| 1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
| 2 | 2 |
* |
| 3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
| 4 | 4 |
* |
| 5 | 5 |
* Copyright (C) 2003-2009 |
| 6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
| 7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
| 8 | 8 |
* |
| 9 | 9 |
* Permission to use, modify and distribute this software is granted |
| 10 | 10 |
* provided that this copyright notice appears in all copies. For |
| 11 | 11 |
* precise terms see the accompanying LICENSE file. |
| 12 | 12 |
* |
| 13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
| 14 | 14 |
* express or implied, and with no claim as to its suitability for any |
| 15 | 15 |
* purpose. |
| 16 | 16 |
* |
| 17 | 17 |
*/ |
| 18 | 18 |
|
| 19 |
#ifndef LEMON_MAX_MATCHING_H |
|
| 20 |
#define LEMON_MAX_MATCHING_H |
|
| 19 |
#ifndef LEMON_MATCHING_H |
|
| 20 |
#define LEMON_MATCHING_H |
|
| 21 | 21 |
|
| 22 | 22 |
#include <vector> |
| 23 | 23 |
#include <queue> |
| 24 | 24 |
#include <set> |
| 25 | 25 |
#include <limits> |
| 26 | 26 |
|
| 27 | 27 |
#include <lemon/core.h> |
| 28 | 28 |
#include <lemon/unionfind.h> |
| 29 | 29 |
#include <lemon/bin_heap.h> |
| 30 | 30 |
#include <lemon/maps.h> |
| 31 | 31 |
|
| 32 | 32 |
///\ingroup matching |
| 33 | 33 |
///\file |
| 34 | 34 |
///\brief Maximum matching algorithms in general graphs. |
| 35 | 35 |
|
| 36 | 36 |
namespace lemon {
|
| 37 | 37 |
|
| 38 | 38 |
/// \ingroup matching |
| 39 | 39 |
/// |
| 40 | 40 |
/// \brief Maximum cardinality matching in general graphs |
| 41 | 41 |
/// |
| 42 | 42 |
/// This class implements Edmonds' alternating forest matching algorithm |
| 43 | 43 |
/// for finding a maximum cardinality matching in a general undirected graph. |
| 44 | 44 |
/// It can be started from an arbitrary initial matching |
| ... | ... |
@@ -724,49 +724,49 @@ |
| 724 | 724 |
|
| 725 | 725 |
BlossomVariable(int _begin, int _end, Value _value) |
| 726 | 726 |
: begin(_begin), end(_end), value(_value) {}
|
| 727 | 727 |
|
| 728 | 728 |
}; |
| 729 | 729 |
|
| 730 | 730 |
typedef std::vector<BlossomVariable> BlossomPotential; |
| 731 | 731 |
|
| 732 | 732 |
const Graph& _graph; |
| 733 | 733 |
const WeightMap& _weight; |
| 734 | 734 |
|
| 735 | 735 |
MatchingMap* _matching; |
| 736 | 736 |
|
| 737 | 737 |
NodePotential* _node_potential; |
| 738 | 738 |
|
| 739 | 739 |
BlossomPotential _blossom_potential; |
| 740 | 740 |
BlossomNodeList _blossom_node_list; |
| 741 | 741 |
|
| 742 | 742 |
int _node_num; |
| 743 | 743 |
int _blossom_num; |
| 744 | 744 |
|
| 745 | 745 |
typedef RangeMap<int> IntIntMap; |
| 746 | 746 |
|
| 747 | 747 |
enum Status {
|
| 748 |
EVEN = -1, MATCHED = 0, ODD = 1 |
|
| 748 |
EVEN = -1, MATCHED = 0, ODD = 1 |
|
| 749 | 749 |
}; |
| 750 | 750 |
|
| 751 | 751 |
typedef HeapUnionFind<Value, IntNodeMap> BlossomSet; |
| 752 | 752 |
struct BlossomData {
|
| 753 | 753 |
int tree; |
| 754 | 754 |
Status status; |
| 755 | 755 |
Arc pred, next; |
| 756 | 756 |
Value pot, offset; |
| 757 | 757 |
Node base; |
| 758 | 758 |
}; |
| 759 | 759 |
|
| 760 | 760 |
IntNodeMap *_blossom_index; |
| 761 | 761 |
BlossomSet *_blossom_set; |
| 762 | 762 |
RangeMap<BlossomData>* _blossom_data; |
| 763 | 763 |
|
| 764 | 764 |
IntNodeMap *_node_index; |
| 765 | 765 |
IntArcMap *_node_heap_index; |
| 766 | 766 |
|
| 767 | 767 |
struct NodeData {
|
| 768 | 768 |
|
| 769 | 769 |
NodeData(IntArcMap& node_heap_index) |
| 770 | 770 |
: heap(node_heap_index) {}
|
| 771 | 771 |
|
| 772 | 772 |
int blossom; |
| ... | ... |
@@ -823,51 +823,48 @@ |
| 823 | 823 |
|
| 824 | 824 |
if (!_tree_set) {
|
| 825 | 825 |
_tree_set_index = new IntIntMap(_blossom_num); |
| 826 | 826 |
_tree_set = new TreeSet(*_tree_set_index); |
| 827 | 827 |
} |
| 828 | 828 |
if (!_delta1) {
|
| 829 | 829 |
_delta1_index = new IntNodeMap(_graph); |
| 830 | 830 |
_delta1 = new BinHeap<Value, IntNodeMap>(*_delta1_index); |
| 831 | 831 |
} |
| 832 | 832 |
if (!_delta2) {
|
| 833 | 833 |
_delta2_index = new IntIntMap(_blossom_num); |
| 834 | 834 |
_delta2 = new BinHeap<Value, IntIntMap>(*_delta2_index); |
| 835 | 835 |
} |
| 836 | 836 |
if (!_delta3) {
|
| 837 | 837 |
_delta3_index = new IntEdgeMap(_graph); |
| 838 | 838 |
_delta3 = new BinHeap<Value, IntEdgeMap>(*_delta3_index); |
| 839 | 839 |
} |
| 840 | 840 |
if (!_delta4) {
|
| 841 | 841 |
_delta4_index = new IntIntMap(_blossom_num); |
| 842 | 842 |
_delta4 = new BinHeap<Value, IntIntMap>(*_delta4_index); |
| 843 | 843 |
} |
| 844 | 844 |
} |
| 845 | 845 |
|
| 846 | 846 |
void destroyStructures() {
|
| 847 |
_node_num = countNodes(_graph); |
|
| 848 |
_blossom_num = _node_num * 3 / 2; |
|
| 849 |
|
|
| 850 | 847 |
if (_matching) {
|
| 851 | 848 |
delete _matching; |
| 852 | 849 |
} |
| 853 | 850 |
if (_node_potential) {
|
| 854 | 851 |
delete _node_potential; |
| 855 | 852 |
} |
| 856 | 853 |
if (_blossom_set) {
|
| 857 | 854 |
delete _blossom_index; |
| 858 | 855 |
delete _blossom_set; |
| 859 | 856 |
delete _blossom_data; |
| 860 | 857 |
} |
| 861 | 858 |
|
| 862 | 859 |
if (_node_index) {
|
| 863 | 860 |
delete _node_index; |
| 864 | 861 |
delete _node_heap_index; |
| 865 | 862 |
delete _node_data; |
| 866 | 863 |
} |
| 867 | 864 |
|
| 868 | 865 |
if (_tree_set) {
|
| 869 | 866 |
delete _tree_set_index; |
| 870 | 867 |
delete _tree_set; |
| 871 | 868 |
} |
| 872 | 869 |
if (_delta1) {
|
| 873 | 870 |
delete _delta1_index; |
| ... | ... |
@@ -901,52 +898,48 @@ |
| 901 | 898 |
n != INVALID; ++n) {
|
| 902 | 899 |
|
| 903 | 900 |
_blossom_set->increase(n, std::numeric_limits<Value>::max()); |
| 904 | 901 |
int ni = (*_node_index)[n]; |
| 905 | 902 |
|
| 906 | 903 |
(*_node_data)[ni].heap.clear(); |
| 907 | 904 |
(*_node_data)[ni].heap_index.clear(); |
| 908 | 905 |
|
| 909 | 906 |
(*_node_data)[ni].pot += _delta_sum - (*_blossom_data)[blossom].offset; |
| 910 | 907 |
|
| 911 | 908 |
_delta1->push(n, (*_node_data)[ni].pot); |
| 912 | 909 |
|
| 913 | 910 |
for (InArcIt e(_graph, n); e != INVALID; ++e) {
|
| 914 | 911 |
Node v = _graph.source(e); |
| 915 | 912 |
int vb = _blossom_set->find(v); |
| 916 | 913 |
int vi = (*_node_index)[v]; |
| 917 | 914 |
|
| 918 | 915 |
Value rw = (*_node_data)[ni].pot + (*_node_data)[vi].pot - |
| 919 | 916 |
dualScale * _weight[e]; |
| 920 | 917 |
|
| 921 | 918 |
if ((*_blossom_data)[vb].status == EVEN) {
|
| 922 | 919 |
if (_delta3->state(e) != _delta3->IN_HEAP && blossom != vb) {
|
| 923 | 920 |
_delta3->push(e, rw / 2); |
| 924 | 921 |
} |
| 925 |
} else if ((*_blossom_data)[vb].status == UNMATCHED) {
|
|
| 926 |
if (_delta3->state(e) != _delta3->IN_HEAP) {
|
|
| 927 |
_delta3->push(e, rw); |
|
| 928 |
} |
|
| 929 | 922 |
} else {
|
| 930 | 923 |
typename std::map<int, Arc>::iterator it = |
| 931 | 924 |
(*_node_data)[vi].heap_index.find(tree); |
| 932 | 925 |
|
| 933 | 926 |
if (it != (*_node_data)[vi].heap_index.end()) {
|
| 934 | 927 |
if ((*_node_data)[vi].heap[it->second] > rw) {
|
| 935 | 928 |
(*_node_data)[vi].heap.replace(it->second, e); |
| 936 | 929 |
(*_node_data)[vi].heap.decrease(e, rw); |
| 937 | 930 |
it->second = e; |
| 938 | 931 |
} |
| 939 | 932 |
} else {
|
| 940 | 933 |
(*_node_data)[vi].heap.push(e, rw); |
| 941 | 934 |
(*_node_data)[vi].heap_index.insert(std::make_pair(tree, e)); |
| 942 | 935 |
} |
| 943 | 936 |
|
| 944 | 937 |
if ((*_blossom_set)[v] > (*_node_data)[vi].heap.prio()) {
|
| 945 | 938 |
_blossom_set->decrease(v, (*_node_data)[vi].heap.prio()); |
| 946 | 939 |
|
| 947 | 940 |
if ((*_blossom_data)[vb].status == MATCHED) {
|
| 948 | 941 |
if (_delta2->state(vb) != _delta2->IN_HEAP) {
|
| 949 | 942 |
_delta2->push(vb, _blossom_set->classPrio(vb) - |
| 950 | 943 |
(*_blossom_data)[vb].offset); |
| 951 | 944 |
} else if ((*_delta2)[vb] > _blossom_set->classPrio(vb) - |
| 952 | 945 |
(*_blossom_data)[vb].offset){
|
| ... | ... |
@@ -1015,53 +1008,48 @@ |
| 1015 | 1008 |
if ((*_node_data)[ni].heap[it->second] > rw) {
|
| 1016 | 1009 |
(*_node_data)[ni].heap.replace(it->second, r); |
| 1017 | 1010 |
(*_node_data)[ni].heap.decrease(r, rw); |
| 1018 | 1011 |
it->second = r; |
| 1019 | 1012 |
} |
| 1020 | 1013 |
} else {
|
| 1021 | 1014 |
(*_node_data)[ni].heap.push(r, rw); |
| 1022 | 1015 |
(*_node_data)[ni].heap_index.insert(std::make_pair(vt, r)); |
| 1023 | 1016 |
} |
| 1024 | 1017 |
|
| 1025 | 1018 |
if ((*_blossom_set)[n] > (*_node_data)[ni].heap.prio()) {
|
| 1026 | 1019 |
_blossom_set->decrease(n, (*_node_data)[ni].heap.prio()); |
| 1027 | 1020 |
|
| 1028 | 1021 |
if (_delta2->state(blossom) != _delta2->IN_HEAP) {
|
| 1029 | 1022 |
_delta2->push(blossom, _blossom_set->classPrio(blossom) - |
| 1030 | 1023 |
(*_blossom_data)[blossom].offset); |
| 1031 | 1024 |
} else if ((*_delta2)[blossom] > |
| 1032 | 1025 |
_blossom_set->classPrio(blossom) - |
| 1033 | 1026 |
(*_blossom_data)[blossom].offset){
|
| 1034 | 1027 |
_delta2->decrease(blossom, _blossom_set->classPrio(blossom) - |
| 1035 | 1028 |
(*_blossom_data)[blossom].offset); |
| 1036 | 1029 |
} |
| 1037 | 1030 |
} |
| 1038 | 1031 |
} |
| 1039 |
|
|
| 1040 |
} else if ((*_blossom_data)[vb].status == UNMATCHED) {
|
|
| 1041 |
if (_delta3->state(e) == _delta3->IN_HEAP) {
|
|
| 1042 |
_delta3->erase(e); |
|
| 1043 |
} |
|
| 1044 | 1032 |
} else {
|
| 1045 | 1033 |
|
| 1046 | 1034 |
typename std::map<int, Arc>::iterator it = |
| 1047 | 1035 |
(*_node_data)[vi].heap_index.find(tree); |
| 1048 | 1036 |
|
| 1049 | 1037 |
if (it != (*_node_data)[vi].heap_index.end()) {
|
| 1050 | 1038 |
(*_node_data)[vi].heap.erase(it->second); |
| 1051 | 1039 |
(*_node_data)[vi].heap_index.erase(it); |
| 1052 | 1040 |
if ((*_node_data)[vi].heap.empty()) {
|
| 1053 | 1041 |
_blossom_set->increase(v, std::numeric_limits<Value>::max()); |
| 1054 | 1042 |
} else if ((*_blossom_set)[v] < (*_node_data)[vi].heap.prio()) {
|
| 1055 | 1043 |
_blossom_set->increase(v, (*_node_data)[vi].heap.prio()); |
| 1056 | 1044 |
} |
| 1057 | 1045 |
|
| 1058 | 1046 |
if ((*_blossom_data)[vb].status == MATCHED) {
|
| 1059 | 1047 |
if (_blossom_set->classPrio(vb) == |
| 1060 | 1048 |
std::numeric_limits<Value>::max()) {
|
| 1061 | 1049 |
_delta2->erase(vb); |
| 1062 | 1050 |
} else if ((*_delta2)[vb] < _blossom_set->classPrio(vb) - |
| 1063 | 1051 |
(*_blossom_data)[vb].offset) {
|
| 1064 | 1052 |
_delta2->increase(vb, _blossom_set->classPrio(vb) - |
| 1065 | 1053 |
(*_blossom_data)[vb].offset); |
| 1066 | 1054 |
} |
| 1067 | 1055 |
} |
| ... | ... |
@@ -1096,258 +1084,162 @@ |
| 1096 | 1084 |
n != INVALID; ++n) {
|
| 1097 | 1085 |
int ni = (*_node_index)[n]; |
| 1098 | 1086 |
|
| 1099 | 1087 |
_blossom_set->increase(n, std::numeric_limits<Value>::max()); |
| 1100 | 1088 |
|
| 1101 | 1089 |
(*_node_data)[ni].heap.clear(); |
| 1102 | 1090 |
(*_node_data)[ni].heap_index.clear(); |
| 1103 | 1091 |
(*_node_data)[ni].pot += |
| 1104 | 1092 |
2 * _delta_sum - (*_blossom_data)[blossom].offset; |
| 1105 | 1093 |
|
| 1106 | 1094 |
_delta1->push(n, (*_node_data)[ni].pot); |
| 1107 | 1095 |
|
| 1108 | 1096 |
for (InArcIt e(_graph, n); e != INVALID; ++e) {
|
| 1109 | 1097 |
Node v = _graph.source(e); |
| 1110 | 1098 |
int vb = _blossom_set->find(v); |
| 1111 | 1099 |
int vi = (*_node_index)[v]; |
| 1112 | 1100 |
|
| 1113 | 1101 |
Value rw = (*_node_data)[ni].pot + (*_node_data)[vi].pot - |
| 1114 | 1102 |
dualScale * _weight[e]; |
| 1115 | 1103 |
|
| 1116 | 1104 |
if ((*_blossom_data)[vb].status == EVEN) {
|
| 1117 | 1105 |
if (_delta3->state(e) != _delta3->IN_HEAP && blossom != vb) {
|
| 1118 | 1106 |
_delta3->push(e, rw / 2); |
| 1119 | 1107 |
} |
| 1120 |
} else if ((*_blossom_data)[vb].status == UNMATCHED) {
|
|
| 1121 |
if (_delta3->state(e) != _delta3->IN_HEAP) {
|
|
| 1122 |
_delta3->push(e, rw); |
|
| 1123 |
} |
|
| 1124 | 1108 |
} else {
|
| 1125 | 1109 |
|
| 1126 | 1110 |
typename std::map<int, Arc>::iterator it = |
| 1127 | 1111 |
(*_node_data)[vi].heap_index.find(tree); |
| 1128 | 1112 |
|
| 1129 | 1113 |
if (it != (*_node_data)[vi].heap_index.end()) {
|
| 1130 | 1114 |
if ((*_node_data)[vi].heap[it->second] > rw) {
|
| 1131 | 1115 |
(*_node_data)[vi].heap.replace(it->second, e); |
| 1132 | 1116 |
(*_node_data)[vi].heap.decrease(e, rw); |
| 1133 | 1117 |
it->second = e; |
| 1134 | 1118 |
} |
| 1135 | 1119 |
} else {
|
| 1136 | 1120 |
(*_node_data)[vi].heap.push(e, rw); |
| 1137 | 1121 |
(*_node_data)[vi].heap_index.insert(std::make_pair(tree, e)); |
| 1138 | 1122 |
} |
| 1139 | 1123 |
|
| 1140 | 1124 |
if ((*_blossom_set)[v] > (*_node_data)[vi].heap.prio()) {
|
| 1141 | 1125 |
_blossom_set->decrease(v, (*_node_data)[vi].heap.prio()); |
| 1142 | 1126 |
|
| 1143 | 1127 |
if ((*_blossom_data)[vb].status == MATCHED) {
|
| 1144 | 1128 |
if (_delta2->state(vb) != _delta2->IN_HEAP) {
|
| 1145 | 1129 |
_delta2->push(vb, _blossom_set->classPrio(vb) - |
| 1146 | 1130 |
(*_blossom_data)[vb].offset); |
| 1147 | 1131 |
} else if ((*_delta2)[vb] > _blossom_set->classPrio(vb) - |
| 1148 | 1132 |
(*_blossom_data)[vb].offset) {
|
| 1149 | 1133 |
_delta2->decrease(vb, _blossom_set->classPrio(vb) - |
| 1150 | 1134 |
(*_blossom_data)[vb].offset); |
| 1151 | 1135 |
} |
| 1152 | 1136 |
} |
| 1153 | 1137 |
} |
| 1154 | 1138 |
} |
| 1155 | 1139 |
} |
| 1156 | 1140 |
} |
| 1157 | 1141 |
(*_blossom_data)[blossom].offset = 0; |
| 1158 | 1142 |
} |
| 1159 | 1143 |
|
| 1160 |
|
|
| 1161 |
void matchedToUnmatched(int blossom) {
|
|
| 1162 |
if (_delta2->state(blossom) == _delta2->IN_HEAP) {
|
|
| 1163 |
_delta2->erase(blossom); |
|
| 1164 |
} |
|
| 1165 |
|
|
| 1166 |
for (typename BlossomSet::ItemIt n(*_blossom_set, blossom); |
|
| 1167 |
n != INVALID; ++n) {
|
|
| 1168 |
int ni = (*_node_index)[n]; |
|
| 1169 |
|
|
| 1170 |
_blossom_set->increase(n, std::numeric_limits<Value>::max()); |
|
| 1171 |
|
|
| 1172 |
(*_node_data)[ni].heap.clear(); |
|
| 1173 |
(*_node_data)[ni].heap_index.clear(); |
|
| 1174 |
|
|
| 1175 |
for (OutArcIt e(_graph, n); e != INVALID; ++e) {
|
|
| 1176 |
Node v = _graph.target(e); |
|
| 1177 |
int vb = _blossom_set->find(v); |
|
| 1178 |
int vi = (*_node_index)[v]; |
|
| 1179 |
|
|
| 1180 |
Value rw = (*_node_data)[ni].pot + (*_node_data)[vi].pot - |
|
| 1181 |
dualScale * _weight[e]; |
|
| 1182 |
|
|
| 1183 |
if ((*_blossom_data)[vb].status == EVEN) {
|
|
| 1184 |
if (_delta3->state(e) != _delta3->IN_HEAP) {
|
|
| 1185 |
_delta3->push(e, rw); |
|
| 1186 |
} |
|
| 1187 |
} |
|
| 1188 |
} |
|
| 1189 |
} |
|
| 1190 |
} |
|
| 1191 |
|
|
| 1192 |
void unmatchedToMatched(int blossom) {
|
|
| 1193 |
for (typename BlossomSet::ItemIt n(*_blossom_set, blossom); |
|
| 1194 |
n != INVALID; ++n) {
|
|
| 1195 |
int ni = (*_node_index)[n]; |
|
| 1196 |
|
|
| 1197 |
for (InArcIt e(_graph, n); e != INVALID; ++e) {
|
|
| 1198 |
Node v = _graph.source(e); |
|
| 1199 |
int vb = _blossom_set->find(v); |
|
| 1200 |
int vi = (*_node_index)[v]; |
|
| 1201 |
|
|
| 1202 |
Value rw = (*_node_data)[ni].pot + (*_node_data)[vi].pot - |
|
| 1203 |
dualScale * _weight[e]; |
|
| 1204 |
|
|
| 1205 |
if (vb == blossom) {
|
|
| 1206 |
if (_delta3->state(e) == _delta3->IN_HEAP) {
|
|
| 1207 |
_delta3->erase(e); |
|
| 1208 |
} |
|
| 1209 |
} else if ((*_blossom_data)[vb].status == EVEN) {
|
|
| 1210 |
|
|
| 1211 |
if (_delta3->state(e) == _delta3->IN_HEAP) {
|
|
| 1212 |
_delta3->erase(e); |
|
| 1213 |
} |
|
| 1214 |
|
|
| 1215 |
int vt = _tree_set->find(vb); |
|
| 1216 |
|
|
| 1217 |
Arc r = _graph.oppositeArc(e); |
|
| 1218 |
|
|
| 1219 |
typename std::map<int, Arc>::iterator it = |
|
| 1220 |
(*_node_data)[ni].heap_index.find(vt); |
|
| 1221 |
|
|
| 1222 |
if (it != (*_node_data)[ni].heap_index.end()) {
|
|
| 1223 |
if ((*_node_data)[ni].heap[it->second] > rw) {
|
|
| 1224 |
(*_node_data)[ni].heap.replace(it->second, r); |
|
| 1225 |
(*_node_data)[ni].heap.decrease(r, rw); |
|
| 1226 |
it->second = r; |
|
| 1227 |
} |
|
| 1228 |
} else {
|
|
| 1229 |
(*_node_data)[ni].heap.push(r, rw); |
|
| 1230 |
(*_node_data)[ni].heap_index.insert(std::make_pair(vt, r)); |
|
| 1231 |
} |
|
| 1232 |
|
|
| 1233 |
if ((*_blossom_set)[n] > (*_node_data)[ni].heap.prio()) {
|
|
| 1234 |
_blossom_set->decrease(n, (*_node_data)[ni].heap.prio()); |
|
| 1235 |
|
|
| 1236 |
if (_delta2->state(blossom) != _delta2->IN_HEAP) {
|
|
| 1237 |
_delta2->push(blossom, _blossom_set->classPrio(blossom) - |
|
| 1238 |
(*_blossom_data)[blossom].offset); |
|
| 1239 |
} else if ((*_delta2)[blossom] > _blossom_set->classPrio(blossom)- |
|
| 1240 |
(*_blossom_data)[blossom].offset){
|
|
| 1241 |
_delta2->decrease(blossom, _blossom_set->classPrio(blossom) - |
|
| 1242 |
(*_blossom_data)[blossom].offset); |
|
| 1243 |
} |
|
| 1244 |
} |
|
| 1245 |
|
|
| 1246 |
} else if ((*_blossom_data)[vb].status == UNMATCHED) {
|
|
| 1247 |
if (_delta3->state(e) == _delta3->IN_HEAP) {
|
|
| 1248 |
_delta3->erase(e); |
|
| 1249 |
} |
|
| 1250 |
} |
|
| 1251 |
} |
|
| 1252 |
} |
|
| 1253 |
} |
|
| 1254 |
|
|
| 1255 | 1144 |
void alternatePath(int even, int tree) {
|
| 1256 | 1145 |
int odd; |
| 1257 | 1146 |
|
| 1258 | 1147 |
evenToMatched(even, tree); |
| 1259 | 1148 |
(*_blossom_data)[even].status = MATCHED; |
| 1260 | 1149 |
|
| 1261 | 1150 |
while ((*_blossom_data)[even].pred != INVALID) {
|
| 1262 | 1151 |
odd = _blossom_set->find(_graph.target((*_blossom_data)[even].pred)); |
| 1263 | 1152 |
(*_blossom_data)[odd].status = MATCHED; |
| 1264 | 1153 |
oddToMatched(odd); |
| 1265 | 1154 |
(*_blossom_data)[odd].next = (*_blossom_data)[odd].pred; |
| 1266 | 1155 |
|
| 1267 | 1156 |
even = _blossom_set->find(_graph.target((*_blossom_data)[odd].pred)); |
| 1268 | 1157 |
(*_blossom_data)[even].status = MATCHED; |
| 1269 | 1158 |
evenToMatched(even, tree); |
| 1270 | 1159 |
(*_blossom_data)[even].next = |
| 1271 | 1160 |
_graph.oppositeArc((*_blossom_data)[odd].pred); |
| 1272 | 1161 |
} |
| 1273 | 1162 |
|
| 1274 | 1163 |
} |
| 1275 | 1164 |
|
| 1276 | 1165 |
void destroyTree(int tree) {
|
| 1277 | 1166 |
for (TreeSet::ItemIt b(*_tree_set, tree); b != INVALID; ++b) {
|
| 1278 | 1167 |
if ((*_blossom_data)[b].status == EVEN) {
|
| 1279 | 1168 |
(*_blossom_data)[b].status = MATCHED; |
| 1280 | 1169 |
evenToMatched(b, tree); |
| 1281 | 1170 |
} else if ((*_blossom_data)[b].status == ODD) {
|
| 1282 | 1171 |
(*_blossom_data)[b].status = MATCHED; |
| 1283 | 1172 |
oddToMatched(b); |
| 1284 | 1173 |
} |
| 1285 | 1174 |
} |
| 1286 | 1175 |
_tree_set->eraseClass(tree); |
| 1287 | 1176 |
} |
| 1288 | 1177 |
|
| 1289 | 1178 |
|
| 1290 | 1179 |
void unmatchNode(const Node& node) {
|
| 1291 | 1180 |
int blossom = _blossom_set->find(node); |
| 1292 | 1181 |
int tree = _tree_set->find(blossom); |
| 1293 | 1182 |
|
| 1294 | 1183 |
alternatePath(blossom, tree); |
| 1295 | 1184 |
destroyTree(tree); |
| 1296 | 1185 |
|
| 1297 |
(*_blossom_data)[blossom].status = UNMATCHED; |
|
| 1298 | 1186 |
(*_blossom_data)[blossom].base = node; |
| 1299 |
matchedToUnmatched(blossom); |
|
| 1300 |
} |
|
| 1301 |
|
|
| 1187 |
(*_blossom_data)[blossom].next = INVALID; |
|
| 1188 |
} |
|
| 1302 | 1189 |
|
| 1303 | 1190 |
void augmentOnEdge(const Edge& edge) {
|
| 1304 | 1191 |
|
| 1305 | 1192 |
int left = _blossom_set->find(_graph.u(edge)); |
| 1306 | 1193 |
int right = _blossom_set->find(_graph.v(edge)); |
| 1307 | 1194 |
|
| 1308 |
if ((*_blossom_data)[left].status == EVEN) {
|
|
| 1309 | 1195 |
int left_tree = _tree_set->find(left); |
| 1310 | 1196 |
alternatePath(left, left_tree); |
| 1311 | 1197 |
destroyTree(left_tree); |
| 1312 |
} else {
|
|
| 1313 |
(*_blossom_data)[left].status = MATCHED; |
|
| 1314 |
unmatchedToMatched(left); |
|
| 1315 |
} |
|
| 1316 |
|
|
| 1317 |
if ((*_blossom_data)[right].status == EVEN) {
|
|
| 1198 |
|
|
| 1318 | 1199 |
int right_tree = _tree_set->find(right); |
| 1319 | 1200 |
alternatePath(right, right_tree); |
| 1320 | 1201 |
destroyTree(right_tree); |
| 1321 |
} else {
|
|
| 1322 |
(*_blossom_data)[right].status = MATCHED; |
|
| 1323 |
unmatchedToMatched(right); |
|
| 1324 |
} |
|
| 1325 | 1202 |
|
| 1326 | 1203 |
(*_blossom_data)[left].next = _graph.direct(edge, true); |
| 1327 | 1204 |
(*_blossom_data)[right].next = _graph.direct(edge, false); |
| 1328 | 1205 |
} |
| 1329 | 1206 |
|
| 1207 |
void augmentOnArc(const Arc& arc) {
|
|
| 1208 |
|
|
| 1209 |
int left = _blossom_set->find(_graph.source(arc)); |
|
| 1210 |
int right = _blossom_set->find(_graph.target(arc)); |
|
| 1211 |
|
|
| 1212 |
(*_blossom_data)[left].status = MATCHED; |
|
| 1213 |
|
|
| 1214 |
int right_tree = _tree_set->find(right); |
|
| 1215 |
alternatePath(right, right_tree); |
|
| 1216 |
destroyTree(right_tree); |
|
| 1217 |
|
|
| 1218 |
(*_blossom_data)[left].next = arc; |
|
| 1219 |
(*_blossom_data)[right].next = _graph.oppositeArc(arc); |
|
| 1220 |
} |
|
| 1221 |
|
|
| 1330 | 1222 |
void extendOnArc(const Arc& arc) {
|
| 1331 | 1223 |
int base = _blossom_set->find(_graph.target(arc)); |
| 1332 | 1224 |
int tree = _tree_set->find(base); |
| 1333 | 1225 |
|
| 1334 | 1226 |
int odd = _blossom_set->find(_graph.source(arc)); |
| 1335 | 1227 |
_tree_set->insert(odd, tree); |
| 1336 | 1228 |
(*_blossom_data)[odd].status = ODD; |
| 1337 | 1229 |
matchedToOdd(odd); |
| 1338 | 1230 |
(*_blossom_data)[odd].pred = arc; |
| 1339 | 1231 |
|
| 1340 | 1232 |
int even = _blossom_set->find(_graph.target((*_blossom_data)[odd].next)); |
| 1341 | 1233 |
(*_blossom_data)[even].pred = (*_blossom_data)[even].next; |
| 1342 | 1234 |
_tree_set->insert(even, tree); |
| 1343 | 1235 |
(*_blossom_data)[even].status = EVEN; |
| 1344 | 1236 |
matchedToEven(even, tree); |
| 1345 | 1237 |
} |
| 1346 | 1238 |
|
| 1347 | 1239 |
void shrinkOnEdge(const Edge& edge, int tree) {
|
| 1348 | 1240 |
int nca = -1; |
| 1349 | 1241 |
std::vector<int> left_path, right_path; |
| 1350 | 1242 |
|
| 1351 | 1243 |
{
|
| 1352 | 1244 |
std::set<int> left_set, right_set; |
| 1353 | 1245 |
int left = _blossom_set->find(_graph.u(edge)); |
| ... | ... |
@@ -1608,49 +1500,49 @@ |
| 1608 | 1500 |
|
| 1609 | 1501 |
for (int i = 1; i < int(subblossoms.size()); i += 2) {
|
| 1610 | 1502 |
int sb = subblossoms[(ib + i) % subblossoms.size()]; |
| 1611 | 1503 |
int tb = subblossoms[(ib + i + 1) % subblossoms.size()]; |
| 1612 | 1504 |
|
| 1613 | 1505 |
Arc m = (*_blossom_data)[tb].next; |
| 1614 | 1506 |
extractBlossom(sb, _graph.target(m), _graph.oppositeArc(m)); |
| 1615 | 1507 |
extractBlossom(tb, _graph.source(m), m); |
| 1616 | 1508 |
} |
| 1617 | 1509 |
extractBlossom(subblossoms[ib], base, matching); |
| 1618 | 1510 |
|
| 1619 | 1511 |
int en = _blossom_node_list.size(); |
| 1620 | 1512 |
|
| 1621 | 1513 |
_blossom_potential.push_back(BlossomVariable(bn, en, pot)); |
| 1622 | 1514 |
} |
| 1623 | 1515 |
} |
| 1624 | 1516 |
|
| 1625 | 1517 |
void extractMatching() {
|
| 1626 | 1518 |
std::vector<int> blossoms; |
| 1627 | 1519 |
for (typename BlossomSet::ClassIt c(*_blossom_set); c != INVALID; ++c) {
|
| 1628 | 1520 |
blossoms.push_back(c); |
| 1629 | 1521 |
} |
| 1630 | 1522 |
|
| 1631 | 1523 |
for (int i = 0; i < int(blossoms.size()); ++i) {
|
| 1632 |
if ((*_blossom_data)[blossoms[i]]. |
|
| 1524 |
if ((*_blossom_data)[blossoms[i]].next != INVALID) {
|
|
| 1633 | 1525 |
|
| 1634 | 1526 |
Value offset = (*_blossom_data)[blossoms[i]].offset; |
| 1635 | 1527 |
(*_blossom_data)[blossoms[i]].pot += 2 * offset; |
| 1636 | 1528 |
for (typename BlossomSet::ItemIt n(*_blossom_set, blossoms[i]); |
| 1637 | 1529 |
n != INVALID; ++n) {
|
| 1638 | 1530 |
(*_node_data)[(*_node_index)[n]].pot -= offset; |
| 1639 | 1531 |
} |
| 1640 | 1532 |
|
| 1641 | 1533 |
Arc matching = (*_blossom_data)[blossoms[i]].next; |
| 1642 | 1534 |
Node base = _graph.source(matching); |
| 1643 | 1535 |
extractBlossom(blossoms[i], base, matching); |
| 1644 | 1536 |
} else {
|
| 1645 | 1537 |
Node base = (*_blossom_data)[blossoms[i]].base; |
| 1646 | 1538 |
extractBlossom(blossoms[i], base, INVALID); |
| 1647 | 1539 |
} |
| 1648 | 1540 |
} |
| 1649 | 1541 |
} |
| 1650 | 1542 |
|
| 1651 | 1543 |
public: |
| 1652 | 1544 |
|
| 1653 | 1545 |
/// \brief Constructor |
| 1654 | 1546 |
/// |
| 1655 | 1547 |
/// Constructor. |
| 1656 | 1548 |
MaxWeightedMatching(const Graph& graph, const WeightMap& weight) |
| ... | ... |
@@ -1736,94 +1628,86 @@ |
| 1736 | 1628 |
/// \brief Start the algorithm |
| 1737 | 1629 |
/// |
| 1738 | 1630 |
/// This function starts the algorithm. |
| 1739 | 1631 |
/// |
| 1740 | 1632 |
/// \pre \ref init() must be called before using this function. |
| 1741 | 1633 |
void start() {
|
| 1742 | 1634 |
enum OpType {
|
| 1743 | 1635 |
D1, D2, D3, D4 |
| 1744 | 1636 |
}; |
| 1745 | 1637 |
|
| 1746 | 1638 |
int unmatched = _node_num; |
| 1747 | 1639 |
while (unmatched > 0) {
|
| 1748 | 1640 |
Value d1 = !_delta1->empty() ? |
| 1749 | 1641 |
_delta1->prio() : std::numeric_limits<Value>::max(); |
| 1750 | 1642 |
|
| 1751 | 1643 |
Value d2 = !_delta2->empty() ? |
| 1752 | 1644 |
_delta2->prio() : std::numeric_limits<Value>::max(); |
| 1753 | 1645 |
|
| 1754 | 1646 |
Value d3 = !_delta3->empty() ? |
| 1755 | 1647 |
_delta3->prio() : std::numeric_limits<Value>::max(); |
| 1756 | 1648 |
|
| 1757 | 1649 |
Value d4 = !_delta4->empty() ? |
| 1758 | 1650 |
_delta4->prio() : std::numeric_limits<Value>::max(); |
| 1759 | 1651 |
|
| 1760 |
_delta_sum = |
|
| 1652 |
_delta_sum = d3; OpType ot = D3; |
|
| 1653 |
if (d1 < _delta_sum) { _delta_sum = d1; ot = D1; }
|
|
| 1761 | 1654 |
if (d2 < _delta_sum) { _delta_sum = d2; ot = D2; }
|
| 1762 |
if (d3 < _delta_sum) { _delta_sum = d3; ot = D3; }
|
|
| 1763 | 1655 |
if (d4 < _delta_sum) { _delta_sum = d4; ot = D4; }
|
| 1764 | 1656 |
|
| 1765 |
|
|
| 1766 | 1657 |
switch (ot) {
|
| 1767 | 1658 |
case D1: |
| 1768 | 1659 |
{
|
| 1769 | 1660 |
Node n = _delta1->top(); |
| 1770 | 1661 |
unmatchNode(n); |
| 1771 | 1662 |
--unmatched; |
| 1772 | 1663 |
} |
| 1773 | 1664 |
break; |
| 1774 | 1665 |
case D2: |
| 1775 | 1666 |
{
|
| 1776 | 1667 |
int blossom = _delta2->top(); |
| 1777 | 1668 |
Node n = _blossom_set->classTop(blossom); |
| 1778 |
Arc e = (*_node_data)[(*_node_index)[n]].heap.top(); |
|
| 1779 |
extendOnArc(e); |
|
| 1669 |
Arc a = (*_node_data)[(*_node_index)[n]].heap.top(); |
|
| 1670 |
if ((*_blossom_data)[blossom].next == INVALID) {
|
|
| 1671 |
augmentOnArc(a); |
|
| 1672 |
--unmatched; |
|
| 1673 |
} else {
|
|
| 1674 |
extendOnArc(a); |
|
| 1675 |
} |
|
| 1780 | 1676 |
} |
| 1781 | 1677 |
break; |
| 1782 | 1678 |
case D3: |
| 1783 | 1679 |
{
|
| 1784 | 1680 |
Edge e = _delta3->top(); |
| 1785 | 1681 |
|
| 1786 | 1682 |
int left_blossom = _blossom_set->find(_graph.u(e)); |
| 1787 | 1683 |
int right_blossom = _blossom_set->find(_graph.v(e)); |
| 1788 | 1684 |
|
| 1789 | 1685 |
if (left_blossom == right_blossom) {
|
| 1790 | 1686 |
_delta3->pop(); |
| 1791 | 1687 |
} else {
|
| 1792 |
int left_tree; |
|
| 1793 |
if ((*_blossom_data)[left_blossom].status == EVEN) {
|
|
| 1794 |
left_tree = _tree_set->find(left_blossom); |
|
| 1795 |
} else {
|
|
| 1796 |
left_tree = -1; |
|
| 1797 |
++unmatched; |
|
| 1798 |
} |
|
| 1799 |
int right_tree; |
|
| 1800 |
if ((*_blossom_data)[right_blossom].status == EVEN) {
|
|
| 1801 |
right_tree = _tree_set->find(right_blossom); |
|
| 1802 |
} else {
|
|
| 1803 |
right_tree = -1; |
|
| 1804 |
++unmatched; |
|
| 1805 |
} |
|
| 1688 |
int left_tree = _tree_set->find(left_blossom); |
|
| 1689 |
int right_tree = _tree_set->find(right_blossom); |
|
| 1806 | 1690 |
|
| 1807 | 1691 |
if (left_tree == right_tree) {
|
| 1808 | 1692 |
shrinkOnEdge(e, left_tree); |
| 1809 | 1693 |
} else {
|
| 1810 | 1694 |
augmentOnEdge(e); |
| 1811 | 1695 |
unmatched -= 2; |
| 1812 | 1696 |
} |
| 1813 | 1697 |
} |
| 1814 | 1698 |
} break; |
| 1815 | 1699 |
case D4: |
| 1816 | 1700 |
splitBlossom(_delta4->top()); |
| 1817 | 1701 |
break; |
| 1818 | 1702 |
} |
| 1819 | 1703 |
} |
| 1820 | 1704 |
extractMatching(); |
| 1821 | 1705 |
} |
| 1822 | 1706 |
|
| 1823 | 1707 |
/// \brief Run the algorithm. |
| 1824 | 1708 |
/// |
| 1825 | 1709 |
/// This method runs the \c %MaxWeightedMatching algorithm. |
| 1826 | 1710 |
/// |
| 1827 | 1711 |
/// \note mwm.run() is just a shortcut of the following code. |
| 1828 | 1712 |
/// \code |
| 1829 | 1713 |
/// mwm.init(); |
| ... | ... |
@@ -1835,49 +1719,49 @@ |
| 1835 | 1719 |
} |
| 1836 | 1720 |
|
| 1837 | 1721 |
/// @} |
| 1838 | 1722 |
|
| 1839 | 1723 |
/// \name Primal Solution |
| 1840 | 1724 |
/// Functions to get the primal solution, i.e. the maximum weighted |
| 1841 | 1725 |
/// matching.\n |
| 1842 | 1726 |
/// Either \ref run() or \ref start() function should be called before |
| 1843 | 1727 |
/// using them. |
| 1844 | 1728 |
|
| 1845 | 1729 |
/// @{
|
| 1846 | 1730 |
|
| 1847 | 1731 |
/// \brief Return the weight of the matching. |
| 1848 | 1732 |
/// |
| 1849 | 1733 |
/// This function returns the weight of the found matching. |
| 1850 | 1734 |
/// |
| 1851 | 1735 |
/// \pre Either run() or start() must be called before using this function. |
| 1852 | 1736 |
Value matchingWeight() const {
|
| 1853 | 1737 |
Value sum = 0; |
| 1854 | 1738 |
for (NodeIt n(_graph); n != INVALID; ++n) {
|
| 1855 | 1739 |
if ((*_matching)[n] != INVALID) {
|
| 1856 | 1740 |
sum += _weight[(*_matching)[n]]; |
| 1857 | 1741 |
} |
| 1858 | 1742 |
} |
| 1859 |
return sum / |
|
| 1743 |
return sum / 2; |
|
| 1860 | 1744 |
} |
| 1861 | 1745 |
|
| 1862 | 1746 |
/// \brief Return the size (cardinality) of the matching. |
| 1863 | 1747 |
/// |
| 1864 | 1748 |
/// This function returns the size (cardinality) of the found matching. |
| 1865 | 1749 |
/// |
| 1866 | 1750 |
/// \pre Either run() or start() must be called before using this function. |
| 1867 | 1751 |
int matchingSize() const {
|
| 1868 | 1752 |
int num = 0; |
| 1869 | 1753 |
for (NodeIt n(_graph); n != INVALID; ++n) {
|
| 1870 | 1754 |
if ((*_matching)[n] != INVALID) {
|
| 1871 | 1755 |
++num; |
| 1872 | 1756 |
} |
| 1873 | 1757 |
} |
| 1874 | 1758 |
return num /= 2; |
| 1875 | 1759 |
} |
| 1876 | 1760 |
|
| 1877 | 1761 |
/// \brief Return \c true if the given edge is in the matching. |
| 1878 | 1762 |
/// |
| 1879 | 1763 |
/// This function returns \c true if the given edge is in the found |
| 1880 | 1764 |
/// matching. |
| 1881 | 1765 |
/// |
| 1882 | 1766 |
/// \pre Either run() or start() must be called before using this function. |
| 1883 | 1767 |
bool matching(const Edge& edge) const {
|
| ... | ... |
@@ -2212,51 +2096,48 @@ |
| 2212 | 2096 |
_node_heap_index = new IntArcMap(_graph); |
| 2213 | 2097 |
_node_data = new RangeMap<NodeData>(_node_num, |
| 2214 | 2098 |
NodeData(*_node_heap_index)); |
| 2215 | 2099 |
} |
| 2216 | 2100 |
|
| 2217 | 2101 |
if (!_tree_set) {
|
| 2218 | 2102 |
_tree_set_index = new IntIntMap(_blossom_num); |
| 2219 | 2103 |
_tree_set = new TreeSet(*_tree_set_index); |
| 2220 | 2104 |
} |
| 2221 | 2105 |
if (!_delta2) {
|
| 2222 | 2106 |
_delta2_index = new IntIntMap(_blossom_num); |
| 2223 | 2107 |
_delta2 = new BinHeap<Value, IntIntMap>(*_delta2_index); |
| 2224 | 2108 |
} |
| 2225 | 2109 |
if (!_delta3) {
|
| 2226 | 2110 |
_delta3_index = new IntEdgeMap(_graph); |
| 2227 | 2111 |
_delta3 = new BinHeap<Value, IntEdgeMap>(*_delta3_index); |
| 2228 | 2112 |
} |
| 2229 | 2113 |
if (!_delta4) {
|
| 2230 | 2114 |
_delta4_index = new IntIntMap(_blossom_num); |
| 2231 | 2115 |
_delta4 = new BinHeap<Value, IntIntMap>(*_delta4_index); |
| 2232 | 2116 |
} |
| 2233 | 2117 |
} |
| 2234 | 2118 |
|
| 2235 | 2119 |
void destroyStructures() {
|
| 2236 |
_node_num = countNodes(_graph); |
|
| 2237 |
_blossom_num = _node_num * 3 / 2; |
|
| 2238 |
|
|
| 2239 | 2120 |
if (_matching) {
|
| 2240 | 2121 |
delete _matching; |
| 2241 | 2122 |
} |
| 2242 | 2123 |
if (_node_potential) {
|
| 2243 | 2124 |
delete _node_potential; |
| 2244 | 2125 |
} |
| 2245 | 2126 |
if (_blossom_set) {
|
| 2246 | 2127 |
delete _blossom_index; |
| 2247 | 2128 |
delete _blossom_set; |
| 2248 | 2129 |
delete _blossom_data; |
| 2249 | 2130 |
} |
| 2250 | 2131 |
|
| 2251 | 2132 |
if (_node_index) {
|
| 2252 | 2133 |
delete _node_index; |
| 2253 | 2134 |
delete _node_heap_index; |
| 2254 | 2135 |
delete _node_data; |
| 2255 | 2136 |
} |
| 2256 | 2137 |
|
| 2257 | 2138 |
if (_tree_set) {
|
| 2258 | 2139 |
delete _tree_set_index; |
| 2259 | 2140 |
delete _tree_set; |
| 2260 | 2141 |
} |
| 2261 | 2142 |
if (_delta2) {
|
| 2262 | 2143 |
delete _delta2_index; |
| ... | ... |
@@ -2970,50 +2851,50 @@ |
| 2970 | 2851 |
} |
| 2971 | 2852 |
} |
| 2972 | 2853 |
|
| 2973 | 2854 |
/// \brief Start the algorithm |
| 2974 | 2855 |
/// |
| 2975 | 2856 |
/// This function starts the algorithm. |
| 2976 | 2857 |
/// |
| 2977 | 2858 |
/// \pre \ref init() must be called before using this function. |
| 2978 | 2859 |
bool start() {
|
| 2979 | 2860 |
enum OpType {
|
| 2980 | 2861 |
D2, D3, D4 |
| 2981 | 2862 |
}; |
| 2982 | 2863 |
|
| 2983 | 2864 |
int unmatched = _node_num; |
| 2984 | 2865 |
while (unmatched > 0) {
|
| 2985 | 2866 |
Value d2 = !_delta2->empty() ? |
| 2986 | 2867 |
_delta2->prio() : std::numeric_limits<Value>::max(); |
| 2987 | 2868 |
|
| 2988 | 2869 |
Value d3 = !_delta3->empty() ? |
| 2989 | 2870 |
_delta3->prio() : std::numeric_limits<Value>::max(); |
| 2990 | 2871 |
|
| 2991 | 2872 |
Value d4 = !_delta4->empty() ? |
| 2992 | 2873 |
_delta4->prio() : std::numeric_limits<Value>::max(); |
| 2993 | 2874 |
|
| 2994 |
_delta_sum = d2; OpType ot = D2; |
|
| 2995 |
if (d3 < _delta_sum) { _delta_sum = d3; ot = D3; }
|
|
| 2875 |
_delta_sum = d3; OpType ot = D3; |
|
| 2876 |
if (d2 < _delta_sum) { _delta_sum = d2; ot = D2; }
|
|
| 2996 | 2877 |
if (d4 < _delta_sum) { _delta_sum = d4; ot = D4; }
|
| 2997 | 2878 |
|
| 2998 | 2879 |
if (_delta_sum == std::numeric_limits<Value>::max()) {
|
| 2999 | 2880 |
return false; |
| 3000 | 2881 |
} |
| 3001 | 2882 |
|
| 3002 | 2883 |
switch (ot) {
|
| 3003 | 2884 |
case D2: |
| 3004 | 2885 |
{
|
| 3005 | 2886 |
int blossom = _delta2->top(); |
| 3006 | 2887 |
Node n = _blossom_set->classTop(blossom); |
| 3007 | 2888 |
Arc e = (*_node_data)[(*_node_index)[n]].heap.top(); |
| 3008 | 2889 |
extendOnArc(e); |
| 3009 | 2890 |
} |
| 3010 | 2891 |
break; |
| 3011 | 2892 |
case D3: |
| 3012 | 2893 |
{
|
| 3013 | 2894 |
Edge e = _delta3->top(); |
| 3014 | 2895 |
|
| 3015 | 2896 |
int left_blossom = _blossom_set->find(_graph.u(e)); |
| 3016 | 2897 |
int right_blossom = _blossom_set->find(_graph.v(e)); |
| 3017 | 2898 |
|
| 3018 | 2899 |
if (left_blossom == right_blossom) {
|
| 3019 | 2900 |
_delta3->pop(); |
| ... | ... |
@@ -3053,49 +2934,49 @@ |
| 3053 | 2934 |
} |
| 3054 | 2935 |
|
| 3055 | 2936 |
/// @} |
| 3056 | 2937 |
|
| 3057 | 2938 |
/// \name Primal Solution |
| 3058 | 2939 |
/// Functions to get the primal solution, i.e. the maximum weighted |
| 3059 | 2940 |
/// perfect matching.\n |
| 3060 | 2941 |
/// Either \ref run() or \ref start() function should be called before |
| 3061 | 2942 |
/// using them. |
| 3062 | 2943 |
|
| 3063 | 2944 |
/// @{
|
| 3064 | 2945 |
|
| 3065 | 2946 |
/// \brief Return the weight of the matching. |
| 3066 | 2947 |
/// |
| 3067 | 2948 |
/// This function returns the weight of the found matching. |
| 3068 | 2949 |
/// |
| 3069 | 2950 |
/// \pre Either run() or start() must be called before using this function. |
| 3070 | 2951 |
Value matchingWeight() const {
|
| 3071 | 2952 |
Value sum = 0; |
| 3072 | 2953 |
for (NodeIt n(_graph); n != INVALID; ++n) {
|
| 3073 | 2954 |
if ((*_matching)[n] != INVALID) {
|
| 3074 | 2955 |
sum += _weight[(*_matching)[n]]; |
| 3075 | 2956 |
} |
| 3076 | 2957 |
} |
| 3077 |
return sum / |
|
| 2958 |
return sum / 2; |
|
| 3078 | 2959 |
} |
| 3079 | 2960 |
|
| 3080 | 2961 |
/// \brief Return \c true if the given edge is in the matching. |
| 3081 | 2962 |
/// |
| 3082 | 2963 |
/// This function returns \c true if the given edge is in the found |
| 3083 | 2964 |
/// matching. |
| 3084 | 2965 |
/// |
| 3085 | 2966 |
/// \pre Either run() or start() must be called before using this function. |
| 3086 | 2967 |
bool matching(const Edge& edge) const {
|
| 3087 | 2968 |
return static_cast<const Edge&>((*_matching)[_graph.u(edge)]) == edge; |
| 3088 | 2969 |
} |
| 3089 | 2970 |
|
| 3090 | 2971 |
/// \brief Return the matching arc (or edge) incident to the given node. |
| 3091 | 2972 |
/// |
| 3092 | 2973 |
/// This function returns the matching arc (or edge) incident to the |
| 3093 | 2974 |
/// given node in the found matching or \c INVALID if the node is |
| 3094 | 2975 |
/// not covered by the matching. |
| 3095 | 2976 |
/// |
| 3096 | 2977 |
/// \pre Either run() or start() must be called before using this function. |
| 3097 | 2978 |
Arc matching(const Node& node) const {
|
| 3098 | 2979 |
return (*_matching)[node]; |
| 3099 | 2980 |
} |
| 3100 | 2981 |
|
| 3101 | 2982 |
/// \brief Return a const reference to the matching map. |
| ... | ... |
@@ -3220,25 +3101,25 @@ |
| 3220 | 3101 |
} |
| 3221 | 3102 |
|
| 3222 | 3103 |
/// \brief Validity checking |
| 3223 | 3104 |
/// |
| 3224 | 3105 |
/// This function checks whether the iterator is invalid. |
| 3225 | 3106 |
bool operator==(Invalid) const { return _index == _last; }
|
| 3226 | 3107 |
|
| 3227 | 3108 |
/// \brief Validity checking |
| 3228 | 3109 |
/// |
| 3229 | 3110 |
/// This function checks whether the iterator is valid. |
| 3230 | 3111 |
bool operator!=(Invalid) const { return _index != _last; }
|
| 3231 | 3112 |
|
| 3232 | 3113 |
private: |
| 3233 | 3114 |
const MaxWeightedPerfectMatching* _algorithm; |
| 3234 | 3115 |
int _last; |
| 3235 | 3116 |
int _index; |
| 3236 | 3117 |
}; |
| 3237 | 3118 |
|
| 3238 | 3119 |
/// @} |
| 3239 | 3120 |
|
| 3240 | 3121 |
}; |
| 3241 | 3122 |
|
| 3242 | 3123 |
} //END OF NAMESPACE LEMON |
| 3243 | 3124 |
|
| 3244 |
#endif // |
|
| 3125 |
#endif //LEMON_MATCHING_H |
0 comments (0 inline)