| ... | ... |
@@ -7,50 +7,50 @@ |
| 7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
| 8 | 8 |
* |
| 9 | 9 |
* Permission to use, modify and distribute this software is granted |
| 10 | 10 |
* provided that this copyright notice appears in all copies. For |
| 11 | 11 |
* precise terms see the accompanying LICENSE file. |
| 12 | 12 |
* |
| 13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
| 14 | 14 |
* express or implied, and with no claim as to its suitability for any |
| 15 | 15 |
* purpose. |
| 16 | 16 |
* |
| 17 | 17 |
*/ |
| 18 | 18 |
|
| 19 |
#ifndef LEMON_MAX_MATCHING_H |
|
| 20 |
#define LEMON_MAX_MATCHING_H |
|
| 19 |
#ifndef LEMON_MATCHING_H |
|
| 20 |
#define LEMON_MATCHING_H |
|
| 21 | 21 |
|
| 22 | 22 |
#include <vector> |
| 23 | 23 |
#include <queue> |
| 24 | 24 |
#include <set> |
| 25 | 25 |
#include <limits> |
| 26 | 26 |
|
| 27 | 27 |
#include <lemon/core.h> |
| 28 | 28 |
#include <lemon/unionfind.h> |
| 29 | 29 |
#include <lemon/bin_heap.h> |
| 30 | 30 |
#include <lemon/maps.h> |
| 31 | 31 |
|
| 32 | 32 |
///\ingroup matching |
| 33 | 33 |
///\file |
| 34 | 34 |
///\brief Maximum matching algorithms in general graphs. |
| 35 | 35 |
|
| 36 | 36 |
namespace lemon {
|
| 37 | 37 |
|
| 38 | 38 |
/// \ingroup matching |
| 39 | 39 |
/// |
| 40 | 40 |
/// \brief Maximum cardinality matching in general graphs |
| 41 | 41 |
/// |
| 42 | 42 |
/// This class implements Edmonds' alternating forest matching algorithm |
| 43 | 43 |
/// for finding a maximum cardinality matching in a general undirected graph. |
| 44 |
/// It can be started from an arbitrary initial matching |
|
| 44 |
/// It can be started from an arbitrary initial matching |
|
| 45 | 45 |
/// (the default is the empty one). |
| 46 | 46 |
/// |
| 47 | 47 |
/// The dual solution of the problem is a map of the nodes to |
| 48 | 48 |
/// \ref MaxMatching::Status "Status", having values \c EVEN (or \c D), |
| 49 | 49 |
/// \c ODD (or \c A) and \c MATCHED (or \c C) defining the Gallai-Edmonds |
| 50 | 50 |
/// decomposition of the graph. The nodes in \c EVEN/D induce a subgraph |
| 51 | 51 |
/// with factor-critical components, the nodes in \c ODD/A form the |
| 52 | 52 |
/// canonical barrier, and the nodes in \c MATCHED/C induce a graph having |
| 53 | 53 |
/// a perfect matching. The number of the factor-critical components |
| 54 | 54 |
/// minus the number of barrier nodes is a lower bound on the |
| 55 | 55 |
/// unmatched nodes, and the matching is optimal if and only if this bound is |
| 56 | 56 |
/// tight. This decomposition can be obtained using \ref status() or |
| ... | ... |
@@ -60,29 +60,29 @@ |
| 60 | 60 |
template <typename GR> |
| 61 | 61 |
class MaxMatching {
|
| 62 | 62 |
public: |
| 63 | 63 |
|
| 64 | 64 |
/// The graph type of the algorithm |
| 65 | 65 |
typedef GR Graph; |
| 66 | 66 |
/// The type of the matching map |
| 67 | 67 |
typedef typename Graph::template NodeMap<typename Graph::Arc> |
| 68 | 68 |
MatchingMap; |
| 69 | 69 |
|
| 70 | 70 |
///\brief Status constants for Gallai-Edmonds decomposition. |
| 71 | 71 |
/// |
| 72 |
///These constants are used for indicating the Gallai-Edmonds |
|
| 72 |
///These constants are used for indicating the Gallai-Edmonds |
|
| 73 | 73 |
///decomposition of a graph. The nodes with status \c EVEN (or \c D) |
| 74 | 74 |
///induce a subgraph with factor-critical components, the nodes with |
| 75 | 75 |
///status \c ODD (or \c A) form the canonical barrier, and the nodes |
| 76 |
///with status \c MATCHED (or \c C) induce a subgraph having a |
|
| 76 |
///with status \c MATCHED (or \c C) induce a subgraph having a |
|
| 77 | 77 |
///perfect matching. |
| 78 | 78 |
enum Status {
|
| 79 | 79 |
EVEN = 1, ///< = 1. (\c D is an alias for \c EVEN.) |
| 80 | 80 |
D = 1, |
| 81 | 81 |
MATCHED = 0, ///< = 0. (\c C is an alias for \c MATCHED.) |
| 82 | 82 |
C = 0, |
| 83 | 83 |
ODD = -1, ///< = -1. (\c A is an alias for \c ODD.) |
| 84 | 84 |
A = -1, |
| 85 | 85 |
UNMATCHED = -2 ///< = -2. |
| 86 | 86 |
}; |
| 87 | 87 |
|
| 88 | 88 |
/// The type of the status map |
| ... | ... |
@@ -503,118 +503,118 @@ |
| 503 | 503 |
/// called before using this function. |
| 504 | 504 |
void startSparse() {
|
| 505 | 505 |
for(NodeIt n(_graph); n != INVALID; ++n) {
|
| 506 | 506 |
if ((*_status)[n] == UNMATCHED) {
|
| 507 | 507 |
(*_blossom_rep)[_blossom_set->insert(n)] = n; |
| 508 | 508 |
_tree_set->insert(n); |
| 509 | 509 |
(*_status)[n] = EVEN; |
| 510 | 510 |
processSparse(n); |
| 511 | 511 |
} |
| 512 | 512 |
} |
| 513 | 513 |
} |
| 514 | 514 |
|
| 515 |
/// \brief Start Edmonds' algorithm with a heuristic improvement |
|
| 515 |
/// \brief Start Edmonds' algorithm with a heuristic improvement |
|
| 516 | 516 |
/// for dense graphs |
| 517 | 517 |
/// |
| 518 | 518 |
/// This function runs Edmonds' algorithm with a heuristic of postponing |
| 519 | 519 |
/// shrinks, therefore resulting in a faster algorithm for dense graphs. |
| 520 | 520 |
/// |
| 521 | 521 |
/// \pre \ref init(), \ref greedyInit() or \ref matchingInit() must be |
| 522 | 522 |
/// called before using this function. |
| 523 | 523 |
void startDense() {
|
| 524 | 524 |
for(NodeIt n(_graph); n != INVALID; ++n) {
|
| 525 | 525 |
if ((*_status)[n] == UNMATCHED) {
|
| 526 | 526 |
(*_blossom_rep)[_blossom_set->insert(n)] = n; |
| 527 | 527 |
_tree_set->insert(n); |
| 528 | 528 |
(*_status)[n] = EVEN; |
| 529 | 529 |
processDense(n); |
| 530 | 530 |
} |
| 531 | 531 |
} |
| 532 | 532 |
} |
| 533 | 533 |
|
| 534 | 534 |
|
| 535 | 535 |
/// \brief Run Edmonds' algorithm |
| 536 | 536 |
/// |
| 537 |
/// This function runs Edmonds' algorithm. An additional heuristic of |
|
| 538 |
/// postponing shrinks is used for relatively dense graphs |
|
| 537 |
/// This function runs Edmonds' algorithm. An additional heuristic of |
|
| 538 |
/// postponing shrinks is used for relatively dense graphs |
|
| 539 | 539 |
/// (for which <tt>m>=2*n</tt> holds). |
| 540 | 540 |
void run() {
|
| 541 | 541 |
if (countEdges(_graph) < 2 * countNodes(_graph)) {
|
| 542 | 542 |
greedyInit(); |
| 543 | 543 |
startSparse(); |
| 544 | 544 |
} else {
|
| 545 | 545 |
init(); |
| 546 | 546 |
startDense(); |
| 547 | 547 |
} |
| 548 | 548 |
} |
| 549 | 549 |
|
| 550 | 550 |
/// @} |
| 551 | 551 |
|
| 552 | 552 |
/// \name Primal Solution |
| 553 | 553 |
/// Functions to get the primal solution, i.e. the maximum matching. |
| 554 | 554 |
|
| 555 | 555 |
/// @{
|
| 556 | 556 |
|
| 557 | 557 |
/// \brief Return the size (cardinality) of the matching. |
| 558 | 558 |
/// |
| 559 |
/// This function returns the size (cardinality) of the current matching. |
|
| 559 |
/// This function returns the size (cardinality) of the current matching. |
|
| 560 | 560 |
/// After run() it returns the size of the maximum matching in the graph. |
| 561 | 561 |
int matchingSize() const {
|
| 562 | 562 |
int size = 0; |
| 563 | 563 |
for (NodeIt n(_graph); n != INVALID; ++n) {
|
| 564 | 564 |
if ((*_matching)[n] != INVALID) {
|
| 565 | 565 |
++size; |
| 566 | 566 |
} |
| 567 | 567 |
} |
| 568 | 568 |
return size / 2; |
| 569 | 569 |
} |
| 570 | 570 |
|
| 571 | 571 |
/// \brief Return \c true if the given edge is in the matching. |
| 572 | 572 |
/// |
| 573 |
/// This function returns \c true if the given edge is in the current |
|
| 573 |
/// This function returns \c true if the given edge is in the current |
|
| 574 | 574 |
/// matching. |
| 575 | 575 |
bool matching(const Edge& edge) const {
|
| 576 | 576 |
return edge == (*_matching)[_graph.u(edge)]; |
| 577 | 577 |
} |
| 578 | 578 |
|
| 579 | 579 |
/// \brief Return the matching arc (or edge) incident to the given node. |
| 580 | 580 |
/// |
| 581 | 581 |
/// This function returns the matching arc (or edge) incident to the |
| 582 |
/// given node in the current matching or \c INVALID if the node is |
|
| 582 |
/// given node in the current matching or \c INVALID if the node is |
|
| 583 | 583 |
/// not covered by the matching. |
| 584 | 584 |
Arc matching(const Node& n) const {
|
| 585 | 585 |
return (*_matching)[n]; |
| 586 | 586 |
} |
| 587 | 587 |
|
| 588 | 588 |
/// \brief Return a const reference to the matching map. |
| 589 | 589 |
/// |
| 590 | 590 |
/// This function returns a const reference to a node map that stores |
| 591 | 591 |
/// the matching arc (or edge) incident to each node. |
| 592 | 592 |
const MatchingMap& matchingMap() const {
|
| 593 | 593 |
return *_matching; |
| 594 | 594 |
} |
| 595 | 595 |
|
| 596 | 596 |
/// \brief Return the mate of the given node. |
| 597 | 597 |
/// |
| 598 |
/// This function returns the mate of the given node in the current |
|
| 598 |
/// This function returns the mate of the given node in the current |
|
| 599 | 599 |
/// matching or \c INVALID if the node is not covered by the matching. |
| 600 | 600 |
Node mate(const Node& n) const {
|
| 601 | 601 |
return (*_matching)[n] != INVALID ? |
| 602 | 602 |
_graph.target((*_matching)[n]) : INVALID; |
| 603 | 603 |
} |
| 604 | 604 |
|
| 605 | 605 |
/// @} |
| 606 | 606 |
|
| 607 | 607 |
/// \name Dual Solution |
| 608 |
/// Functions to get the dual solution, i.e. the Gallai-Edmonds |
|
| 608 |
/// Functions to get the dual solution, i.e. the Gallai-Edmonds |
|
| 609 | 609 |
/// decomposition. |
| 610 | 610 |
|
| 611 | 611 |
/// @{
|
| 612 | 612 |
|
| 613 | 613 |
/// \brief Return the status of the given node in the Edmonds-Gallai |
| 614 | 614 |
/// decomposition. |
| 615 | 615 |
/// |
| 616 | 616 |
/// This function returns the \ref Status "status" of the given node |
| 617 | 617 |
/// in the Edmonds-Gallai decomposition. |
| 618 | 618 |
Status status(const Node& n) const {
|
| 619 | 619 |
return (*_status)[n]; |
| 620 | 620 |
} |
| ... | ... |
@@ -639,59 +639,59 @@ |
| 639 | 639 |
|
| 640 | 640 |
}; |
| 641 | 641 |
|
| 642 | 642 |
/// \ingroup matching |
| 643 | 643 |
/// |
| 644 | 644 |
/// \brief Weighted matching in general graphs |
| 645 | 645 |
/// |
| 646 | 646 |
/// This class provides an efficient implementation of Edmond's |
| 647 | 647 |
/// maximum weighted matching algorithm. The implementation is based |
| 648 | 648 |
/// on extensive use of priority queues and provides |
| 649 | 649 |
/// \f$O(nm\log n)\f$ time complexity. |
| 650 | 650 |
/// |
| 651 |
/// The maximum weighted matching problem is to find a subset of the |
|
| 652 |
/// edges in an undirected graph with maximum overall weight for which |
|
| 651 |
/// The maximum weighted matching problem is to find a subset of the |
|
| 652 |
/// edges in an undirected graph with maximum overall weight for which |
|
| 653 | 653 |
/// each node has at most one incident edge. |
| 654 | 654 |
/// It can be formulated with the following linear program. |
| 655 | 655 |
/// \f[ \sum_{e \in \delta(u)}x_e \le 1 \quad \forall u\in V\f]
|
| 656 | 656 |
/** \f[ \sum_{e \in \gamma(B)}x_e \le \frac{\vert B \vert - 1}{2}
|
| 657 | 657 |
\quad \forall B\in\mathcal{O}\f] */
|
| 658 | 658 |
/// \f[x_e \ge 0\quad \forall e\in E\f] |
| 659 | 659 |
/// \f[\max \sum_{e\in E}x_ew_e\f]
|
| 660 | 660 |
/// where \f$\delta(X)\f$ is the set of edges incident to a node in |
| 661 | 661 |
/// \f$X\f$, \f$\gamma(X)\f$ is the set of edges with both ends in |
| 662 | 662 |
/// \f$X\f$ and \f$\mathcal{O}\f$ is the set of odd cardinality
|
| 663 | 663 |
/// subsets of the nodes. |
| 664 | 664 |
/// |
| 665 | 665 |
/// The algorithm calculates an optimal matching and a proof of the |
| 666 | 666 |
/// optimality. The solution of the dual problem can be used to check |
| 667 | 667 |
/// the result of the algorithm. The dual linear problem is the |
| 668 | 668 |
/// following. |
| 669 | 669 |
/** \f[ y_u + y_v + \sum_{B \in \mathcal{O}, uv \in \gamma(B)}
|
| 670 | 670 |
z_B \ge w_{uv} \quad \forall uv\in E\f] */
|
| 671 | 671 |
/// \f[y_u \ge 0 \quad \forall u \in V\f] |
| 672 | 672 |
/// \f[z_B \ge 0 \quad \forall B \in \mathcal{O}\f]
|
| 673 | 673 |
/** \f[\min \sum_{u \in V}y_u + \sum_{B \in \mathcal{O}}
|
| 674 | 674 |
\frac{\vert B \vert - 1}{2}z_B\f] */
|
| 675 | 675 |
/// |
| 676 |
/// The algorithm can be executed with the run() function. |
|
| 676 |
/// The algorithm can be executed with the run() function. |
|
| 677 | 677 |
/// After it the matching (the primal solution) and the dual solution |
| 678 |
/// can be obtained using the query functions and the |
|
| 679 |
/// \ref MaxWeightedMatching::BlossomIt "BlossomIt" nested class, |
|
| 680 |
/// |
|
| 678 |
/// can be obtained using the query functions and the |
|
| 679 |
/// \ref MaxWeightedMatching::BlossomIt "BlossomIt" nested class, |
|
| 680 |
/// which is able to iterate on the nodes of a blossom. |
|
| 681 | 681 |
/// If the value type is integer, then the dual solution is multiplied |
| 682 | 682 |
/// by \ref MaxWeightedMatching::dualScale "4". |
| 683 | 683 |
/// |
| 684 | 684 |
/// \tparam GR The undirected graph type the algorithm runs on. |
| 685 |
/// \tparam WM The type edge weight map. The default type is |
|
| 685 |
/// \tparam WM The type edge weight map. The default type is |
|
| 686 | 686 |
/// \ref concepts::Graph::EdgeMap "GR::EdgeMap<int>". |
| 687 | 687 |
#ifdef DOXYGEN |
| 688 | 688 |
template <typename GR, typename WM> |
| 689 | 689 |
#else |
| 690 | 690 |
template <typename GR, |
| 691 | 691 |
typename WM = typename GR::template EdgeMap<int> > |
| 692 | 692 |
#endif |
| 693 | 693 |
class MaxWeightedMatching {
|
| 694 | 694 |
public: |
| 695 | 695 |
|
| 696 | 696 |
/// The graph type of the algorithm |
| 697 | 697 |
typedef GR Graph; |
| ... | ... |
@@ -736,25 +736,25 @@ |
| 736 | 736 |
|
| 737 | 737 |
NodePotential* _node_potential; |
| 738 | 738 |
|
| 739 | 739 |
BlossomPotential _blossom_potential; |
| 740 | 740 |
BlossomNodeList _blossom_node_list; |
| 741 | 741 |
|
| 742 | 742 |
int _node_num; |
| 743 | 743 |
int _blossom_num; |
| 744 | 744 |
|
| 745 | 745 |
typedef RangeMap<int> IntIntMap; |
| 746 | 746 |
|
| 747 | 747 |
enum Status {
|
| 748 |
EVEN = -1, MATCHED = 0, ODD = 1 |
|
| 748 |
EVEN = -1, MATCHED = 0, ODD = 1 |
|
| 749 | 749 |
}; |
| 750 | 750 |
|
| 751 | 751 |
typedef HeapUnionFind<Value, IntNodeMap> BlossomSet; |
| 752 | 752 |
struct BlossomData {
|
| 753 | 753 |
int tree; |
| 754 | 754 |
Status status; |
| 755 | 755 |
Arc pred, next; |
| 756 | 756 |
Value pot, offset; |
| 757 | 757 |
Node base; |
| 758 | 758 |
}; |
| 759 | 759 |
|
| 760 | 760 |
IntNodeMap *_blossom_index; |
| ... | ... |
@@ -835,27 +835,24 @@ |
| 835 | 835 |
} |
| 836 | 836 |
if (!_delta3) {
|
| 837 | 837 |
_delta3_index = new IntEdgeMap(_graph); |
| 838 | 838 |
_delta3 = new BinHeap<Value, IntEdgeMap>(*_delta3_index); |
| 839 | 839 |
} |
| 840 | 840 |
if (!_delta4) {
|
| 841 | 841 |
_delta4_index = new IntIntMap(_blossom_num); |
| 842 | 842 |
_delta4 = new BinHeap<Value, IntIntMap>(*_delta4_index); |
| 843 | 843 |
} |
| 844 | 844 |
} |
| 845 | 845 |
|
| 846 | 846 |
void destroyStructures() {
|
| 847 |
_node_num = countNodes(_graph); |
|
| 848 |
_blossom_num = _node_num * 3 / 2; |
|
| 849 |
|
|
| 850 | 847 |
if (_matching) {
|
| 851 | 848 |
delete _matching; |
| 852 | 849 |
} |
| 853 | 850 |
if (_node_potential) {
|
| 854 | 851 |
delete _node_potential; |
| 855 | 852 |
} |
| 856 | 853 |
if (_blossom_set) {
|
| 857 | 854 |
delete _blossom_index; |
| 858 | 855 |
delete _blossom_set; |
| 859 | 856 |
delete _blossom_data; |
| 860 | 857 |
} |
| 861 | 858 |
|
| ... | ... |
@@ -913,352 +910,244 @@ |
| 913 | 910 |
for (InArcIt e(_graph, n); e != INVALID; ++e) {
|
| 914 | 911 |
Node v = _graph.source(e); |
| 915 | 912 |
int vb = _blossom_set->find(v); |
| 916 | 913 |
int vi = (*_node_index)[v]; |
| 917 | 914 |
|
| 918 | 915 |
Value rw = (*_node_data)[ni].pot + (*_node_data)[vi].pot - |
| 919 | 916 |
dualScale * _weight[e]; |
| 920 | 917 |
|
| 921 | 918 |
if ((*_blossom_data)[vb].status == EVEN) {
|
| 922 | 919 |
if (_delta3->state(e) != _delta3->IN_HEAP && blossom != vb) {
|
| 923 | 920 |
_delta3->push(e, rw / 2); |
| 924 | 921 |
} |
| 925 |
} else if ((*_blossom_data)[vb].status == UNMATCHED) {
|
|
| 926 |
if (_delta3->state(e) != _delta3->IN_HEAP) {
|
|
| 927 |
_delta3->push(e, rw); |
|
| 928 |
} |
|
| 929 | 922 |
} else {
|
| 930 | 923 |
typename std::map<int, Arc>::iterator it = |
| 931 | 924 |
(*_node_data)[vi].heap_index.find(tree); |
| 932 | 925 |
|
| 933 | 926 |
if (it != (*_node_data)[vi].heap_index.end()) {
|
| 934 | 927 |
if ((*_node_data)[vi].heap[it->second] > rw) {
|
| 935 | 928 |
(*_node_data)[vi].heap.replace(it->second, e); |
| 936 | 929 |
(*_node_data)[vi].heap.decrease(e, rw); |
| 937 | 930 |
it->second = e; |
| 938 | 931 |
} |
| 939 | 932 |
} else {
|
| 940 | 933 |
(*_node_data)[vi].heap.push(e, rw); |
| 941 | 934 |
(*_node_data)[vi].heap_index.insert(std::make_pair(tree, e)); |
| 942 | 935 |
} |
| 943 | 936 |
|
| 944 | 937 |
if ((*_blossom_set)[v] > (*_node_data)[vi].heap.prio()) {
|
| 945 | 938 |
_blossom_set->decrease(v, (*_node_data)[vi].heap.prio()); |
| 946 | 939 |
|
| 947 | 940 |
if ((*_blossom_data)[vb].status == MATCHED) {
|
| 948 | 941 |
if (_delta2->state(vb) != _delta2->IN_HEAP) {
|
| 949 | 942 |
_delta2->push(vb, _blossom_set->classPrio(vb) - |
| 950 | 943 |
(*_blossom_data)[vb].offset); |
| 951 | 944 |
} else if ((*_delta2)[vb] > _blossom_set->classPrio(vb) - |
| 952 |
(*_blossom_data)[vb].offset){
|
|
| 953 |
_delta2->decrease(vb, _blossom_set->classPrio(vb) - |
|
| 954 |
(*_blossom_data)[vb].offset); |
|
| 955 |
} |
|
| 956 |
} |
|
| 957 |
} |
|
| 958 |
} |
|
| 959 |
} |
|
| 960 |
} |
|
| 961 |
(*_blossom_data)[blossom].offset = 0; |
|
| 962 |
} |
|
| 963 |
|
|
| 964 |
void matchedToOdd(int blossom) {
|
|
| 965 |
if (_delta2->state(blossom) == _delta2->IN_HEAP) {
|
|
| 966 |
_delta2->erase(blossom); |
|
| 967 |
} |
|
| 968 |
(*_blossom_data)[blossom].offset += _delta_sum; |
|
| 969 |
if (!_blossom_set->trivial(blossom)) {
|
|
| 970 |
_delta4->push(blossom, (*_blossom_data)[blossom].pot / 2 + |
|
| 971 |
(*_blossom_data)[blossom].offset); |
|
| 972 |
} |
|
| 973 |
} |
|
| 974 |
|
|
| 975 |
void evenToMatched(int blossom, int tree) {
|
|
| 976 |
if (!_blossom_set->trivial(blossom)) {
|
|
| 977 |
(*_blossom_data)[blossom].pot += 2 * _delta_sum; |
|
| 978 |
} |
|
| 979 |
|
|
| 980 |
for (typename BlossomSet::ItemIt n(*_blossom_set, blossom); |
|
| 981 |
n != INVALID; ++n) {
|
|
| 982 |
int ni = (*_node_index)[n]; |
|
| 983 |
(*_node_data)[ni].pot -= _delta_sum; |
|
| 984 |
|
|
| 985 |
_delta1->erase(n); |
|
| 986 |
|
|
| 987 |
for (InArcIt e(_graph, n); e != INVALID; ++e) {
|
|
| 988 |
Node v = _graph.source(e); |
|
| 989 |
int vb = _blossom_set->find(v); |
|
| 990 |
int vi = (*_node_index)[v]; |
|
| 991 |
|
|
| 992 |
Value rw = (*_node_data)[ni].pot + (*_node_data)[vi].pot - |
|
| 993 |
dualScale * _weight[e]; |
|
| 994 |
|
|
| 995 |
if (vb == blossom) {
|
|
| 996 |
if (_delta3->state(e) == _delta3->IN_HEAP) {
|
|
| 997 |
_delta3->erase(e); |
|
| 998 |
} |
|
| 999 |
} else if ((*_blossom_data)[vb].status == EVEN) {
|
|
| 1000 |
|
|
| 1001 |
if (_delta3->state(e) == _delta3->IN_HEAP) {
|
|
| 1002 |
_delta3->erase(e); |
|
| 1003 |
} |
|
| 1004 |
|
|
| 1005 |
int vt = _tree_set->find(vb); |
|
| 1006 |
|
|
| 1007 |
if (vt != tree) {
|
|
| 1008 |
|
|
| 1009 |
Arc r = _graph.oppositeArc(e); |
|
| 1010 |
|
|
| 1011 |
typename std::map<int, Arc>::iterator it = |
|
| 1012 |
(*_node_data)[ni].heap_index.find(vt); |
|
| 1013 |
|
|
| 1014 |
if (it != (*_node_data)[ni].heap_index.end()) {
|
|
| 1015 |
if ((*_node_data)[ni].heap[it->second] > rw) {
|
|
| 1016 |
(*_node_data)[ni].heap.replace(it->second, r); |
|
| 1017 |
(*_node_data)[ni].heap.decrease(r, rw); |
|
| 1018 |
it->second = r; |
|
| 1019 |
} |
|
| 1020 |
} else {
|
|
| 1021 |
(*_node_data)[ni].heap.push(r, rw); |
|
| 1022 |
(*_node_data)[ni].heap_index.insert(std::make_pair(vt, r)); |
|
| 1023 |
} |
|
| 1024 |
|
|
| 1025 |
if ((*_blossom_set)[n] > (*_node_data)[ni].heap.prio()) {
|
|
| 1026 |
_blossom_set->decrease(n, (*_node_data)[ni].heap.prio()); |
|
| 1027 |
|
|
| 1028 |
if (_delta2->state(blossom) != _delta2->IN_HEAP) {
|
|
| 1029 |
_delta2->push(blossom, _blossom_set->classPrio(blossom) - |
|
| 1030 |
(*_blossom_data)[blossom].offset); |
|
| 1031 |
} else if ((*_delta2)[blossom] > |
|
| 1032 |
_blossom_set->classPrio(blossom) - |
|
| 1033 |
(*_blossom_data)[blossom].offset){
|
|
| 1034 |
_delta2->decrease(blossom, _blossom_set->classPrio(blossom) - |
|
| 1035 |
(*_blossom_data)[blossom].offset); |
|
| 1036 |
} |
|
| 1037 |
} |
|
| 1038 |
} |
|
| 1039 |
|
|
| 1040 |
} else if ((*_blossom_data)[vb].status == UNMATCHED) {
|
|
| 1041 |
if (_delta3->state(e) == _delta3->IN_HEAP) {
|
|
| 1042 |
_delta3->erase(e); |
|
| 1043 |
} |
|
| 1044 |
} else {
|
|
| 1045 |
|
|
| 1046 |
typename std::map<int, Arc>::iterator it = |
|
| 1047 |
(*_node_data)[vi].heap_index.find(tree); |
|
| 1048 |
|
|
| 1049 |
if (it != (*_node_data)[vi].heap_index.end()) {
|
|
| 1050 |
(*_node_data)[vi].heap.erase(it->second); |
|
| 1051 |
(*_node_data)[vi].heap_index.erase(it); |
|
| 1052 |
if ((*_node_data)[vi].heap.empty()) {
|
|
| 1053 |
_blossom_set->increase(v, std::numeric_limits<Value>::max()); |
|
| 1054 |
} else if ((*_blossom_set)[v] < (*_node_data)[vi].heap.prio()) {
|
|
| 1055 |
_blossom_set->increase(v, (*_node_data)[vi].heap.prio()); |
|
| 1056 |
} |
|
| 1057 |
|
|
| 1058 |
if ((*_blossom_data)[vb].status == MATCHED) {
|
|
| 1059 |
if (_blossom_set->classPrio(vb) == |
|
| 1060 |
std::numeric_limits<Value>::max()) {
|
|
| 1061 |
_delta2->erase(vb); |
|
| 1062 |
} else if ((*_delta2)[vb] < _blossom_set->classPrio(vb) - |
|
| 1063 |
(*_blossom_data)[vb].offset) {
|
|
| 1064 |
_delta2->increase(vb, _blossom_set->classPrio(vb) - |
|
| 1065 |
(*_blossom_data)[vb].offset); |
|
| 1066 |
} |
|
| 1067 |
} |
|
| 1068 |
} |
|
| 1069 |
} |
|
| 1070 |
} |
|
| 1071 |
} |
|
| 1072 |
} |
|
| 1073 |
|
|
| 1074 |
void oddToMatched(int blossom) {
|
|
| 1075 |
(*_blossom_data)[blossom].offset -= _delta_sum; |
|
| 1076 |
|
|
| 1077 |
if (_blossom_set->classPrio(blossom) != |
|
| 1078 |
std::numeric_limits<Value>::max()) {
|
|
| 1079 |
_delta2->push(blossom, _blossom_set->classPrio(blossom) - |
|
| 1080 |
(*_blossom_data)[blossom].offset); |
|
| 1081 |
} |
|
| 1082 |
|
|
| 1083 |
if (!_blossom_set->trivial(blossom)) {
|
|
| 1084 |
_delta4->erase(blossom); |
|
| 1085 |
} |
|
| 1086 |
} |
|
| 1087 |
|
|
| 1088 |
void oddToEven(int blossom, int tree) {
|
|
| 1089 |
if (!_blossom_set->trivial(blossom)) {
|
|
| 1090 |
_delta4->erase(blossom); |
|
| 1091 |
(*_blossom_data)[blossom].pot -= |
|
| 1092 |
2 * (2 * _delta_sum - (*_blossom_data)[blossom].offset); |
|
| 1093 |
} |
|
| 1094 |
|
|
| 1095 |
for (typename BlossomSet::ItemIt n(*_blossom_set, blossom); |
|
| 1096 |
n != INVALID; ++n) {
|
|
| 1097 |
int ni = (*_node_index)[n]; |
|
| 1098 |
|
|
| 1099 |
_blossom_set->increase(n, std::numeric_limits<Value>::max()); |
|
| 1100 |
|
|
| 1101 |
(*_node_data)[ni].heap.clear(); |
|
| 1102 |
(*_node_data)[ni].heap_index.clear(); |
|
| 1103 |
(*_node_data)[ni].pot += |
|
| 1104 |
2 * _delta_sum - (*_blossom_data)[blossom].offset; |
|
| 1105 |
|
|
| 1106 |
_delta1->push(n, (*_node_data)[ni].pot); |
|
| 1107 |
|
|
| 1108 |
for (InArcIt e(_graph, n); e != INVALID; ++e) {
|
|
| 1109 |
Node v = _graph.source(e); |
|
| 1110 |
int vb = _blossom_set->find(v); |
|
| 1111 |
int vi = (*_node_index)[v]; |
|
| 1112 |
|
|
| 1113 |
Value rw = (*_node_data)[ni].pot + (*_node_data)[vi].pot - |
|
| 1114 |
dualScale * _weight[e]; |
|
| 1115 |
|
|
| 1116 |
if ((*_blossom_data)[vb].status == EVEN) {
|
|
| 1117 |
if (_delta3->state(e) != _delta3->IN_HEAP && blossom != vb) {
|
|
| 1118 |
_delta3->push(e, rw / 2); |
|
| 1119 |
} |
|
| 1120 |
} else if ((*_blossom_data)[vb].status == UNMATCHED) {
|
|
| 1121 |
if (_delta3->state(e) != _delta3->IN_HEAP) {
|
|
| 1122 |
_delta3->push(e, rw); |
|
| 1123 |
} |
|
| 1124 |
} else {
|
|
| 1125 |
|
|
| 1126 |
typename std::map<int, Arc>::iterator it = |
|
| 1127 |
(*_node_data)[vi].heap_index.find(tree); |
|
| 1128 |
|
|
| 1129 |
if (it != (*_node_data)[vi].heap_index.end()) {
|
|
| 1130 |
if ((*_node_data)[vi].heap[it->second] > rw) {
|
|
| 1131 |
(*_node_data)[vi].heap.replace(it->second, e); |
|
| 1132 |
(*_node_data)[vi].heap.decrease(e, rw); |
|
| 1133 |
it->second = e; |
|
| 1134 |
} |
|
| 1135 |
} else {
|
|
| 1136 |
(*_node_data)[vi].heap.push(e, rw); |
|
| 1137 |
(*_node_data)[vi].heap_index.insert(std::make_pair(tree, e)); |
|
| 1138 |
} |
|
| 1139 |
|
|
| 1140 |
if ((*_blossom_set)[v] > (*_node_data)[vi].heap.prio()) {
|
|
| 1141 |
_blossom_set->decrease(v, (*_node_data)[vi].heap.prio()); |
|
| 1142 |
|
|
| 1143 |
if ((*_blossom_data)[vb].status == MATCHED) {
|
|
| 1144 |
if (_delta2->state(vb) != _delta2->IN_HEAP) {
|
|
| 1145 |
_delta2->push(vb, _blossom_set->classPrio(vb) - |
|
| 1146 |
(*_blossom_data)[vb].offset); |
|
| 1147 |
} else if ((*_delta2)[vb] > _blossom_set->classPrio(vb) - |
|
| 1148 | 945 |
(*_blossom_data)[vb].offset) {
|
| 1149 | 946 |
_delta2->decrease(vb, _blossom_set->classPrio(vb) - |
| 1150 | 947 |
(*_blossom_data)[vb].offset); |
| 1151 | 948 |
} |
| 1152 | 949 |
} |
| 1153 | 950 |
} |
| 1154 | 951 |
} |
| 1155 | 952 |
} |
| 1156 | 953 |
} |
| 1157 | 954 |
(*_blossom_data)[blossom].offset = 0; |
| 1158 | 955 |
} |
| 1159 | 956 |
|
| 1160 |
|
|
| 1161 |
void matchedToUnmatched(int blossom) {
|
|
| 957 |
void matchedToOdd(int blossom) {
|
|
| 1162 | 958 |
if (_delta2->state(blossom) == _delta2->IN_HEAP) {
|
| 1163 | 959 |
_delta2->erase(blossom); |
| 1164 | 960 |
} |
| 961 |
(*_blossom_data)[blossom].offset += _delta_sum; |
|
| 962 |
if (!_blossom_set->trivial(blossom)) {
|
|
| 963 |
_delta4->push(blossom, (*_blossom_data)[blossom].pot / 2 + |
|
| 964 |
(*_blossom_data)[blossom].offset); |
|
| 965 |
} |
|
| 966 |
} |
|
| 967 |
|
|
| 968 |
void evenToMatched(int blossom, int tree) {
|
|
| 969 |
if (!_blossom_set->trivial(blossom)) {
|
|
| 970 |
(*_blossom_data)[blossom].pot += 2 * _delta_sum; |
|
| 971 |
} |
|
| 1165 | 972 |
|
| 1166 | 973 |
for (typename BlossomSet::ItemIt n(*_blossom_set, blossom); |
| 1167 | 974 |
n != INVALID; ++n) {
|
| 1168 | 975 |
int ni = (*_node_index)[n]; |
| 1169 |
|
|
| 1170 |
_blossom_set->increase(n, std::numeric_limits<Value>::max()); |
|
| 1171 |
|
|
| 1172 |
(*_node_data)[ni].heap.clear(); |
|
| 1173 |
(*_node_data)[ni].heap_index.clear(); |
|
| 1174 |
|
|
| 1175 |
for (OutArcIt e(_graph, n); e != INVALID; ++e) {
|
|
| 1176 |
Node v = _graph.target(e); |
|
| 976 |
(*_node_data)[ni].pot -= _delta_sum; |
|
| 977 |
|
|
| 978 |
_delta1->erase(n); |
|
| 979 |
|
|
| 980 |
for (InArcIt e(_graph, n); e != INVALID; ++e) {
|
|
| 981 |
Node v = _graph.source(e); |
|
| 1177 | 982 |
int vb = _blossom_set->find(v); |
| 1178 | 983 |
int vi = (*_node_index)[v]; |
| 1179 | 984 |
|
| 1180 | 985 |
Value rw = (*_node_data)[ni].pot + (*_node_data)[vi].pot - |
| 1181 | 986 |
dualScale * _weight[e]; |
| 1182 | 987 |
|
| 1183 |
if ((*_blossom_data)[vb].status == EVEN) {
|
|
| 1184 |
if (_delta3->state(e) != _delta3->IN_HEAP) {
|
|
| 1185 |
|
|
| 988 |
if (vb == blossom) {
|
|
| 989 |
if (_delta3->state(e) == _delta3->IN_HEAP) {
|
|
| 990 |
_delta3->erase(e); |
|
| 991 |
} |
|
| 992 |
} else if ((*_blossom_data)[vb].status == EVEN) {
|
|
| 993 |
|
|
| 994 |
if (_delta3->state(e) == _delta3->IN_HEAP) {
|
|
| 995 |
_delta3->erase(e); |
|
| 996 |
} |
|
| 997 |
|
|
| 998 |
int vt = _tree_set->find(vb); |
|
| 999 |
|
|
| 1000 |
if (vt != tree) {
|
|
| 1001 |
|
|
| 1002 |
Arc r = _graph.oppositeArc(e); |
|
| 1003 |
|
|
| 1004 |
typename std::map<int, Arc>::iterator it = |
|
| 1005 |
(*_node_data)[ni].heap_index.find(vt); |
|
| 1006 |
|
|
| 1007 |
if (it != (*_node_data)[ni].heap_index.end()) {
|
|
| 1008 |
if ((*_node_data)[ni].heap[it->second] > rw) {
|
|
| 1009 |
(*_node_data)[ni].heap.replace(it->second, r); |
|
| 1010 |
(*_node_data)[ni].heap.decrease(r, rw); |
|
| 1011 |
it->second = r; |
|
| 1012 |
} |
|
| 1013 |
} else {
|
|
| 1014 |
(*_node_data)[ni].heap.push(r, rw); |
|
| 1015 |
(*_node_data)[ni].heap_index.insert(std::make_pair(vt, r)); |
|
| 1016 |
} |
|
| 1017 |
|
|
| 1018 |
if ((*_blossom_set)[n] > (*_node_data)[ni].heap.prio()) {
|
|
| 1019 |
_blossom_set->decrease(n, (*_node_data)[ni].heap.prio()); |
|
| 1020 |
|
|
| 1021 |
if (_delta2->state(blossom) != _delta2->IN_HEAP) {
|
|
| 1022 |
_delta2->push(blossom, _blossom_set->classPrio(blossom) - |
|
| 1023 |
(*_blossom_data)[blossom].offset); |
|
| 1024 |
} else if ((*_delta2)[blossom] > |
|
| 1025 |
_blossom_set->classPrio(blossom) - |
|
| 1026 |
(*_blossom_data)[blossom].offset){
|
|
| 1027 |
_delta2->decrease(blossom, _blossom_set->classPrio(blossom) - |
|
| 1028 |
(*_blossom_data)[blossom].offset); |
|
| 1029 |
} |
|
| 1030 |
} |
|
| 1031 |
} |
|
| 1032 |
} else {
|
|
| 1033 |
|
|
| 1034 |
typename std::map<int, Arc>::iterator it = |
|
| 1035 |
(*_node_data)[vi].heap_index.find(tree); |
|
| 1036 |
|
|
| 1037 |
if (it != (*_node_data)[vi].heap_index.end()) {
|
|
| 1038 |
(*_node_data)[vi].heap.erase(it->second); |
|
| 1039 |
(*_node_data)[vi].heap_index.erase(it); |
|
| 1040 |
if ((*_node_data)[vi].heap.empty()) {
|
|
| 1041 |
_blossom_set->increase(v, std::numeric_limits<Value>::max()); |
|
| 1042 |
} else if ((*_blossom_set)[v] < (*_node_data)[vi].heap.prio()) {
|
|
| 1043 |
_blossom_set->increase(v, (*_node_data)[vi].heap.prio()); |
|
| 1044 |
} |
|
| 1045 |
|
|
| 1046 |
if ((*_blossom_data)[vb].status == MATCHED) {
|
|
| 1047 |
if (_blossom_set->classPrio(vb) == |
|
| 1048 |
std::numeric_limits<Value>::max()) {
|
|
| 1049 |
_delta2->erase(vb); |
|
| 1050 |
} else if ((*_delta2)[vb] < _blossom_set->classPrio(vb) - |
|
| 1051 |
(*_blossom_data)[vb].offset) {
|
|
| 1052 |
_delta2->increase(vb, _blossom_set->classPrio(vb) - |
|
| 1053 |
(*_blossom_data)[vb].offset); |
|
| 1054 |
} |
|
| 1055 |
} |
|
| 1186 | 1056 |
} |
| 1187 | 1057 |
} |
| 1188 | 1058 |
} |
| 1189 | 1059 |
} |
| 1190 | 1060 |
} |
| 1191 | 1061 |
|
| 1192 |
void |
|
| 1062 |
void oddToMatched(int blossom) {
|
|
| 1063 |
(*_blossom_data)[blossom].offset -= _delta_sum; |
|
| 1064 |
|
|
| 1065 |
if (_blossom_set->classPrio(blossom) != |
|
| 1066 |
std::numeric_limits<Value>::max()) {
|
|
| 1067 |
_delta2->push(blossom, _blossom_set->classPrio(blossom) - |
|
| 1068 |
(*_blossom_data)[blossom].offset); |
|
| 1069 |
} |
|
| 1070 |
|
|
| 1071 |
if (!_blossom_set->trivial(blossom)) {
|
|
| 1072 |
_delta4->erase(blossom); |
|
| 1073 |
} |
|
| 1074 |
} |
|
| 1075 |
|
|
| 1076 |
void oddToEven(int blossom, int tree) {
|
|
| 1077 |
if (!_blossom_set->trivial(blossom)) {
|
|
| 1078 |
_delta4->erase(blossom); |
|
| 1079 |
(*_blossom_data)[blossom].pot -= |
|
| 1080 |
2 * (2 * _delta_sum - (*_blossom_data)[blossom].offset); |
|
| 1081 |
} |
|
| 1082 |
|
|
| 1193 | 1083 |
for (typename BlossomSet::ItemIt n(*_blossom_set, blossom); |
| 1194 | 1084 |
n != INVALID; ++n) {
|
| 1195 | 1085 |
int ni = (*_node_index)[n]; |
| 1196 | 1086 |
|
| 1087 |
_blossom_set->increase(n, std::numeric_limits<Value>::max()); |
|
| 1088 |
|
|
| 1089 |
(*_node_data)[ni].heap.clear(); |
|
| 1090 |
(*_node_data)[ni].heap_index.clear(); |
|
| 1091 |
(*_node_data)[ni].pot += |
|
| 1092 |
2 * _delta_sum - (*_blossom_data)[blossom].offset; |
|
| 1093 |
|
|
| 1094 |
_delta1->push(n, (*_node_data)[ni].pot); |
|
| 1095 |
|
|
| 1197 | 1096 |
for (InArcIt e(_graph, n); e != INVALID; ++e) {
|
| 1198 | 1097 |
Node v = _graph.source(e); |
| 1199 | 1098 |
int vb = _blossom_set->find(v); |
| 1200 | 1099 |
int vi = (*_node_index)[v]; |
| 1201 | 1100 |
|
| 1202 | 1101 |
Value rw = (*_node_data)[ni].pot + (*_node_data)[vi].pot - |
| 1203 | 1102 |
dualScale * _weight[e]; |
| 1204 | 1103 |
|
| 1205 |
if (vb == blossom) {
|
|
| 1206 |
if (_delta3->state(e) == _delta3->IN_HEAP) {
|
|
| 1207 |
|
|
| 1104 |
if ((*_blossom_data)[vb].status == EVEN) {
|
|
| 1105 |
if (_delta3->state(e) != _delta3->IN_HEAP && blossom != vb) {
|
|
| 1106 |
_delta3->push(e, rw / 2); |
|
| 1208 | 1107 |
} |
| 1209 |
} else if ((*_blossom_data)[vb].status == EVEN) {
|
|
| 1210 |
|
|
| 1211 |
if (_delta3->state(e) == _delta3->IN_HEAP) {
|
|
| 1212 |
_delta3->erase(e); |
|
| 1213 |
} |
|
| 1214 |
|
|
| 1215 |
int vt = _tree_set->find(vb); |
|
| 1216 |
|
|
| 1217 |
|
|
| 1108 |
} else {
|
|
| 1218 | 1109 |
|
| 1219 | 1110 |
typename std::map<int, Arc>::iterator it = |
| 1220 |
(*_node_data)[ni].heap_index.find(vt); |
|
| 1221 |
|
|
| 1222 |
if (it != (*_node_data)[ni].heap_index.end()) {
|
|
| 1223 |
if ((*_node_data)[ni].heap[it->second] > rw) {
|
|
| 1224 |
(*_node_data)[ni].heap.replace(it->second, r); |
|
| 1225 |
(*_node_data)[ni].heap.decrease(r, rw); |
|
| 1226 |
|
|
| 1111 |
(*_node_data)[vi].heap_index.find(tree); |
|
| 1112 |
|
|
| 1113 |
if (it != (*_node_data)[vi].heap_index.end()) {
|
|
| 1114 |
if ((*_node_data)[vi].heap[it->second] > rw) {
|
|
| 1115 |
(*_node_data)[vi].heap.replace(it->second, e); |
|
| 1116 |
(*_node_data)[vi].heap.decrease(e, rw); |
|
| 1117 |
it->second = e; |
|
| 1227 | 1118 |
} |
| 1228 | 1119 |
} else {
|
| 1229 |
(*_node_data)[ni].heap.push(r, rw); |
|
| 1230 |
(*_node_data)[ni].heap_index.insert(std::make_pair(vt, r)); |
|
| 1120 |
(*_node_data)[vi].heap.push(e, rw); |
|
| 1121 |
(*_node_data)[vi].heap_index.insert(std::make_pair(tree, e)); |
|
| 1231 | 1122 |
} |
| 1232 | 1123 |
|
| 1233 |
if ((*_blossom_set)[n] > (*_node_data)[ni].heap.prio()) {
|
|
| 1234 |
_blossom_set->decrease(n, (*_node_data)[ni].heap.prio()); |
|
| 1235 |
|
|
| 1236 |
if (_delta2->state(blossom) != _delta2->IN_HEAP) {
|
|
| 1237 |
_delta2->push(blossom, _blossom_set->classPrio(blossom) - |
|
| 1238 |
(*_blossom_data)[blossom].offset); |
|
| 1239 |
} else if ((*_delta2)[blossom] > _blossom_set->classPrio(blossom)- |
|
| 1240 |
(*_blossom_data)[blossom].offset){
|
|
| 1241 |
_delta2->decrease(blossom, _blossom_set->classPrio(blossom) - |
|
| 1242 |
(*_blossom_data)[blossom].offset); |
|
| 1124 |
if ((*_blossom_set)[v] > (*_node_data)[vi].heap.prio()) {
|
|
| 1125 |
_blossom_set->decrease(v, (*_node_data)[vi].heap.prio()); |
|
| 1126 |
|
|
| 1127 |
if ((*_blossom_data)[vb].status == MATCHED) {
|
|
| 1128 |
if (_delta2->state(vb) != _delta2->IN_HEAP) {
|
|
| 1129 |
_delta2->push(vb, _blossom_set->classPrio(vb) - |
|
| 1130 |
(*_blossom_data)[vb].offset); |
|
| 1131 |
} else if ((*_delta2)[vb] > _blossom_set->classPrio(vb) - |
|
| 1132 |
(*_blossom_data)[vb].offset) {
|
|
| 1133 |
_delta2->decrease(vb, _blossom_set->classPrio(vb) - |
|
| 1134 |
(*_blossom_data)[vb].offset); |
|
| 1135 |
} |
|
| 1243 | 1136 |
} |
| 1244 | 1137 |
} |
| 1245 |
|
|
| 1246 |
} else if ((*_blossom_data)[vb].status == UNMATCHED) {
|
|
| 1247 |
if (_delta3->state(e) == _delta3->IN_HEAP) {
|
|
| 1248 |
_delta3->erase(e); |
|
| 1249 |
} |
|
| 1250 | 1138 |
} |
| 1251 | 1139 |
} |
| 1252 | 1140 |
} |
| 1141 |
(*_blossom_data)[blossom].offset = 0; |
|
| 1253 | 1142 |
} |
| 1254 | 1143 |
|
| 1255 | 1144 |
void alternatePath(int even, int tree) {
|
| 1256 | 1145 |
int odd; |
| 1257 | 1146 |
|
| 1258 | 1147 |
evenToMatched(even, tree); |
| 1259 | 1148 |
(*_blossom_data)[even].status = MATCHED; |
| 1260 | 1149 |
|
| 1261 | 1150 |
while ((*_blossom_data)[even].pred != INVALID) {
|
| 1262 | 1151 |
odd = _blossom_set->find(_graph.target((*_blossom_data)[even].pred)); |
| 1263 | 1152 |
(*_blossom_data)[odd].status = MATCHED; |
| 1264 | 1153 |
oddToMatched(odd); |
| ... | ... |
@@ -1285,57 +1174,60 @@ |
| 1285 | 1174 |
} |
| 1286 | 1175 |
_tree_set->eraseClass(tree); |
| 1287 | 1176 |
} |
| 1288 | 1177 |
|
| 1289 | 1178 |
|
| 1290 | 1179 |
void unmatchNode(const Node& node) {
|
| 1291 | 1180 |
int blossom = _blossom_set->find(node); |
| 1292 | 1181 |
int tree = _tree_set->find(blossom); |
| 1293 | 1182 |
|
| 1294 | 1183 |
alternatePath(blossom, tree); |
| 1295 | 1184 |
destroyTree(tree); |
| 1296 | 1185 |
|
| 1297 |
(*_blossom_data)[blossom].status = UNMATCHED; |
|
| 1298 | 1186 |
(*_blossom_data)[blossom].base = node; |
| 1299 |
|
|
| 1187 |
(*_blossom_data)[blossom].next = INVALID; |
|
| 1300 | 1188 |
} |
| 1301 | 1189 |
|
| 1302 |
|
|
| 1303 | 1190 |
void augmentOnEdge(const Edge& edge) {
|
| 1304 | 1191 |
|
| 1305 | 1192 |
int left = _blossom_set->find(_graph.u(edge)); |
| 1306 | 1193 |
int right = _blossom_set->find(_graph.v(edge)); |
| 1307 | 1194 |
|
| 1308 |
if ((*_blossom_data)[left].status == EVEN) {
|
|
| 1309 |
int left_tree = _tree_set->find(left); |
|
| 1310 |
alternatePath(left, left_tree); |
|
| 1311 |
destroyTree(left_tree); |
|
| 1312 |
} else {
|
|
| 1313 |
(*_blossom_data)[left].status = MATCHED; |
|
| 1314 |
unmatchedToMatched(left); |
|
| 1315 |
} |
|
| 1316 |
|
|
| 1317 |
if ((*_blossom_data)[right].status == EVEN) {
|
|
| 1318 |
int right_tree = _tree_set->find(right); |
|
| 1319 |
alternatePath(right, right_tree); |
|
| 1320 |
destroyTree(right_tree); |
|
| 1321 |
} else {
|
|
| 1322 |
(*_blossom_data)[right].status = MATCHED; |
|
| 1323 |
unmatchedToMatched(right); |
|
| 1324 |
|
|
| 1195 |
int left_tree = _tree_set->find(left); |
|
| 1196 |
alternatePath(left, left_tree); |
|
| 1197 |
destroyTree(left_tree); |
|
| 1198 |
|
|
| 1199 |
int right_tree = _tree_set->find(right); |
|
| 1200 |
alternatePath(right, right_tree); |
|
| 1201 |
destroyTree(right_tree); |
|
| 1325 | 1202 |
|
| 1326 | 1203 |
(*_blossom_data)[left].next = _graph.direct(edge, true); |
| 1327 | 1204 |
(*_blossom_data)[right].next = _graph.direct(edge, false); |
| 1328 | 1205 |
} |
| 1329 | 1206 |
|
| 1207 |
void augmentOnArc(const Arc& arc) {
|
|
| 1208 |
|
|
| 1209 |
int left = _blossom_set->find(_graph.source(arc)); |
|
| 1210 |
int right = _blossom_set->find(_graph.target(arc)); |
|
| 1211 |
|
|
| 1212 |
(*_blossom_data)[left].status = MATCHED; |
|
| 1213 |
|
|
| 1214 |
int right_tree = _tree_set->find(right); |
|
| 1215 |
alternatePath(right, right_tree); |
|
| 1216 |
destroyTree(right_tree); |
|
| 1217 |
|
|
| 1218 |
(*_blossom_data)[left].next = arc; |
|
| 1219 |
(*_blossom_data)[right].next = _graph.oppositeArc(arc); |
|
| 1220 |
} |
|
| 1221 |
|
|
| 1330 | 1222 |
void extendOnArc(const Arc& arc) {
|
| 1331 | 1223 |
int base = _blossom_set->find(_graph.target(arc)); |
| 1332 | 1224 |
int tree = _tree_set->find(base); |
| 1333 | 1225 |
|
| 1334 | 1226 |
int odd = _blossom_set->find(_graph.source(arc)); |
| 1335 | 1227 |
_tree_set->insert(odd, tree); |
| 1336 | 1228 |
(*_blossom_data)[odd].status = ODD; |
| 1337 | 1229 |
matchedToOdd(odd); |
| 1338 | 1230 |
(*_blossom_data)[odd].pred = arc; |
| 1339 | 1231 |
|
| 1340 | 1232 |
int even = _blossom_set->find(_graph.target((*_blossom_data)[odd].next)); |
| 1341 | 1233 |
(*_blossom_data)[even].pred = (*_blossom_data)[even].next; |
| ... | ... |
@@ -1520,25 +1412,25 @@ |
| 1520 | 1412 |
} |
| 1521 | 1413 |
|
| 1522 | 1414 |
for (int i = ib; i != id; i = (i + 2) % subblossoms.size()) {
|
| 1523 | 1415 |
int sb = subblossoms[i]; |
| 1524 | 1416 |
int tb = subblossoms[(i + 1) % subblossoms.size()]; |
| 1525 | 1417 |
int ub = subblossoms[(i + 2) % subblossoms.size()]; |
| 1526 | 1418 |
|
| 1527 | 1419 |
(*_blossom_data)[sb].status = ODD; |
| 1528 | 1420 |
matchedToOdd(sb); |
| 1529 | 1421 |
_tree_set->insert(sb, tree); |
| 1530 | 1422 |
(*_blossom_data)[sb].pred = pred; |
| 1531 | 1423 |
(*_blossom_data)[sb].next = |
| 1532 |
|
|
| 1424 |
_graph.oppositeArc((*_blossom_data)[tb].next); |
|
| 1533 | 1425 |
|
| 1534 | 1426 |
pred = (*_blossom_data)[ub].next; |
| 1535 | 1427 |
|
| 1536 | 1428 |
(*_blossom_data)[tb].status = EVEN; |
| 1537 | 1429 |
matchedToEven(tb, tree); |
| 1538 | 1430 |
_tree_set->insert(tb, tree); |
| 1539 | 1431 |
(*_blossom_data)[tb].pred = (*_blossom_data)[tb].next; |
| 1540 | 1432 |
} |
| 1541 | 1433 |
|
| 1542 | 1434 |
(*_blossom_data)[subblossoms[id]].status = ODD; |
| 1543 | 1435 |
matchedToOdd(subblossoms[id]); |
| 1544 | 1436 |
_tree_set->insert(subblossoms[id], tree); |
| ... | ... |
@@ -1620,25 +1512,25 @@ |
| 1620 | 1512 |
|
| 1621 | 1513 |
_blossom_potential.push_back(BlossomVariable(bn, en, pot)); |
| 1622 | 1514 |
} |
| 1623 | 1515 |
} |
| 1624 | 1516 |
|
| 1625 | 1517 |
void extractMatching() {
|
| 1626 | 1518 |
std::vector<int> blossoms; |
| 1627 | 1519 |
for (typename BlossomSet::ClassIt c(*_blossom_set); c != INVALID; ++c) {
|
| 1628 | 1520 |
blossoms.push_back(c); |
| 1629 | 1521 |
} |
| 1630 | 1522 |
|
| 1631 | 1523 |
for (int i = 0; i < int(blossoms.size()); ++i) {
|
| 1632 |
if ((*_blossom_data)[blossoms[i]]. |
|
| 1524 |
if ((*_blossom_data)[blossoms[i]].next != INVALID) {
|
|
| 1633 | 1525 |
|
| 1634 | 1526 |
Value offset = (*_blossom_data)[blossoms[i]].offset; |
| 1635 | 1527 |
(*_blossom_data)[blossoms[i]].pot += 2 * offset; |
| 1636 | 1528 |
for (typename BlossomSet::ItemIt n(*_blossom_set, blossoms[i]); |
| 1637 | 1529 |
n != INVALID; ++n) {
|
| 1638 | 1530 |
(*_node_data)[(*_node_index)[n]].pot -= offset; |
| 1639 | 1531 |
} |
| 1640 | 1532 |
|
| 1641 | 1533 |
Arc matching = (*_blossom_data)[blossoms[i]].next; |
| 1642 | 1534 |
Node base = _graph.source(matching); |
| 1643 | 1535 |
extractBlossom(blossoms[i], base, matching); |
| 1644 | 1536 |
} else {
|
| ... | ... |
@@ -1748,70 +1640,62 @@ |
| 1748 | 1640 |
Value d1 = !_delta1->empty() ? |
| 1749 | 1641 |
_delta1->prio() : std::numeric_limits<Value>::max(); |
| 1750 | 1642 |
|
| 1751 | 1643 |
Value d2 = !_delta2->empty() ? |
| 1752 | 1644 |
_delta2->prio() : std::numeric_limits<Value>::max(); |
| 1753 | 1645 |
|
| 1754 | 1646 |
Value d3 = !_delta3->empty() ? |
| 1755 | 1647 |
_delta3->prio() : std::numeric_limits<Value>::max(); |
| 1756 | 1648 |
|
| 1757 | 1649 |
Value d4 = !_delta4->empty() ? |
| 1758 | 1650 |
_delta4->prio() : std::numeric_limits<Value>::max(); |
| 1759 | 1651 |
|
| 1760 |
_delta_sum = |
|
| 1652 |
_delta_sum = d3; OpType ot = D3; |
|
| 1653 |
if (d1 < _delta_sum) { _delta_sum = d1; ot = D1; }
|
|
| 1761 | 1654 |
if (d2 < _delta_sum) { _delta_sum = d2; ot = D2; }
|
| 1762 |
if (d3 < _delta_sum) { _delta_sum = d3; ot = D3; }
|
|
| 1763 | 1655 |
if (d4 < _delta_sum) { _delta_sum = d4; ot = D4; }
|
| 1764 | 1656 |
|
| 1765 |
|
|
| 1766 | 1657 |
switch (ot) {
|
| 1767 | 1658 |
case D1: |
| 1768 | 1659 |
{
|
| 1769 | 1660 |
Node n = _delta1->top(); |
| 1770 | 1661 |
unmatchNode(n); |
| 1771 | 1662 |
--unmatched; |
| 1772 | 1663 |
} |
| 1773 | 1664 |
break; |
| 1774 | 1665 |
case D2: |
| 1775 | 1666 |
{
|
| 1776 | 1667 |
int blossom = _delta2->top(); |
| 1777 | 1668 |
Node n = _blossom_set->classTop(blossom); |
| 1778 |
Arc e = (*_node_data)[(*_node_index)[n]].heap.top(); |
|
| 1779 |
extendOnArc(e); |
|
| 1669 |
Arc a = (*_node_data)[(*_node_index)[n]].heap.top(); |
|
| 1670 |
if ((*_blossom_data)[blossom].next == INVALID) {
|
|
| 1671 |
augmentOnArc(a); |
|
| 1672 |
--unmatched; |
|
| 1673 |
} else {
|
|
| 1674 |
extendOnArc(a); |
|
| 1675 |
} |
|
| 1780 | 1676 |
} |
| 1781 | 1677 |
break; |
| 1782 | 1678 |
case D3: |
| 1783 | 1679 |
{
|
| 1784 | 1680 |
Edge e = _delta3->top(); |
| 1785 | 1681 |
|
| 1786 | 1682 |
int left_blossom = _blossom_set->find(_graph.u(e)); |
| 1787 | 1683 |
int right_blossom = _blossom_set->find(_graph.v(e)); |
| 1788 | 1684 |
|
| 1789 | 1685 |
if (left_blossom == right_blossom) {
|
| 1790 | 1686 |
_delta3->pop(); |
| 1791 | 1687 |
} else {
|
| 1792 |
int left_tree; |
|
| 1793 |
if ((*_blossom_data)[left_blossom].status == EVEN) {
|
|
| 1794 |
left_tree = _tree_set->find(left_blossom); |
|
| 1795 |
} else {
|
|
| 1796 |
left_tree = -1; |
|
| 1797 |
++unmatched; |
|
| 1798 |
} |
|
| 1799 |
int right_tree; |
|
| 1800 |
if ((*_blossom_data)[right_blossom].status == EVEN) {
|
|
| 1801 |
right_tree = _tree_set->find(right_blossom); |
|
| 1802 |
} else {
|
|
| 1803 |
right_tree = -1; |
|
| 1804 |
++unmatched; |
|
| 1805 |
} |
|
| 1688 |
int left_tree = _tree_set->find(left_blossom); |
|
| 1689 |
int right_tree = _tree_set->find(right_blossom); |
|
| 1806 | 1690 |
|
| 1807 | 1691 |
if (left_tree == right_tree) {
|
| 1808 | 1692 |
shrinkOnEdge(e, left_tree); |
| 1809 | 1693 |
} else {
|
| 1810 | 1694 |
augmentOnEdge(e); |
| 1811 | 1695 |
unmatched -= 2; |
| 1812 | 1696 |
} |
| 1813 | 1697 |
} |
| 1814 | 1698 |
} break; |
| 1815 | 1699 |
case D4: |
| 1816 | 1700 |
splitBlossom(_delta4->top()); |
| 1817 | 1701 |
break; |
| ... | ... |
@@ -1828,114 +1712,114 @@ |
| 1828 | 1712 |
/// \code |
| 1829 | 1713 |
/// mwm.init(); |
| 1830 | 1714 |
/// mwm.start(); |
| 1831 | 1715 |
/// \endcode |
| 1832 | 1716 |
void run() {
|
| 1833 | 1717 |
init(); |
| 1834 | 1718 |
start(); |
| 1835 | 1719 |
} |
| 1836 | 1720 |
|
| 1837 | 1721 |
/// @} |
| 1838 | 1722 |
|
| 1839 | 1723 |
/// \name Primal Solution |
| 1840 |
/// Functions to get the primal solution, i.e. the maximum weighted |
|
| 1724 |
/// Functions to get the primal solution, i.e. the maximum weighted |
|
| 1841 | 1725 |
/// matching.\n |
| 1842 | 1726 |
/// Either \ref run() or \ref start() function should be called before |
| 1843 | 1727 |
/// using them. |
| 1844 | 1728 |
|
| 1845 | 1729 |
/// @{
|
| 1846 | 1730 |
|
| 1847 | 1731 |
/// \brief Return the weight of the matching. |
| 1848 | 1732 |
/// |
| 1849 | 1733 |
/// This function returns the weight of the found matching. |
| 1850 | 1734 |
/// |
| 1851 | 1735 |
/// \pre Either run() or start() must be called before using this function. |
| 1852 | 1736 |
Value matchingWeight() const {
|
| 1853 | 1737 |
Value sum = 0; |
| 1854 | 1738 |
for (NodeIt n(_graph); n != INVALID; ++n) {
|
| 1855 | 1739 |
if ((*_matching)[n] != INVALID) {
|
| 1856 | 1740 |
sum += _weight[(*_matching)[n]]; |
| 1857 | 1741 |
} |
| 1858 | 1742 |
} |
| 1859 |
return sum / |
|
| 1743 |
return sum / 2; |
|
| 1860 | 1744 |
} |
| 1861 | 1745 |
|
| 1862 | 1746 |
/// \brief Return the size (cardinality) of the matching. |
| 1863 | 1747 |
/// |
| 1864 | 1748 |
/// This function returns the size (cardinality) of the found matching. |
| 1865 | 1749 |
/// |
| 1866 | 1750 |
/// \pre Either run() or start() must be called before using this function. |
| 1867 | 1751 |
int matchingSize() const {
|
| 1868 | 1752 |
int num = 0; |
| 1869 | 1753 |
for (NodeIt n(_graph); n != INVALID; ++n) {
|
| 1870 | 1754 |
if ((*_matching)[n] != INVALID) {
|
| 1871 | 1755 |
++num; |
| 1872 | 1756 |
} |
| 1873 | 1757 |
} |
| 1874 | 1758 |
return num /= 2; |
| 1875 | 1759 |
} |
| 1876 | 1760 |
|
| 1877 | 1761 |
/// \brief Return \c true if the given edge is in the matching. |
| 1878 | 1762 |
/// |
| 1879 |
/// This function returns \c true if the given edge is in the found |
|
| 1763 |
/// This function returns \c true if the given edge is in the found |
|
| 1880 | 1764 |
/// matching. |
| 1881 | 1765 |
/// |
| 1882 | 1766 |
/// \pre Either run() or start() must be called before using this function. |
| 1883 | 1767 |
bool matching(const Edge& edge) const {
|
| 1884 | 1768 |
return edge == (*_matching)[_graph.u(edge)]; |
| 1885 | 1769 |
} |
| 1886 | 1770 |
|
| 1887 | 1771 |
/// \brief Return the matching arc (or edge) incident to the given node. |
| 1888 | 1772 |
/// |
| 1889 | 1773 |
/// This function returns the matching arc (or edge) incident to the |
| 1890 |
/// given node in the found matching or \c INVALID if the node is |
|
| 1774 |
/// given node in the found matching or \c INVALID if the node is |
|
| 1891 | 1775 |
/// not covered by the matching. |
| 1892 | 1776 |
/// |
| 1893 | 1777 |
/// \pre Either run() or start() must be called before using this function. |
| 1894 | 1778 |
Arc matching(const Node& node) const {
|
| 1895 | 1779 |
return (*_matching)[node]; |
| 1896 | 1780 |
} |
| 1897 | 1781 |
|
| 1898 | 1782 |
/// \brief Return a const reference to the matching map. |
| 1899 | 1783 |
/// |
| 1900 | 1784 |
/// This function returns a const reference to a node map that stores |
| 1901 | 1785 |
/// the matching arc (or edge) incident to each node. |
| 1902 | 1786 |
const MatchingMap& matchingMap() const {
|
| 1903 | 1787 |
return *_matching; |
| 1904 | 1788 |
} |
| 1905 | 1789 |
|
| 1906 | 1790 |
/// \brief Return the mate of the given node. |
| 1907 | 1791 |
/// |
| 1908 |
/// This function returns the mate of the given node in the found |
|
| 1792 |
/// This function returns the mate of the given node in the found |
|
| 1909 | 1793 |
/// matching or \c INVALID if the node is not covered by the matching. |
| 1910 | 1794 |
/// |
| 1911 | 1795 |
/// \pre Either run() or start() must be called before using this function. |
| 1912 | 1796 |
Node mate(const Node& node) const {
|
| 1913 | 1797 |
return (*_matching)[node] != INVALID ? |
| 1914 | 1798 |
_graph.target((*_matching)[node]) : INVALID; |
| 1915 | 1799 |
} |
| 1916 | 1800 |
|
| 1917 | 1801 |
/// @} |
| 1918 | 1802 |
|
| 1919 | 1803 |
/// \name Dual Solution |
| 1920 | 1804 |
/// Functions to get the dual solution.\n |
| 1921 | 1805 |
/// Either \ref run() or \ref start() function should be called before |
| 1922 | 1806 |
/// using them. |
| 1923 | 1807 |
|
| 1924 | 1808 |
/// @{
|
| 1925 | 1809 |
|
| 1926 | 1810 |
/// \brief Return the value of the dual solution. |
| 1927 | 1811 |
/// |
| 1928 |
/// This function returns the value of the dual solution. |
|
| 1929 |
/// It should be equal to the primal value scaled by \ref dualScale |
|
| 1812 |
/// This function returns the value of the dual solution. |
|
| 1813 |
/// It should be equal to the primal value scaled by \ref dualScale |
|
| 1930 | 1814 |
/// "dual scale". |
| 1931 | 1815 |
/// |
| 1932 | 1816 |
/// \pre Either run() or start() must be called before using this function. |
| 1933 | 1817 |
Value dualValue() const {
|
| 1934 | 1818 |
Value sum = 0; |
| 1935 | 1819 |
for (NodeIt n(_graph); n != INVALID; ++n) {
|
| 1936 | 1820 |
sum += nodeValue(n); |
| 1937 | 1821 |
} |
| 1938 | 1822 |
for (int i = 0; i < blossomNum(); ++i) {
|
| 1939 | 1823 |
sum += blossomValue(i) * (blossomSize(i) / 2); |
| 1940 | 1824 |
} |
| 1941 | 1825 |
return sum; |
| ... | ... |
@@ -1972,37 +1856,37 @@ |
| 1972 | 1856 |
|
| 1973 | 1857 |
/// \brief Return the dual value (ptential) of the given blossom. |
| 1974 | 1858 |
/// |
| 1975 | 1859 |
/// This function returns the dual value (ptential) of the given blossom. |
| 1976 | 1860 |
/// |
| 1977 | 1861 |
/// \pre Either run() or start() must be called before using this function. |
| 1978 | 1862 |
Value blossomValue(int k) const {
|
| 1979 | 1863 |
return _blossom_potential[k].value; |
| 1980 | 1864 |
} |
| 1981 | 1865 |
|
| 1982 | 1866 |
/// \brief Iterator for obtaining the nodes of a blossom. |
| 1983 | 1867 |
/// |
| 1984 |
/// This class provides an iterator for obtaining the nodes of the |
|
| 1868 |
/// This class provides an iterator for obtaining the nodes of the |
|
| 1985 | 1869 |
/// given blossom. It lists a subset of the nodes. |
| 1986 |
/// Before using this iterator, you must allocate a |
|
| 1870 |
/// Before using this iterator, you must allocate a |
|
| 1987 | 1871 |
/// MaxWeightedMatching class and execute it. |
| 1988 | 1872 |
class BlossomIt {
|
| 1989 | 1873 |
public: |
| 1990 | 1874 |
|
| 1991 | 1875 |
/// \brief Constructor. |
| 1992 | 1876 |
/// |
| 1993 | 1877 |
/// Constructor to get the nodes of the given variable. |
| 1994 | 1878 |
/// |
| 1995 |
/// \pre Either \ref MaxWeightedMatching::run() "algorithm.run()" or |
|
| 1996 |
/// \ref MaxWeightedMatching::start() "algorithm.start()" must be |
|
| 1879 |
/// \pre Either \ref MaxWeightedMatching::run() "algorithm.run()" or |
|
| 1880 |
/// \ref MaxWeightedMatching::start() "algorithm.start()" must be |
|
| 1997 | 1881 |
/// called before initializing this iterator. |
| 1998 | 1882 |
BlossomIt(const MaxWeightedMatching& algorithm, int variable) |
| 1999 | 1883 |
: _algorithm(&algorithm) |
| 2000 | 1884 |
{
|
| 2001 | 1885 |
_index = _algorithm->_blossom_potential[variable].begin; |
| 2002 | 1886 |
_last = _algorithm->_blossom_potential[variable].end; |
| 2003 | 1887 |
} |
| 2004 | 1888 |
|
| 2005 | 1889 |
/// \brief Conversion to \c Node. |
| 2006 | 1890 |
/// |
| 2007 | 1891 |
/// Conversion to \c Node. |
| 2008 | 1892 |
operator Node() const {
|
| ... | ... |
@@ -2037,58 +1921,58 @@ |
| 2037 | 1921 |
|
| 2038 | 1922 |
}; |
| 2039 | 1923 |
|
| 2040 | 1924 |
/// \ingroup matching |
| 2041 | 1925 |
/// |
| 2042 | 1926 |
/// \brief Weighted perfect matching in general graphs |
| 2043 | 1927 |
/// |
| 2044 | 1928 |
/// This class provides an efficient implementation of Edmond's |
| 2045 | 1929 |
/// maximum weighted perfect matching algorithm. The implementation |
| 2046 | 1930 |
/// is based on extensive use of priority queues and provides |
| 2047 | 1931 |
/// \f$O(nm\log n)\f$ time complexity. |
| 2048 | 1932 |
/// |
| 2049 |
/// The maximum weighted perfect matching problem is to find a subset of |
|
| 2050 |
/// the edges in an undirected graph with maximum overall weight for which |
|
| 1933 |
/// The maximum weighted perfect matching problem is to find a subset of |
|
| 1934 |
/// the edges in an undirected graph with maximum overall weight for which |
|
| 2051 | 1935 |
/// each node has exactly one incident edge. |
| 2052 | 1936 |
/// It can be formulated with the following linear program. |
| 2053 | 1937 |
/// \f[ \sum_{e \in \delta(u)}x_e = 1 \quad \forall u\in V\f]
|
| 2054 | 1938 |
/** \f[ \sum_{e \in \gamma(B)}x_e \le \frac{\vert B \vert - 1}{2}
|
| 2055 | 1939 |
\quad \forall B\in\mathcal{O}\f] */
|
| 2056 | 1940 |
/// \f[x_e \ge 0\quad \forall e\in E\f] |
| 2057 | 1941 |
/// \f[\max \sum_{e\in E}x_ew_e\f]
|
| 2058 | 1942 |
/// where \f$\delta(X)\f$ is the set of edges incident to a node in |
| 2059 | 1943 |
/// \f$X\f$, \f$\gamma(X)\f$ is the set of edges with both ends in |
| 2060 | 1944 |
/// \f$X\f$ and \f$\mathcal{O}\f$ is the set of odd cardinality
|
| 2061 | 1945 |
/// subsets of the nodes. |
| 2062 | 1946 |
/// |
| 2063 | 1947 |
/// The algorithm calculates an optimal matching and a proof of the |
| 2064 | 1948 |
/// optimality. The solution of the dual problem can be used to check |
| 2065 | 1949 |
/// the result of the algorithm. The dual linear problem is the |
| 2066 | 1950 |
/// following. |
| 2067 | 1951 |
/** \f[ y_u + y_v + \sum_{B \in \mathcal{O}, uv \in \gamma(B)}z_B \ge
|
| 2068 | 1952 |
w_{uv} \quad \forall uv\in E\f] */
|
| 2069 | 1953 |
/// \f[z_B \ge 0 \quad \forall B \in \mathcal{O}\f]
|
| 2070 | 1954 |
/** \f[\min \sum_{u \in V}y_u + \sum_{B \in \mathcal{O}}
|
| 2071 | 1955 |
\frac{\vert B \vert - 1}{2}z_B\f] */
|
| 2072 | 1956 |
/// |
| 2073 |
/// The algorithm can be executed with the run() function. |
|
| 1957 |
/// The algorithm can be executed with the run() function. |
|
| 2074 | 1958 |
/// After it the matching (the primal solution) and the dual solution |
| 2075 |
/// can be obtained using the query functions and the |
|
| 2076 |
/// \ref MaxWeightedPerfectMatching::BlossomIt "BlossomIt" nested class, |
|
| 2077 |
/// |
|
| 1959 |
/// can be obtained using the query functions and the |
|
| 1960 |
/// \ref MaxWeightedPerfectMatching::BlossomIt "BlossomIt" nested class, |
|
| 1961 |
/// which is able to iterate on the nodes of a blossom. |
|
| 2078 | 1962 |
/// If the value type is integer, then the dual solution is multiplied |
| 2079 | 1963 |
/// by \ref MaxWeightedMatching::dualScale "4". |
| 2080 | 1964 |
/// |
| 2081 | 1965 |
/// \tparam GR The undirected graph type the algorithm runs on. |
| 2082 |
/// \tparam WM The type edge weight map. The default type is |
|
| 1966 |
/// \tparam WM The type edge weight map. The default type is |
|
| 2083 | 1967 |
/// \ref concepts::Graph::EdgeMap "GR::EdgeMap<int>". |
| 2084 | 1968 |
#ifdef DOXYGEN |
| 2085 | 1969 |
template <typename GR, typename WM> |
| 2086 | 1970 |
#else |
| 2087 | 1971 |
template <typename GR, |
| 2088 | 1972 |
typename WM = typename GR::template EdgeMap<int> > |
| 2089 | 1973 |
#endif |
| 2090 | 1974 |
class MaxWeightedPerfectMatching {
|
| 2091 | 1975 |
public: |
| 2092 | 1976 |
|
| 2093 | 1977 |
/// The graph type of the algorithm |
| 2094 | 1978 |
typedef GR Graph; |
| ... | ... |
@@ -2224,27 +2108,24 @@ |
| 2224 | 2108 |
} |
| 2225 | 2109 |
if (!_delta3) {
|
| 2226 | 2110 |
_delta3_index = new IntEdgeMap(_graph); |
| 2227 | 2111 |
_delta3 = new BinHeap<Value, IntEdgeMap>(*_delta3_index); |
| 2228 | 2112 |
} |
| 2229 | 2113 |
if (!_delta4) {
|
| 2230 | 2114 |
_delta4_index = new IntIntMap(_blossom_num); |
| 2231 | 2115 |
_delta4 = new BinHeap<Value, IntIntMap>(*_delta4_index); |
| 2232 | 2116 |
} |
| 2233 | 2117 |
} |
| 2234 | 2118 |
|
| 2235 | 2119 |
void destroyStructures() {
|
| 2236 |
_node_num = countNodes(_graph); |
|
| 2237 |
_blossom_num = _node_num * 3 / 2; |
|
| 2238 |
|
|
| 2239 | 2120 |
if (_matching) {
|
| 2240 | 2121 |
delete _matching; |
| 2241 | 2122 |
} |
| 2242 | 2123 |
if (_node_potential) {
|
| 2243 | 2124 |
delete _node_potential; |
| 2244 | 2125 |
} |
| 2245 | 2126 |
if (_blossom_set) {
|
| 2246 | 2127 |
delete _blossom_index; |
| 2247 | 2128 |
delete _blossom_set; |
| 2248 | 2129 |
delete _blossom_data; |
| 2249 | 2130 |
} |
| 2250 | 2131 |
|
| ... | ... |
@@ -2982,26 +2863,26 @@ |
| 2982 | 2863 |
|
| 2983 | 2864 |
int unmatched = _node_num; |
| 2984 | 2865 |
while (unmatched > 0) {
|
| 2985 | 2866 |
Value d2 = !_delta2->empty() ? |
| 2986 | 2867 |
_delta2->prio() : std::numeric_limits<Value>::max(); |
| 2987 | 2868 |
|
| 2988 | 2869 |
Value d3 = !_delta3->empty() ? |
| 2989 | 2870 |
_delta3->prio() : std::numeric_limits<Value>::max(); |
| 2990 | 2871 |
|
| 2991 | 2872 |
Value d4 = !_delta4->empty() ? |
| 2992 | 2873 |
_delta4->prio() : std::numeric_limits<Value>::max(); |
| 2993 | 2874 |
|
| 2994 |
_delta_sum = d2; OpType ot = D2; |
|
| 2995 |
if (d3 < _delta_sum) { _delta_sum = d3; ot = D3; }
|
|
| 2875 |
_delta_sum = d3; OpType ot = D3; |
|
| 2876 |
if (d2 < _delta_sum) { _delta_sum = d2; ot = D2; }
|
|
| 2996 | 2877 |
if (d4 < _delta_sum) { _delta_sum = d4; ot = D4; }
|
| 2997 | 2878 |
|
| 2998 | 2879 |
if (_delta_sum == std::numeric_limits<Value>::max()) {
|
| 2999 | 2880 |
return false; |
| 3000 | 2881 |
} |
| 3001 | 2882 |
|
| 3002 | 2883 |
switch (ot) {
|
| 3003 | 2884 |
case D2: |
| 3004 | 2885 |
{
|
| 3005 | 2886 |
int blossom = _delta2->top(); |
| 3006 | 2887 |
Node n = _blossom_set->classTop(blossom); |
| 3007 | 2888 |
Arc e = (*_node_data)[(*_node_index)[n]].heap.top(); |
| ... | ... |
@@ -3046,98 +2927,98 @@ |
| 3046 | 2927 |
/// \code |
| 3047 | 2928 |
/// mwpm.init(); |
| 3048 | 2929 |
/// mwpm.start(); |
| 3049 | 2930 |
/// \endcode |
| 3050 | 2931 |
bool run() {
|
| 3051 | 2932 |
init(); |
| 3052 | 2933 |
return start(); |
| 3053 | 2934 |
} |
| 3054 | 2935 |
|
| 3055 | 2936 |
/// @} |
| 3056 | 2937 |
|
| 3057 | 2938 |
/// \name Primal Solution |
| 3058 |
/// Functions to get the primal solution, i.e. the maximum weighted |
|
| 2939 |
/// Functions to get the primal solution, i.e. the maximum weighted |
|
| 3059 | 2940 |
/// perfect matching.\n |
| 3060 | 2941 |
/// Either \ref run() or \ref start() function should be called before |
| 3061 | 2942 |
/// using them. |
| 3062 | 2943 |
|
| 3063 | 2944 |
/// @{
|
| 3064 | 2945 |
|
| 3065 | 2946 |
/// \brief Return the weight of the matching. |
| 3066 | 2947 |
/// |
| 3067 | 2948 |
/// This function returns the weight of the found matching. |
| 3068 | 2949 |
/// |
| 3069 | 2950 |
/// \pre Either run() or start() must be called before using this function. |
| 3070 | 2951 |
Value matchingWeight() const {
|
| 3071 | 2952 |
Value sum = 0; |
| 3072 | 2953 |
for (NodeIt n(_graph); n != INVALID; ++n) {
|
| 3073 | 2954 |
if ((*_matching)[n] != INVALID) {
|
| 3074 | 2955 |
sum += _weight[(*_matching)[n]]; |
| 3075 | 2956 |
} |
| 3076 | 2957 |
} |
| 3077 |
return sum / |
|
| 2958 |
return sum / 2; |
|
| 3078 | 2959 |
} |
| 3079 | 2960 |
|
| 3080 | 2961 |
/// \brief Return \c true if the given edge is in the matching. |
| 3081 | 2962 |
/// |
| 3082 |
/// This function returns \c true if the given edge is in the found |
|
| 2963 |
/// This function returns \c true if the given edge is in the found |
|
| 3083 | 2964 |
/// matching. |
| 3084 | 2965 |
/// |
| 3085 | 2966 |
/// \pre Either run() or start() must be called before using this function. |
| 3086 | 2967 |
bool matching(const Edge& edge) const {
|
| 3087 | 2968 |
return static_cast<const Edge&>((*_matching)[_graph.u(edge)]) == edge; |
| 3088 | 2969 |
} |
| 3089 | 2970 |
|
| 3090 | 2971 |
/// \brief Return the matching arc (or edge) incident to the given node. |
| 3091 | 2972 |
/// |
| 3092 | 2973 |
/// This function returns the matching arc (or edge) incident to the |
| 3093 |
/// given node in the found matching or \c INVALID if the node is |
|
| 2974 |
/// given node in the found matching or \c INVALID if the node is |
|
| 3094 | 2975 |
/// not covered by the matching. |
| 3095 | 2976 |
/// |
| 3096 | 2977 |
/// \pre Either run() or start() must be called before using this function. |
| 3097 | 2978 |
Arc matching(const Node& node) const {
|
| 3098 | 2979 |
return (*_matching)[node]; |
| 3099 | 2980 |
} |
| 3100 | 2981 |
|
| 3101 | 2982 |
/// \brief Return a const reference to the matching map. |
| 3102 | 2983 |
/// |
| 3103 | 2984 |
/// This function returns a const reference to a node map that stores |
| 3104 | 2985 |
/// the matching arc (or edge) incident to each node. |
| 3105 | 2986 |
const MatchingMap& matchingMap() const {
|
| 3106 | 2987 |
return *_matching; |
| 3107 | 2988 |
} |
| 3108 | 2989 |
|
| 3109 | 2990 |
/// \brief Return the mate of the given node. |
| 3110 | 2991 |
/// |
| 3111 |
/// This function returns the mate of the given node in the found |
|
| 2992 |
/// This function returns the mate of the given node in the found |
|
| 3112 | 2993 |
/// matching or \c INVALID if the node is not covered by the matching. |
| 3113 | 2994 |
/// |
| 3114 | 2995 |
/// \pre Either run() or start() must be called before using this function. |
| 3115 | 2996 |
Node mate(const Node& node) const {
|
| 3116 | 2997 |
return _graph.target((*_matching)[node]); |
| 3117 | 2998 |
} |
| 3118 | 2999 |
|
| 3119 | 3000 |
/// @} |
| 3120 | 3001 |
|
| 3121 | 3002 |
/// \name Dual Solution |
| 3122 | 3003 |
/// Functions to get the dual solution.\n |
| 3123 | 3004 |
/// Either \ref run() or \ref start() function should be called before |
| 3124 | 3005 |
/// using them. |
| 3125 | 3006 |
|
| 3126 | 3007 |
/// @{
|
| 3127 | 3008 |
|
| 3128 | 3009 |
/// \brief Return the value of the dual solution. |
| 3129 | 3010 |
/// |
| 3130 |
/// This function returns the value of the dual solution. |
|
| 3131 |
/// It should be equal to the primal value scaled by \ref dualScale |
|
| 3011 |
/// This function returns the value of the dual solution. |
|
| 3012 |
/// It should be equal to the primal value scaled by \ref dualScale |
|
| 3132 | 3013 |
/// "dual scale". |
| 3133 | 3014 |
/// |
| 3134 | 3015 |
/// \pre Either run() or start() must be called before using this function. |
| 3135 | 3016 |
Value dualValue() const {
|
| 3136 | 3017 |
Value sum = 0; |
| 3137 | 3018 |
for (NodeIt n(_graph); n != INVALID; ++n) {
|
| 3138 | 3019 |
sum += nodeValue(n); |
| 3139 | 3020 |
} |
| 3140 | 3021 |
for (int i = 0; i < blossomNum(); ++i) {
|
| 3141 | 3022 |
sum += blossomValue(i) * (blossomSize(i) / 2); |
| 3142 | 3023 |
} |
| 3143 | 3024 |
return sum; |
| ... | ... |
@@ -3174,37 +3055,37 @@ |
| 3174 | 3055 |
|
| 3175 | 3056 |
/// \brief Return the dual value (ptential) of the given blossom. |
| 3176 | 3057 |
/// |
| 3177 | 3058 |
/// This function returns the dual value (ptential) of the given blossom. |
| 3178 | 3059 |
/// |
| 3179 | 3060 |
/// \pre Either run() or start() must be called before using this function. |
| 3180 | 3061 |
Value blossomValue(int k) const {
|
| 3181 | 3062 |
return _blossom_potential[k].value; |
| 3182 | 3063 |
} |
| 3183 | 3064 |
|
| 3184 | 3065 |
/// \brief Iterator for obtaining the nodes of a blossom. |
| 3185 | 3066 |
/// |
| 3186 |
/// This class provides an iterator for obtaining the nodes of the |
|
| 3067 |
/// This class provides an iterator for obtaining the nodes of the |
|
| 3187 | 3068 |
/// given blossom. It lists a subset of the nodes. |
| 3188 |
/// Before using this iterator, you must allocate a |
|
| 3069 |
/// Before using this iterator, you must allocate a |
|
| 3189 | 3070 |
/// MaxWeightedPerfectMatching class and execute it. |
| 3190 | 3071 |
class BlossomIt {
|
| 3191 | 3072 |
public: |
| 3192 | 3073 |
|
| 3193 | 3074 |
/// \brief Constructor. |
| 3194 | 3075 |
/// |
| 3195 | 3076 |
/// Constructor to get the nodes of the given variable. |
| 3196 | 3077 |
/// |
| 3197 |
/// \pre Either \ref MaxWeightedPerfectMatching::run() "algorithm.run()" |
|
| 3198 |
/// or \ref MaxWeightedPerfectMatching::start() "algorithm.start()" |
|
| 3078 |
/// \pre Either \ref MaxWeightedPerfectMatching::run() "algorithm.run()" |
|
| 3079 |
/// or \ref MaxWeightedPerfectMatching::start() "algorithm.start()" |
|
| 3199 | 3080 |
/// must be called before initializing this iterator. |
| 3200 | 3081 |
BlossomIt(const MaxWeightedPerfectMatching& algorithm, int variable) |
| 3201 | 3082 |
: _algorithm(&algorithm) |
| 3202 | 3083 |
{
|
| 3203 | 3084 |
_index = _algorithm->_blossom_potential[variable].begin; |
| 3204 | 3085 |
_last = _algorithm->_blossom_potential[variable].end; |
| 3205 | 3086 |
} |
| 3206 | 3087 |
|
| 3207 | 3088 |
/// \brief Conversion to \c Node. |
| 3208 | 3089 |
/// |
| 3209 | 3090 |
/// Conversion to \c Node. |
| 3210 | 3091 |
operator Node() const {
|
| ... | ... |
@@ -3232,13 +3113,13 @@ |
| 3232 | 3113 |
private: |
| 3233 | 3114 |
const MaxWeightedPerfectMatching* _algorithm; |
| 3234 | 3115 |
int _last; |
| 3235 | 3116 |
int _index; |
| 3236 | 3117 |
}; |
| 3237 | 3118 |
|
| 3238 | 3119 |
/// @} |
| 3239 | 3120 |
|
| 3240 | 3121 |
}; |
| 3241 | 3122 |
|
| 3242 | 3123 |
} //END OF NAMESPACE LEMON |
| 3243 | 3124 |
|
| 3244 |
#endif // |
|
| 3125 |
#endif //LEMON_MATCHING_H |
0 comments (0 inline)