0
2
0
| ... | ... |
@@ -636,97 +636,97 @@ |
| 636 | 636 |
return _res_cap[_arc_idb[a]]; |
| 637 | 637 |
} |
| 638 | 638 |
|
| 639 | 639 |
/// \brief Return the flow map (the primal solution). |
| 640 | 640 |
/// |
| 641 | 641 |
/// This function copies the flow value on each arc into the given |
| 642 | 642 |
/// map. The \c Value type of the algorithm must be convertible to |
| 643 | 643 |
/// the \c Value type of the map. |
| 644 | 644 |
/// |
| 645 | 645 |
/// \pre \ref run() must be called before using this function. |
| 646 | 646 |
template <typename FlowMap> |
| 647 | 647 |
void flowMap(FlowMap &map) const {
|
| 648 | 648 |
for (ArcIt a(_graph); a != INVALID; ++a) {
|
| 649 | 649 |
map.set(a, _res_cap[_arc_idb[a]]); |
| 650 | 650 |
} |
| 651 | 651 |
} |
| 652 | 652 |
|
| 653 | 653 |
/// \brief Return the potential (dual value) of the given node. |
| 654 | 654 |
/// |
| 655 | 655 |
/// This function returns the potential (dual value) of the |
| 656 | 656 |
/// given node. |
| 657 | 657 |
/// |
| 658 | 658 |
/// \pre \ref run() must be called before using this function. |
| 659 | 659 |
Cost potential(const Node& n) const {
|
| 660 | 660 |
return _pi[_node_id[n]]; |
| 661 | 661 |
} |
| 662 | 662 |
|
| 663 | 663 |
/// \brief Return the potential map (the dual solution). |
| 664 | 664 |
/// |
| 665 | 665 |
/// This function copies the potential (dual value) of each node |
| 666 | 666 |
/// into the given map. |
| 667 | 667 |
/// The \c Cost type of the algorithm must be convertible to the |
| 668 | 668 |
/// \c Value type of the map. |
| 669 | 669 |
/// |
| 670 | 670 |
/// \pre \ref run() must be called before using this function. |
| 671 | 671 |
template <typename PotentialMap> |
| 672 | 672 |
void potentialMap(PotentialMap &map) const {
|
| 673 | 673 |
for (NodeIt n(_graph); n != INVALID; ++n) {
|
| 674 | 674 |
map.set(n, _pi[_node_id[n]]); |
| 675 | 675 |
} |
| 676 | 676 |
} |
| 677 | 677 |
|
| 678 | 678 |
/// @} |
| 679 | 679 |
|
| 680 | 680 |
private: |
| 681 | 681 |
|
| 682 | 682 |
// Initialize the algorithm |
| 683 | 683 |
ProblemType init() {
|
| 684 |
if (_node_num |
|
| 684 |
if (_node_num <= 1) return INFEASIBLE; |
|
| 685 | 685 |
|
| 686 | 686 |
// Check the sum of supply values |
| 687 | 687 |
_sum_supply = 0; |
| 688 | 688 |
for (int i = 0; i != _root; ++i) {
|
| 689 | 689 |
_sum_supply += _supply[i]; |
| 690 | 690 |
} |
| 691 | 691 |
if (_sum_supply > 0) return INFEASIBLE; |
| 692 | 692 |
|
| 693 | 693 |
// Initialize vectors |
| 694 | 694 |
for (int i = 0; i != _root; ++i) {
|
| 695 | 695 |
_pi[i] = 0; |
| 696 | 696 |
_excess[i] = _supply[i]; |
| 697 | 697 |
} |
| 698 | 698 |
|
| 699 | 699 |
// Remove non-zero lower bounds |
| 700 | 700 |
const Value MAX = std::numeric_limits<Value>::max(); |
| 701 | 701 |
int last_out; |
| 702 | 702 |
if (_have_lower) {
|
| 703 | 703 |
for (int i = 0; i != _root; ++i) {
|
| 704 | 704 |
last_out = _first_out[i+1]; |
| 705 | 705 |
for (int j = _first_out[i]; j != last_out; ++j) {
|
| 706 | 706 |
if (_forward[j]) {
|
| 707 | 707 |
Value c = _lower[j]; |
| 708 | 708 |
if (c >= 0) {
|
| 709 | 709 |
_res_cap[j] = _upper[j] < MAX ? _upper[j] - c : INF; |
| 710 | 710 |
} else {
|
| 711 | 711 |
_res_cap[j] = _upper[j] < MAX + c ? _upper[j] - c : INF; |
| 712 | 712 |
} |
| 713 | 713 |
_excess[i] -= c; |
| 714 | 714 |
_excess[_target[j]] += c; |
| 715 | 715 |
} else {
|
| 716 | 716 |
_res_cap[j] = 0; |
| 717 | 717 |
} |
| 718 | 718 |
} |
| 719 | 719 |
} |
| 720 | 720 |
} else {
|
| 721 | 721 |
for (int j = 0; j != _res_arc_num; ++j) {
|
| 722 | 722 |
_res_cap[j] = _forward[j] ? _upper[j] : 0; |
| 723 | 723 |
} |
| 724 | 724 |
} |
| 725 | 725 |
|
| 726 | 726 |
// Handle negative costs |
| 727 | 727 |
for (int i = 0; i != _root; ++i) {
|
| 728 | 728 |
last_out = _first_out[i+1] - 1; |
| 729 | 729 |
for (int j = _first_out[i]; j != last_out; ++j) {
|
| 730 | 730 |
Value rc = _res_cap[j]; |
| 731 | 731 |
if (_cost[j] < 0 && rc > 0) {
|
| 732 | 732 |
if (rc >= MAX) return UNBOUNDED; |
| ... | ... |
@@ -667,97 +667,97 @@ |
| 667 | 667 |
return _res_cap[_arc_idb[a]]; |
| 668 | 668 |
} |
| 669 | 669 |
|
| 670 | 670 |
/// \brief Return the flow map (the primal solution). |
| 671 | 671 |
/// |
| 672 | 672 |
/// This function copies the flow value on each arc into the given |
| 673 | 673 |
/// map. The \c Value type of the algorithm must be convertible to |
| 674 | 674 |
/// the \c Value type of the map. |
| 675 | 675 |
/// |
| 676 | 676 |
/// \pre \ref run() must be called before using this function. |
| 677 | 677 |
template <typename FlowMap> |
| 678 | 678 |
void flowMap(FlowMap &map) const {
|
| 679 | 679 |
for (ArcIt a(_graph); a != INVALID; ++a) {
|
| 680 | 680 |
map.set(a, _res_cap[_arc_idb[a]]); |
| 681 | 681 |
} |
| 682 | 682 |
} |
| 683 | 683 |
|
| 684 | 684 |
/// \brief Return the potential (dual value) of the given node. |
| 685 | 685 |
/// |
| 686 | 686 |
/// This function returns the potential (dual value) of the |
| 687 | 687 |
/// given node. |
| 688 | 688 |
/// |
| 689 | 689 |
/// \pre \ref run() must be called before using this function. |
| 690 | 690 |
Cost potential(const Node& n) const {
|
| 691 | 691 |
return static_cast<Cost>(_pi[_node_id[n]]); |
| 692 | 692 |
} |
| 693 | 693 |
|
| 694 | 694 |
/// \brief Return the potential map (the dual solution). |
| 695 | 695 |
/// |
| 696 | 696 |
/// This function copies the potential (dual value) of each node |
| 697 | 697 |
/// into the given map. |
| 698 | 698 |
/// The \c Cost type of the algorithm must be convertible to the |
| 699 | 699 |
/// \c Value type of the map. |
| 700 | 700 |
/// |
| 701 | 701 |
/// \pre \ref run() must be called before using this function. |
| 702 | 702 |
template <typename PotentialMap> |
| 703 | 703 |
void potentialMap(PotentialMap &map) const {
|
| 704 | 704 |
for (NodeIt n(_graph); n != INVALID; ++n) {
|
| 705 | 705 |
map.set(n, static_cast<Cost>(_pi[_node_id[n]])); |
| 706 | 706 |
} |
| 707 | 707 |
} |
| 708 | 708 |
|
| 709 | 709 |
/// @} |
| 710 | 710 |
|
| 711 | 711 |
private: |
| 712 | 712 |
|
| 713 | 713 |
// Initialize the algorithm |
| 714 | 714 |
ProblemType init() {
|
| 715 |
if (_res_node_num |
|
| 715 |
if (_res_node_num <= 1) return INFEASIBLE; |
|
| 716 | 716 |
|
| 717 | 717 |
// Check the sum of supply values |
| 718 | 718 |
_sum_supply = 0; |
| 719 | 719 |
for (int i = 0; i != _root; ++i) {
|
| 720 | 720 |
_sum_supply += _supply[i]; |
| 721 | 721 |
} |
| 722 | 722 |
if (_sum_supply > 0) return INFEASIBLE; |
| 723 | 723 |
|
| 724 | 724 |
|
| 725 | 725 |
// Initialize vectors |
| 726 | 726 |
for (int i = 0; i != _res_node_num; ++i) {
|
| 727 | 727 |
_pi[i] = 0; |
| 728 | 728 |
_excess[i] = _supply[i]; |
| 729 | 729 |
} |
| 730 | 730 |
|
| 731 | 731 |
// Remove infinite upper bounds and check negative arcs |
| 732 | 732 |
const Value MAX = std::numeric_limits<Value>::max(); |
| 733 | 733 |
int last_out; |
| 734 | 734 |
if (_have_lower) {
|
| 735 | 735 |
for (int i = 0; i != _root; ++i) {
|
| 736 | 736 |
last_out = _first_out[i+1]; |
| 737 | 737 |
for (int j = _first_out[i]; j != last_out; ++j) {
|
| 738 | 738 |
if (_forward[j]) {
|
| 739 | 739 |
Value c = _scost[j] < 0 ? _upper[j] : _lower[j]; |
| 740 | 740 |
if (c >= MAX) return UNBOUNDED; |
| 741 | 741 |
_excess[i] -= c; |
| 742 | 742 |
_excess[_target[j]] += c; |
| 743 | 743 |
} |
| 744 | 744 |
} |
| 745 | 745 |
} |
| 746 | 746 |
} else {
|
| 747 | 747 |
for (int i = 0; i != _root; ++i) {
|
| 748 | 748 |
last_out = _first_out[i+1]; |
| 749 | 749 |
for (int j = _first_out[i]; j != last_out; ++j) {
|
| 750 | 750 |
if (_forward[j] && _scost[j] < 0) {
|
| 751 | 751 |
Value c = _upper[j]; |
| 752 | 752 |
if (c >= MAX) return UNBOUNDED; |
| 753 | 753 |
_excess[i] -= c; |
| 754 | 754 |
_excess[_target[j]] += c; |
| 755 | 755 |
} |
| 756 | 756 |
} |
| 757 | 757 |
} |
| 758 | 758 |
} |
| 759 | 759 |
Value ex, max_cap = 0; |
| 760 | 760 |
for (int i = 0; i != _res_node_num; ++i) {
|
| 761 | 761 |
ex = _excess[i]; |
| 762 | 762 |
_excess[i] = 0; |
| 763 | 763 |
if (ex < 0) max_cap -= ex; |
0 comments (0 inline)