public:
/// Default constructor
/// Default constructor.
/// \warning It sets the iterator to an undefined value.
ArcIt() { }
/// Copy constructor.
/// Copy constructor.
///
ArcIt(const ArcIt& e) : Arc(e) { }
/// %Invalid constructor \& conversion.
/// Initializes the iterator to be invalid.
/// \sa Invalid for more details.
ArcIt(Invalid) { }
/// Sets the iterator to the first arc.
/// Sets the iterator to the first arc of the given graph.
///
explicit ArcIt(const Graph &g) { ignore_unused_variable_warning(g); }
/// Sets the iterator to the given arc.
/// Sets the iterator to the given arc of the given graph.
///
ArcIt(const Graph&, const Arc&) { }
/// Next arc
/// Assign the iterator to the next arc.
///
ArcIt& operator++() { return *this; }
};
/// Iterator class for the outgoing arcs of a node.
/// This iterator goes trough the \e outgoing directed arcs of a
/// certain node of a graph.
/// Its usage is quite simple, for example, you can count the number
/// of outgoing arcs of a node \c n
/// in a graph \c g of type \c %Graph as follows.
///\code
/// int count=0;
/// for (Digraph::OutArcIt a(g, n); a!=INVALID; ++a) ++count;
///\endcode
class OutArcIt : public Arc {
public:
/// Default constructor
/// Default constructor.
/// \warning It sets the iterator to an undefined value.
OutArcIt() { }
/// Copy constructor.
/// Copy constructor.
///
OutArcIt(const OutArcIt& e) : Arc(e) { }
/// %Invalid constructor \& conversion.
/// Initializes the iterator to be invalid.
/// \sa Invalid for more details.
OutArcIt(Invalid) { }
/// Sets the iterator to the first outgoing arc.
/// Sets the iterator to the first outgoing arc of the given node.
///
OutArcIt(const Graph& n, const Node& g) {
ignore_unused_variable_warning(n);
ignore_unused_variable_warning(g);
}
/// Sets the iterator to the given arc.
/// Sets the iterator to the given arc of the given graph.
///
OutArcIt(const Graph&, const Arc&) { }
/// Next outgoing arc
/// Assign the iterator to the next
/// outgoing arc of the corresponding node.
OutArcIt& operator++() { return *this; }
};
/// Iterator class for the incoming arcs of a node.
/// This iterator goes trough the \e incoming directed arcs of a
/// certain node of a graph.
/// Its usage is quite simple, for example, you can count the number
/// of incoming arcs of a node \c n
/// in a graph \c g of type \c %Graph as follows.
///\code
/// int count=0;
/// for (Digraph::InArcIt a(g, n); a!=INVALID; ++a) ++count;
///\endcode
class InArcIt : public Arc {
public:
/// Default constructor
/// Default constructor.
/// \warning It sets the iterator to an undefined value.
InArcIt() { }
/// Copy constructor.
/// Copy constructor.
///
InArcIt(const InArcIt& e) : Arc(e) { }
/// %Invalid constructor \& conversion.
/// Initializes the iterator to be invalid.
/// \sa Invalid for more details.
InArcIt(Invalid) { }
/// Sets the iterator to the first incoming arc.
/// Sets the iterator to the first incoming arc of the given node.
///
InArcIt(const Graph& g, const Node& n) {
ignore_unused_variable_warning(n);
ignore_unused_variable_warning(g);
}
/// Sets the iterator to the given arc.
/// Sets the iterator to the given arc of the given graph.
///
InArcIt(const Graph&, const Arc&) { }
/// Next incoming arc
/// Assign the iterator to the next
/// incoming arc of the corresponding node.
InArcIt& operator++() { return *this; }
};
/// \brief Standard graph map type for the nodes.
///
/// Standard graph map type for the nodes.
/// It conforms to the ReferenceMap concept.
template<class T>
class NodeMap : public ReferenceMap<Node, T, T&, const T&>
{
public:
/// Constructor
explicit NodeMap(const Graph&) { }
/// Constructor with given initial value
NodeMap(const Graph&, T) { }
private:
///Copy constructor
NodeMap(const NodeMap& nm) :
ReferenceMap<Node, T, T&, const T&>(nm) { }
///Assignment operator
template <typename CMap>
NodeMap& operator=(const CMap&) {
checkConcept<ReadMap<Node, T>, CMap>();
return *this;
}
};
/// \brief Standard graph map type for the arcs.
///
/// Standard graph map type for the arcs.
/// It conforms to the ReferenceMap concept.
template<class T>
class ArcMap : public ReferenceMap<Arc, T, T&, const T&>
{
public:
/// Constructor
explicit ArcMap(const Graph&) { }
/// Constructor with given initial value
ArcMap(const Graph&, T) { }
private:
///Copy constructor
ArcMap(const ArcMap& em) :
ReferenceMap<Arc, T, T&, const T&>(em) { }
///Assignment operator
template <typename CMap>
ArcMap& operator=(const CMap&) {
checkConcept<ReadMap<Arc, T>, CMap>();
return *this;
}
};
/// \brief Standard graph map type for the edges.
///
/// Standard graph map type for the edges.
/// It conforms to the ReferenceMap concept.
template<class T>
class EdgeMap : public ReferenceMap<Edge, T, T&, const T&>
{
public:
/// Constructor
explicit EdgeMap(const Graph&) { }
/// Constructor with given initial value
EdgeMap(const Graph&, T) { }
private:
///Copy constructor
EdgeMap(const EdgeMap& em) :
ReferenceMap<Edge, T, T&, const T&>(em) {}
///Assignment operator
template <typename CMap>
EdgeMap& operator=(const CMap&) {
checkConcept<ReadMap<Edge, T>, CMap>();
return *this;
}
};
/// \brief The first node of the edge.
///
/// Returns the first node of the given edge.
///
/// Edges don't have source and target nodes, however, methods
/// u() and v() are used to query the two end-nodes of an edge.
/// The orientation of an edge that arises this way is called
/// the inherent direction, it is used to define the default
/// direction for the corresponding arcs.
/// \sa v()
/// \sa direction()
Node u(Edge) const { return INVALID; }
/// \brief The second node of the edge.
///
/// Returns the second node of the given edge.
///
/// Edges don't have source and target nodes, however, methods
/// u() and v() are used to query the two end-nodes of an edge.
/// The orientation of an edge that arises this way is called
/// the inherent direction, it is used to define the default
/// direction for the corresponding arcs.
/// \sa u()
/// \sa direction()
Node v(Edge) const { return INVALID; }
/// \brief The source node of the arc.
///
/// Returns the source node of the given arc.
Node source(Arc) const { return INVALID; }
/// \brief The target node of the arc.
///
/// Returns the target node of the given arc.
Node target(Arc) const { return INVALID; }
/// \brief The ID of the node.
///
/// Returns the ID of the given node.
int id(Node) const { return -1; }
/// \brief The ID of the edge.
///
/// Returns the ID of the given edge.
int id(Edge) const { return -1; }
/// \brief The ID of the arc.
///
/// Returns the ID of the given arc.
int id(Arc) const { return -1; }
/// \brief The node with the given ID.
///
/// Returns the node with the given ID.
/// \pre The argument should be a valid node ID in the graph.
Node nodeFromId(int) const { return INVALID; }
/// \brief The edge with the given ID.
///
/// Returns the edge with the given ID.
/// \pre The argument should be a valid edge ID in the graph.
Edge edgeFromId(int) const { return INVALID; }
/// \brief The arc with the given ID.
///
/// Returns the arc with the given ID.
/// \pre The argument should be a valid arc ID in the graph.
Arc arcFromId(int) const { return INVALID; }
/// \brief An upper bound on the node IDs.
///
/// Returns an upper bound on the node IDs.
int maxNodeId() const { return -1; }
/// \brief An upper bound on the edge IDs.
///
/// Returns an upper bound on the edge IDs.
int maxEdgeId() const { return -1; }
/// \brief An upper bound on the arc IDs.
///
/// Returns an upper bound on the arc IDs.
int maxArcId() const { return -1; }
/// \brief The direction of the arc.
///
/// Returns \c true if the direction of the given arc is the same as
/// the inherent orientation of the represented edge.
bool direction(Arc) const { return true; }
/// \brief Direct the edge.
///
/// Direct the given edge. The returned arc
/// represents the given edge and its direction comes
/// from the bool parameter. If it is \c true, then the direction
/// of the arc is the same as the inherent orientation of the edge.
Arc direct(Edge, bool) const {
return INVALID;
}
/// \brief Direct the edge.
///
/// Direct the given edge. The returned arc represents the given
/// edge and its source node is the given node.
Arc direct(Edge, Node) const {
return INVALID;
}
/// \brief The oppositely directed arc.
///
/// Returns the oppositely directed arc representing the same edge.
Arc oppositeArc(Arc) const { return INVALID; }
/// \brief The opposite node on the edge.
///
/// Returns the opposite node on the given edge.
Node oppositeNode(Node, Edge) const { return INVALID; }
void first(Node&) const {}
void next(Node&) const {}
void first(Edge&) const {}
void next(Edge&) const {}
void first(Arc&) const {}
void next(Arc&) const {}
void firstOut(Arc&, Node) const {}
void nextOut(Arc&) const {}
void firstIn(Arc&, Node) const {}
void nextIn(Arc&) const {}
void firstInc(Edge &, bool &, const Node &) const {}
void nextInc(Edge &, bool &) const {}
// The second parameter is dummy.
Node fromId(int, Node) const { return INVALID; }
// The second parameter is dummy.
Edge fromId(int, Edge) const { return INVALID; }
// The second parameter is dummy.
Arc fromId(int, Arc) const { return INVALID; }
// Dummy parameter.
int maxId(Node) const { return -1; }
// Dummy parameter.
int maxId(Edge) const { return -1; }
// Dummy parameter.
int maxId(Arc) const { return -1; }
/// \brief The base node of the iterator.
///
/// Returns the base node of the given incident edge iterator.
Node baseNode(IncEdgeIt) const { return INVALID; }
/// \brief The running node of the iterator.
///
/// Returns the running node of the given incident edge iterator.
Node runningNode(IncEdgeIt) const { return INVALID; }
/// \brief The base node of the iterator.
///
/// Returns the base node of the given outgoing arc iterator
/// (i.e. the source node of the corresponding arc).
Node baseNode(OutArcIt) const { return INVALID; }
/// \brief The running node of the iterator.
///
/// Returns the running node of the given outgoing arc iterator
/// (i.e. the target node of the corresponding arc).
Node runningNode(OutArcIt) const { return INVALID; }
/// \brief The base node of the iterator.
///
/// Returns the base node of the given incomming arc iterator
/// (i.e. the target node of the corresponding arc).
Node baseNode(InArcIt) const { return INVALID; }
/// \brief The running node of the iterator.
///
/// Returns the running node of the given incomming arc iterator
/// (i.e. the source node of the corresponding arc).
Node runningNode(InArcIt) const { return INVALID; }
template <typename _Graph>
struct Constraints {
void constraints() {
checkConcept<BaseGraphComponent, _Graph>();
checkConcept<IterableGraphComponent<>, _Graph>();
checkConcept<IDableGraphComponent<>, _Graph>();
checkConcept<MappableGraphComponent<>, _Graph>();
}
};
};
}
}
#endif
|