gravatar
deba@inf.elte.hu
deba@inf.elte.hu
General improvements in weighted matching algorithms (#314) - Fix include guard - Uniform handling of MATCHED and UNMATCHED blossoms - Prefer operations which decrease the number of trees - Fix improper use of '/=' The solved problems did not cause wrong solution.
0 1 0
default
1 file changed with 38 insertions and 157 deletions:
↑ Collapse diff ↑
Show white space 96 line context
1 1
/* -*- mode: C++; indent-tabs-mode: nil; -*-
2 2
 *
3 3
 * This file is a part of LEMON, a generic C++ optimization library.
4 4
 *
5 5
 * Copyright (C) 2003-2009
6 6
 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
7 7
 * (Egervary Research Group on Combinatorial Optimization, EGRES).
8 8
 *
9 9
 * Permission to use, modify and distribute this software is granted
10 10
 * provided that this copyright notice appears in all copies. For
11 11
 * precise terms see the accompanying LICENSE file.
12 12
 *
13 13
 * This software is provided "AS IS" with no warranty of any kind,
14 14
 * express or implied, and with no claim as to its suitability for any
15 15
 * purpose.
16 16
 *
17 17
 */
18 18

	
19
#ifndef LEMON_MAX_MATCHING_H
20
#define LEMON_MAX_MATCHING_H
19
#ifndef LEMON_MATCHING_H
20
#define LEMON_MATCHING_H
21 21

	
22 22
#include <vector>
23 23
#include <queue>
24 24
#include <set>
25 25
#include <limits>
26 26

	
27 27
#include <lemon/core.h>
28 28
#include <lemon/unionfind.h>
29 29
#include <lemon/bin_heap.h>
30 30
#include <lemon/maps.h>
31 31

	
32 32
///\ingroup matching
33 33
///\file
34 34
///\brief Maximum matching algorithms in general graphs.
35 35

	
36 36
namespace lemon {
37 37

	
38 38
  /// \ingroup matching
39 39
  ///
40 40
  /// \brief Maximum cardinality matching in general graphs
41 41
  ///
42 42
  /// This class implements Edmonds' alternating forest matching algorithm
43 43
  /// for finding a maximum cardinality matching in a general undirected graph.
44 44
  /// It can be started from an arbitrary initial matching 
45 45
  /// (the default is the empty one).
46 46
  ///
47 47
  /// The dual solution of the problem is a map of the nodes to
48 48
  /// \ref MaxMatching::Status "Status", having values \c EVEN (or \c D),
49 49
  /// \c ODD (or \c A) and \c MATCHED (or \c C) defining the Gallai-Edmonds
50 50
  /// decomposition of the graph. The nodes in \c EVEN/D induce a subgraph
51 51
  /// with factor-critical components, the nodes in \c ODD/A form the
52 52
  /// canonical barrier, and the nodes in \c MATCHED/C induce a graph having
53 53
  /// a perfect matching. The number of the factor-critical components
54 54
  /// minus the number of barrier nodes is a lower bound on the
55 55
  /// unmatched nodes, and the matching is optimal if and only if this bound is
56 56
  /// tight. This decomposition can be obtained using \ref status() or
57 57
  /// \ref statusMap() after running the algorithm.
58 58
  ///
59 59
  /// \tparam GR The undirected graph type the algorithm runs on.
60 60
  template <typename GR>
61 61
  class MaxMatching {
62 62
  public:
63 63

	
64 64
    /// The graph type of the algorithm
65 65
    typedef GR Graph;
66 66
    /// The type of the matching map
67 67
    typedef typename Graph::template NodeMap<typename Graph::Arc>
68 68
    MatchingMap;
... ...
@@ -700,97 +700,97 @@
700 700
    /// The value type of the edge weights
701 701
    typedef typename WeightMap::Value Value;
702 702

	
703 703
    /// The type of the matching map
704 704
    typedef typename Graph::template NodeMap<typename Graph::Arc>
705 705
    MatchingMap;
706 706

	
707 707
    /// \brief Scaling factor for dual solution
708 708
    ///
709 709
    /// Scaling factor for dual solution. It is equal to 4 or 1
710 710
    /// according to the value type.
711 711
    static const int dualScale =
712 712
      std::numeric_limits<Value>::is_integer ? 4 : 1;
713 713

	
714 714
  private:
715 715

	
716 716
    TEMPLATE_GRAPH_TYPEDEFS(Graph);
717 717

	
718 718
    typedef typename Graph::template NodeMap<Value> NodePotential;
719 719
    typedef std::vector<Node> BlossomNodeList;
720 720

	
721 721
    struct BlossomVariable {
722 722
      int begin, end;
723 723
      Value value;
724 724

	
725 725
      BlossomVariable(int _begin, int _end, Value _value)
726 726
        : begin(_begin), end(_end), value(_value) {}
727 727

	
728 728
    };
729 729

	
730 730
    typedef std::vector<BlossomVariable> BlossomPotential;
731 731

	
732 732
    const Graph& _graph;
733 733
    const WeightMap& _weight;
734 734

	
735 735
    MatchingMap* _matching;
736 736

	
737 737
    NodePotential* _node_potential;
738 738

	
739 739
    BlossomPotential _blossom_potential;
740 740
    BlossomNodeList _blossom_node_list;
741 741

	
742 742
    int _node_num;
743 743
    int _blossom_num;
744 744

	
745 745
    typedef RangeMap<int> IntIntMap;
746 746

	
747 747
    enum Status {
748
      EVEN = -1, MATCHED = 0, ODD = 1, UNMATCHED = -2
748
      EVEN = -1, MATCHED = 0, ODD = 1
749 749
    };
750 750

	
751 751
    typedef HeapUnionFind<Value, IntNodeMap> BlossomSet;
752 752
    struct BlossomData {
753 753
      int tree;
754 754
      Status status;
755 755
      Arc pred, next;
756 756
      Value pot, offset;
757 757
      Node base;
758 758
    };
759 759

	
760 760
    IntNodeMap *_blossom_index;
761 761
    BlossomSet *_blossom_set;
762 762
    RangeMap<BlossomData>* _blossom_data;
763 763

	
764 764
    IntNodeMap *_node_index;
765 765
    IntArcMap *_node_heap_index;
766 766

	
767 767
    struct NodeData {
768 768

	
769 769
      NodeData(IntArcMap& node_heap_index)
770 770
        : heap(node_heap_index) {}
771 771

	
772 772
      int blossom;
773 773
      Value pot;
774 774
      BinHeap<Value, IntArcMap> heap;
775 775
      std::map<int, Arc> heap_index;
776 776

	
777 777
      int tree;
778 778
    };
779 779

	
780 780
    RangeMap<NodeData>* _node_data;
781 781

	
782 782
    typedef ExtendFindEnum<IntIntMap> TreeSet;
783 783

	
784 784
    IntIntMap *_tree_set_index;
785 785
    TreeSet *_tree_set;
786 786

	
787 787
    IntNodeMap *_delta1_index;
788 788
    BinHeap<Value, IntNodeMap> *_delta1;
789 789

	
790 790
    IntIntMap *_delta2_index;
791 791
    BinHeap<Value, IntIntMap> *_delta2;
792 792

	
793 793
    IntEdgeMap *_delta3_index;
794 794
    BinHeap<Value, IntEdgeMap> *_delta3;
795 795

	
796 796
    IntIntMap *_delta4_index;
... ...
@@ -799,178 +799,171 @@
799 799
    Value _delta_sum;
800 800

	
801 801
    void createStructures() {
802 802
      _node_num = countNodes(_graph);
803 803
      _blossom_num = _node_num * 3 / 2;
804 804

	
805 805
      if (!_matching) {
806 806
        _matching = new MatchingMap(_graph);
807 807
      }
808 808
      if (!_node_potential) {
809 809
        _node_potential = new NodePotential(_graph);
810 810
      }
811 811
      if (!_blossom_set) {
812 812
        _blossom_index = new IntNodeMap(_graph);
813 813
        _blossom_set = new BlossomSet(*_blossom_index);
814 814
        _blossom_data = new RangeMap<BlossomData>(_blossom_num);
815 815
      }
816 816

	
817 817
      if (!_node_index) {
818 818
        _node_index = new IntNodeMap(_graph);
819 819
        _node_heap_index = new IntArcMap(_graph);
820 820
        _node_data = new RangeMap<NodeData>(_node_num,
821 821
                                              NodeData(*_node_heap_index));
822 822
      }
823 823

	
824 824
      if (!_tree_set) {
825 825
        _tree_set_index = new IntIntMap(_blossom_num);
826 826
        _tree_set = new TreeSet(*_tree_set_index);
827 827
      }
828 828
      if (!_delta1) {
829 829
        _delta1_index = new IntNodeMap(_graph);
830 830
        _delta1 = new BinHeap<Value, IntNodeMap>(*_delta1_index);
831 831
      }
832 832
      if (!_delta2) {
833 833
        _delta2_index = new IntIntMap(_blossom_num);
834 834
        _delta2 = new BinHeap<Value, IntIntMap>(*_delta2_index);
835 835
      }
836 836
      if (!_delta3) {
837 837
        _delta3_index = new IntEdgeMap(_graph);
838 838
        _delta3 = new BinHeap<Value, IntEdgeMap>(*_delta3_index);
839 839
      }
840 840
      if (!_delta4) {
841 841
        _delta4_index = new IntIntMap(_blossom_num);
842 842
        _delta4 = new BinHeap<Value, IntIntMap>(*_delta4_index);
843 843
      }
844 844
    }
845 845

	
846 846
    void destroyStructures() {
847
      _node_num = countNodes(_graph);
848
      _blossom_num = _node_num * 3 / 2;
849

	
850 847
      if (_matching) {
851 848
        delete _matching;
852 849
      }
853 850
      if (_node_potential) {
854 851
        delete _node_potential;
855 852
      }
856 853
      if (_blossom_set) {
857 854
        delete _blossom_index;
858 855
        delete _blossom_set;
859 856
        delete _blossom_data;
860 857
      }
861 858

	
862 859
      if (_node_index) {
863 860
        delete _node_index;
864 861
        delete _node_heap_index;
865 862
        delete _node_data;
866 863
      }
867 864

	
868 865
      if (_tree_set) {
869 866
        delete _tree_set_index;
870 867
        delete _tree_set;
871 868
      }
872 869
      if (_delta1) {
873 870
        delete _delta1_index;
874 871
        delete _delta1;
875 872
      }
876 873
      if (_delta2) {
877 874
        delete _delta2_index;
878 875
        delete _delta2;
879 876
      }
880 877
      if (_delta3) {
881 878
        delete _delta3_index;
882 879
        delete _delta3;
883 880
      }
884 881
      if (_delta4) {
885 882
        delete _delta4_index;
886 883
        delete _delta4;
887 884
      }
888 885
    }
889 886

	
890 887
    void matchedToEven(int blossom, int tree) {
891 888
      if (_delta2->state(blossom) == _delta2->IN_HEAP) {
892 889
        _delta2->erase(blossom);
893 890
      }
894 891

	
895 892
      if (!_blossom_set->trivial(blossom)) {
896 893
        (*_blossom_data)[blossom].pot -=
897 894
          2 * (_delta_sum - (*_blossom_data)[blossom].offset);
898 895
      }
899 896

	
900 897
      for (typename BlossomSet::ItemIt n(*_blossom_set, blossom);
901 898
           n != INVALID; ++n) {
902 899

	
903 900
        _blossom_set->increase(n, std::numeric_limits<Value>::max());
904 901
        int ni = (*_node_index)[n];
905 902

	
906 903
        (*_node_data)[ni].heap.clear();
907 904
        (*_node_data)[ni].heap_index.clear();
908 905

	
909 906
        (*_node_data)[ni].pot += _delta_sum - (*_blossom_data)[blossom].offset;
910 907

	
911 908
        _delta1->push(n, (*_node_data)[ni].pot);
912 909

	
913 910
        for (InArcIt e(_graph, n); e != INVALID; ++e) {
914 911
          Node v = _graph.source(e);
915 912
          int vb = _blossom_set->find(v);
916 913
          int vi = (*_node_index)[v];
917 914

	
918 915
          Value rw = (*_node_data)[ni].pot + (*_node_data)[vi].pot -
919 916
            dualScale * _weight[e];
920 917

	
921 918
          if ((*_blossom_data)[vb].status == EVEN) {
922 919
            if (_delta3->state(e) != _delta3->IN_HEAP && blossom != vb) {
923 920
              _delta3->push(e, rw / 2);
924 921
            }
925
          } else if ((*_blossom_data)[vb].status == UNMATCHED) {
926
            if (_delta3->state(e) != _delta3->IN_HEAP) {
927
              _delta3->push(e, rw);
928
            }
929 922
          } else {
930 923
            typename std::map<int, Arc>::iterator it =
931 924
              (*_node_data)[vi].heap_index.find(tree);
932 925

	
933 926
            if (it != (*_node_data)[vi].heap_index.end()) {
934 927
              if ((*_node_data)[vi].heap[it->second] > rw) {
935 928
                (*_node_data)[vi].heap.replace(it->second, e);
936 929
                (*_node_data)[vi].heap.decrease(e, rw);
937 930
                it->second = e;
938 931
              }
939 932
            } else {
940 933
              (*_node_data)[vi].heap.push(e, rw);
941 934
              (*_node_data)[vi].heap_index.insert(std::make_pair(tree, e));
942 935
            }
943 936

	
944 937
            if ((*_blossom_set)[v] > (*_node_data)[vi].heap.prio()) {
945 938
              _blossom_set->decrease(v, (*_node_data)[vi].heap.prio());
946 939

	
947 940
              if ((*_blossom_data)[vb].status == MATCHED) {
948 941
                if (_delta2->state(vb) != _delta2->IN_HEAP) {
949 942
                  _delta2->push(vb, _blossom_set->classPrio(vb) -
950 943
                               (*_blossom_data)[vb].offset);
951 944
                } else if ((*_delta2)[vb] > _blossom_set->classPrio(vb) -
952 945
                           (*_blossom_data)[vb].offset){
953 946
                  _delta2->decrease(vb, _blossom_set->classPrio(vb) -
954 947
                                   (*_blossom_data)[vb].offset);
955 948
                }
956 949
              }
957 950
            }
958 951
          }
959 952
        }
960 953
      }
961 954
      (*_blossom_data)[blossom].offset = 0;
962 955
    }
963 956

	
964 957
    void matchedToOdd(int blossom) {
965 958
      if (_delta2->state(blossom) == _delta2->IN_HEAP) {
966 959
        _delta2->erase(blossom);
967 960
      }
968 961
      (*_blossom_data)[blossom].offset += _delta_sum;
969 962
      if (!_blossom_set->trivial(blossom)) {
970 963
        _delta4->push(blossom, (*_blossom_data)[blossom].pot / 2 +
971 964
                     (*_blossom_data)[blossom].offset);
972 965
      }
973 966
    }
974 967

	
975 968
    void evenToMatched(int blossom, int tree) {
976 969
      if (!_blossom_set->trivial(blossom)) {
... ...
@@ -991,387 +984,286 @@
991 984

	
992 985
          Value rw = (*_node_data)[ni].pot + (*_node_data)[vi].pot -
993 986
            dualScale * _weight[e];
994 987

	
995 988
          if (vb == blossom) {
996 989
            if (_delta3->state(e) == _delta3->IN_HEAP) {
997 990
              _delta3->erase(e);
998 991
            }
999 992
          } else if ((*_blossom_data)[vb].status == EVEN) {
1000 993

	
1001 994
            if (_delta3->state(e) == _delta3->IN_HEAP) {
1002 995
              _delta3->erase(e);
1003 996
            }
1004 997

	
1005 998
            int vt = _tree_set->find(vb);
1006 999

	
1007 1000
            if (vt != tree) {
1008 1001

	
1009 1002
              Arc r = _graph.oppositeArc(e);
1010 1003

	
1011 1004
              typename std::map<int, Arc>::iterator it =
1012 1005
                (*_node_data)[ni].heap_index.find(vt);
1013 1006

	
1014 1007
              if (it != (*_node_data)[ni].heap_index.end()) {
1015 1008
                if ((*_node_data)[ni].heap[it->second] > rw) {
1016 1009
                  (*_node_data)[ni].heap.replace(it->second, r);
1017 1010
                  (*_node_data)[ni].heap.decrease(r, rw);
1018 1011
                  it->second = r;
1019 1012
                }
1020 1013
              } else {
1021 1014
                (*_node_data)[ni].heap.push(r, rw);
1022 1015
                (*_node_data)[ni].heap_index.insert(std::make_pair(vt, r));
1023 1016
              }
1024 1017

	
1025 1018
              if ((*_blossom_set)[n] > (*_node_data)[ni].heap.prio()) {
1026 1019
                _blossom_set->decrease(n, (*_node_data)[ni].heap.prio());
1027 1020

	
1028 1021
                if (_delta2->state(blossom) != _delta2->IN_HEAP) {
1029 1022
                  _delta2->push(blossom, _blossom_set->classPrio(blossom) -
1030 1023
                               (*_blossom_data)[blossom].offset);
1031 1024
                } else if ((*_delta2)[blossom] >
1032 1025
                           _blossom_set->classPrio(blossom) -
1033 1026
                           (*_blossom_data)[blossom].offset){
1034 1027
                  _delta2->decrease(blossom, _blossom_set->classPrio(blossom) -
1035 1028
                                   (*_blossom_data)[blossom].offset);
1036 1029
                }
1037 1030
              }
1038 1031
            }
1039

	
1040
          } else if ((*_blossom_data)[vb].status == UNMATCHED) {
1041
            if (_delta3->state(e) == _delta3->IN_HEAP) {
1042
              _delta3->erase(e);
1043
            }
1044 1032
          } else {
1045 1033

	
1046 1034
            typename std::map<int, Arc>::iterator it =
1047 1035
              (*_node_data)[vi].heap_index.find(tree);
1048 1036

	
1049 1037
            if (it != (*_node_data)[vi].heap_index.end()) {
1050 1038
              (*_node_data)[vi].heap.erase(it->second);
1051 1039
              (*_node_data)[vi].heap_index.erase(it);
1052 1040
              if ((*_node_data)[vi].heap.empty()) {
1053 1041
                _blossom_set->increase(v, std::numeric_limits<Value>::max());
1054 1042
              } else if ((*_blossom_set)[v] < (*_node_data)[vi].heap.prio()) {
1055 1043
                _blossom_set->increase(v, (*_node_data)[vi].heap.prio());
1056 1044
              }
1057 1045

	
1058 1046
              if ((*_blossom_data)[vb].status == MATCHED) {
1059 1047
                if (_blossom_set->classPrio(vb) ==
1060 1048
                    std::numeric_limits<Value>::max()) {
1061 1049
                  _delta2->erase(vb);
1062 1050
                } else if ((*_delta2)[vb] < _blossom_set->classPrio(vb) -
1063 1051
                           (*_blossom_data)[vb].offset) {
1064 1052
                  _delta2->increase(vb, _blossom_set->classPrio(vb) -
1065 1053
                                   (*_blossom_data)[vb].offset);
1066 1054
                }
1067 1055
              }
1068 1056
            }
1069 1057
          }
1070 1058
        }
1071 1059
      }
1072 1060
    }
1073 1061

	
1074 1062
    void oddToMatched(int blossom) {
1075 1063
      (*_blossom_data)[blossom].offset -= _delta_sum;
1076 1064

	
1077 1065
      if (_blossom_set->classPrio(blossom) !=
1078 1066
          std::numeric_limits<Value>::max()) {
1079 1067
        _delta2->push(blossom, _blossom_set->classPrio(blossom) -
1080 1068
                       (*_blossom_data)[blossom].offset);
1081 1069
      }
1082 1070

	
1083 1071
      if (!_blossom_set->trivial(blossom)) {
1084 1072
        _delta4->erase(blossom);
1085 1073
      }
1086 1074
    }
1087 1075

	
1088 1076
    void oddToEven(int blossom, int tree) {
1089 1077
      if (!_blossom_set->trivial(blossom)) {
1090 1078
        _delta4->erase(blossom);
1091 1079
        (*_blossom_data)[blossom].pot -=
1092 1080
          2 * (2 * _delta_sum - (*_blossom_data)[blossom].offset);
1093 1081
      }
1094 1082

	
1095 1083
      for (typename BlossomSet::ItemIt n(*_blossom_set, blossom);
1096 1084
           n != INVALID; ++n) {
1097 1085
        int ni = (*_node_index)[n];
1098 1086

	
1099 1087
        _blossom_set->increase(n, std::numeric_limits<Value>::max());
1100 1088

	
1101 1089
        (*_node_data)[ni].heap.clear();
1102 1090
        (*_node_data)[ni].heap_index.clear();
1103 1091
        (*_node_data)[ni].pot +=
1104 1092
          2 * _delta_sum - (*_blossom_data)[blossom].offset;
1105 1093

	
1106 1094
        _delta1->push(n, (*_node_data)[ni].pot);
1107 1095

	
1108 1096
        for (InArcIt e(_graph, n); e != INVALID; ++e) {
1109 1097
          Node v = _graph.source(e);
1110 1098
          int vb = _blossom_set->find(v);
1111 1099
          int vi = (*_node_index)[v];
1112 1100

	
1113 1101
          Value rw = (*_node_data)[ni].pot + (*_node_data)[vi].pot -
1114 1102
            dualScale * _weight[e];
1115 1103

	
1116 1104
          if ((*_blossom_data)[vb].status == EVEN) {
1117 1105
            if (_delta3->state(e) != _delta3->IN_HEAP && blossom != vb) {
1118 1106
              _delta3->push(e, rw / 2);
1119 1107
            }
1120
          } else if ((*_blossom_data)[vb].status == UNMATCHED) {
1121
            if (_delta3->state(e) != _delta3->IN_HEAP) {
1122
              _delta3->push(e, rw);
1123
            }
1124 1108
          } else {
1125 1109

	
1126 1110
            typename std::map<int, Arc>::iterator it =
1127 1111
              (*_node_data)[vi].heap_index.find(tree);
1128 1112

	
1129 1113
            if (it != (*_node_data)[vi].heap_index.end()) {
1130 1114
              if ((*_node_data)[vi].heap[it->second] > rw) {
1131 1115
                (*_node_data)[vi].heap.replace(it->second, e);
1132 1116
                (*_node_data)[vi].heap.decrease(e, rw);
1133 1117
                it->second = e;
1134 1118
              }
1135 1119
            } else {
1136 1120
              (*_node_data)[vi].heap.push(e, rw);
1137 1121
              (*_node_data)[vi].heap_index.insert(std::make_pair(tree, e));
1138 1122
            }
1139 1123

	
1140 1124
            if ((*_blossom_set)[v] > (*_node_data)[vi].heap.prio()) {
1141 1125
              _blossom_set->decrease(v, (*_node_data)[vi].heap.prio());
1142 1126

	
1143 1127
              if ((*_blossom_data)[vb].status == MATCHED) {
1144 1128
                if (_delta2->state(vb) != _delta2->IN_HEAP) {
1145 1129
                  _delta2->push(vb, _blossom_set->classPrio(vb) -
1146 1130
                               (*_blossom_data)[vb].offset);
1147 1131
                } else if ((*_delta2)[vb] > _blossom_set->classPrio(vb) -
1148 1132
                           (*_blossom_data)[vb].offset) {
1149 1133
                  _delta2->decrease(vb, _blossom_set->classPrio(vb) -
1150 1134
                                   (*_blossom_data)[vb].offset);
1151 1135
                }
1152 1136
              }
1153 1137
            }
1154 1138
          }
1155 1139
        }
1156 1140
      }
1157 1141
      (*_blossom_data)[blossom].offset = 0;
1158 1142
    }
1159 1143

	
1160

	
1161
    void matchedToUnmatched(int blossom) {
1162
      if (_delta2->state(blossom) == _delta2->IN_HEAP) {
1163
        _delta2->erase(blossom);
1164
      }
1165

	
1166
      for (typename BlossomSet::ItemIt n(*_blossom_set, blossom);
1167
           n != INVALID; ++n) {
1168
        int ni = (*_node_index)[n];
1169

	
1170
        _blossom_set->increase(n, std::numeric_limits<Value>::max());
1171

	
1172
        (*_node_data)[ni].heap.clear();
1173
        (*_node_data)[ni].heap_index.clear();
1174

	
1175
        for (OutArcIt e(_graph, n); e != INVALID; ++e) {
1176
          Node v = _graph.target(e);
1177
          int vb = _blossom_set->find(v);
1178
          int vi = (*_node_index)[v];
1179

	
1180
          Value rw = (*_node_data)[ni].pot + (*_node_data)[vi].pot -
1181
            dualScale * _weight[e];
1182

	
1183
          if ((*_blossom_data)[vb].status == EVEN) {
1184
            if (_delta3->state(e) != _delta3->IN_HEAP) {
1185
              _delta3->push(e, rw);
1186
            }
1187
          }
1188
        }
1189
      }
1190
    }
1191

	
1192
    void unmatchedToMatched(int blossom) {
1193
      for (typename BlossomSet::ItemIt n(*_blossom_set, blossom);
1194
           n != INVALID; ++n) {
1195
        int ni = (*_node_index)[n];
1196

	
1197
        for (InArcIt e(_graph, n); e != INVALID; ++e) {
1198
          Node v = _graph.source(e);
1199
          int vb = _blossom_set->find(v);
1200
          int vi = (*_node_index)[v];
1201

	
1202
          Value rw = (*_node_data)[ni].pot + (*_node_data)[vi].pot -
1203
            dualScale * _weight[e];
1204

	
1205
          if (vb == blossom) {
1206
            if (_delta3->state(e) == _delta3->IN_HEAP) {
1207
              _delta3->erase(e);
1208
            }
1209
          } else if ((*_blossom_data)[vb].status == EVEN) {
1210

	
1211
            if (_delta3->state(e) == _delta3->IN_HEAP) {
1212
              _delta3->erase(e);
1213
            }
1214

	
1215
            int vt = _tree_set->find(vb);
1216

	
1217
            Arc r = _graph.oppositeArc(e);
1218

	
1219
            typename std::map<int, Arc>::iterator it =
1220
              (*_node_data)[ni].heap_index.find(vt);
1221

	
1222
            if (it != (*_node_data)[ni].heap_index.end()) {
1223
              if ((*_node_data)[ni].heap[it->second] > rw) {
1224
                (*_node_data)[ni].heap.replace(it->second, r);
1225
                (*_node_data)[ni].heap.decrease(r, rw);
1226
                it->second = r;
1227
              }
1228
            } else {
1229
              (*_node_data)[ni].heap.push(r, rw);
1230
              (*_node_data)[ni].heap_index.insert(std::make_pair(vt, r));
1231
            }
1232

	
1233
            if ((*_blossom_set)[n] > (*_node_data)[ni].heap.prio()) {
1234
              _blossom_set->decrease(n, (*_node_data)[ni].heap.prio());
1235

	
1236
              if (_delta2->state(blossom) != _delta2->IN_HEAP) {
1237
                _delta2->push(blossom, _blossom_set->classPrio(blossom) -
1238
                             (*_blossom_data)[blossom].offset);
1239
              } else if ((*_delta2)[blossom] > _blossom_set->classPrio(blossom)-
1240
                         (*_blossom_data)[blossom].offset){
1241
                _delta2->decrease(blossom, _blossom_set->classPrio(blossom) -
1242
                                 (*_blossom_data)[blossom].offset);
1243
              }
1244
            }
1245

	
1246
          } else if ((*_blossom_data)[vb].status == UNMATCHED) {
1247
            if (_delta3->state(e) == _delta3->IN_HEAP) {
1248
              _delta3->erase(e);
1249
            }
1250
          }
1251
        }
1252
      }
1253
    }
1254

	
1255 1144
    void alternatePath(int even, int tree) {
1256 1145
      int odd;
1257 1146

	
1258 1147
      evenToMatched(even, tree);
1259 1148
      (*_blossom_data)[even].status = MATCHED;
1260 1149

	
1261 1150
      while ((*_blossom_data)[even].pred != INVALID) {
1262 1151
        odd = _blossom_set->find(_graph.target((*_blossom_data)[even].pred));
1263 1152
        (*_blossom_data)[odd].status = MATCHED;
1264 1153
        oddToMatched(odd);
1265 1154
        (*_blossom_data)[odd].next = (*_blossom_data)[odd].pred;
1266 1155

	
1267 1156
        even = _blossom_set->find(_graph.target((*_blossom_data)[odd].pred));
1268 1157
        (*_blossom_data)[even].status = MATCHED;
1269 1158
        evenToMatched(even, tree);
1270 1159
        (*_blossom_data)[even].next =
1271 1160
          _graph.oppositeArc((*_blossom_data)[odd].pred);
1272 1161
      }
1273 1162

	
1274 1163
    }
1275 1164

	
1276 1165
    void destroyTree(int tree) {
1277 1166
      for (TreeSet::ItemIt b(*_tree_set, tree); b != INVALID; ++b) {
1278 1167
        if ((*_blossom_data)[b].status == EVEN) {
1279 1168
          (*_blossom_data)[b].status = MATCHED;
1280 1169
          evenToMatched(b, tree);
1281 1170
        } else if ((*_blossom_data)[b].status == ODD) {
1282 1171
          (*_blossom_data)[b].status = MATCHED;
1283 1172
          oddToMatched(b);
1284 1173
        }
1285 1174
      }
1286 1175
      _tree_set->eraseClass(tree);
1287 1176
    }
1288 1177

	
1289 1178

	
1290 1179
    void unmatchNode(const Node& node) {
1291 1180
      int blossom = _blossom_set->find(node);
1292 1181
      int tree = _tree_set->find(blossom);
1293 1182

	
1294 1183
      alternatePath(blossom, tree);
1295 1184
      destroyTree(tree);
1296 1185

	
1297
      (*_blossom_data)[blossom].status = UNMATCHED;
1298 1186
      (*_blossom_data)[blossom].base = node;
1299
      matchedToUnmatched(blossom);
1300
    }
1301

	
1187
      (*_blossom_data)[blossom].next = INVALID;
1188
    }
1302 1189

	
1303 1190
    void augmentOnEdge(const Edge& edge) {
1304 1191

	
1305 1192
      int left = _blossom_set->find(_graph.u(edge));
1306 1193
      int right = _blossom_set->find(_graph.v(edge));
1307 1194

	
1308
      if ((*_blossom_data)[left].status == EVEN) {
1309 1195
        int left_tree = _tree_set->find(left);
1310 1196
        alternatePath(left, left_tree);
1311 1197
        destroyTree(left_tree);
1312
      } else {
1313
        (*_blossom_data)[left].status = MATCHED;
1314
        unmatchedToMatched(left);
1315
      }
1316

	
1317
      if ((*_blossom_data)[right].status == EVEN) {
1198

	
1318 1199
        int right_tree = _tree_set->find(right);
1319 1200
        alternatePath(right, right_tree);
1320 1201
        destroyTree(right_tree);
1321
      } else {
1322
        (*_blossom_data)[right].status = MATCHED;
1323
        unmatchedToMatched(right);
1324
      }
1325 1202

	
1326 1203
      (*_blossom_data)[left].next = _graph.direct(edge, true);
1327 1204
      (*_blossom_data)[right].next = _graph.direct(edge, false);
1328 1205
    }
1329 1206

	
1207
    void augmentOnArc(const Arc& arc) {
1208

	
1209
      int left = _blossom_set->find(_graph.source(arc));
1210
      int right = _blossom_set->find(_graph.target(arc));
1211

	
1212
      (*_blossom_data)[left].status = MATCHED;
1213

	
1214
      int right_tree = _tree_set->find(right);
1215
      alternatePath(right, right_tree);
1216
      destroyTree(right_tree);
1217

	
1218
      (*_blossom_data)[left].next = arc;
1219
      (*_blossom_data)[right].next = _graph.oppositeArc(arc);
1220
    }
1221

	
1330 1222
    void extendOnArc(const Arc& arc) {
1331 1223
      int base = _blossom_set->find(_graph.target(arc));
1332 1224
      int tree = _tree_set->find(base);
1333 1225

	
1334 1226
      int odd = _blossom_set->find(_graph.source(arc));
1335 1227
      _tree_set->insert(odd, tree);
1336 1228
      (*_blossom_data)[odd].status = ODD;
1337 1229
      matchedToOdd(odd);
1338 1230
      (*_blossom_data)[odd].pred = arc;
1339 1231

	
1340 1232
      int even = _blossom_set->find(_graph.target((*_blossom_data)[odd].next));
1341 1233
      (*_blossom_data)[even].pred = (*_blossom_data)[even].next;
1342 1234
      _tree_set->insert(even, tree);
1343 1235
      (*_blossom_data)[even].status = EVEN;
1344 1236
      matchedToEven(even, tree);
1345 1237
    }
1346 1238

	
1347 1239
    void shrinkOnEdge(const Edge& edge, int tree) {
1348 1240
      int nca = -1;
1349 1241
      std::vector<int> left_path, right_path;
1350 1242

	
1351 1243
      {
1352 1244
        std::set<int> left_set, right_set;
1353 1245
        int left = _blossom_set->find(_graph.u(edge));
1354 1246
        left_path.push_back(left);
1355 1247
        left_set.insert(left);
1356 1248

	
1357 1249
        int right = _blossom_set->find(_graph.v(edge));
1358 1250
        right_path.push_back(right);
1359 1251
        right_set.insert(right);
1360 1252

	
1361 1253
        while (true) {
1362 1254

	
1363 1255
          if ((*_blossom_data)[left].pred == INVALID) break;
1364 1256

	
1365 1257
          left =
1366 1258
            _blossom_set->find(_graph.target((*_blossom_data)[left].pred));
1367 1259
          left_path.push_back(left);
1368 1260
          left =
1369 1261
            _blossom_set->find(_graph.target((*_blossom_data)[left].pred));
1370 1262
          left_path.push_back(left);
1371 1263

	
1372 1264
          left_set.insert(left);
1373 1265

	
1374 1266
          if (right_set.find(left) != right_set.end()) {
1375 1267
            nca = left;
1376 1268
            break;
1377 1269
          }
... ...
@@ -1584,97 +1476,97 @@
1584 1476
      }
1585 1477
      _tree_set->erase(blossom);
1586 1478
    }
1587 1479

	
1588 1480
    void extractBlossom(int blossom, const Node& base, const Arc& matching) {
1589 1481
      if (_blossom_set->trivial(blossom)) {
1590 1482
        int bi = (*_node_index)[base];
1591 1483
        Value pot = (*_node_data)[bi].pot;
1592 1484

	
1593 1485
        (*_matching)[base] = matching;
1594 1486
        _blossom_node_list.push_back(base);
1595 1487
        (*_node_potential)[base] = pot;
1596 1488
      } else {
1597 1489

	
1598 1490
        Value pot = (*_blossom_data)[blossom].pot;
1599 1491
        int bn = _blossom_node_list.size();
1600 1492

	
1601 1493
        std::vector<int> subblossoms;
1602 1494
        _blossom_set->split(blossom, std::back_inserter(subblossoms));
1603 1495
        int b = _blossom_set->find(base);
1604 1496
        int ib = -1;
1605 1497
        for (int i = 0; i < int(subblossoms.size()); ++i) {
1606 1498
          if (subblossoms[i] == b) { ib = i; break; }
1607 1499
        }
1608 1500

	
1609 1501
        for (int i = 1; i < int(subblossoms.size()); i += 2) {
1610 1502
          int sb = subblossoms[(ib + i) % subblossoms.size()];
1611 1503
          int tb = subblossoms[(ib + i + 1) % subblossoms.size()];
1612 1504

	
1613 1505
          Arc m = (*_blossom_data)[tb].next;
1614 1506
          extractBlossom(sb, _graph.target(m), _graph.oppositeArc(m));
1615 1507
          extractBlossom(tb, _graph.source(m), m);
1616 1508
        }
1617 1509
        extractBlossom(subblossoms[ib], base, matching);
1618 1510

	
1619 1511
        int en = _blossom_node_list.size();
1620 1512

	
1621 1513
        _blossom_potential.push_back(BlossomVariable(bn, en, pot));
1622 1514
      }
1623 1515
    }
1624 1516

	
1625 1517
    void extractMatching() {
1626 1518
      std::vector<int> blossoms;
1627 1519
      for (typename BlossomSet::ClassIt c(*_blossom_set); c != INVALID; ++c) {
1628 1520
        blossoms.push_back(c);
1629 1521
      }
1630 1522

	
1631 1523
      for (int i = 0; i < int(blossoms.size()); ++i) {
1632
        if ((*_blossom_data)[blossoms[i]].status == MATCHED) {
1524
        if ((*_blossom_data)[blossoms[i]].next != INVALID) {
1633 1525

	
1634 1526
          Value offset = (*_blossom_data)[blossoms[i]].offset;
1635 1527
          (*_blossom_data)[blossoms[i]].pot += 2 * offset;
1636 1528
          for (typename BlossomSet::ItemIt n(*_blossom_set, blossoms[i]);
1637 1529
               n != INVALID; ++n) {
1638 1530
            (*_node_data)[(*_node_index)[n]].pot -= offset;
1639 1531
          }
1640 1532

	
1641 1533
          Arc matching = (*_blossom_data)[blossoms[i]].next;
1642 1534
          Node base = _graph.source(matching);
1643 1535
          extractBlossom(blossoms[i], base, matching);
1644 1536
        } else {
1645 1537
          Node base = (*_blossom_data)[blossoms[i]].base;
1646 1538
          extractBlossom(blossoms[i], base, INVALID);
1647 1539
        }
1648 1540
      }
1649 1541
    }
1650 1542

	
1651 1543
  public:
1652 1544

	
1653 1545
    /// \brief Constructor
1654 1546
    ///
1655 1547
    /// Constructor.
1656 1548
    MaxWeightedMatching(const Graph& graph, const WeightMap& weight)
1657 1549
      : _graph(graph), _weight(weight), _matching(0),
1658 1550
        _node_potential(0), _blossom_potential(), _blossom_node_list(),
1659 1551
        _node_num(0), _blossom_num(0),
1660 1552

	
1661 1553
        _blossom_index(0), _blossom_set(0), _blossom_data(0),
1662 1554
        _node_index(0), _node_heap_index(0), _node_data(0),
1663 1555
        _tree_set_index(0), _tree_set(0),
1664 1556

	
1665 1557
        _delta1_index(0), _delta1(0),
1666 1558
        _delta2_index(0), _delta2(0),
1667 1559
        _delta3_index(0), _delta3(0),
1668 1560
        _delta4_index(0), _delta4(0),
1669 1561

	
1670 1562
        _delta_sum() {}
1671 1563

	
1672 1564
    ~MaxWeightedMatching() {
1673 1565
      destroyStructures();
1674 1566
    }
1675 1567

	
1676 1568
    /// \name Execution Control
1677 1569
    /// The simplest way to execute the algorithm is to use the
1678 1570
    /// \ref run() member function.
1679 1571

	
1680 1572
    ///@{
... ...
@@ -1712,196 +1604,188 @@
1712 1604
        (*_node_data)[index].pot = max;
1713 1605
        _delta1->push(n, max);
1714 1606
        int blossom =
1715 1607
          _blossom_set->insert(n, std::numeric_limits<Value>::max());
1716 1608

	
1717 1609
        _tree_set->insert(blossom);
1718 1610

	
1719 1611
        (*_blossom_data)[blossom].status = EVEN;
1720 1612
        (*_blossom_data)[blossom].pred = INVALID;
1721 1613
        (*_blossom_data)[blossom].next = INVALID;
1722 1614
        (*_blossom_data)[blossom].pot = 0;
1723 1615
        (*_blossom_data)[blossom].offset = 0;
1724 1616
        ++index;
1725 1617
      }
1726 1618
      for (EdgeIt e(_graph); e != INVALID; ++e) {
1727 1619
        int si = (*_node_index)[_graph.u(e)];
1728 1620
        int ti = (*_node_index)[_graph.v(e)];
1729 1621
        if (_graph.u(e) != _graph.v(e)) {
1730 1622
          _delta3->push(e, ((*_node_data)[si].pot + (*_node_data)[ti].pot -
1731 1623
                            dualScale * _weight[e]) / 2);
1732 1624
        }
1733 1625
      }
1734 1626
    }
1735 1627

	
1736 1628
    /// \brief Start the algorithm
1737 1629
    ///
1738 1630
    /// This function starts the algorithm.
1739 1631
    ///
1740 1632
    /// \pre \ref init() must be called before using this function.
1741 1633
    void start() {
1742 1634
      enum OpType {
1743 1635
        D1, D2, D3, D4
1744 1636
      };
1745 1637

	
1746 1638
      int unmatched = _node_num;
1747 1639
      while (unmatched > 0) {
1748 1640
        Value d1 = !_delta1->empty() ?
1749 1641
          _delta1->prio() : std::numeric_limits<Value>::max();
1750 1642

	
1751 1643
        Value d2 = !_delta2->empty() ?
1752 1644
          _delta2->prio() : std::numeric_limits<Value>::max();
1753 1645

	
1754 1646
        Value d3 = !_delta3->empty() ?
1755 1647
          _delta3->prio() : std::numeric_limits<Value>::max();
1756 1648

	
1757 1649
        Value d4 = !_delta4->empty() ?
1758 1650
          _delta4->prio() : std::numeric_limits<Value>::max();
1759 1651

	
1760
        _delta_sum = d1; OpType ot = D1;
1652
        _delta_sum = d3; OpType ot = D3;
1653
        if (d1 < _delta_sum) { _delta_sum = d1; ot = D1; }
1761 1654
        if (d2 < _delta_sum) { _delta_sum = d2; ot = D2; }
1762
        if (d3 < _delta_sum) { _delta_sum = d3; ot = D3; }
1763 1655
        if (d4 < _delta_sum) { _delta_sum = d4; ot = D4; }
1764 1656

	
1765

	
1766 1657
        switch (ot) {
1767 1658
        case D1:
1768 1659
          {
1769 1660
            Node n = _delta1->top();
1770 1661
            unmatchNode(n);
1771 1662
            --unmatched;
1772 1663
          }
1773 1664
          break;
1774 1665
        case D2:
1775 1666
          {
1776 1667
            int blossom = _delta2->top();
1777 1668
            Node n = _blossom_set->classTop(blossom);
1778
            Arc e = (*_node_data)[(*_node_index)[n]].heap.top();
1779
            extendOnArc(e);
1669
            Arc a = (*_node_data)[(*_node_index)[n]].heap.top();
1670
            if ((*_blossom_data)[blossom].next == INVALID) {
1671
              augmentOnArc(a);
1672
              --unmatched;
1673
            } else {
1674
              extendOnArc(a);
1675
            }
1780 1676
          }
1781 1677
          break;
1782 1678
        case D3:
1783 1679
          {
1784 1680
            Edge e = _delta3->top();
1785 1681

	
1786 1682
            int left_blossom = _blossom_set->find(_graph.u(e));
1787 1683
            int right_blossom = _blossom_set->find(_graph.v(e));
1788 1684

	
1789 1685
            if (left_blossom == right_blossom) {
1790 1686
              _delta3->pop();
1791 1687
            } else {
1792
              int left_tree;
1793
              if ((*_blossom_data)[left_blossom].status == EVEN) {
1794
                left_tree = _tree_set->find(left_blossom);
1795
              } else {
1796
                left_tree = -1;
1797
                ++unmatched;
1798
              }
1799
              int right_tree;
1800
              if ((*_blossom_data)[right_blossom].status == EVEN) {
1801
                right_tree = _tree_set->find(right_blossom);
1802
              } else {
1803
                right_tree = -1;
1804
                ++unmatched;
1805
              }
1688
              int left_tree = _tree_set->find(left_blossom);
1689
              int right_tree = _tree_set->find(right_blossom);
1806 1690

	
1807 1691
              if (left_tree == right_tree) {
1808 1692
                shrinkOnEdge(e, left_tree);
1809 1693
              } else {
1810 1694
                augmentOnEdge(e);
1811 1695
                unmatched -= 2;
1812 1696
              }
1813 1697
            }
1814 1698
          } break;
1815 1699
        case D4:
1816 1700
          splitBlossom(_delta4->top());
1817 1701
          break;
1818 1702
        }
1819 1703
      }
1820 1704
      extractMatching();
1821 1705
    }
1822 1706

	
1823 1707
    /// \brief Run the algorithm.
1824 1708
    ///
1825 1709
    /// This method runs the \c %MaxWeightedMatching algorithm.
1826 1710
    ///
1827 1711
    /// \note mwm.run() is just a shortcut of the following code.
1828 1712
    /// \code
1829 1713
    ///   mwm.init();
1830 1714
    ///   mwm.start();
1831 1715
    /// \endcode
1832 1716
    void run() {
1833 1717
      init();
1834 1718
      start();
1835 1719
    }
1836 1720

	
1837 1721
    /// @}
1838 1722

	
1839 1723
    /// \name Primal Solution
1840 1724
    /// Functions to get the primal solution, i.e. the maximum weighted 
1841 1725
    /// matching.\n
1842 1726
    /// Either \ref run() or \ref start() function should be called before
1843 1727
    /// using them.
1844 1728

	
1845 1729
    /// @{
1846 1730

	
1847 1731
    /// \brief Return the weight of the matching.
1848 1732
    ///
1849 1733
    /// This function returns the weight of the found matching.
1850 1734
    ///
1851 1735
    /// \pre Either run() or start() must be called before using this function.
1852 1736
    Value matchingWeight() const {
1853 1737
      Value sum = 0;
1854 1738
      for (NodeIt n(_graph); n != INVALID; ++n) {
1855 1739
        if ((*_matching)[n] != INVALID) {
1856 1740
          sum += _weight[(*_matching)[n]];
1857 1741
        }
1858 1742
      }
1859
      return sum /= 2;
1743
      return sum / 2;
1860 1744
    }
1861 1745

	
1862 1746
    /// \brief Return the size (cardinality) of the matching.
1863 1747
    ///
1864 1748
    /// This function returns the size (cardinality) of the found matching.
1865 1749
    ///
1866 1750
    /// \pre Either run() or start() must be called before using this function.
1867 1751
    int matchingSize() const {
1868 1752
      int num = 0;
1869 1753
      for (NodeIt n(_graph); n != INVALID; ++n) {
1870 1754
        if ((*_matching)[n] != INVALID) {
1871 1755
          ++num;
1872 1756
        }
1873 1757
      }
1874 1758
      return num /= 2;
1875 1759
    }
1876 1760

	
1877 1761
    /// \brief Return \c true if the given edge is in the matching.
1878 1762
    ///
1879 1763
    /// This function returns \c true if the given edge is in the found 
1880 1764
    /// matching.
1881 1765
    ///
1882 1766
    /// \pre Either run() or start() must be called before using this function.
1883 1767
    bool matching(const Edge& edge) const {
1884 1768
      return edge == (*_matching)[_graph.u(edge)];
1885 1769
    }
1886 1770

	
1887 1771
    /// \brief Return the matching arc (or edge) incident to the given node.
1888 1772
    ///
1889 1773
    /// This function returns the matching arc (or edge) incident to the
1890 1774
    /// given node in the found matching or \c INVALID if the node is 
1891 1775
    /// not covered by the matching.
1892 1776
    ///
1893 1777
    /// \pre Either run() or start() must be called before using this function.
1894 1778
    Arc matching(const Node& node) const {
1895 1779
      return (*_matching)[node];
1896 1780
    }
1897 1781

	
1898 1782
    /// \brief Return a const reference to the matching map.
1899 1783
    ///
1900 1784
    /// This function returns a const reference to a node map that stores
1901 1785
    /// the matching arc (or edge) incident to each node.
1902 1786
    const MatchingMap& matchingMap() const {
1903 1787
      return *_matching;
1904 1788
    }
1905 1789

	
1906 1790
    /// \brief Return the mate of the given node.
1907 1791
    ///
... ...
@@ -2188,99 +2072,96 @@
2188 2072

	
2189 2073
    IntIntMap *_delta4_index;
2190 2074
    BinHeap<Value, IntIntMap> *_delta4;
2191 2075

	
2192 2076
    Value _delta_sum;
2193 2077

	
2194 2078
    void createStructures() {
2195 2079
      _node_num = countNodes(_graph);
2196 2080
      _blossom_num = _node_num * 3 / 2;
2197 2081

	
2198 2082
      if (!_matching) {
2199 2083
        _matching = new MatchingMap(_graph);
2200 2084
      }
2201 2085
      if (!_node_potential) {
2202 2086
        _node_potential = new NodePotential(_graph);
2203 2087
      }
2204 2088
      if (!_blossom_set) {
2205 2089
        _blossom_index = new IntNodeMap(_graph);
2206 2090
        _blossom_set = new BlossomSet(*_blossom_index);
2207 2091
        _blossom_data = new RangeMap<BlossomData>(_blossom_num);
2208 2092
      }
2209 2093

	
2210 2094
      if (!_node_index) {
2211 2095
        _node_index = new IntNodeMap(_graph);
2212 2096
        _node_heap_index = new IntArcMap(_graph);
2213 2097
        _node_data = new RangeMap<NodeData>(_node_num,
2214 2098
                                            NodeData(*_node_heap_index));
2215 2099
      }
2216 2100

	
2217 2101
      if (!_tree_set) {
2218 2102
        _tree_set_index = new IntIntMap(_blossom_num);
2219 2103
        _tree_set = new TreeSet(*_tree_set_index);
2220 2104
      }
2221 2105
      if (!_delta2) {
2222 2106
        _delta2_index = new IntIntMap(_blossom_num);
2223 2107
        _delta2 = new BinHeap<Value, IntIntMap>(*_delta2_index);
2224 2108
      }
2225 2109
      if (!_delta3) {
2226 2110
        _delta3_index = new IntEdgeMap(_graph);
2227 2111
        _delta3 = new BinHeap<Value, IntEdgeMap>(*_delta3_index);
2228 2112
      }
2229 2113
      if (!_delta4) {
2230 2114
        _delta4_index = new IntIntMap(_blossom_num);
2231 2115
        _delta4 = new BinHeap<Value, IntIntMap>(*_delta4_index);
2232 2116
      }
2233 2117
    }
2234 2118

	
2235 2119
    void destroyStructures() {
2236
      _node_num = countNodes(_graph);
2237
      _blossom_num = _node_num * 3 / 2;
2238

	
2239 2120
      if (_matching) {
2240 2121
        delete _matching;
2241 2122
      }
2242 2123
      if (_node_potential) {
2243 2124
        delete _node_potential;
2244 2125
      }
2245 2126
      if (_blossom_set) {
2246 2127
        delete _blossom_index;
2247 2128
        delete _blossom_set;
2248 2129
        delete _blossom_data;
2249 2130
      }
2250 2131

	
2251 2132
      if (_node_index) {
2252 2133
        delete _node_index;
2253 2134
        delete _node_heap_index;
2254 2135
        delete _node_data;
2255 2136
      }
2256 2137

	
2257 2138
      if (_tree_set) {
2258 2139
        delete _tree_set_index;
2259 2140
        delete _tree_set;
2260 2141
      }
2261 2142
      if (_delta2) {
2262 2143
        delete _delta2_index;
2263 2144
        delete _delta2;
2264 2145
      }
2265 2146
      if (_delta3) {
2266 2147
        delete _delta3_index;
2267 2148
        delete _delta3;
2268 2149
      }
2269 2150
      if (_delta4) {
2270 2151
        delete _delta4_index;
2271 2152
        delete _delta4;
2272 2153
      }
2273 2154
    }
2274 2155

	
2275 2156
    void matchedToEven(int blossom, int tree) {
2276 2157
      if (_delta2->state(blossom) == _delta2->IN_HEAP) {
2277 2158
        _delta2->erase(blossom);
2278 2159
      }
2279 2160

	
2280 2161
      if (!_blossom_set->trivial(blossom)) {
2281 2162
        (*_blossom_data)[blossom].pot -=
2282 2163
          2 * (_delta_sum - (*_blossom_data)[blossom].offset);
2283 2164
      }
2284 2165

	
2285 2166
      for (typename BlossomSet::ItemIt n(*_blossom_set, blossom);
2286 2167
           n != INVALID; ++n) {
... ...
@@ -2946,180 +2827,180 @@
2946 2827
            max = (dualScale * _weight[e]) / 2;
2947 2828
          }
2948 2829
        }
2949 2830
        (*_node_index)[n] = index;
2950 2831
        (*_node_data)[index].pot = max;
2951 2832
        int blossom =
2952 2833
          _blossom_set->insert(n, std::numeric_limits<Value>::max());
2953 2834

	
2954 2835
        _tree_set->insert(blossom);
2955 2836

	
2956 2837
        (*_blossom_data)[blossom].status = EVEN;
2957 2838
        (*_blossom_data)[blossom].pred = INVALID;
2958 2839
        (*_blossom_data)[blossom].next = INVALID;
2959 2840
        (*_blossom_data)[blossom].pot = 0;
2960 2841
        (*_blossom_data)[blossom].offset = 0;
2961 2842
        ++index;
2962 2843
      }
2963 2844
      for (EdgeIt e(_graph); e != INVALID; ++e) {
2964 2845
        int si = (*_node_index)[_graph.u(e)];
2965 2846
        int ti = (*_node_index)[_graph.v(e)];
2966 2847
        if (_graph.u(e) != _graph.v(e)) {
2967 2848
          _delta3->push(e, ((*_node_data)[si].pot + (*_node_data)[ti].pot -
2968 2849
                            dualScale * _weight[e]) / 2);
2969 2850
        }
2970 2851
      }
2971 2852
    }
2972 2853

	
2973 2854
    /// \brief Start the algorithm
2974 2855
    ///
2975 2856
    /// This function starts the algorithm.
2976 2857
    ///
2977 2858
    /// \pre \ref init() must be called before using this function.
2978 2859
    bool start() {
2979 2860
      enum OpType {
2980 2861
        D2, D3, D4
2981 2862
      };
2982 2863

	
2983 2864
      int unmatched = _node_num;
2984 2865
      while (unmatched > 0) {
2985 2866
        Value d2 = !_delta2->empty() ?
2986 2867
          _delta2->prio() : std::numeric_limits<Value>::max();
2987 2868

	
2988 2869
        Value d3 = !_delta3->empty() ?
2989 2870
          _delta3->prio() : std::numeric_limits<Value>::max();
2990 2871

	
2991 2872
        Value d4 = !_delta4->empty() ?
2992 2873
          _delta4->prio() : std::numeric_limits<Value>::max();
2993 2874

	
2994
        _delta_sum = d2; OpType ot = D2;
2995
        if (d3 < _delta_sum) { _delta_sum = d3; ot = D3; }
2875
        _delta_sum = d3; OpType ot = D3;
2876
        if (d2 < _delta_sum) { _delta_sum = d2; ot = D2; }
2996 2877
        if (d4 < _delta_sum) { _delta_sum = d4; ot = D4; }
2997 2878

	
2998 2879
        if (_delta_sum == std::numeric_limits<Value>::max()) {
2999 2880
          return false;
3000 2881
        }
3001 2882

	
3002 2883
        switch (ot) {
3003 2884
        case D2:
3004 2885
          {
3005 2886
            int blossom = _delta2->top();
3006 2887
            Node n = _blossom_set->classTop(blossom);
3007 2888
            Arc e = (*_node_data)[(*_node_index)[n]].heap.top();
3008 2889
            extendOnArc(e);
3009 2890
          }
3010 2891
          break;
3011 2892
        case D3:
3012 2893
          {
3013 2894
            Edge e = _delta3->top();
3014 2895

	
3015 2896
            int left_blossom = _blossom_set->find(_graph.u(e));
3016 2897
            int right_blossom = _blossom_set->find(_graph.v(e));
3017 2898

	
3018 2899
            if (left_blossom == right_blossom) {
3019 2900
              _delta3->pop();
3020 2901
            } else {
3021 2902
              int left_tree = _tree_set->find(left_blossom);
3022 2903
              int right_tree = _tree_set->find(right_blossom);
3023 2904

	
3024 2905
              if (left_tree == right_tree) {
3025 2906
                shrinkOnEdge(e, left_tree);
3026 2907
              } else {
3027 2908
                augmentOnEdge(e);
3028 2909
                unmatched -= 2;
3029 2910
              }
3030 2911
            }
3031 2912
          } break;
3032 2913
        case D4:
3033 2914
          splitBlossom(_delta4->top());
3034 2915
          break;
3035 2916
        }
3036 2917
      }
3037 2918
      extractMatching();
3038 2919
      return true;
3039 2920
    }
3040 2921

	
3041 2922
    /// \brief Run the algorithm.
3042 2923
    ///
3043 2924
    /// This method runs the \c %MaxWeightedPerfectMatching algorithm.
3044 2925
    ///
3045 2926
    /// \note mwpm.run() is just a shortcut of the following code.
3046 2927
    /// \code
3047 2928
    ///   mwpm.init();
3048 2929
    ///   mwpm.start();
3049 2930
    /// \endcode
3050 2931
    bool run() {
3051 2932
      init();
3052 2933
      return start();
3053 2934
    }
3054 2935

	
3055 2936
    /// @}
3056 2937

	
3057 2938
    /// \name Primal Solution
3058 2939
    /// Functions to get the primal solution, i.e. the maximum weighted 
3059 2940
    /// perfect matching.\n
3060 2941
    /// Either \ref run() or \ref start() function should be called before
3061 2942
    /// using them.
3062 2943

	
3063 2944
    /// @{
3064 2945

	
3065 2946
    /// \brief Return the weight of the matching.
3066 2947
    ///
3067 2948
    /// This function returns the weight of the found matching.
3068 2949
    ///
3069 2950
    /// \pre Either run() or start() must be called before using this function.
3070 2951
    Value matchingWeight() const {
3071 2952
      Value sum = 0;
3072 2953
      for (NodeIt n(_graph); n != INVALID; ++n) {
3073 2954
        if ((*_matching)[n] != INVALID) {
3074 2955
          sum += _weight[(*_matching)[n]];
3075 2956
        }
3076 2957
      }
3077
      return sum /= 2;
2958
      return sum / 2;
3078 2959
    }
3079 2960

	
3080 2961
    /// \brief Return \c true if the given edge is in the matching.
3081 2962
    ///
3082 2963
    /// This function returns \c true if the given edge is in the found 
3083 2964
    /// matching.
3084 2965
    ///
3085 2966
    /// \pre Either run() or start() must be called before using this function.
3086 2967
    bool matching(const Edge& edge) const {
3087 2968
      return static_cast<const Edge&>((*_matching)[_graph.u(edge)]) == edge;
3088 2969
    }
3089 2970

	
3090 2971
    /// \brief Return the matching arc (or edge) incident to the given node.
3091 2972
    ///
3092 2973
    /// This function returns the matching arc (or edge) incident to the
3093 2974
    /// given node in the found matching or \c INVALID if the node is 
3094 2975
    /// not covered by the matching.
3095 2976
    ///
3096 2977
    /// \pre Either run() or start() must be called before using this function.
3097 2978
    Arc matching(const Node& node) const {
3098 2979
      return (*_matching)[node];
3099 2980
    }
3100 2981

	
3101 2982
    /// \brief Return a const reference to the matching map.
3102 2983
    ///
3103 2984
    /// This function returns a const reference to a node map that stores
3104 2985
    /// the matching arc (or edge) incident to each node.
3105 2986
    const MatchingMap& matchingMap() const {
3106 2987
      return *_matching;
3107 2988
    }
3108 2989

	
3109 2990
    /// \brief Return the mate of the given node.
3110 2991
    ///
3111 2992
    /// This function returns the mate of the given node in the found 
3112 2993
    /// matching or \c INVALID if the node is not covered by the matching.
3113 2994
    ///
3114 2995
    /// \pre Either run() or start() must be called before using this function.
3115 2996
    Node mate(const Node& node) const {
3116 2997
      return _graph.target((*_matching)[node]);
3117 2998
    }
3118 2999

	
3119 3000
    /// @}
3120 3001

	
3121 3002
    /// \name Dual Solution
3122 3003
    /// Functions to get the dual solution.\n
3123 3004
    /// Either \ref run() or \ref start() function should be called before
3124 3005
    /// using them.
3125 3006

	
... ...
@@ -3196,49 +3077,49 @@
3196 3077
      ///
3197 3078
      /// \pre Either \ref MaxWeightedPerfectMatching::run() "algorithm.run()" 
3198 3079
      /// or \ref MaxWeightedPerfectMatching::start() "algorithm.start()" 
3199 3080
      /// must be called before initializing this iterator.
3200 3081
      BlossomIt(const MaxWeightedPerfectMatching& algorithm, int variable)
3201 3082
        : _algorithm(&algorithm)
3202 3083
      {
3203 3084
        _index = _algorithm->_blossom_potential[variable].begin;
3204 3085
        _last = _algorithm->_blossom_potential[variable].end;
3205 3086
      }
3206 3087

	
3207 3088
      /// \brief Conversion to \c Node.
3208 3089
      ///
3209 3090
      /// Conversion to \c Node.
3210 3091
      operator Node() const {
3211 3092
        return _algorithm->_blossom_node_list[_index];
3212 3093
      }
3213 3094

	
3214 3095
      /// \brief Increment operator.
3215 3096
      ///
3216 3097
      /// Increment operator.
3217 3098
      BlossomIt& operator++() {
3218 3099
        ++_index;
3219 3100
        return *this;
3220 3101
      }
3221 3102

	
3222 3103
      /// \brief Validity checking
3223 3104
      ///
3224 3105
      /// This function checks whether the iterator is invalid.
3225 3106
      bool operator==(Invalid) const { return _index == _last; }
3226 3107

	
3227 3108
      /// \brief Validity checking
3228 3109
      ///
3229 3110
      /// This function checks whether the iterator is valid.
3230 3111
      bool operator!=(Invalid) const { return _index != _last; }
3231 3112

	
3232 3113
    private:
3233 3114
      const MaxWeightedPerfectMatching* _algorithm;
3234 3115
      int _last;
3235 3116
      int _index;
3236 3117
    };
3237 3118

	
3238 3119
    /// @}
3239 3120

	
3240 3121
  };
3241 3122

	
3242 3123
} //END OF NAMESPACE LEMON
3243 3124

	
3244
#endif //LEMON_MAX_MATCHING_H
3125
#endif //LEMON_MATCHING_H
0 comments (0 inline)