# HG changeset patch # User Balazs Dezso # Date 2009-09-09 15:32:03 # Node ID 30cb42e3e43a680281b50c30c5098b920ce91311 # Parent 6d5f547e5bfb8131568ad50ea406129a056ac9ed Port planarity related algorithms from SVN 3509 (#62) diff --git a/lemon/Makefile.am b/lemon/Makefile.am --- a/lemon/Makefile.am +++ b/lemon/Makefile.am @@ -104,6 +104,7 @@ lemon/network_simplex.h \ lemon/pairing_heap.h \ lemon/path.h \ + lemon/planarity.h \ lemon/preflow.h \ lemon/radix_heap.h \ lemon/radix_sort.h \ diff --git a/lemon/planarity.h b/lemon/planarity.h new file mode 100644 --- /dev/null +++ b/lemon/planarity.h @@ -0,0 +1,2737 @@ +/* -*- mode: C++; indent-tabs-mode: nil; -*- + * + * This file is a part of LEMON, a generic C++ optimization library. + * + * Copyright (C) 2003-2009 + * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport + * (Egervary Research Group on Combinatorial Optimization, EGRES). + * + * Permission to use, modify and distribute this software is granted + * provided that this copyright notice appears in all copies. For + * precise terms see the accompanying LICENSE file. + * + * This software is provided "AS IS" with no warranty of any kind, + * express or implied, and with no claim as to its suitability for any + * purpose. + * + */ + +#ifndef LEMON_PLANARITY_H +#define LEMON_PLANARITY_H + +/// \ingroup planar +/// \file +/// \brief Planarity checking, embedding, drawing and coloring + +#include +#include + +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include + +namespace lemon { + + namespace _planarity_bits { + + template + struct PlanarityVisitor : DfsVisitor { + + TEMPLATE_GRAPH_TYPEDEFS(Graph); + + typedef typename Graph::template NodeMap PredMap; + + typedef typename Graph::template EdgeMap TreeMap; + + typedef typename Graph::template NodeMap OrderMap; + typedef std::vector OrderList; + + typedef typename Graph::template NodeMap LowMap; + typedef typename Graph::template NodeMap AncestorMap; + + PlanarityVisitor(const Graph& graph, + PredMap& pred_map, TreeMap& tree_map, + OrderMap& order_map, OrderList& order_list, + AncestorMap& ancestor_map, LowMap& low_map) + : _graph(graph), _pred_map(pred_map), _tree_map(tree_map), + _order_map(order_map), _order_list(order_list), + _ancestor_map(ancestor_map), _low_map(low_map) {} + + void reach(const Node& node) { + _order_map[node] = _order_list.size(); + _low_map[node] = _order_list.size(); + _ancestor_map[node] = _order_list.size(); + _order_list.push_back(node); + } + + void discover(const Arc& arc) { + Node source = _graph.source(arc); + Node target = _graph.target(arc); + + _tree_map[arc] = true; + _pred_map[target] = arc; + } + + void examine(const Arc& arc) { + Node source = _graph.source(arc); + Node target = _graph.target(arc); + + if (_order_map[target] < _order_map[source] && !_tree_map[arc]) { + if (_low_map[source] > _order_map[target]) { + _low_map[source] = _order_map[target]; + } + if (_ancestor_map[source] > _order_map[target]) { + _ancestor_map[source] = _order_map[target]; + } + } + } + + void backtrack(const Arc& arc) { + Node source = _graph.source(arc); + Node target = _graph.target(arc); + + if (_low_map[source] > _low_map[target]) { + _low_map[source] = _low_map[target]; + } + } + + const Graph& _graph; + PredMap& _pred_map; + TreeMap& _tree_map; + OrderMap& _order_map; + OrderList& _order_list; + AncestorMap& _ancestor_map; + LowMap& _low_map; + }; + + template + struct NodeDataNode { + int prev, next; + int visited; + typename Graph::Arc first; + bool inverted; + }; + + template + struct NodeDataNode { + int prev, next; + int visited; + }; + + template + struct ChildListNode { + typedef typename Graph::Node Node; + Node first; + Node prev, next; + }; + + template + struct ArcListNode { + typename Graph::Arc prev, next; + }; + + } + + /// \ingroup planar + /// + /// \brief Planarity checking of an undirected simple graph + /// + /// This class implements the Boyer-Myrvold algorithm for planarity + /// checking of an undirected graph. This class is a simplified + /// version of the PlanarEmbedding algorithm class because neither + /// the embedding nor the kuratowski subdivisons are not computed. + template + class PlanarityChecking { + private: + + TEMPLATE_GRAPH_TYPEDEFS(Graph); + + const Graph& _graph; + + private: + + typedef typename Graph::template NodeMap PredMap; + + typedef typename Graph::template EdgeMap TreeMap; + + typedef typename Graph::template NodeMap OrderMap; + typedef std::vector OrderList; + + typedef typename Graph::template NodeMap LowMap; + typedef typename Graph::template NodeMap AncestorMap; + + typedef _planarity_bits::NodeDataNode NodeDataNode; + typedef std::vector NodeData; + + typedef _planarity_bits::ChildListNode ChildListNode; + typedef typename Graph::template NodeMap ChildLists; + + typedef typename Graph::template NodeMap > MergeRoots; + + typedef typename Graph::template NodeMap EmbedArc; + + public: + + /// \brief Constructor + /// + /// \note The graph should be simple, i.e. parallel and loop arc + /// free. + PlanarityChecking(const Graph& graph) : _graph(graph) {} + + /// \brief Runs the algorithm. + /// + /// Runs the algorithm. + /// \return %True when the graph is planar. + bool run() { + typedef _planarity_bits::PlanarityVisitor Visitor; + + PredMap pred_map(_graph, INVALID); + TreeMap tree_map(_graph, false); + + OrderMap order_map(_graph, -1); + OrderList order_list; + + AncestorMap ancestor_map(_graph, -1); + LowMap low_map(_graph, -1); + + Visitor visitor(_graph, pred_map, tree_map, + order_map, order_list, ancestor_map, low_map); + DfsVisit visit(_graph, visitor); + visit.run(); + + ChildLists child_lists(_graph); + createChildLists(tree_map, order_map, low_map, child_lists); + + NodeData node_data(2 * order_list.size()); + + EmbedArc embed_arc(_graph, false); + + MergeRoots merge_roots(_graph); + + for (int i = order_list.size() - 1; i >= 0; --i) { + + Node node = order_list[i]; + + Node source = node; + for (OutArcIt e(_graph, node); e != INVALID; ++e) { + Node target = _graph.target(e); + + if (order_map[source] < order_map[target] && tree_map[e]) { + initFace(target, node_data, order_map, order_list); + } + } + + for (OutArcIt e(_graph, node); e != INVALID; ++e) { + Node target = _graph.target(e); + + if (order_map[source] < order_map[target] && !tree_map[e]) { + embed_arc[target] = true; + walkUp(target, source, i, pred_map, low_map, + order_map, order_list, node_data, merge_roots); + } + } + + for (typename MergeRoots::Value::iterator it = + merge_roots[node].begin(); it != merge_roots[node].end(); ++it) { + int rn = *it; + walkDown(rn, i, node_data, order_list, child_lists, + ancestor_map, low_map, embed_arc, merge_roots); + } + merge_roots[node].clear(); + + for (OutArcIt e(_graph, node); e != INVALID; ++e) { + Node target = _graph.target(e); + + if (order_map[source] < order_map[target] && !tree_map[e]) { + if (embed_arc[target]) { + return false; + } + } + } + } + + return true; + } + + private: + + void createChildLists(const TreeMap& tree_map, const OrderMap& order_map, + const LowMap& low_map, ChildLists& child_lists) { + + for (NodeIt n(_graph); n != INVALID; ++n) { + Node source = n; + + std::vector targets; + for (OutArcIt e(_graph, n); e != INVALID; ++e) { + Node target = _graph.target(e); + + if (order_map[source] < order_map[target] && tree_map[e]) { + targets.push_back(target); + } + } + + if (targets.size() == 0) { + child_lists[source].first = INVALID; + } else if (targets.size() == 1) { + child_lists[source].first = targets[0]; + child_lists[targets[0]].prev = INVALID; + child_lists[targets[0]].next = INVALID; + } else { + radixSort(targets.begin(), targets.end(), mapToFunctor(low_map)); + for (int i = 1; i < int(targets.size()); ++i) { + child_lists[targets[i]].prev = targets[i - 1]; + child_lists[targets[i - 1]].next = targets[i]; + } + child_lists[targets.back()].next = INVALID; + child_lists[targets.front()].prev = INVALID; + child_lists[source].first = targets.front(); + } + } + } + + void walkUp(const Node& node, Node root, int rorder, + const PredMap& pred_map, const LowMap& low_map, + const OrderMap& order_map, const OrderList& order_list, + NodeData& node_data, MergeRoots& merge_roots) { + + int na, nb; + bool da, db; + + na = nb = order_map[node]; + da = true; db = false; + + while (true) { + + if (node_data[na].visited == rorder) break; + if (node_data[nb].visited == rorder) break; + + node_data[na].visited = rorder; + node_data[nb].visited = rorder; + + int rn = -1; + + if (na >= int(order_list.size())) { + rn = na; + } else if (nb >= int(order_list.size())) { + rn = nb; + } + + if (rn == -1) { + int nn; + + nn = da ? node_data[na].prev : node_data[na].next; + da = node_data[nn].prev != na; + na = nn; + + nn = db ? node_data[nb].prev : node_data[nb].next; + db = node_data[nn].prev != nb; + nb = nn; + + } else { + + Node rep = order_list[rn - order_list.size()]; + Node parent = _graph.source(pred_map[rep]); + + if (low_map[rep] < rorder) { + merge_roots[parent].push_back(rn); + } else { + merge_roots[parent].push_front(rn); + } + + if (parent != root) { + na = nb = order_map[parent]; + da = true; db = false; + } else { + break; + } + } + } + } + + void walkDown(int rn, int rorder, NodeData& node_data, + OrderList& order_list, ChildLists& child_lists, + AncestorMap& ancestor_map, LowMap& low_map, + EmbedArc& embed_arc, MergeRoots& merge_roots) { + + std::vector > merge_stack; + + for (int di = 0; di < 2; ++di) { + bool rd = di == 0; + int pn = rn; + int n = rd ? node_data[rn].next : node_data[rn].prev; + + while (n != rn) { + + Node node = order_list[n]; + + if (embed_arc[node]) { + + // Merging components on the critical path + while (!merge_stack.empty()) { + + // Component root + int cn = merge_stack.back().first; + bool cd = merge_stack.back().second; + merge_stack.pop_back(); + + // Parent of component + int dn = merge_stack.back().first; + bool dd = merge_stack.back().second; + merge_stack.pop_back(); + + Node parent = order_list[dn]; + + // Erasing from merge_roots + merge_roots[parent].pop_front(); + + Node child = order_list[cn - order_list.size()]; + + // Erasing from child_lists + if (child_lists[child].prev != INVALID) { + child_lists[child_lists[child].prev].next = + child_lists[child].next; + } else { + child_lists[parent].first = child_lists[child].next; + } + + if (child_lists[child].next != INVALID) { + child_lists[child_lists[child].next].prev = + child_lists[child].prev; + } + + // Merging external faces + { + int en = cn; + cn = cd ? node_data[cn].prev : node_data[cn].next; + cd = node_data[cn].next == en; + + } + + if (cd) node_data[cn].next = dn; else node_data[cn].prev = dn; + if (dd) node_data[dn].prev = cn; else node_data[dn].next = cn; + + } + + bool d = pn == node_data[n].prev; + + if (node_data[n].prev == node_data[n].next && + node_data[n].inverted) { + d = !d; + } + + // Embedding arc into external face + if (rd) node_data[rn].next = n; else node_data[rn].prev = n; + if (d) node_data[n].prev = rn; else node_data[n].next = rn; + pn = rn; + + embed_arc[order_list[n]] = false; + } + + if (!merge_roots[node].empty()) { + + bool d = pn == node_data[n].prev; + + merge_stack.push_back(std::make_pair(n, d)); + + int rn = merge_roots[node].front(); + + int xn = node_data[rn].next; + Node xnode = order_list[xn]; + + int yn = node_data[rn].prev; + Node ynode = order_list[yn]; + + bool rd; + if (!external(xnode, rorder, child_lists, ancestor_map, low_map)) { + rd = true; + } else if (!external(ynode, rorder, child_lists, + ancestor_map, low_map)) { + rd = false; + } else if (pertinent(xnode, embed_arc, merge_roots)) { + rd = true; + } else { + rd = false; + } + + merge_stack.push_back(std::make_pair(rn, rd)); + + pn = rn; + n = rd ? xn : yn; + + } else if (!external(node, rorder, child_lists, + ancestor_map, low_map)) { + int nn = (node_data[n].next != pn ? + node_data[n].next : node_data[n].prev); + + bool nd = n == node_data[nn].prev; + + if (nd) node_data[nn].prev = pn; + else node_data[nn].next = pn; + + if (n == node_data[pn].prev) node_data[pn].prev = nn; + else node_data[pn].next = nn; + + node_data[nn].inverted = + (node_data[nn].prev == node_data[nn].next && nd != rd); + + n = nn; + } + else break; + + } + + if (!merge_stack.empty() || n == rn) { + break; + } + } + } + + void initFace(const Node& node, NodeData& node_data, + const OrderMap& order_map, const OrderList& order_list) { + int n = order_map[node]; + int rn = n + order_list.size(); + + node_data[n].next = node_data[n].prev = rn; + node_data[rn].next = node_data[rn].prev = n; + + node_data[n].visited = order_list.size(); + node_data[rn].visited = order_list.size(); + + } + + bool external(const Node& node, int rorder, + ChildLists& child_lists, AncestorMap& ancestor_map, + LowMap& low_map) { + Node child = child_lists[node].first; + + if (child != INVALID) { + if (low_map[child] < rorder) return true; + } + + if (ancestor_map[node] < rorder) return true; + + return false; + } + + bool pertinent(const Node& node, const EmbedArc& embed_arc, + const MergeRoots& merge_roots) { + return !merge_roots[node].empty() || embed_arc[node]; + } + + }; + + /// \ingroup planar + /// + /// \brief Planar embedding of an undirected simple graph + /// + /// This class implements the Boyer-Myrvold algorithm for planar + /// embedding of an undirected graph. The planar embedding is an + /// ordering of the outgoing edges of the nodes, which is a possible + /// configuration to draw the graph in the plane. If there is not + /// such ordering then the graph contains a \f$ K_5 \f$ (full graph + /// with 5 nodes) or a \f$ K_{3,3} \f$ (complete bipartite graph on + /// 3 ANode and 3 BNode) subdivision. + /// + /// The current implementation calculates either an embedding or a + /// Kuratowski subdivision. The running time of the algorithm is + /// \f$ O(n) \f$. + template + class PlanarEmbedding { + private: + + TEMPLATE_GRAPH_TYPEDEFS(Graph); + + const Graph& _graph; + typename Graph::template ArcMap _embedding; + + typename Graph::template EdgeMap _kuratowski; + + private: + + typedef typename Graph::template NodeMap PredMap; + + typedef typename Graph::template EdgeMap TreeMap; + + typedef typename Graph::template NodeMap OrderMap; + typedef std::vector OrderList; + + typedef typename Graph::template NodeMap LowMap; + typedef typename Graph::template NodeMap AncestorMap; + + typedef _planarity_bits::NodeDataNode NodeDataNode; + typedef std::vector NodeData; + + typedef _planarity_bits::ChildListNode ChildListNode; + typedef typename Graph::template NodeMap ChildLists; + + typedef typename Graph::template NodeMap > MergeRoots; + + typedef typename Graph::template NodeMap EmbedArc; + + typedef _planarity_bits::ArcListNode ArcListNode; + typedef typename Graph::template ArcMap ArcLists; + + typedef typename Graph::template NodeMap FlipMap; + + typedef typename Graph::template NodeMap TypeMap; + + enum IsolatorNodeType { + HIGHX = 6, LOWX = 7, + HIGHY = 8, LOWY = 9, + ROOT = 10, PERTINENT = 11, + INTERNAL = 12 + }; + + public: + + /// \brief The map for store of embedding + typedef typename Graph::template ArcMap EmbeddingMap; + + /// \brief Constructor + /// + /// \note The graph should be simple, i.e. parallel and loop arc + /// free. + PlanarEmbedding(const Graph& graph) + : _graph(graph), _embedding(_graph), _kuratowski(graph, false) {} + + /// \brief Runs the algorithm. + /// + /// Runs the algorithm. + /// \param kuratowski If the parameter is false, then the + /// algorithm does not compute a Kuratowski subdivision. + ///\return %True when the graph is planar. + bool run(bool kuratowski = true) { + typedef _planarity_bits::PlanarityVisitor Visitor; + + PredMap pred_map(_graph, INVALID); + TreeMap tree_map(_graph, false); + + OrderMap order_map(_graph, -1); + OrderList order_list; + + AncestorMap ancestor_map(_graph, -1); + LowMap low_map(_graph, -1); + + Visitor visitor(_graph, pred_map, tree_map, + order_map, order_list, ancestor_map, low_map); + DfsVisit visit(_graph, visitor); + visit.run(); + + ChildLists child_lists(_graph); + createChildLists(tree_map, order_map, low_map, child_lists); + + NodeData node_data(2 * order_list.size()); + + EmbedArc embed_arc(_graph, INVALID); + + MergeRoots merge_roots(_graph); + + ArcLists arc_lists(_graph); + + FlipMap flip_map(_graph, false); + + for (int i = order_list.size() - 1; i >= 0; --i) { + + Node node = order_list[i]; + + node_data[i].first = INVALID; + + Node source = node; + for (OutArcIt e(_graph, node); e != INVALID; ++e) { + Node target = _graph.target(e); + + if (order_map[source] < order_map[target] && tree_map[e]) { + initFace(target, arc_lists, node_data, + pred_map, order_map, order_list); + } + } + + for (OutArcIt e(_graph, node); e != INVALID; ++e) { + Node target = _graph.target(e); + + if (order_map[source] < order_map[target] && !tree_map[e]) { + embed_arc[target] = e; + walkUp(target, source, i, pred_map, low_map, + order_map, order_list, node_data, merge_roots); + } + } + + for (typename MergeRoots::Value::iterator it = + merge_roots[node].begin(); it != merge_roots[node].end(); ++it) { + int rn = *it; + walkDown(rn, i, node_data, arc_lists, flip_map, order_list, + child_lists, ancestor_map, low_map, embed_arc, merge_roots); + } + merge_roots[node].clear(); + + for (OutArcIt e(_graph, node); e != INVALID; ++e) { + Node target = _graph.target(e); + + if (order_map[source] < order_map[target] && !tree_map[e]) { + if (embed_arc[target] != INVALID) { + if (kuratowski) { + isolateKuratowski(e, node_data, arc_lists, flip_map, + order_map, order_list, pred_map, child_lists, + ancestor_map, low_map, + embed_arc, merge_roots); + } + return false; + } + } + } + } + + for (int i = 0; i < int(order_list.size()); ++i) { + + mergeRemainingFaces(order_list[i], node_data, order_list, order_map, + child_lists, arc_lists); + storeEmbedding(order_list[i], node_data, order_map, pred_map, + arc_lists, flip_map); + } + + return true; + } + + /// \brief Gives back the successor of an arc + /// + /// Gives back the successor of an arc. This function makes + /// possible to query the cyclic order of the outgoing arcs from + /// a node. + Arc next(const Arc& arc) const { + return _embedding[arc]; + } + + /// \brief Gives back the calculated embedding map + /// + /// The returned map contains the successor of each arc in the + /// graph. + const EmbeddingMap& embedding() const { + return _embedding; + } + + /// \brief Gives back true if the undirected arc is in the + /// kuratowski subdivision + /// + /// Gives back true if the undirected arc is in the kuratowski + /// subdivision + /// \note The \c run() had to be called with true value. + bool kuratowski(const Edge& edge) { + return _kuratowski[edge]; + } + + private: + + void createChildLists(const TreeMap& tree_map, const OrderMap& order_map, + const LowMap& low_map, ChildLists& child_lists) { + + for (NodeIt n(_graph); n != INVALID; ++n) { + Node source = n; + + std::vector targets; + for (OutArcIt e(_graph, n); e != INVALID; ++e) { + Node target = _graph.target(e); + + if (order_map[source] < order_map[target] && tree_map[e]) { + targets.push_back(target); + } + } + + if (targets.size() == 0) { + child_lists[source].first = INVALID; + } else if (targets.size() == 1) { + child_lists[source].first = targets[0]; + child_lists[targets[0]].prev = INVALID; + child_lists[targets[0]].next = INVALID; + } else { + radixSort(targets.begin(), targets.end(), mapToFunctor(low_map)); + for (int i = 1; i < int(targets.size()); ++i) { + child_lists[targets[i]].prev = targets[i - 1]; + child_lists[targets[i - 1]].next = targets[i]; + } + child_lists[targets.back()].next = INVALID; + child_lists[targets.front()].prev = INVALID; + child_lists[source].first = targets.front(); + } + } + } + + void walkUp(const Node& node, Node root, int rorder, + const PredMap& pred_map, const LowMap& low_map, + const OrderMap& order_map, const OrderList& order_list, + NodeData& node_data, MergeRoots& merge_roots) { + + int na, nb; + bool da, db; + + na = nb = order_map[node]; + da = true; db = false; + + while (true) { + + if (node_data[na].visited == rorder) break; + if (node_data[nb].visited == rorder) break; + + node_data[na].visited = rorder; + node_data[nb].visited = rorder; + + int rn = -1; + + if (na >= int(order_list.size())) { + rn = na; + } else if (nb >= int(order_list.size())) { + rn = nb; + } + + if (rn == -1) { + int nn; + + nn = da ? node_data[na].prev : node_data[na].next; + da = node_data[nn].prev != na; + na = nn; + + nn = db ? node_data[nb].prev : node_data[nb].next; + db = node_data[nn].prev != nb; + nb = nn; + + } else { + + Node rep = order_list[rn - order_list.size()]; + Node parent = _graph.source(pred_map[rep]); + + if (low_map[rep] < rorder) { + merge_roots[parent].push_back(rn); + } else { + merge_roots[parent].push_front(rn); + } + + if (parent != root) { + na = nb = order_map[parent]; + da = true; db = false; + } else { + break; + } + } + } + } + + void walkDown(int rn, int rorder, NodeData& node_data, + ArcLists& arc_lists, FlipMap& flip_map, + OrderList& order_list, ChildLists& child_lists, + AncestorMap& ancestor_map, LowMap& low_map, + EmbedArc& embed_arc, MergeRoots& merge_roots) { + + std::vector > merge_stack; + + for (int di = 0; di < 2; ++di) { + bool rd = di == 0; + int pn = rn; + int n = rd ? node_data[rn].next : node_data[rn].prev; + + while (n != rn) { + + Node node = order_list[n]; + + if (embed_arc[node] != INVALID) { + + // Merging components on the critical path + while (!merge_stack.empty()) { + + // Component root + int cn = merge_stack.back().first; + bool cd = merge_stack.back().second; + merge_stack.pop_back(); + + // Parent of component + int dn = merge_stack.back().first; + bool dd = merge_stack.back().second; + merge_stack.pop_back(); + + Node parent = order_list[dn]; + + // Erasing from merge_roots + merge_roots[parent].pop_front(); + + Node child = order_list[cn - order_list.size()]; + + // Erasing from child_lists + if (child_lists[child].prev != INVALID) { + child_lists[child_lists[child].prev].next = + child_lists[child].next; + } else { + child_lists[parent].first = child_lists[child].next; + } + + if (child_lists[child].next != INVALID) { + child_lists[child_lists[child].next].prev = + child_lists[child].prev; + } + + // Merging arcs + flipping + Arc de = node_data[dn].first; + Arc ce = node_data[cn].first; + + flip_map[order_list[cn - order_list.size()]] = cd != dd; + if (cd != dd) { + std::swap(arc_lists[ce].prev, arc_lists[ce].next); + ce = arc_lists[ce].prev; + std::swap(arc_lists[ce].prev, arc_lists[ce].next); + } + + { + Arc dne = arc_lists[de].next; + Arc cne = arc_lists[ce].next; + + arc_lists[de].next = cne; + arc_lists[ce].next = dne; + + arc_lists[dne].prev = ce; + arc_lists[cne].prev = de; + } + + if (dd) { + node_data[dn].first = ce; + } + + // Merging external faces + { + int en = cn; + cn = cd ? node_data[cn].prev : node_data[cn].next; + cd = node_data[cn].next == en; + + if (node_data[cn].prev == node_data[cn].next && + node_data[cn].inverted) { + cd = !cd; + } + } + + if (cd) node_data[cn].next = dn; else node_data[cn].prev = dn; + if (dd) node_data[dn].prev = cn; else node_data[dn].next = cn; + + } + + bool d = pn == node_data[n].prev; + + if (node_data[n].prev == node_data[n].next && + node_data[n].inverted) { + d = !d; + } + + // Add new arc + { + Arc arc = embed_arc[node]; + Arc re = node_data[rn].first; + + arc_lists[arc_lists[re].next].prev = arc; + arc_lists[arc].next = arc_lists[re].next; + arc_lists[arc].prev = re; + arc_lists[re].next = arc; + + if (!rd) { + node_data[rn].first = arc; + } + + Arc rev = _graph.oppositeArc(arc); + Arc e = node_data[n].first; + + arc_lists[arc_lists[e].next].prev = rev; + arc_lists[rev].next = arc_lists[e].next; + arc_lists[rev].prev = e; + arc_lists[e].next = rev; + + if (d) { + node_data[n].first = rev; + } + + } + + // Embedding arc into external face + if (rd) node_data[rn].next = n; else node_data[rn].prev = n; + if (d) node_data[n].prev = rn; else node_data[n].next = rn; + pn = rn; + + embed_arc[order_list[n]] = INVALID; + } + + if (!merge_roots[node].empty()) { + + bool d = pn == node_data[n].prev; + if (node_data[n].prev == node_data[n].next && + node_data[n].inverted) { + d = !d; + } + + merge_stack.push_back(std::make_pair(n, d)); + + int rn = merge_roots[node].front(); + + int xn = node_data[rn].next; + Node xnode = order_list[xn]; + + int yn = node_data[rn].prev; + Node ynode = order_list[yn]; + + bool rd; + if (!external(xnode, rorder, child_lists, ancestor_map, low_map)) { + rd = true; + } else if (!external(ynode, rorder, child_lists, + ancestor_map, low_map)) { + rd = false; + } else if (pertinent(xnode, embed_arc, merge_roots)) { + rd = true; + } else { + rd = false; + } + + merge_stack.push_back(std::make_pair(rn, rd)); + + pn = rn; + n = rd ? xn : yn; + + } else if (!external(node, rorder, child_lists, + ancestor_map, low_map)) { + int nn = (node_data[n].next != pn ? + node_data[n].next : node_data[n].prev); + + bool nd = n == node_data[nn].prev; + + if (nd) node_data[nn].prev = pn; + else node_data[nn].next = pn; + + if (n == node_data[pn].prev) node_data[pn].prev = nn; + else node_data[pn].next = nn; + + node_data[nn].inverted = + (node_data[nn].prev == node_data[nn].next && nd != rd); + + n = nn; + } + else break; + + } + + if (!merge_stack.empty() || n == rn) { + break; + } + } + } + + void initFace(const Node& node, ArcLists& arc_lists, + NodeData& node_data, const PredMap& pred_map, + const OrderMap& order_map, const OrderList& order_list) { + int n = order_map[node]; + int rn = n + order_list.size(); + + node_data[n].next = node_data[n].prev = rn; + node_data[rn].next = node_data[rn].prev = n; + + node_data[n].visited = order_list.size(); + node_data[rn].visited = order_list.size(); + + node_data[n].inverted = false; + node_data[rn].inverted = false; + + Arc arc = pred_map[node]; + Arc rev = _graph.oppositeArc(arc); + + node_data[rn].first = arc; + node_data[n].first = rev; + + arc_lists[arc].prev = arc; + arc_lists[arc].next = arc; + + arc_lists[rev].prev = rev; + arc_lists[rev].next = rev; + + } + + void mergeRemainingFaces(const Node& node, NodeData& node_data, + OrderList& order_list, OrderMap& order_map, + ChildLists& child_lists, ArcLists& arc_lists) { + while (child_lists[node].first != INVALID) { + int dd = order_map[node]; + Node child = child_lists[node].first; + int cd = order_map[child] + order_list.size(); + child_lists[node].first = child_lists[child].next; + + Arc de = node_data[dd].first; + Arc ce = node_data[cd].first; + + if (de != INVALID) { + Arc dne = arc_lists[de].next; + Arc cne = arc_lists[ce].next; + + arc_lists[de].next = cne; + arc_lists[ce].next = dne; + + arc_lists[dne].prev = ce; + arc_lists[cne].prev = de; + } + + node_data[dd].first = ce; + + } + } + + void storeEmbedding(const Node& node, NodeData& node_data, + OrderMap& order_map, PredMap& pred_map, + ArcLists& arc_lists, FlipMap& flip_map) { + + if (node_data[order_map[node]].first == INVALID) return; + + if (pred_map[node] != INVALID) { + Node source = _graph.source(pred_map[node]); + flip_map[node] = flip_map[node] != flip_map[source]; + } + + Arc first = node_data[order_map[node]].first; + Arc prev = first; + + Arc arc = flip_map[node] ? + arc_lists[prev].prev : arc_lists[prev].next; + + _embedding[prev] = arc; + + while (arc != first) { + Arc next = arc_lists[arc].prev == prev ? + arc_lists[arc].next : arc_lists[arc].prev; + prev = arc; arc = next; + _embedding[prev] = arc; + } + } + + + bool external(const Node& node, int rorder, + ChildLists& child_lists, AncestorMap& ancestor_map, + LowMap& low_map) { + Node child = child_lists[node].first; + + if (child != INVALID) { + if (low_map[child] < rorder) return true; + } + + if (ancestor_map[node] < rorder) return true; + + return false; + } + + bool pertinent(const Node& node, const EmbedArc& embed_arc, + const MergeRoots& merge_roots) { + return !merge_roots[node].empty() || embed_arc[node] != INVALID; + } + + int lowPoint(const Node& node, OrderMap& order_map, ChildLists& child_lists, + AncestorMap& ancestor_map, LowMap& low_map) { + int low_point; + + Node child = child_lists[node].first; + + if (child != INVALID) { + low_point = low_map[child]; + } else { + low_point = order_map[node]; + } + + if (low_point > ancestor_map[node]) { + low_point = ancestor_map[node]; + } + + return low_point; + } + + int findComponentRoot(Node root, Node node, ChildLists& child_lists, + OrderMap& order_map, OrderList& order_list) { + + int order = order_map[root]; + int norder = order_map[node]; + + Node child = child_lists[root].first; + while (child != INVALID) { + int corder = order_map[child]; + if (corder > order && corder < norder) { + order = corder; + } + child = child_lists[child].next; + } + return order + order_list.size(); + } + + Node findPertinent(Node node, OrderMap& order_map, NodeData& node_data, + EmbedArc& embed_arc, MergeRoots& merge_roots) { + Node wnode =_graph.target(node_data[order_map[node]].first); + while (!pertinent(wnode, embed_arc, merge_roots)) { + wnode = _graph.target(node_data[order_map[wnode]].first); + } + return wnode; + } + + + Node findExternal(Node node, int rorder, OrderMap& order_map, + ChildLists& child_lists, AncestorMap& ancestor_map, + LowMap& low_map, NodeData& node_data) { + Node wnode =_graph.target(node_data[order_map[node]].first); + while (!external(wnode, rorder, child_lists, ancestor_map, low_map)) { + wnode = _graph.target(node_data[order_map[wnode]].first); + } + return wnode; + } + + void markCommonPath(Node node, int rorder, Node& wnode, Node& znode, + OrderList& order_list, OrderMap& order_map, + NodeData& node_data, ArcLists& arc_lists, + EmbedArc& embed_arc, MergeRoots& merge_roots, + ChildLists& child_lists, AncestorMap& ancestor_map, + LowMap& low_map) { + + Node cnode = node; + Node pred = INVALID; + + while (true) { + + bool pert = pertinent(cnode, embed_arc, merge_roots); + bool ext = external(cnode, rorder, child_lists, ancestor_map, low_map); + + if (pert && ext) { + if (!merge_roots[cnode].empty()) { + int cn = merge_roots[cnode].back(); + + if (low_map[order_list[cn - order_list.size()]] < rorder) { + Arc arc = node_data[cn].first; + _kuratowski.set(arc, true); + + pred = cnode; + cnode = _graph.target(arc); + + continue; + } + } + wnode = znode = cnode; + return; + + } else if (pert) { + wnode = cnode; + + while (!external(cnode, rorder, child_lists, ancestor_map, low_map)) { + Arc arc = node_data[order_map[cnode]].first; + + if (_graph.target(arc) == pred) { + arc = arc_lists[arc].next; + } + _kuratowski.set(arc, true); + + Node next = _graph.target(arc); + pred = cnode; cnode = next; + } + + znode = cnode; + return; + + } else if (ext) { + znode = cnode; + + while (!pertinent(cnode, embed_arc, merge_roots)) { + Arc arc = node_data[order_map[cnode]].first; + + if (_graph.target(arc) == pred) { + arc = arc_lists[arc].next; + } + _kuratowski.set(arc, true); + + Node next = _graph.target(arc); + pred = cnode; cnode = next; + } + + wnode = cnode; + return; + + } else { + Arc arc = node_data[order_map[cnode]].first; + + if (_graph.target(arc) == pred) { + arc = arc_lists[arc].next; + } + _kuratowski.set(arc, true); + + Node next = _graph.target(arc); + pred = cnode; cnode = next; + } + + } + + } + + void orientComponent(Node root, int rn, OrderMap& order_map, + PredMap& pred_map, NodeData& node_data, + ArcLists& arc_lists, FlipMap& flip_map, + TypeMap& type_map) { + node_data[order_map[root]].first = node_data[rn].first; + type_map[root] = 1; + + std::vector st, qu; + + st.push_back(root); + while (!st.empty()) { + Node node = st.back(); + st.pop_back(); + qu.push_back(node); + + Arc arc = node_data[order_map[node]].first; + + if (type_map[_graph.target(arc)] == 0) { + st.push_back(_graph.target(arc)); + type_map[_graph.target(arc)] = 1; + } + + Arc last = arc, pred = arc; + arc = arc_lists[arc].next; + while (arc != last) { + + if (type_map[_graph.target(arc)] == 0) { + st.push_back(_graph.target(arc)); + type_map[_graph.target(arc)] = 1; + } + + Arc next = arc_lists[arc].next != pred ? + arc_lists[arc].next : arc_lists[arc].prev; + pred = arc; arc = next; + } + + } + + type_map[root] = 2; + flip_map[root] = false; + + for (int i = 1; i < int(qu.size()); ++i) { + + Node node = qu[i]; + + while (type_map[node] != 2) { + st.push_back(node); + type_map[node] = 2; + node = _graph.source(pred_map[node]); + } + + bool flip = flip_map[node]; + + while (!st.empty()) { + node = st.back(); + st.pop_back(); + + flip_map[node] = flip != flip_map[node]; + flip = flip_map[node]; + + if (flip) { + Arc arc = node_data[order_map[node]].first; + std::swap(arc_lists[arc].prev, arc_lists[arc].next); + arc = arc_lists[arc].prev; + std::swap(arc_lists[arc].prev, arc_lists[arc].next); + node_data[order_map[node]].first = arc; + } + } + } + + for (int i = 0; i < int(qu.size()); ++i) { + + Arc arc = node_data[order_map[qu[i]]].first; + Arc last = arc, pred = arc; + + arc = arc_lists[arc].next; + while (arc != last) { + + if (arc_lists[arc].next == pred) { + std::swap(arc_lists[arc].next, arc_lists[arc].prev); + } + pred = arc; arc = arc_lists[arc].next; + } + + } + } + + void setFaceFlags(Node root, Node wnode, Node ynode, Node xnode, + OrderMap& order_map, NodeData& node_data, + TypeMap& type_map) { + Node node = _graph.target(node_data[order_map[root]].first); + + while (node != ynode) { + type_map[node] = HIGHY; + node = _graph.target(node_data[order_map[node]].first); + } + + while (node != wnode) { + type_map[node] = LOWY; + node = _graph.target(node_data[order_map[node]].first); + } + + node = _graph.target(node_data[order_map[wnode]].first); + + while (node != xnode) { + type_map[node] = LOWX; + node = _graph.target(node_data[order_map[node]].first); + } + type_map[node] = LOWX; + + node = _graph.target(node_data[order_map[xnode]].first); + while (node != root) { + type_map[node] = HIGHX; + node = _graph.target(node_data[order_map[node]].first); + } + + type_map[wnode] = PERTINENT; + type_map[root] = ROOT; + } + + void findInternalPath(std::vector& ipath, + Node wnode, Node root, TypeMap& type_map, + OrderMap& order_map, NodeData& node_data, + ArcLists& arc_lists) { + std::vector st; + + Node node = wnode; + + while (node != root) { + Arc arc = arc_lists[node_data[order_map[node]].first].next; + st.push_back(arc); + node = _graph.target(arc); + } + + while (true) { + Arc arc = st.back(); + if (type_map[_graph.target(arc)] == LOWX || + type_map[_graph.target(arc)] == HIGHX) { + break; + } + if (type_map[_graph.target(arc)] == 2) { + type_map[_graph.target(arc)] = 3; + + arc = arc_lists[_graph.oppositeArc(arc)].next; + st.push_back(arc); + } else { + st.pop_back(); + arc = arc_lists[arc].next; + + while (_graph.oppositeArc(arc) == st.back()) { + arc = st.back(); + st.pop_back(); + arc = arc_lists[arc].next; + } + st.push_back(arc); + } + } + + for (int i = 0; i < int(st.size()); ++i) { + if (type_map[_graph.target(st[i])] != LOWY && + type_map[_graph.target(st[i])] != HIGHY) { + for (; i < int(st.size()); ++i) { + ipath.push_back(st[i]); + } + } + } + } + + void setInternalFlags(std::vector& ipath, TypeMap& type_map) { + for (int i = 1; i < int(ipath.size()); ++i) { + type_map[_graph.source(ipath[i])] = INTERNAL; + } + } + + void findPilePath(std::vector& ppath, + Node root, TypeMap& type_map, OrderMap& order_map, + NodeData& node_data, ArcLists& arc_lists) { + std::vector st; + + st.push_back(_graph.oppositeArc(node_data[order_map[root]].first)); + st.push_back(node_data[order_map[root]].first); + + while (st.size() > 1) { + Arc arc = st.back(); + if (type_map[_graph.target(arc)] == INTERNAL) { + break; + } + if (type_map[_graph.target(arc)] == 3) { + type_map[_graph.target(arc)] = 4; + + arc = arc_lists[_graph.oppositeArc(arc)].next; + st.push_back(arc); + } else { + st.pop_back(); + arc = arc_lists[arc].next; + + while (!st.empty() && _graph.oppositeArc(arc) == st.back()) { + arc = st.back(); + st.pop_back(); + arc = arc_lists[arc].next; + } + st.push_back(arc); + } + } + + for (int i = 1; i < int(st.size()); ++i) { + ppath.push_back(st[i]); + } + } + + + int markExternalPath(Node node, OrderMap& order_map, + ChildLists& child_lists, PredMap& pred_map, + AncestorMap& ancestor_map, LowMap& low_map) { + int lp = lowPoint(node, order_map, child_lists, + ancestor_map, low_map); + + if (ancestor_map[node] != lp) { + node = child_lists[node].first; + _kuratowski[pred_map[node]] = true; + + while (ancestor_map[node] != lp) { + for (OutArcIt e(_graph, node); e != INVALID; ++e) { + Node tnode = _graph.target(e); + if (order_map[tnode] > order_map[node] && low_map[tnode] == lp) { + node = tnode; + _kuratowski[e] = true; + break; + } + } + } + } + + for (OutArcIt e(_graph, node); e != INVALID; ++e) { + if (order_map[_graph.target(e)] == lp) { + _kuratowski[e] = true; + break; + } + } + + return lp; + } + + void markPertinentPath(Node node, OrderMap& order_map, + NodeData& node_data, ArcLists& arc_lists, + EmbedArc& embed_arc, MergeRoots& merge_roots) { + while (embed_arc[node] == INVALID) { + int n = merge_roots[node].front(); + Arc arc = node_data[n].first; + + _kuratowski.set(arc, true); + + Node pred = node; + node = _graph.target(arc); + while (!pertinent(node, embed_arc, merge_roots)) { + arc = node_data[order_map[node]].first; + if (_graph.target(arc) == pred) { + arc = arc_lists[arc].next; + } + _kuratowski.set(arc, true); + pred = node; + node = _graph.target(arc); + } + } + _kuratowski.set(embed_arc[node], true); + } + + void markPredPath(Node node, Node snode, PredMap& pred_map) { + while (node != snode) { + _kuratowski.set(pred_map[node], true); + node = _graph.source(pred_map[node]); + } + } + + void markFacePath(Node ynode, Node xnode, + OrderMap& order_map, NodeData& node_data) { + Arc arc = node_data[order_map[ynode]].first; + Node node = _graph.target(arc); + _kuratowski.set(arc, true); + + while (node != xnode) { + arc = node_data[order_map[node]].first; + _kuratowski.set(arc, true); + node = _graph.target(arc); + } + } + + void markInternalPath(std::vector& path) { + for (int i = 0; i < int(path.size()); ++i) { + _kuratowski.set(path[i], true); + } + } + + void markPilePath(std::vector& path) { + for (int i = 0; i < int(path.size()); ++i) { + _kuratowski.set(path[i], true); + } + } + + void isolateKuratowski(Arc arc, NodeData& node_data, + ArcLists& arc_lists, FlipMap& flip_map, + OrderMap& order_map, OrderList& order_list, + PredMap& pred_map, ChildLists& child_lists, + AncestorMap& ancestor_map, LowMap& low_map, + EmbedArc& embed_arc, MergeRoots& merge_roots) { + + Node root = _graph.source(arc); + Node enode = _graph.target(arc); + + int rorder = order_map[root]; + + TypeMap type_map(_graph, 0); + + int rn = findComponentRoot(root, enode, child_lists, + order_map, order_list); + + Node xnode = order_list[node_data[rn].next]; + Node ynode = order_list[node_data[rn].prev]; + + // Minor-A + { + while (!merge_roots[xnode].empty() || !merge_roots[ynode].empty()) { + + if (!merge_roots[xnode].empty()) { + root = xnode; + rn = merge_roots[xnode].front(); + } else { + root = ynode; + rn = merge_roots[ynode].front(); + } + + xnode = order_list[node_data[rn].next]; + ynode = order_list[node_data[rn].prev]; + } + + if (root != _graph.source(arc)) { + orientComponent(root, rn, order_map, pred_map, + node_data, arc_lists, flip_map, type_map); + markFacePath(root, root, order_map, node_data); + int xlp = markExternalPath(xnode, order_map, child_lists, + pred_map, ancestor_map, low_map); + int ylp = markExternalPath(ynode, order_map, child_lists, + pred_map, ancestor_map, low_map); + markPredPath(root, order_list[xlp < ylp ? xlp : ylp], pred_map); + Node lwnode = findPertinent(ynode, order_map, node_data, + embed_arc, merge_roots); + + markPertinentPath(lwnode, order_map, node_data, arc_lists, + embed_arc, merge_roots); + + return; + } + } + + orientComponent(root, rn, order_map, pred_map, + node_data, arc_lists, flip_map, type_map); + + Node wnode = findPertinent(ynode, order_map, node_data, + embed_arc, merge_roots); + setFaceFlags(root, wnode, ynode, xnode, order_map, node_data, type_map); + + + //Minor-B + if (!merge_roots[wnode].empty()) { + int cn = merge_roots[wnode].back(); + Node rep = order_list[cn - order_list.size()]; + if (low_map[rep] < rorder) { + markFacePath(root, root, order_map, node_data); + int xlp = markExternalPath(xnode, order_map, child_lists, + pred_map, ancestor_map, low_map); + int ylp = markExternalPath(ynode, order_map, child_lists, + pred_map, ancestor_map, low_map); + + Node lwnode, lznode; + markCommonPath(wnode, rorder, lwnode, lznode, order_list, + order_map, node_data, arc_lists, embed_arc, + merge_roots, child_lists, ancestor_map, low_map); + + markPertinentPath(lwnode, order_map, node_data, arc_lists, + embed_arc, merge_roots); + int zlp = markExternalPath(lznode, order_map, child_lists, + pred_map, ancestor_map, low_map); + + int minlp = xlp < ylp ? xlp : ylp; + if (zlp < minlp) minlp = zlp; + + int maxlp = xlp > ylp ? xlp : ylp; + if (zlp > maxlp) maxlp = zlp; + + markPredPath(order_list[maxlp], order_list[minlp], pred_map); + + return; + } + } + + Node pxnode, pynode; + std::vector ipath; + findInternalPath(ipath, wnode, root, type_map, order_map, + node_data, arc_lists); + setInternalFlags(ipath, type_map); + pynode = _graph.source(ipath.front()); + pxnode = _graph.target(ipath.back()); + + wnode = findPertinent(pynode, order_map, node_data, + embed_arc, merge_roots); + + // Minor-C + { + if (type_map[_graph.source(ipath.front())] == HIGHY) { + if (type_map[_graph.target(ipath.back())] == HIGHX) { + markFacePath(xnode, pxnode, order_map, node_data); + } + markFacePath(root, xnode, order_map, node_data); + markPertinentPath(wnode, order_map, node_data, arc_lists, + embed_arc, merge_roots); + markInternalPath(ipath); + int xlp = markExternalPath(xnode, order_map, child_lists, + pred_map, ancestor_map, low_map); + int ylp = markExternalPath(ynode, order_map, child_lists, + pred_map, ancestor_map, low_map); + markPredPath(root, order_list[xlp < ylp ? xlp : ylp], pred_map); + return; + } + + if (type_map[_graph.target(ipath.back())] == HIGHX) { + markFacePath(ynode, root, order_map, node_data); + markPertinentPath(wnode, order_map, node_data, arc_lists, + embed_arc, merge_roots); + markInternalPath(ipath); + int xlp = markExternalPath(xnode, order_map, child_lists, + pred_map, ancestor_map, low_map); + int ylp = markExternalPath(ynode, order_map, child_lists, + pred_map, ancestor_map, low_map); + markPredPath(root, order_list[xlp < ylp ? xlp : ylp], pred_map); + return; + } + } + + std::vector ppath; + findPilePath(ppath, root, type_map, order_map, node_data, arc_lists); + + // Minor-D + if (!ppath.empty()) { + markFacePath(ynode, xnode, order_map, node_data); + markPertinentPath(wnode, order_map, node_data, arc_lists, + embed_arc, merge_roots); + markPilePath(ppath); + markInternalPath(ipath); + int xlp = markExternalPath(xnode, order_map, child_lists, + pred_map, ancestor_map, low_map); + int ylp = markExternalPath(ynode, order_map, child_lists, + pred_map, ancestor_map, low_map); + markPredPath(root, order_list[xlp < ylp ? xlp : ylp], pred_map); + return; + } + + // Minor-E* + { + + if (!external(wnode, rorder, child_lists, ancestor_map, low_map)) { + Node znode = findExternal(pynode, rorder, order_map, + child_lists, ancestor_map, + low_map, node_data); + + if (type_map[znode] == LOWY) { + markFacePath(root, xnode, order_map, node_data); + markPertinentPath(wnode, order_map, node_data, arc_lists, + embed_arc, merge_roots); + markInternalPath(ipath); + int xlp = markExternalPath(xnode, order_map, child_lists, + pred_map, ancestor_map, low_map); + int zlp = markExternalPath(znode, order_map, child_lists, + pred_map, ancestor_map, low_map); + markPredPath(root, order_list[xlp < zlp ? xlp : zlp], pred_map); + } else { + markFacePath(ynode, root, order_map, node_data); + markPertinentPath(wnode, order_map, node_data, arc_lists, + embed_arc, merge_roots); + markInternalPath(ipath); + int ylp = markExternalPath(ynode, order_map, child_lists, + pred_map, ancestor_map, low_map); + int zlp = markExternalPath(znode, order_map, child_lists, + pred_map, ancestor_map, low_map); + markPredPath(root, order_list[ylp < zlp ? ylp : zlp], pred_map); + } + return; + } + + int xlp = markExternalPath(xnode, order_map, child_lists, + pred_map, ancestor_map, low_map); + int ylp = markExternalPath(ynode, order_map, child_lists, + pred_map, ancestor_map, low_map); + int wlp = markExternalPath(wnode, order_map, child_lists, + pred_map, ancestor_map, low_map); + + if (wlp > xlp && wlp > ylp) { + markFacePath(root, root, order_map, node_data); + markPredPath(root, order_list[xlp < ylp ? xlp : ylp], pred_map); + return; + } + + markInternalPath(ipath); + markPertinentPath(wnode, order_map, node_data, arc_lists, + embed_arc, merge_roots); + + if (xlp > ylp && xlp > wlp) { + markFacePath(root, pynode, order_map, node_data); + markFacePath(wnode, xnode, order_map, node_data); + markPredPath(root, order_list[ylp < wlp ? ylp : wlp], pred_map); + return; + } + + if (ylp > xlp && ylp > wlp) { + markFacePath(pxnode, root, order_map, node_data); + markFacePath(ynode, wnode, order_map, node_data); + markPredPath(root, order_list[xlp < wlp ? xlp : wlp], pred_map); + return; + } + + if (pynode != ynode) { + markFacePath(pxnode, wnode, order_map, node_data); + + int minlp = xlp < ylp ? xlp : ylp; + if (wlp < minlp) minlp = wlp; + + int maxlp = xlp > ylp ? xlp : ylp; + if (wlp > maxlp) maxlp = wlp; + + markPredPath(order_list[maxlp], order_list[minlp], pred_map); + return; + } + + if (pxnode != xnode) { + markFacePath(wnode, pynode, order_map, node_data); + + int minlp = xlp < ylp ? xlp : ylp; + if (wlp < minlp) minlp = wlp; + + int maxlp = xlp > ylp ? xlp : ylp; + if (wlp > maxlp) maxlp = wlp; + + markPredPath(order_list[maxlp], order_list[minlp], pred_map); + return; + } + + markFacePath(root, root, order_map, node_data); + int minlp = xlp < ylp ? xlp : ylp; + if (wlp < minlp) minlp = wlp; + markPredPath(root, order_list[minlp], pred_map); + return; + } + + } + + }; + + namespace _planarity_bits { + + template + void makeConnected(Graph& graph, EmbeddingMap& embedding) { + DfsVisitor null_visitor; + DfsVisit > dfs(graph, null_visitor); + dfs.init(); + + typename Graph::Node u = INVALID; + for (typename Graph::NodeIt n(graph); n != INVALID; ++n) { + if (!dfs.reached(n)) { + dfs.addSource(n); + dfs.start(); + if (u == INVALID) { + u = n; + } else { + typename Graph::Node v = n; + + typename Graph::Arc ue = typename Graph::OutArcIt(graph, u); + typename Graph::Arc ve = typename Graph::OutArcIt(graph, v); + + typename Graph::Arc e = graph.direct(graph.addEdge(u, v), true); + + if (ue != INVALID) { + embedding[e] = embedding[ue]; + embedding[ue] = e; + } else { + embedding[e] = e; + } + + if (ve != INVALID) { + embedding[graph.oppositeArc(e)] = embedding[ve]; + embedding[ve] = graph.oppositeArc(e); + } else { + embedding[graph.oppositeArc(e)] = graph.oppositeArc(e); + } + } + } + } + } + + template + void makeBiNodeConnected(Graph& graph, EmbeddingMap& embedding) { + typename Graph::template ArcMap processed(graph); + + std::vector arcs; + for (typename Graph::ArcIt e(graph); e != INVALID; ++e) { + arcs.push_back(e); + } + + IterableBoolMap visited(graph, false); + + for (int i = 0; i < int(arcs.size()); ++i) { + typename Graph::Arc pp = arcs[i]; + if (processed[pp]) continue; + + typename Graph::Arc e = embedding[graph.oppositeArc(pp)]; + processed[e] = true; + visited.set(graph.source(e), true); + + typename Graph::Arc p = e, l = e; + e = embedding[graph.oppositeArc(e)]; + + while (e != l) { + processed[e] = true; + + if (visited[graph.source(e)]) { + + typename Graph::Arc n = + graph.direct(graph.addEdge(graph.source(p), + graph.target(e)), true); + embedding[n] = p; + embedding[graph.oppositeArc(pp)] = n; + + embedding[graph.oppositeArc(n)] = + embedding[graph.oppositeArc(e)]; + embedding[graph.oppositeArc(e)] = + graph.oppositeArc(n); + + p = n; + e = embedding[graph.oppositeArc(n)]; + } else { + visited.set(graph.source(e), true); + pp = p; + p = e; + e = embedding[graph.oppositeArc(e)]; + } + } + visited.setAll(false); + } + } + + + template + void makeMaxPlanar(Graph& graph, EmbeddingMap& embedding) { + + typename Graph::template NodeMap degree(graph); + + for (typename Graph::NodeIt n(graph); n != INVALID; ++n) { + degree[n] = countIncEdges(graph, n); + } + + typename Graph::template ArcMap processed(graph); + IterableBoolMap visited(graph, false); + + std::vector arcs; + for (typename Graph::ArcIt e(graph); e != INVALID; ++e) { + arcs.push_back(e); + } + + for (int i = 0; i < int(arcs.size()); ++i) { + typename Graph::Arc e = arcs[i]; + + if (processed[e]) continue; + processed[e] = true; + + typename Graph::Arc mine = e; + int mind = degree[graph.source(e)]; + + int face_size = 1; + + typename Graph::Arc l = e; + e = embedding[graph.oppositeArc(e)]; + while (l != e) { + processed[e] = true; + + ++face_size; + + if (degree[graph.source(e)] < mind) { + mine = e; + mind = degree[graph.source(e)]; + } + + e = embedding[graph.oppositeArc(e)]; + } + + if (face_size < 4) { + continue; + } + + typename Graph::Node s = graph.source(mine); + for (typename Graph::OutArcIt e(graph, s); e != INVALID; ++e) { + visited.set(graph.target(e), true); + } + + typename Graph::Arc oppe = INVALID; + + e = embedding[graph.oppositeArc(mine)]; + e = embedding[graph.oppositeArc(e)]; + while (graph.target(e) != s) { + if (visited[graph.source(e)]) { + oppe = e; + break; + } + e = embedding[graph.oppositeArc(e)]; + } + visited.setAll(false); + + if (oppe == INVALID) { + + e = embedding[graph.oppositeArc(mine)]; + typename Graph::Arc pn = mine, p = e; + + e = embedding[graph.oppositeArc(e)]; + while (graph.target(e) != s) { + typename Graph::Arc n = + graph.direct(graph.addEdge(s, graph.source(e)), true); + + embedding[n] = pn; + embedding[graph.oppositeArc(n)] = e; + embedding[graph.oppositeArc(p)] = graph.oppositeArc(n); + + pn = n; + + p = e; + e = embedding[graph.oppositeArc(e)]; + } + + embedding[graph.oppositeArc(e)] = pn; + + } else { + + mine = embedding[graph.oppositeArc(mine)]; + s = graph.source(mine); + oppe = embedding[graph.oppositeArc(oppe)]; + typename Graph::Node t = graph.source(oppe); + + typename Graph::Arc ce = graph.direct(graph.addEdge(s, t), true); + embedding[ce] = mine; + embedding[graph.oppositeArc(ce)] = oppe; + + typename Graph::Arc pn = ce, p = oppe; + e = embedding[graph.oppositeArc(oppe)]; + while (graph.target(e) != s) { + typename Graph::Arc n = + graph.direct(graph.addEdge(s, graph.source(e)), true); + + embedding[n] = pn; + embedding[graph.oppositeArc(n)] = e; + embedding[graph.oppositeArc(p)] = graph.oppositeArc(n); + + pn = n; + + p = e; + e = embedding[graph.oppositeArc(e)]; + + } + embedding[graph.oppositeArc(e)] = pn; + + pn = graph.oppositeArc(ce), p = mine; + e = embedding[graph.oppositeArc(mine)]; + while (graph.target(e) != t) { + typename Graph::Arc n = + graph.direct(graph.addEdge(t, graph.source(e)), true); + + embedding[n] = pn; + embedding[graph.oppositeArc(n)] = e; + embedding[graph.oppositeArc(p)] = graph.oppositeArc(n); + + pn = n; + + p = e; + e = embedding[graph.oppositeArc(e)]; + + } + embedding[graph.oppositeArc(e)] = pn; + } + } + } + + } + + /// \ingroup planar + /// + /// \brief Schnyder's planar drawing algorithm + /// + /// The planar drawing algorithm calculates positions for the nodes + /// in the plane which coordinates satisfy that if the arcs are + /// represented with straight lines then they will not intersect + /// each other. + /// + /// Scnyder's algorithm embeds the graph on \c (n-2,n-2) size grid, + /// i.e. each node will be located in the \c [0,n-2]x[0,n-2] square. + /// The time complexity of the algorithm is O(n). + template + class PlanarDrawing { + public: + + TEMPLATE_GRAPH_TYPEDEFS(Graph); + + /// \brief The point type for store coordinates + typedef dim2::Point Point; + /// \brief The map type for store coordinates + typedef typename Graph::template NodeMap PointMap; + + + /// \brief Constructor + /// + /// Constructor + /// \pre The graph should be simple, i.e. loop and parallel arc free. + PlanarDrawing(const Graph& graph) + : _graph(graph), _point_map(graph) {} + + private: + + template + void drawing(const AuxGraph& graph, + const AuxEmbeddingMap& next, + PointMap& point_map) { + TEMPLATE_GRAPH_TYPEDEFS(AuxGraph); + + typename AuxGraph::template ArcMap prev(graph); + + for (NodeIt n(graph); n != INVALID; ++n) { + Arc e = OutArcIt(graph, n); + + Arc p = e, l = e; + + e = next[e]; + while (e != l) { + prev[e] = p; + p = e; + e = next[e]; + } + prev[e] = p; + } + + Node anode, bnode, cnode; + + { + Arc e = ArcIt(graph); + anode = graph.source(e); + bnode = graph.target(e); + cnode = graph.target(next[graph.oppositeArc(e)]); + } + + IterableBoolMap proper(graph, false); + typename AuxGraph::template NodeMap conn(graph, -1); + + conn[anode] = conn[bnode] = -2; + { + for (OutArcIt e(graph, anode); e != INVALID; ++e) { + Node m = graph.target(e); + if (conn[m] == -1) { + conn[m] = 1; + } + } + conn[cnode] = 2; + + for (OutArcIt e(graph, bnode); e != INVALID; ++e) { + Node m = graph.target(e); + if (conn[m] == -1) { + conn[m] = 1; + } else if (conn[m] != -2) { + conn[m] += 1; + Arc pe = graph.oppositeArc(e); + if (conn[graph.target(next[pe])] == -2) { + conn[m] -= 1; + } + if (conn[graph.target(prev[pe])] == -2) { + conn[m] -= 1; + } + + proper.set(m, conn[m] == 1); + } + } + } + + + typename AuxGraph::template ArcMap angle(graph, -1); + + while (proper.trueNum() != 0) { + Node n = typename IterableBoolMap::TrueIt(proper); + proper.set(n, false); + conn[n] = -2; + + for (OutArcIt e(graph, n); e != INVALID; ++e) { + Node m = graph.target(e); + if (conn[m] == -1) { + conn[m] = 1; + } else if (conn[m] != -2) { + conn[m] += 1; + Arc pe = graph.oppositeArc(e); + if (conn[graph.target(next[pe])] == -2) { + conn[m] -= 1; + } + if (conn[graph.target(prev[pe])] == -2) { + conn[m] -= 1; + } + + proper.set(m, conn[m] == 1); + } + } + + { + Arc e = OutArcIt(graph, n); + Arc p = e, l = e; + + e = next[e]; + while (e != l) { + + if (conn[graph.target(e)] == -2 && conn[graph.target(p)] == -2) { + Arc f = e; + angle[f] = 0; + f = next[graph.oppositeArc(f)]; + angle[f] = 1; + f = next[graph.oppositeArc(f)]; + angle[f] = 2; + } + + p = e; + e = next[e]; + } + + if (conn[graph.target(e)] == -2 && conn[graph.target(p)] == -2) { + Arc f = e; + angle[f] = 0; + f = next[graph.oppositeArc(f)]; + angle[f] = 1; + f = next[graph.oppositeArc(f)]; + angle[f] = 2; + } + } + } + + typename AuxGraph::template NodeMap apred(graph, INVALID); + typename AuxGraph::template NodeMap bpred(graph, INVALID); + typename AuxGraph::template NodeMap cpred(graph, INVALID); + + typename AuxGraph::template NodeMap apredid(graph, -1); + typename AuxGraph::template NodeMap bpredid(graph, -1); + typename AuxGraph::template NodeMap cpredid(graph, -1); + + for (ArcIt e(graph); e != INVALID; ++e) { + if (angle[e] == angle[next[e]]) { + switch (angle[e]) { + case 2: + apred[graph.target(e)] = graph.source(e); + apredid[graph.target(e)] = graph.id(graph.source(e)); + break; + case 1: + bpred[graph.target(e)] = graph.source(e); + bpredid[graph.target(e)] = graph.id(graph.source(e)); + break; + case 0: + cpred[graph.target(e)] = graph.source(e); + cpredid[graph.target(e)] = graph.id(graph.source(e)); + break; + } + } + } + + cpred[anode] = INVALID; + cpred[bnode] = INVALID; + + std::vector aorder, border, corder; + + { + typename AuxGraph::template NodeMap processed(graph, false); + std::vector st; + for (NodeIt n(graph); n != INVALID; ++n) { + if (!processed[n] && n != bnode && n != cnode) { + st.push_back(n); + processed[n] = true; + Node m = apred[n]; + while (m != INVALID && !processed[m]) { + st.push_back(m); + processed[m] = true; + m = apred[m]; + } + while (!st.empty()) { + aorder.push_back(st.back()); + st.pop_back(); + } + } + } + } + + { + typename AuxGraph::template NodeMap processed(graph, false); + std::vector st; + for (NodeIt n(graph); n != INVALID; ++n) { + if (!processed[n] && n != cnode && n != anode) { + st.push_back(n); + processed[n] = true; + Node m = bpred[n]; + while (m != INVALID && !processed[m]) { + st.push_back(m); + processed[m] = true; + m = bpred[m]; + } + while (!st.empty()) { + border.push_back(st.back()); + st.pop_back(); + } + } + } + } + + { + typename AuxGraph::template NodeMap processed(graph, false); + std::vector st; + for (NodeIt n(graph); n != INVALID; ++n) { + if (!processed[n] && n != anode && n != bnode) { + st.push_back(n); + processed[n] = true; + Node m = cpred[n]; + while (m != INVALID && !processed[m]) { + st.push_back(m); + processed[m] = true; + m = cpred[m]; + } + while (!st.empty()) { + corder.push_back(st.back()); + st.pop_back(); + } + } + } + } + + typename AuxGraph::template NodeMap atree(graph, 0); + for (int i = aorder.size() - 1; i >= 0; --i) { + Node n = aorder[i]; + atree[n] = 1; + for (OutArcIt e(graph, n); e != INVALID; ++e) { + if (apred[graph.target(e)] == n) { + atree[n] += atree[graph.target(e)]; + } + } + } + + typename AuxGraph::template NodeMap btree(graph, 0); + for (int i = border.size() - 1; i >= 0; --i) { + Node n = border[i]; + btree[n] = 1; + for (OutArcIt e(graph, n); e != INVALID; ++e) { + if (bpred[graph.target(e)] == n) { + btree[n] += btree[graph.target(e)]; + } + } + } + + typename AuxGraph::template NodeMap apath(graph, 0); + apath[bnode] = apath[cnode] = 1; + typename AuxGraph::template NodeMap apath_btree(graph, 0); + apath_btree[bnode] = btree[bnode]; + for (int i = 1; i < int(aorder.size()); ++i) { + Node n = aorder[i]; + apath[n] = apath[apred[n]] + 1; + apath_btree[n] = btree[n] + apath_btree[apred[n]]; + } + + typename AuxGraph::template NodeMap bpath_atree(graph, 0); + bpath_atree[anode] = atree[anode]; + for (int i = 1; i < int(border.size()); ++i) { + Node n = border[i]; + bpath_atree[n] = atree[n] + bpath_atree[bpred[n]]; + } + + typename AuxGraph::template NodeMap cpath(graph, 0); + cpath[anode] = cpath[bnode] = 1; + typename AuxGraph::template NodeMap cpath_atree(graph, 0); + cpath_atree[anode] = atree[anode]; + typename AuxGraph::template NodeMap cpath_btree(graph, 0); + cpath_btree[bnode] = btree[bnode]; + for (int i = 1; i < int(corder.size()); ++i) { + Node n = corder[i]; + cpath[n] = cpath[cpred[n]] + 1; + cpath_atree[n] = atree[n] + cpath_atree[cpred[n]]; + cpath_btree[n] = btree[n] + cpath_btree[cpred[n]]; + } + + typename AuxGraph::template NodeMap third(graph); + for (NodeIt n(graph); n != INVALID; ++n) { + point_map[n].x = + bpath_atree[n] + cpath_atree[n] - atree[n] - cpath[n] + 1; + point_map[n].y = + cpath_btree[n] + apath_btree[n] - btree[n] - apath[n] + 1; + } + + } + + public: + + /// \brief Calculates the node positions + /// + /// This function calculates the node positions. + /// \return %True if the graph is planar. + bool run() { + PlanarEmbedding pe(_graph); + if (!pe.run()) return false; + + run(pe); + return true; + } + + /// \brief Calculates the node positions according to a + /// combinatorical embedding + /// + /// This function calculates the node locations. The \c embedding + /// parameter should contain a valid combinatorical embedding, i.e. + /// a valid cyclic order of the arcs. + template + void run(const EmbeddingMap& embedding) { + typedef SmartEdgeSet AuxGraph; + + if (3 * countNodes(_graph) - 6 == countEdges(_graph)) { + drawing(_graph, embedding, _point_map); + return; + } + + AuxGraph aux_graph(_graph); + typename AuxGraph::template ArcMap + aux_embedding(aux_graph); + + { + + typename Graph::template EdgeMap + ref(_graph); + + for (EdgeIt e(_graph); e != INVALID; ++e) { + ref[e] = aux_graph.addEdge(_graph.u(e), _graph.v(e)); + } + + for (EdgeIt e(_graph); e != INVALID; ++e) { + Arc ee = embedding[_graph.direct(e, true)]; + aux_embedding[aux_graph.direct(ref[e], true)] = + aux_graph.direct(ref[ee], _graph.direction(ee)); + ee = embedding[_graph.direct(e, false)]; + aux_embedding[aux_graph.direct(ref[e], false)] = + aux_graph.direct(ref[ee], _graph.direction(ee)); + } + } + _planarity_bits::makeConnected(aux_graph, aux_embedding); + _planarity_bits::makeBiNodeConnected(aux_graph, aux_embedding); + _planarity_bits::makeMaxPlanar(aux_graph, aux_embedding); + drawing(aux_graph, aux_embedding, _point_map); + } + + /// \brief The coordinate of the given node + /// + /// The coordinate of the given node. + Point operator[](const Node& node) const { + return _point_map[node]; + } + + /// \brief Returns the grid embedding in a \e NodeMap. + /// + /// Returns the grid embedding in a \e NodeMap of \c dim2::Point . + const PointMap& coords() const { + return _point_map; + } + + private: + + const Graph& _graph; + PointMap _point_map; + + }; + + namespace _planarity_bits { + + template + class KempeFilter { + public: + typedef typename ColorMap::Key Key; + typedef bool Value; + + KempeFilter(const ColorMap& color_map, + const typename ColorMap::Value& first, + const typename ColorMap::Value& second) + : _color_map(color_map), _first(first), _second(second) {} + + Value operator[](const Key& key) const { + return _color_map[key] == _first || _color_map[key] == _second; + } + + private: + const ColorMap& _color_map; + typename ColorMap::Value _first, _second; + }; + } + + /// \ingroup planar + /// + /// \brief Coloring planar graphs + /// + /// The graph coloring problem is the coloring of the graph nodes + /// that there are not adjacent nodes with the same color. The + /// planar graphs can be always colored with four colors, it is + /// proved by Appel and Haken and their proofs provide a quadratic + /// time algorithm for four coloring, but it could not be used to + /// implement efficient algorithm. The five and six coloring can be + /// made in linear time, but in this class the five coloring has + /// quadratic worst case time complexity. The two coloring (if + /// possible) is solvable with a graph search algorithm and it is + /// implemented in \ref bipartitePartitions() function in LEMON. To + /// decide whether the planar graph is three colorable is + /// NP-complete. + /// + /// This class contains member functions for calculate colorings + /// with five and six colors. The six coloring algorithm is a simple + /// greedy coloring on the backward minimum outgoing order of nodes. + /// This order can be computed as in each phase the node with least + /// outgoing arcs to unprocessed nodes is chosen. This order + /// guarantees that when a node is chosen for coloring it has at + /// most five already colored adjacents. The five coloring algorithm + /// use the same method, but if the greedy approach fails to color + /// with five colors, i.e. the node has five already different + /// colored neighbours, it swaps the colors in one of the connected + /// two colored sets with the Kempe recoloring method. + template + class PlanarColoring { + public: + + TEMPLATE_GRAPH_TYPEDEFS(Graph); + + /// \brief The map type for store color indexes + typedef typename Graph::template NodeMap IndexMap; + /// \brief The map type for store colors + typedef ComposeMap ColorMap; + + /// \brief Constructor + /// + /// Constructor + /// \pre The graph should be simple, i.e. loop and parallel arc free. + PlanarColoring(const Graph& graph) + : _graph(graph), _color_map(graph), _palette(0) { + _palette.add(Color(1,0,0)); + _palette.add(Color(0,1,0)); + _palette.add(Color(0,0,1)); + _palette.add(Color(1,1,0)); + _palette.add(Color(1,0,1)); + _palette.add(Color(0,1,1)); + } + + /// \brief Returns the \e NodeMap of color indexes + /// + /// Returns the \e NodeMap of color indexes. The values are in the + /// range \c [0..4] or \c [0..5] according to the coloring method. + IndexMap colorIndexMap() const { + return _color_map; + } + + /// \brief Returns the \e NodeMap of colors + /// + /// Returns the \e NodeMap of colors. The values are five or six + /// distinct \ref lemon::Color "colors". + ColorMap colorMap() const { + return composeMap(_palette, _color_map); + } + + /// \brief Returns the color index of the node + /// + /// Returns the color index of the node. The values are in the + /// range \c [0..4] or \c [0..5] according to the coloring method. + int colorIndex(const Node& node) const { + return _color_map[node]; + } + + /// \brief Returns the color of the node + /// + /// Returns the color of the node. The values are five or six + /// distinct \ref lemon::Color "colors". + Color color(const Node& node) const { + return _palette[_color_map[node]]; + } + + + /// \brief Calculates a coloring with at most six colors + /// + /// This function calculates a coloring with at most six colors. The time + /// complexity of this variant is linear in the size of the graph. + /// \return %True when the algorithm could color the graph with six color. + /// If the algorithm fails, then the graph could not be planar. + /// \note This function can return true if the graph is not + /// planar but it can be colored with 6 colors. + bool runSixColoring() { + + typename Graph::template NodeMap heap_index(_graph, -1); + BucketHeap > heap(heap_index); + + for (NodeIt n(_graph); n != INVALID; ++n) { + _color_map[n] = -2; + heap.push(n, countOutArcs(_graph, n)); + } + + std::vector order; + + while (!heap.empty()) { + Node n = heap.top(); + heap.pop(); + _color_map[n] = -1; + order.push_back(n); + for (OutArcIt e(_graph, n); e != INVALID; ++e) { + Node t = _graph.runningNode(e); + if (_color_map[t] == -2) { + heap.decrease(t, heap[t] - 1); + } + } + } + + for (int i = order.size() - 1; i >= 0; --i) { + std::vector forbidden(6, false); + for (OutArcIt e(_graph, order[i]); e != INVALID; ++e) { + Node t = _graph.runningNode(e); + if (_color_map[t] != -1) { + forbidden[_color_map[t]] = true; + } + } + for (int k = 0; k < 6; ++k) { + if (!forbidden[k]) { + _color_map[order[i]] = k; + break; + } + } + if (_color_map[order[i]] == -1) { + return false; + } + } + return true; + } + + private: + + bool recolor(const Node& u, const Node& v) { + int ucolor = _color_map[u]; + int vcolor = _color_map[v]; + typedef _planarity_bits::KempeFilter KempeFilter; + KempeFilter filter(_color_map, ucolor, vcolor); + + typedef FilterNodes KempeGraph; + KempeGraph kempe_graph(_graph, filter); + + std::vector comp; + Bfs bfs(kempe_graph); + bfs.init(); + bfs.addSource(u); + while (!bfs.emptyQueue()) { + Node n = bfs.nextNode(); + if (n == v) return false; + comp.push_back(n); + bfs.processNextNode(); + } + + int scolor = ucolor + vcolor; + for (int i = 0; i < static_cast(comp.size()); ++i) { + _color_map[comp[i]] = scolor - _color_map[comp[i]]; + } + + return true; + } + + template + void kempeRecoloring(const Node& node, const EmbeddingMap& embedding) { + std::vector nodes; + nodes.reserve(4); + + for (Arc e = OutArcIt(_graph, node); e != INVALID; e = embedding[e]) { + Node t = _graph.target(e); + if (_color_map[t] != -1) { + nodes.push_back(t); + if (nodes.size() == 4) break; + } + } + + int color = _color_map[nodes[0]]; + if (recolor(nodes[0], nodes[2])) { + _color_map[node] = color; + } else { + color = _color_map[nodes[1]]; + recolor(nodes[1], nodes[3]); + _color_map[node] = color; + } + } + + public: + + /// \brief Calculates a coloring with at most five colors + /// + /// This function calculates a coloring with at most five + /// colors. The worst case time complexity of this variant is + /// quadratic in the size of the graph. + template + void runFiveColoring(const EmbeddingMap& embedding) { + + typename Graph::template NodeMap heap_index(_graph, -1); + BucketHeap > heap(heap_index); + + for (NodeIt n(_graph); n != INVALID; ++n) { + _color_map[n] = -2; + heap.push(n, countOutArcs(_graph, n)); + } + + std::vector order; + + while (!heap.empty()) { + Node n = heap.top(); + heap.pop(); + _color_map[n] = -1; + order.push_back(n); + for (OutArcIt e(_graph, n); e != INVALID; ++e) { + Node t = _graph.runningNode(e); + if (_color_map[t] == -2) { + heap.decrease(t, heap[t] - 1); + } + } + } + + for (int i = order.size() - 1; i >= 0; --i) { + std::vector forbidden(5, false); + for (OutArcIt e(_graph, order[i]); e != INVALID; ++e) { + Node t = _graph.runningNode(e); + if (_color_map[t] != -1) { + forbidden[_color_map[t]] = true; + } + } + for (int k = 0; k < 5; ++k) { + if (!forbidden[k]) { + _color_map[order[i]] = k; + break; + } + } + if (_color_map[order[i]] == -1) { + kempeRecoloring(order[i], embedding); + } + } + } + + /// \brief Calculates a coloring with at most five colors + /// + /// This function calculates a coloring with at most five + /// colors. The worst case time complexity of this variant is + /// quadratic in the size of the graph. + /// \return %True when the graph is planar. + bool runFiveColoring() { + PlanarEmbedding pe(_graph); + if (!pe.run()) return false; + + runFiveColoring(pe.embeddingMap()); + return true; + } + + private: + + const Graph& _graph; + IndexMap _color_map; + Palette _palette; + }; + +} + +#endif diff --git a/test/CMakeLists.txt b/test/CMakeLists.txt --- a/test/CMakeLists.txt +++ b/test/CMakeLists.txt @@ -33,6 +33,7 @@ min_cost_arborescence_test min_cost_flow_test path_test + planarity_test preflow_test radix_sort_test random_test diff --git a/test/Makefile.am b/test/Makefile.am --- a/test/Makefile.am +++ b/test/Makefile.am @@ -31,6 +31,7 @@ test/min_cost_arborescence_test \ test/min_cost_flow_test \ test/path_test \ + test/planarity_test \ test/preflow_test \ test/radix_sort_test \ test/random_test \ @@ -79,6 +80,7 @@ test_min_cost_arborescence_test_SOURCES = test/min_cost_arborescence_test.cc test_min_cost_flow_test_SOURCES = test/min_cost_flow_test.cc test_path_test_SOURCES = test/path_test.cc +test_planarity_test_SOURCES = test/planarity_test.cc test_preflow_test_SOURCES = test/preflow_test.cc test_radix_sort_test_SOURCES = test/radix_sort_test.cc test_suurballe_test_SOURCES = test/suurballe_test.cc diff --git a/test/planarity_test.cc b/test/planarity_test.cc new file mode 100644 --- /dev/null +++ b/test/planarity_test.cc @@ -0,0 +1,259 @@ +/* -*- mode: C++; indent-tabs-mode: nil; -*- + * + * This file is a part of LEMON, a generic C++ optimization library. + * + * Copyright (C) 2003-2009 + * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport + * (Egervary Research Group on Combinatorial Optimization, EGRES). + * + * Permission to use, modify and distribute this software is granted + * provided that this copyright notice appears in all copies. For + * precise terms see the accompanying LICENSE file. + * + * This software is provided "AS IS" with no warranty of any kind, + * express or implied, and with no claim as to its suitability for any + * purpose. + * + */ + +#include + +#include + +#include +#include +#include +#include + +#include "test_tools.h" + +using namespace lemon; +using namespace lemon::dim2; + +const int lgfn = 4; +const std::string lgf[lgfn] = { + "@nodes\n" + "label\n" + "0\n" + "1\n" + "2\n" + "3\n" + "4\n" + "@edges\n" + " label\n" + "0 1 0\n" + "0 2 0\n" + "0 3 0\n" + "0 4 0\n" + "1 2 0\n" + "1 3 0\n" + "1 4 0\n" + "2 3 0\n" + "2 4 0\n" + "3 4 0\n", + + "@nodes\n" + "label\n" + "0\n" + "1\n" + "2\n" + "3\n" + "4\n" + "@edges\n" + " label\n" + "0 1 0\n" + "0 2 0\n" + "0 3 0\n" + "0 4 0\n" + "1 2 0\n" + "1 3 0\n" + "2 3 0\n" + "2 4 0\n" + "3 4 0\n", + + "@nodes\n" + "label\n" + "0\n" + "1\n" + "2\n" + "3\n" + "4\n" + "5\n" + "@edges\n" + " label\n" + "0 3 0\n" + "0 4 0\n" + "0 5 0\n" + "1 3 0\n" + "1 4 0\n" + "1 5 0\n" + "2 3 0\n" + "2 4 0\n" + "2 5 0\n", + + "@nodes\n" + "label\n" + "0\n" + "1\n" + "2\n" + "3\n" + "4\n" + "5\n" + "@edges\n" + " label\n" + "0 3 0\n" + "0 4 0\n" + "0 5 0\n" + "1 3 0\n" + "1 4 0\n" + "1 5 0\n" + "2 3 0\n" + "2 5 0\n" +}; + + + +typedef SmartGraph Graph; +GRAPH_TYPEDEFS(Graph); + +typedef PlanarEmbedding PE; +typedef PlanarDrawing PD; +typedef PlanarColoring PC; + +void checkEmbedding(const Graph& graph, PE& pe) { + int face_num = 0; + + Graph::ArcMap face(graph, -1); + + for (ArcIt a(graph); a != INVALID; ++a) { + if (face[a] == -1) { + Arc b = a; + while (face[b] == -1) { + face[b] = face_num; + b = pe.next(graph.oppositeArc(b)); + } + check(face[b] == face_num, "Wrong face"); + ++face_num; + } + } + check(face_num + countNodes(graph) - countConnectedComponents(graph) == + countEdges(graph) + 1, "Euler test does not passed"); +} + +void checkKuratowski(const Graph& graph, PE& pe) { + std::map degs; + for (NodeIt n(graph); n != INVALID; ++n) { + int deg = 0; + for (IncEdgeIt e(graph, n); e != INVALID; ++e) { + if (pe.kuratowski(e)) { + ++deg; + } + } + ++degs[deg]; + } + for (std::map::iterator it = degs.begin(); it != degs.end(); ++it) { + check(it->first == 0 || it->first == 2 || + (it->first == 3 && it->second == 6) || + (it->first == 4 && it->second == 5), + "Wrong degree in Kuratowski graph"); + } + + // Not full test + check((degs[3] == 0) != (degs[4] == 0), "Wrong Kuratowski graph"); +} + +bool intersect(Point e1, Point e2, Point f1, Point f2) { + int l, r; + if (std::min(e1.x, e2.x) > std::max(f1.x, f2.x)) return false; + if (std::max(e1.x, e2.x) < std::min(f1.x, f2.x)) return false; + if (std::min(e1.y, e2.y) > std::max(f1.y, f2.y)) return false; + if (std::max(e1.y, e2.y) < std::min(f1.y, f2.y)) return false; + + l = (e2.x - e1.x) * (f1.y - e1.y) - (e2.y - e1.y) * (f1.x - e1.x); + r = (e2.x - e1.x) * (f2.y - e1.y) - (e2.y - e1.y) * (f2.x - e1.x); + if (!((l >= 0 && r <= 0) || (l <= 0 && r >= 0))) return false; + l = (f2.x - f1.x) * (e1.y - f1.y) - (f2.y - f1.y) * (e1.x - f1.x); + r = (f2.x - f1.x) * (e2.y - f1.y) - (f2.y - f1.y) * (e2.x - f1.x); + if (!((l >= 0 && r <= 0) || (l <= 0 && r >= 0))) return false; + return true; +} + +bool collinear(Point p, Point q, Point r) { + int v; + v = (q.x - p.x) * (r.y - p.y) - (q.y - p.y) * (r.x - p.x); + if (v != 0) return false; + v = (q.x - p.x) * (r.x - p.x) + (q.y - p.y) * (r.y - p.y); + if (v < 0) return false; + return true; +} + +void checkDrawing(const Graph& graph, PD& pd) { + for (Graph::NodeIt n(graph); n != INVALID; ++n) { + Graph::NodeIt m(n); + for (++m; m != INVALID; ++m) { + check(pd[m] != pd[n], "Two nodes with identical coordinates"); + } + } + + for (Graph::EdgeIt e(graph); e != INVALID; ++e) { + for (Graph::EdgeIt f(e); f != e; ++f) { + Point e1 = pd[graph.u(e)]; + Point e2 = pd[graph.v(e)]; + Point f1 = pd[graph.u(f)]; + Point f2 = pd[graph.v(f)]; + + if (graph.u(e) == graph.u(f)) { + check(!collinear(e1, e2, f2), "Wrong drawing"); + } else if (graph.u(e) == graph.v(f)) { + check(!collinear(e1, e2, f1), "Wrong drawing"); + } else if (graph.v(e) == graph.u(f)) { + check(!collinear(e2, e1, f2), "Wrong drawing"); + } else if (graph.v(e) == graph.v(f)) { + check(!collinear(e2, e1, f1), "Wrong drawing"); + } else { + check(!intersect(e1, e2, f1, f2), "Wrong drawing"); + } + } + } +} + +void checkColoring(const Graph& graph, PC& pc, int num) { + for (NodeIt n(graph); n != INVALID; ++n) { + check(pc.colorIndex(n) >= 0 && pc.colorIndex(n) < num, + "Wrong coloring"); + } + for (EdgeIt e(graph); e != INVALID; ++e) { + check(pc.colorIndex(graph.u(e)) != pc.colorIndex(graph.v(e)), + "Wrong coloring"); + } +} + +int main() { + + for (int i = 0; i < lgfn; ++i) { + std::istringstream lgfs(lgf[i]); + + SmartGraph graph; + graphReader(graph, lgfs).run(); + + check(simpleGraph(graph), "Test graphs must be simple"); + + PE pe(graph); + if (pe.run()) { + checkEmbedding(graph, pe); + + PlanarDrawing pd(graph); + pd.run(pe.embedding()); + checkDrawing(graph, pd); + + PlanarColoring pc(graph); + pc.runFiveColoring(pe.embedding()); + checkColoring(graph, pc, 5); + + } else { + checkKuratowski(graph, pe); + } + } + + return 0; +}