Location: LEMON/LEMON-main/lemon/binomial_heap.h - annotation
Load file history
Rename min mean cycle classes and their members (#179)
with respect to the possible introduction of min ratio
cycle algorithms in the future.
The renamed classes:
- Karp --> KarpMmc
- HartmannOrlin --> HartmannOrlinMmc
- Howard --> HowardMmc
The renamed members:
- cycleLength() --> cycleCost()
- cycleArcNum() --> cycleSize()
- findMinMean() --> findCycleMean()
- Value --> Cost
- LargeValue --> LargeCost
- SetLargeValue --> SetLargeCost
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 | r855:65a0521e744e r855:65a0521e744e r855:65a0521e744e r855:65a0521e744e r855:65a0521e744e r855:65a0521e744e r855:65a0521e744e r855:65a0521e744e r855:65a0521e744e r855:65a0521e744e r855:65a0521e744e r855:65a0521e744e r855:65a0521e744e r855:65a0521e744e r855:65a0521e744e r855:65a0521e744e r855:65a0521e744e r855:65a0521e744e r855:65a0521e744e r855:65a0521e744e r855:65a0521e744e r855:65a0521e744e r855:65a0521e744e r855:65a0521e744e r855:65a0521e744e r855:65a0521e744e r855:65a0521e744e r855:65a0521e744e r855:65a0521e744e r855:65a0521e744e r855:65a0521e744e r855:65a0521e744e r855:65a0521e744e r855:65a0521e744e r855:65a0521e744e r855:65a0521e744e r855:65a0521e744e r855:65a0521e744e r855:65a0521e744e r855:65a0521e744e r855:65a0521e744e r855:65a0521e744e r855:65a0521e744e r855:65a0521e744e r855:65a0521e744e r855:65a0521e744e r855:65a0521e744e r855:65a0521e744e r855:65a0521e744e r855:65a0521e744e r855:65a0521e744e r855:65a0521e744e r855:65a0521e744e r855:65a0521e744e r855:65a0521e744e r855:65a0521e744e r855:65a0521e744e r855:65a0521e744e r855:65a0521e744e r855:65a0521e744e r855:65a0521e744e r855:65a0521e744e r855:65a0521e744e r855:65a0521e744e r855:65a0521e744e r855:65a0521e744e r855:65a0521e744e r855:65a0521e744e r855:65a0521e744e r855:65a0521e744e r855:65a0521e744e r855:65a0521e744e r855:65a0521e744e r855:65a0521e744e r855:65a0521e744e r855:65a0521e744e r855:65a0521e744e r855:65a0521e744e r855:65a0521e744e r855:65a0521e744e r855:65a0521e744e r855:65a0521e744e r855:65a0521e744e r855:65a0521e744e r855:65a0521e744e r855:65a0521e744e r855:65a0521e744e r855:65a0521e744e r855:65a0521e744e r855:65a0521e744e r855:65a0521e744e r855:65a0521e744e r855:65a0521e744e r855:65a0521e744e r855:65a0521e744e r855:65a0521e744e r855:65a0521e744e r855:65a0521e744e r855:65a0521e744e r855:65a0521e744e r855:65a0521e744e r855:65a0521e744e r855:65a0521e744e r855:65a0521e744e r855:65a0521e744e r855:65a0521e744e r855:65a0521e744e r855:65a0521e744e r855:65a0521e744e r855:65a0521e744e r855:65a0521e744e r855:65a0521e744e r855:65a0521e744e r855:65a0521e744e r855:65a0521e744e r855:65a0521e744e r855:65a0521e744e r855:65a0521e744e r855:65a0521e744e r855:65a0521e744e r855:65a0521e744e r855:65a0521e744e r855:65a0521e744e r855:65a0521e744e r855:65a0521e744e r855:65a0521e744e r855:65a0521e744e r855:65a0521e744e r855:65a0521e744e r855:65a0521e744e r855:65a0521e744e r855:65a0521e744e r855:65a0521e744e r855:65a0521e744e r855:65a0521e744e r855:65a0521e744e r855:65a0521e744e r855:65a0521e744e r855:65a0521e744e r855:65a0521e744e r855:65a0521e744e r855:65a0521e744e r855:65a0521e744e r855:65a0521e744e r855:65a0521e744e r855:65a0521e744e r855:65a0521e744e r855:65a0521e744e r855:65a0521e744e r855:65a0521e744e r855:65a0521e744e r855:65a0521e744e r855:65a0521e744e r855:65a0521e744e r855:65a0521e744e r855:65a0521e744e r855:65a0521e744e r855:65a0521e744e r855:65a0521e744e r855:65a0521e744e r855:65a0521e744e r855:65a0521e744e r855:65a0521e744e r855:65a0521e744e r855:65a0521e744e r855:65a0521e744e r855:65a0521e744e r855:65a0521e744e r855:65a0521e744e r855:65a0521e744e r855:65a0521e744e r855:65a0521e744e r855:65a0521e744e r855:65a0521e744e r855:65a0521e744e r855:65a0521e744e r855:65a0521e744e r855:65a0521e744e r855:65a0521e744e r855:65a0521e744e r855:65a0521e744e r855:65a0521e744e r855:65a0521e744e r855:65a0521e744e r855:65a0521e744e r855:65a0521e744e r855:65a0521e744e r855:65a0521e744e r855:65a0521e744e r855:65a0521e744e r855:65a0521e744e r855:65a0521e744e r855:65a0521e744e r855:65a0521e744e r855:65a0521e744e r855:65a0521e744e r855:65a0521e744e r855:65a0521e744e r855:65a0521e744e r855:65a0521e744e r855:65a0521e744e r855:65a0521e744e r855:65a0521e744e r855:65a0521e744e r855:65a0521e744e r855:65a0521e744e r855:65a0521e744e r855:65a0521e744e r855:65a0521e744e r855:65a0521e744e r855:65a0521e744e r855:65a0521e744e r855:65a0521e744e r855:65a0521e744e r855:65a0521e744e r855:65a0521e744e r855:65a0521e744e r855:65a0521e744e r855:65a0521e744e r855:65a0521e744e r855:65a0521e744e r855:65a0521e744e r855:65a0521e744e r855:65a0521e744e r855:65a0521e744e r855:65a0521e744e r855:65a0521e744e r855:65a0521e744e r855:65a0521e744e r855:65a0521e744e r855:65a0521e744e r855:65a0521e744e r855:65a0521e744e r855:65a0521e744e r855:65a0521e744e r855:65a0521e744e r855:65a0521e744e r855:65a0521e744e r855:65a0521e744e r855:65a0521e744e r855:65a0521e744e r855:65a0521e744e r855:65a0521e744e r855:65a0521e744e r855:65a0521e744e r855:65a0521e744e r855:65a0521e744e r855:65a0521e744e r855:65a0521e744e r855:65a0521e744e r855:65a0521e744e r855:65a0521e744e r855:65a0521e744e r855:65a0521e744e r855:65a0521e744e r855:65a0521e744e r855:65a0521e744e r855:65a0521e744e r855:65a0521e744e r855:65a0521e744e r855:65a0521e744e r855:65a0521e744e r855:65a0521e744e r855:65a0521e744e r855:65a0521e744e r855:65a0521e744e r855:65a0521e744e r855:65a0521e744e r855:65a0521e744e r855:65a0521e744e r855:65a0521e744e r855:65a0521e744e r855:65a0521e744e r855:65a0521e744e r855:65a0521e744e r855:65a0521e744e r855:65a0521e744e r855:65a0521e744e r855:65a0521e744e r855:65a0521e744e r855:65a0521e744e r855:65a0521e744e r855:65a0521e744e r855:65a0521e744e r855:65a0521e744e r855:65a0521e744e r855:65a0521e744e r855:65a0521e744e r855:65a0521e744e r855:65a0521e744e r855:65a0521e744e r855:65a0521e744e r855:65a0521e744e r855:65a0521e744e r855:65a0521e744e r855:65a0521e744e r855:65a0521e744e r855:65a0521e744e r855:65a0521e744e r855:65a0521e744e r855:65a0521e744e r855:65a0521e744e r855:65a0521e744e r855:65a0521e744e r855:65a0521e744e r855:65a0521e744e r855:65a0521e744e r855:65a0521e744e r855:65a0521e744e r855:65a0521e744e r855:65a0521e744e r855:65a0521e744e r855:65a0521e744e r855:65a0521e744e r855:65a0521e744e r855:65a0521e744e r855:65a0521e744e r855:65a0521e744e r855:65a0521e744e r855:65a0521e744e r855:65a0521e744e r855:65a0521e744e r855:65a0521e744e r855:65a0521e744e r855:65a0521e744e r855:65a0521e744e r855:65a0521e744e r855:65a0521e744e r855:65a0521e744e r855:65a0521e744e r855:65a0521e744e r855:65a0521e744e r855:65a0521e744e r855:65a0521e744e r855:65a0521e744e r855:65a0521e744e r855:65a0521e744e r855:65a0521e744e r855:65a0521e744e r855:65a0521e744e r855:65a0521e744e r855:65a0521e744e r855:65a0521e744e r855:65a0521e744e r855:65a0521e744e r855:65a0521e744e r855:65a0521e744e r855:65a0521e744e r855:65a0521e744e r855:65a0521e744e r855:65a0521e744e r855:65a0521e744e r855:65a0521e744e r855:65a0521e744e r855:65a0521e744e r855:65a0521e744e r855:65a0521e744e r855:65a0521e744e r855:65a0521e744e r855:65a0521e744e r855:65a0521e744e r855:65a0521e744e r855:65a0521e744e r855:65a0521e744e r855:65a0521e744e r855:65a0521e744e r855:65a0521e744e r855:65a0521e744e r855:65a0521e744e r855:65a0521e744e r855:65a0521e744e r855:65a0521e744e r855:65a0521e744e r855:65a0521e744e r855:65a0521e744e r855:65a0521e744e r855:65a0521e744e r855:65a0521e744e r855:65a0521e744e r855:65a0521e744e r855:65a0521e744e r855:65a0521e744e r855:65a0521e744e r855:65a0521e744e r855:65a0521e744e r855:65a0521e744e r855:65a0521e744e r855:65a0521e744e r855:65a0521e744e r855:65a0521e744e r855:65a0521e744e r855:65a0521e744e r855:65a0521e744e r855:65a0521e744e r855:65a0521e744e r855:65a0521e744e r855:65a0521e744e r855:65a0521e744e r855:65a0521e744e r855:65a0521e744e r855:65a0521e744e r855:65a0521e744e r855:65a0521e744e r855:65a0521e744e r855:65a0521e744e r855:65a0521e744e r855:65a0521e744e r855:65a0521e744e r855:65a0521e744e r855:65a0521e744e r855:65a0521e744e r855:65a0521e744e r855:65a0521e744e r855:65a0521e744e r855:65a0521e744e r855:65a0521e744e r855:65a0521e744e r855:65a0521e744e r855:65a0521e744e r855:65a0521e744e r855:65a0521e744e r855:65a0521e744e r855:65a0521e744e r855:65a0521e744e r855:65a0521e744e r855:65a0521e744e r855:65a0521e744e r855:65a0521e744e r855:65a0521e744e r855:65a0521e744e r855:65a0521e744e r855:65a0521e744e r855:65a0521e744e r855:65a0521e744e r855:65a0521e744e r855:65a0521e744e r855:65a0521e744e r855:65a0521e744e r855:65a0521e744e r855:65a0521e744e r855:65a0521e744e r855:65a0521e744e r855:65a0521e744e r855:65a0521e744e r855:65a0521e744e | /* -*- mode: C++; indent-tabs-mode: nil; -*-
*
* This file is a part of LEMON, a generic C++ optimization library.
*
* Copyright (C) 2003-2009
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
* (Egervary Research Group on Combinatorial Optimization, EGRES).
*
* Permission to use, modify and distribute this software is granted
* provided that this copyright notice appears in all copies. For
* precise terms see the accompanying LICENSE file.
*
* This software is provided "AS IS" with no warranty of any kind,
* express or implied, and with no claim as to its suitability for any
* purpose.
*
*/
#ifndef LEMON_BINOMIAL_HEAP_H
#define LEMON_BINOMIAL_HEAP_H
///\file
///\ingroup heaps
///\brief Binomial Heap implementation.
#include <vector>
#include <utility>
#include <functional>
#include <lemon/math.h>
#include <lemon/counter.h>
namespace lemon {
/// \ingroup heaps
///
///\brief Binomial heap data structure.
///
/// This class implements the \e binomial \e heap data structure.
/// It fully conforms to the \ref concepts::Heap "heap concept".
///
/// The methods \ref increase() and \ref erase() are not efficient
/// in a binomial heap. In case of many calls of these operations,
/// it is better to use other heap structure, e.g. \ref BinHeap
/// "binary heap".
///
/// \tparam PR Type of the priorities of the items.
/// \tparam IM A read-writable item map with \c int values, used
/// internally to handle the cross references.
/// \tparam CMP A functor class for comparing the priorities.
/// The default is \c std::less<PR>.
#ifdef DOXYGEN
template <typename PR, typename IM, typename CMP>
#else
template <typename PR, typename IM, typename CMP = std::less<PR> >
#endif
class BinomialHeap {
public:
/// Type of the item-int map.
typedef IM ItemIntMap;
/// Type of the priorities.
typedef PR Prio;
/// Type of the items stored in the heap.
typedef typename ItemIntMap::Key Item;
/// Functor type for comparing the priorities.
typedef CMP Compare;
/// \brief Type to represent the states of the items.
///
/// Each item has a state associated to it. It can be "in heap",
/// "pre-heap" or "post-heap". The latter two are indifferent from the
/// heap's point of view, but may be useful to the user.
///
/// The item-int map must be initialized in such way that it assigns
/// \c PRE_HEAP (<tt>-1</tt>) to any element to be put in the heap.
enum State {
IN_HEAP = 0, ///< = 0.
PRE_HEAP = -1, ///< = -1.
POST_HEAP = -2 ///< = -2.
};
private:
class Store;
std::vector<Store> _data;
int _min, _head;
ItemIntMap &_iim;
Compare _comp;
int _num_items;
public:
/// \brief Constructor.
///
/// Constructor.
/// \param map A map that assigns \c int values to the items.
/// It is used internally to handle the cross references.
/// The assigned value must be \c PRE_HEAP (<tt>-1</tt>) for each item.
explicit BinomialHeap(ItemIntMap &map)
: _min(0), _head(-1), _iim(map), _num_items(0) {}
/// \brief Constructor.
///
/// Constructor.
/// \param map A map that assigns \c int values to the items.
/// It is used internally to handle the cross references.
/// The assigned value must be \c PRE_HEAP (<tt>-1</tt>) for each item.
/// \param comp The function object used for comparing the priorities.
BinomialHeap(ItemIntMap &map, const Compare &comp)
: _min(0), _head(-1), _iim(map), _comp(comp), _num_items(0) {}
/// \brief The number of items stored in the heap.
///
/// This function returns the number of items stored in the heap.
int size() const { return _num_items; }
/// \brief Check if the heap is empty.
///
/// This function returns \c true if the heap is empty.
bool empty() const { return _num_items==0; }
/// \brief Make the heap empty.
///
/// This functon makes the heap empty.
/// It does not change the cross reference map. If you want to reuse
/// a heap that is not surely empty, you should first clear it and
/// then you should set the cross reference map to \c PRE_HEAP
/// for each item.
void clear() {
_data.clear(); _min=0; _num_items=0; _head=-1;
}
/// \brief Set the priority of an item or insert it, if it is
/// not stored in the heap.
///
/// This method sets the priority of the given item if it is
/// already stored in the heap. Otherwise it inserts the given
/// item into the heap with the given priority.
/// \param item The item.
/// \param value The priority.
void set (const Item& item, const Prio& value) {
int i=_iim[item];
if ( i >= 0 && _data[i].in ) {
if ( _comp(value, _data[i].prio) ) decrease(item, value);
if ( _comp(_data[i].prio, value) ) increase(item, value);
} else push(item, value);
}
/// \brief Insert an item into the heap with the given priority.
///
/// This function inserts the given item into the heap with the
/// given priority.
/// \param item The item to insert.
/// \param value The priority of the item.
/// \pre \e item must not be stored in the heap.
void push (const Item& item, const Prio& value) {
int i=_iim[item];
if ( i<0 ) {
int s=_data.size();
_iim.set( item,s );
Store st;
st.name=item;
st.prio=value;
_data.push_back(st);
i=s;
}
else {
_data[i].parent=_data[i].right_neighbor=_data[i].child=-1;
_data[i].degree=0;
_data[i].in=true;
_data[i].prio=value;
}
if( 0==_num_items ) {
_head=i;
_min=i;
} else {
merge(i);
if( _comp(_data[i].prio, _data[_min].prio) ) _min=i;
}
++_num_items;
}
/// \brief Return the item having minimum priority.
///
/// This function returns the item having minimum priority.
/// \pre The heap must be non-empty.
Item top() const { return _data[_min].name; }
/// \brief The minimum priority.
///
/// This function returns the minimum priority.
/// \pre The heap must be non-empty.
Prio prio() const { return _data[_min].prio; }
/// \brief The priority of the given item.
///
/// This function returns the priority of the given item.
/// \param item The item.
/// \pre \e item must be in the heap.
const Prio& operator[](const Item& item) const {
return _data[_iim[item]].prio;
}
/// \brief Remove the item having minimum priority.
///
/// This function removes the item having minimum priority.
/// \pre The heap must be non-empty.
void pop() {
_data[_min].in=false;
int head_child=-1;
if ( _data[_min].child!=-1 ) {
int child=_data[_min].child;
int neighb;
while( child!=-1 ) {
neighb=_data[child].right_neighbor;
_data[child].parent=-1;
_data[child].right_neighbor=head_child;
head_child=child;
child=neighb;
}
}
if ( _data[_head].right_neighbor==-1 ) {
// there was only one root
_head=head_child;
}
else {
// there were more roots
if( _head!=_min ) { unlace(_min); }
else { _head=_data[_head].right_neighbor; }
merge(head_child);
}
_min=findMin();
--_num_items;
}
/// \brief Remove the given item from the heap.
///
/// This function removes the given item from the heap if it is
/// already stored.
/// \param item The item to delete.
/// \pre \e item must be in the heap.
void erase (const Item& item) {
int i=_iim[item];
if ( i >= 0 && _data[i].in ) {
decrease( item, _data[_min].prio-1 );
pop();
}
}
/// \brief Decrease the priority of an item to the given value.
///
/// This function decreases the priority of an item to the given value.
/// \param item The item.
/// \param value The priority.
/// \pre \e item must be stored in the heap with priority at least \e value.
void decrease (Item item, const Prio& value) {
int i=_iim[item];
int p=_data[i].parent;
_data[i].prio=value;
while( p!=-1 && _comp(value, _data[p].prio) ) {
_data[i].name=_data[p].name;
_data[i].prio=_data[p].prio;
_data[p].name=item;
_data[p].prio=value;
_iim[_data[i].name]=i;
i=p;
p=_data[p].parent;
}
_iim[item]=i;
if ( _comp(value, _data[_min].prio) ) _min=i;
}
/// \brief Increase the priority of an item to the given value.
///
/// This function increases the priority of an item to the given value.
/// \param item The item.
/// \param value The priority.
/// \pre \e item must be stored in the heap with priority at most \e value.
void increase (Item item, const Prio& value) {
erase(item);
push(item, value);
}
/// \brief Return the state of an item.
///
/// This method returns \c PRE_HEAP if the given item has never
/// been in the heap, \c IN_HEAP if it is in the heap at the moment,
/// and \c POST_HEAP otherwise.
/// In the latter case it is possible that the item will get back
/// to the heap again.
/// \param item The item.
State state(const Item &item) const {
int i=_iim[item];
if( i>=0 ) {
if ( _data[i].in ) i=0;
else i=-2;
}
return State(i);
}
/// \brief Set the state of an item in the heap.
///
/// This function sets the state of the given item in the heap.
/// It can be used to manually clear the heap when it is important
/// to achive better time complexity.
/// \param i The item.
/// \param st The state. It should not be \c IN_HEAP.
void state(const Item& i, State st) {
switch (st) {
case POST_HEAP:
case PRE_HEAP:
if (state(i) == IN_HEAP) {
erase(i);
}
_iim[i] = st;
break;
case IN_HEAP:
break;
}
}
private:
// Find the minimum of the roots
int findMin() {
if( _head!=-1 ) {
int min_loc=_head, min_val=_data[_head].prio;
for( int x=_data[_head].right_neighbor; x!=-1;
x=_data[x].right_neighbor ) {
if( _comp( _data[x].prio,min_val ) ) {
min_val=_data[x].prio;
min_loc=x;
}
}
return min_loc;
}
else return -1;
}
// Merge the heap with another heap starting at the given position
void merge(int a) {
if( _head==-1 || a==-1 ) return;
if( _data[a].right_neighbor==-1 &&
_data[a].degree<=_data[_head].degree ) {
_data[a].right_neighbor=_head;
_head=a;
} else {
interleave(a);
}
if( _data[_head].right_neighbor==-1 ) return;
int x=_head;
int x_prev=-1, x_next=_data[x].right_neighbor;
while( x_next!=-1 ) {
if( _data[x].degree!=_data[x_next].degree ||
( _data[x_next].right_neighbor!=-1 &&
_data[_data[x_next].right_neighbor].degree==_data[x].degree ) ) {
x_prev=x;
x=x_next;
}
else {
if( _comp(_data[x_next].prio,_data[x].prio) ) {
if( x_prev==-1 ) {
_head=x_next;
} else {
_data[x_prev].right_neighbor=x_next;
}
fuse(x,x_next);
x=x_next;
}
else {
_data[x].right_neighbor=_data[x_next].right_neighbor;
fuse(x_next,x);
}
}
x_next=_data[x].right_neighbor;
}
}
// Interleave the elements of the given list into the list of the roots
void interleave(int a) {
int p=_head, q=a;
int curr=_data.size();
_data.push_back(Store());
while( p!=-1 || q!=-1 ) {
if( q==-1 || ( p!=-1 && _data[p].degree<_data[q].degree ) ) {
_data[curr].right_neighbor=p;
curr=p;
p=_data[p].right_neighbor;
}
else {
_data[curr].right_neighbor=q;
curr=q;
q=_data[q].right_neighbor;
}
}
_head=_data.back().right_neighbor;
_data.pop_back();
}
// Lace node a under node b
void fuse(int a, int b) {
_data[a].parent=b;
_data[a].right_neighbor=_data[b].child;
_data[b].child=a;
++_data[b].degree;
}
// Unlace node a (if it has siblings)
void unlace(int a) {
int neighb=_data[a].right_neighbor;
int other=_head;
while( _data[other].right_neighbor!=a )
other=_data[other].right_neighbor;
_data[other].right_neighbor=neighb;
}
private:
class Store {
friend class BinomialHeap;
Item name;
int parent;
int right_neighbor;
int child;
int degree;
bool in;
Prio prio;
Store() : parent(-1), right_neighbor(-1), child(-1), degree(0),
in(true) {}
};
};
} //namespace lemon
#endif //LEMON_BINOMIAL_HEAP_H
|