0
13
0
70
48
59
62
55
60
60
60
2
9
143
75
12
5
231
2
| ... | ... |
@@ -235,319 +235,341 @@ |
| 235 | 235 |
LEMON provides flexible data structures to work with paths. |
| 236 | 236 |
All of them have similar interfaces and they can be copied easily with |
| 237 | 237 |
assignment operators and copy constructors. This makes it easy and |
| 238 | 238 |
efficient to have e.g. the Dijkstra algorithm to store its result in |
| 239 | 239 |
any kind of path structure. |
| 240 | 240 |
|
| 241 | 241 |
\sa \ref concepts::Path "Path concept" |
| 242 | 242 |
*/ |
| 243 | 243 |
|
| 244 | 244 |
/** |
| 245 | 245 |
@defgroup heaps Heap Structures |
| 246 | 246 |
@ingroup datas |
| 247 | 247 |
\brief %Heap structures implemented in LEMON. |
| 248 | 248 |
|
| 249 | 249 |
This group contains the heap structures implemented in LEMON. |
| 250 | 250 |
|
| 251 | 251 |
LEMON provides several heap classes. They are efficient implementations |
| 252 | 252 |
of the abstract data type \e priority \e queue. They store items with |
| 253 | 253 |
specified values called \e priorities in such a way that finding and |
| 254 | 254 |
removing the item with minimum priority are efficient. |
| 255 | 255 |
The basic operations are adding and erasing items, changing the priority |
| 256 | 256 |
of an item, etc. |
| 257 | 257 |
|
| 258 | 258 |
Heaps are crucial in several algorithms, such as Dijkstra and Prim. |
| 259 | 259 |
The heap implementations have the same interface, thus any of them can be |
| 260 | 260 |
used easily in such algorithms. |
| 261 | 261 |
|
| 262 | 262 |
\sa \ref concepts::Heap "Heap concept" |
| 263 | 263 |
*/ |
| 264 | 264 |
|
| 265 | 265 |
/** |
| 266 | 266 |
@defgroup matrices Matrices |
| 267 | 267 |
@ingroup datas |
| 268 | 268 |
\brief Two dimensional data storages implemented in LEMON. |
| 269 | 269 |
|
| 270 | 270 |
This group contains two dimensional data storages implemented in LEMON. |
| 271 | 271 |
*/ |
| 272 | 272 |
|
| 273 | 273 |
/** |
| 274 | 274 |
@defgroup auxdat Auxiliary Data Structures |
| 275 | 275 |
@ingroup datas |
| 276 | 276 |
\brief Auxiliary data structures implemented in LEMON. |
| 277 | 277 |
|
| 278 | 278 |
This group contains some data structures implemented in LEMON in |
| 279 | 279 |
order to make it easier to implement combinatorial algorithms. |
| 280 | 280 |
*/ |
| 281 | 281 |
|
| 282 | 282 |
/** |
| 283 |
@defgroup geomdat Geometric Data Structures |
|
| 284 |
@ingroup auxdat |
|
| 285 |
\brief Geometric data structures implemented in LEMON. |
|
| 286 |
|
|
| 287 |
This group contains geometric data structures implemented in LEMON. |
|
| 288 |
|
|
| 289 |
- \ref lemon::dim2::Point "dim2::Point" implements a two dimensional |
|
| 290 |
vector with the usual operations. |
|
| 291 |
- \ref lemon::dim2::Box "dim2::Box" can be used to determine the |
|
| 292 |
rectangular bounding box of a set of \ref lemon::dim2::Point |
|
| 293 |
"dim2::Point"'s. |
|
| 294 |
*/ |
|
| 295 |
|
|
| 296 |
/** |
|
| 297 |
@defgroup matrices Matrices |
|
| 298 |
@ingroup auxdat |
|
| 299 |
\brief Two dimensional data storages implemented in LEMON. |
|
| 300 |
|
|
| 301 |
This group contains two dimensional data storages implemented in LEMON. |
|
| 302 |
*/ |
|
| 303 |
|
|
| 304 |
/** |
|
| 283 | 305 |
@defgroup algs Algorithms |
| 284 | 306 |
\brief This group contains the several algorithms |
| 285 | 307 |
implemented in LEMON. |
| 286 | 308 |
|
| 287 | 309 |
This group contains the several algorithms |
| 288 | 310 |
implemented in LEMON. |
| 289 | 311 |
*/ |
| 290 | 312 |
|
| 291 | 313 |
/** |
| 292 | 314 |
@defgroup search Graph Search |
| 293 | 315 |
@ingroup algs |
| 294 | 316 |
\brief Common graph search algorithms. |
| 295 | 317 |
|
| 296 | 318 |
This group contains the common graph search algorithms, namely |
| 297 | 319 |
\e breadth-first \e search (BFS) and \e depth-first \e search (DFS). |
| 298 | 320 |
*/ |
| 299 | 321 |
|
| 300 | 322 |
/** |
| 301 | 323 |
@defgroup shortest_path Shortest Path Algorithms |
| 302 | 324 |
@ingroup algs |
| 303 | 325 |
\brief Algorithms for finding shortest paths. |
| 304 | 326 |
|
| 305 | 327 |
This group contains the algorithms for finding shortest paths in digraphs. |
| 306 | 328 |
|
| 307 | 329 |
- \ref Dijkstra algorithm for finding shortest paths from a source node |
| 308 | 330 |
when all arc lengths are non-negative. |
| 309 | 331 |
- \ref BellmanFord "Bellman-Ford" algorithm for finding shortest paths |
| 310 | 332 |
from a source node when arc lenghts can be either positive or negative, |
| 311 | 333 |
but the digraph should not contain directed cycles with negative total |
| 312 | 334 |
length. |
| 313 | 335 |
- \ref FloydWarshall "Floyd-Warshall" and \ref Johnson "Johnson" algorithms |
| 314 | 336 |
for solving the \e all-pairs \e shortest \e paths \e problem when arc |
| 315 | 337 |
lenghts can be either positive or negative, but the digraph should |
| 316 | 338 |
not contain directed cycles with negative total length. |
| 317 | 339 |
- \ref Suurballe A successive shortest path algorithm for finding |
| 318 | 340 |
arc-disjoint paths between two nodes having minimum total length. |
| 319 | 341 |
*/ |
| 320 | 342 |
|
| 321 | 343 |
/** |
| 344 |
@defgroup spantree Minimum Spanning Tree Algorithms |
|
| 345 |
@ingroup algs |
|
| 346 |
\brief Algorithms for finding minimum cost spanning trees and arborescences. |
|
| 347 |
|
|
| 348 |
This group contains the algorithms for finding minimum cost spanning |
|
| 349 |
trees and arborescences. |
|
| 350 |
*/ |
|
| 351 |
|
|
| 352 |
/** |
|
| 322 | 353 |
@defgroup max_flow Maximum Flow Algorithms |
| 323 | 354 |
@ingroup algs |
| 324 | 355 |
\brief Algorithms for finding maximum flows. |
| 325 | 356 |
|
| 326 | 357 |
This group contains the algorithms for finding maximum flows and |
| 327 | 358 |
feasible circulations. |
| 328 | 359 |
|
| 329 | 360 |
The \e maximum \e flow \e problem is to find a flow of maximum value between |
| 330 | 361 |
a single source and a single target. Formally, there is a \f$G=(V,A)\f$ |
| 331 | 362 |
digraph, a \f$cap: A\rightarrow\mathbf{R}^+_0\f$ capacity function and
|
| 332 | 363 |
\f$s, t \in V\f$ source and target nodes. |
| 333 | 364 |
A maximum flow is an \f$f: A\rightarrow\mathbf{R}^+_0\f$ solution of the
|
| 334 | 365 |
following optimization problem. |
| 335 | 366 |
|
| 336 | 367 |
\f[ \max\sum_{sv\in A} f(sv) - \sum_{vs\in A} f(vs) \f]
|
| 337 | 368 |
\f[ \sum_{uv\in A} f(uv) = \sum_{vu\in A} f(vu)
|
| 338 | 369 |
\quad \forall u\in V\setminus\{s,t\} \f]
|
| 339 | 370 |
\f[ 0 \leq f(uv) \leq cap(uv) \quad \forall uv\in A \f] |
| 340 | 371 |
|
| 341 | 372 |
LEMON contains several algorithms for solving maximum flow problems: |
| 342 | 373 |
- \ref EdmondsKarp Edmonds-Karp algorithm. |
| 343 | 374 |
- \ref Preflow Goldberg-Tarjan's preflow push-relabel algorithm. |
| 344 | 375 |
- \ref DinitzSleatorTarjan Dinitz's blocking flow algorithm with dynamic trees. |
| 345 | 376 |
- \ref GoldbergTarjan Preflow push-relabel algorithm with dynamic trees. |
| 346 | 377 |
|
| 347 | 378 |
In most cases the \ref Preflow "Preflow" algorithm provides the |
| 348 | 379 |
fastest method for computing a maximum flow. All implementations |
| 349 | 380 |
also provide functions to query the minimum cut, which is the dual |
| 350 | 381 |
problem of maximum flow. |
| 351 | 382 |
|
| 352 | 383 |
\ref Circulation is a preflow push-relabel algorithm implemented directly |
| 353 | 384 |
for finding feasible circulations, which is a somewhat different problem, |
| 354 | 385 |
but it is strongly related to maximum flow. |
| 355 | 386 |
For more information, see \ref Circulation. |
| 356 | 387 |
*/ |
| 357 | 388 |
|
| 358 | 389 |
/** |
| 359 | 390 |
@defgroup min_cost_flow_algs Minimum Cost Flow Algorithms |
| 360 | 391 |
@ingroup algs |
| 361 | 392 |
|
| 362 | 393 |
\brief Algorithms for finding minimum cost flows and circulations. |
| 363 | 394 |
|
| 364 | 395 |
This group contains the algorithms for finding minimum cost flows and |
| 365 | 396 |
circulations. For more information about this problem and its dual |
| 366 | 397 |
solution see \ref min_cost_flow "Minimum Cost Flow Problem". |
| 367 | 398 |
|
| 368 | 399 |
LEMON contains several algorithms for this problem. |
| 369 | 400 |
- \ref NetworkSimplex Primal Network Simplex algorithm with various |
| 370 | 401 |
pivot strategies. |
| 371 | 402 |
- \ref CostScaling Push-Relabel and Augment-Relabel algorithms based on |
| 372 | 403 |
cost scaling. |
| 373 | 404 |
- \ref CapacityScaling Successive Shortest %Path algorithm with optional |
| 374 | 405 |
capacity scaling. |
| 375 | 406 |
- \ref CancelAndTighten The Cancel and Tighten algorithm. |
| 376 | 407 |
- \ref CycleCanceling Cycle-Canceling algorithms. |
| 377 | 408 |
|
| 378 | 409 |
In general NetworkSimplex is the most efficient implementation, |
| 379 | 410 |
but in special cases other algorithms could be faster. |
| 380 | 411 |
For example, if the total supply and/or capacities are rather small, |
| 381 | 412 |
CapacityScaling is usually the fastest algorithm (without effective scaling). |
| 382 | 413 |
*/ |
| 383 | 414 |
|
| 384 | 415 |
/** |
| 385 | 416 |
@defgroup min_cut Minimum Cut Algorithms |
| 386 | 417 |
@ingroup algs |
| 387 | 418 |
|
| 388 | 419 |
\brief Algorithms for finding minimum cut in graphs. |
| 389 | 420 |
|
| 390 | 421 |
This group contains the algorithms for finding minimum cut in graphs. |
| 391 | 422 |
|
| 392 | 423 |
The \e minimum \e cut \e problem is to find a non-empty and non-complete |
| 393 | 424 |
\f$X\f$ subset of the nodes with minimum overall capacity on |
| 394 | 425 |
outgoing arcs. Formally, there is a \f$G=(V,A)\f$ digraph, a |
| 395 | 426 |
\f$cap: A\rightarrow\mathbf{R}^+_0\f$ capacity function. The minimum
|
| 396 | 427 |
cut is the \f$X\f$ solution of the next optimization problem: |
| 397 | 428 |
|
| 398 | 429 |
\f[ \min_{X \subset V, X\not\in \{\emptyset, V\}}
|
| 399 |
\sum_{uv\in A
|
|
| 430 |
\sum_{uv\in A: u\in X, v\not\in X}cap(uv) \f]
|
|
| 400 | 431 |
|
| 401 | 432 |
LEMON contains several algorithms related to minimum cut problems: |
| 402 | 433 |
|
| 403 | 434 |
- \ref HaoOrlin "Hao-Orlin algorithm" for calculating minimum cut |
| 404 | 435 |
in directed graphs. |
| 405 | 436 |
- \ref NagamochiIbaraki "Nagamochi-Ibaraki algorithm" for |
| 406 | 437 |
calculating minimum cut in undirected graphs. |
| 407 | 438 |
- \ref GomoryHu "Gomory-Hu tree computation" for calculating |
| 408 | 439 |
all-pairs minimum cut in undirected graphs. |
| 409 | 440 |
|
| 410 | 441 |
If you want to find minimum cut just between two distinict nodes, |
| 411 | 442 |
see the \ref max_flow "maximum flow problem". |
| 412 | 443 |
*/ |
| 413 | 444 |
|
| 414 | 445 |
/** |
| 415 |
@defgroup graph_properties Connectivity and Other Graph Properties |
|
| 416 |
@ingroup algs |
|
| 417 |
\brief Algorithms for discovering the graph properties |
|
| 418 |
|
|
| 419 |
This group contains the algorithms for discovering the graph properties |
|
| 420 |
like connectivity, bipartiteness, euler property, simplicity etc. |
|
| 421 |
|
|
| 422 |
\image html edge_biconnected_components.png |
|
| 423 |
\image latex edge_biconnected_components.eps "bi-edge-connected components" width=\textwidth |
|
| 424 |
*/ |
|
| 425 |
|
|
| 426 |
/** |
|
| 427 |
@defgroup planar Planarity Embedding and Drawing |
|
| 428 |
@ingroup algs |
|
| 429 |
\brief Algorithms for planarity checking, embedding and drawing |
|
| 430 |
|
|
| 431 |
This group contains the algorithms for planarity checking, |
|
| 432 |
embedding and drawing. |
|
| 433 |
|
|
| 434 |
\image html planar.png |
|
| 435 |
\image latex planar.eps "Plane graph" width=\textwidth |
|
| 436 |
*/ |
|
| 437 |
|
|
| 438 |
/** |
|
| 439 | 446 |
@defgroup matching Matching Algorithms |
| 440 | 447 |
@ingroup algs |
| 441 | 448 |
\brief Algorithms for finding matchings in graphs and bipartite graphs. |
| 442 | 449 |
|
| 443 | 450 |
This group contains the algorithms for calculating |
| 444 | 451 |
matchings in graphs and bipartite graphs. The general matching problem is |
| 445 | 452 |
finding a subset of the edges for which each node has at most one incident |
| 446 | 453 |
edge. |
| 447 | 454 |
|
| 448 | 455 |
There are several different algorithms for calculate matchings in |
| 449 | 456 |
graphs. The matching problems in bipartite graphs are generally |
| 450 | 457 |
easier than in general graphs. The goal of the matching optimization |
| 451 | 458 |
can be finding maximum cardinality, maximum weight or minimum cost |
| 452 | 459 |
matching. The search can be constrained to find perfect or |
| 453 | 460 |
maximum cardinality matching. |
| 454 | 461 |
|
| 455 | 462 |
The matching algorithms implemented in LEMON: |
| 456 | 463 |
- \ref MaxBipartiteMatching Hopcroft-Karp augmenting path algorithm |
| 457 | 464 |
for calculating maximum cardinality matching in bipartite graphs. |
| 458 | 465 |
- \ref PrBipartiteMatching Push-relabel algorithm |
| 459 | 466 |
for calculating maximum cardinality matching in bipartite graphs. |
| 460 | 467 |
- \ref MaxWeightedBipartiteMatching |
| 461 | 468 |
Successive shortest path algorithm for calculating maximum weighted |
| 462 | 469 |
matching and maximum weighted bipartite matching in bipartite graphs. |
| 463 | 470 |
- \ref MinCostMaxBipartiteMatching |
| 464 | 471 |
Successive shortest path algorithm for calculating minimum cost maximum |
| 465 | 472 |
matching in bipartite graphs. |
| 466 | 473 |
- \ref MaxMatching Edmond's blossom shrinking algorithm for calculating |
| 467 | 474 |
maximum cardinality matching in general graphs. |
| 468 | 475 |
- \ref MaxWeightedMatching Edmond's blossom shrinking algorithm for calculating |
| 469 | 476 |
maximum weighted matching in general graphs. |
| 470 | 477 |
- \ref MaxWeightedPerfectMatching |
| 471 | 478 |
Edmond's blossom shrinking algorithm for calculating maximum weighted |
| 472 | 479 |
perfect matching in general graphs. |
| 473 | 480 |
|
| 474 | 481 |
\image html bipartite_matching.png |
| 475 | 482 |
\image latex bipartite_matching.eps "Bipartite Matching" width=\textwidth |
| 476 | 483 |
*/ |
| 477 | 484 |
|
| 478 | 485 |
/** |
| 479 |
@defgroup |
|
| 486 |
@defgroup graph_properties Connectivity and Other Graph Properties |
|
| 480 | 487 |
@ingroup algs |
| 481 |
\brief Algorithms for |
|
| 488 |
\brief Algorithms for discovering the graph properties |
|
| 482 | 489 |
|
| 483 |
This group contains the algorithms for finding minimum cost spanning |
|
| 484 |
trees and arborescences. |
|
| 490 |
This group contains the algorithms for discovering the graph properties |
|
| 491 |
like connectivity, bipartiteness, euler property, simplicity etc. |
|
| 492 |
|
|
| 493 |
\image html connected_components.png |
|
| 494 |
\image latex connected_components.eps "Connected components" width=\textwidth |
|
| 495 |
*/ |
|
| 496 |
|
|
| 497 |
/** |
|
| 498 |
@defgroup planar Planarity Embedding and Drawing |
|
| 499 |
@ingroup algs |
|
| 500 |
\brief Algorithms for planarity checking, embedding and drawing |
|
| 501 |
|
|
| 502 |
This group contains the algorithms for planarity checking, |
|
| 503 |
embedding and drawing. |
|
| 504 |
|
|
| 505 |
\image html planar.png |
|
| 506 |
\image latex planar.eps "Plane graph" width=\textwidth |
|
| 507 |
*/ |
|
| 508 |
|
|
| 509 |
/** |
|
| 510 |
@defgroup approx Approximation Algorithms |
|
| 511 |
@ingroup algs |
|
| 512 |
\brief Approximation algorithms. |
|
| 513 |
|
|
| 514 |
This group contains the approximation and heuristic algorithms |
|
| 515 |
implemented in LEMON. |
|
| 485 | 516 |
*/ |
| 486 | 517 |
|
| 487 | 518 |
/** |
| 488 | 519 |
@defgroup auxalg Auxiliary Algorithms |
| 489 | 520 |
@ingroup algs |
| 490 | 521 |
\brief Auxiliary algorithms implemented in LEMON. |
| 491 | 522 |
|
| 492 | 523 |
This group contains some algorithms implemented in LEMON |
| 493 | 524 |
in order to make it easier to implement complex algorithms. |
| 494 | 525 |
*/ |
| 495 | 526 |
|
| 496 | 527 |
/** |
| 497 |
@defgroup approx Approximation Algorithms |
|
| 498 |
@ingroup algs |
|
| 499 |
\brief Approximation algorithms. |
|
| 500 |
|
|
| 501 |
This group contains the approximation and heuristic algorithms |
|
| 502 |
implemented in LEMON. |
|
| 503 |
*/ |
|
| 504 |
|
|
| 505 |
/** |
|
| 506 | 528 |
@defgroup gen_opt_group General Optimization Tools |
| 507 | 529 |
\brief This group contains some general optimization frameworks |
| 508 | 530 |
implemented in LEMON. |
| 509 | 531 |
|
| 510 | 532 |
This group contains some general optimization frameworks |
| 511 | 533 |
implemented in LEMON. |
| 512 | 534 |
*/ |
| 513 | 535 |
|
| 514 | 536 |
/** |
| 515 | 537 |
@defgroup lp_group Lp and Mip Solvers |
| 516 | 538 |
@ingroup gen_opt_group |
| 517 | 539 |
\brief Lp and Mip solver interfaces for LEMON. |
| 518 | 540 |
|
| 519 | 541 |
This group contains Lp and Mip solver interfaces for LEMON. The |
| 520 | 542 |
various LP solvers could be used in the same manner with this |
| 521 | 543 |
interface. |
| 522 | 544 |
*/ |
| 523 | 545 |
|
| 524 | 546 |
/** |
| 525 | 547 |
@defgroup lp_utils Tools for Lp and Mip Solvers |
| 526 | 548 |
@ingroup lp_group |
| 527 | 549 |
\brief Helper tools to the Lp and Mip solvers. |
| 528 | 550 |
|
| 529 | 551 |
This group adds some helper tools to general optimization framework |
| 530 | 552 |
implemented in LEMON. |
| 531 | 553 |
*/ |
| 532 | 554 |
|
| 533 | 555 |
/** |
| 534 | 556 |
@defgroup metah Metaheuristics |
| 535 | 557 |
@ingroup gen_opt_group |
| 536 | 558 |
\brief Metaheuristics for LEMON library. |
| 537 | 559 |
|
| 538 | 560 |
This group contains some metaheuristic optimization tools. |
| 539 | 561 |
*/ |
| 540 | 562 |
|
| 541 | 563 |
/** |
| 542 | 564 |
@defgroup utils Tools and Utilities |
| 543 | 565 |
\brief Tools and utilities for programming in LEMON |
| 544 | 566 |
|
| 545 | 567 |
Tools and utilities for programming in LEMON. |
| 546 | 568 |
*/ |
| 547 | 569 |
|
| 548 | 570 |
/** |
| 549 | 571 |
@defgroup gutils Basic Graph Utilities |
| 550 | 572 |
@ingroup utils |
| 551 | 573 |
\brief Simple basic graph utilities. |
| 552 | 574 |
|
| 553 | 575 |
This group contains some simple basic graph utilities. |
| ... | ... |
@@ -563,131 +585,131 @@ |
| 563 | 585 |
*/ |
| 564 | 586 |
|
| 565 | 587 |
/** |
| 566 | 588 |
@defgroup timecount Time Measuring and Counting |
| 567 | 589 |
@ingroup misc |
| 568 | 590 |
\brief Simple tools for measuring the performance of algorithms. |
| 569 | 591 |
|
| 570 | 592 |
This group contains simple tools for measuring the performance |
| 571 | 593 |
of algorithms. |
| 572 | 594 |
*/ |
| 573 | 595 |
|
| 574 | 596 |
/** |
| 575 | 597 |
@defgroup exceptions Exceptions |
| 576 | 598 |
@ingroup utils |
| 577 | 599 |
\brief Exceptions defined in LEMON. |
| 578 | 600 |
|
| 579 | 601 |
This group contains the exceptions defined in LEMON. |
| 580 | 602 |
*/ |
| 581 | 603 |
|
| 582 | 604 |
/** |
| 583 | 605 |
@defgroup io_group Input-Output |
| 584 | 606 |
\brief Graph Input-Output methods |
| 585 | 607 |
|
| 586 | 608 |
This group contains the tools for importing and exporting graphs |
| 587 | 609 |
and graph related data. Now it supports the \ref lgf-format |
| 588 | 610 |
"LEMON Graph Format", the \c DIMACS format and the encapsulated |
| 589 | 611 |
postscript (EPS) format. |
| 590 | 612 |
*/ |
| 591 | 613 |
|
| 592 | 614 |
/** |
| 593 | 615 |
@defgroup lemon_io LEMON Graph Format |
| 594 | 616 |
@ingroup io_group |
| 595 | 617 |
\brief Reading and writing LEMON Graph Format. |
| 596 | 618 |
|
| 597 | 619 |
This group contains methods for reading and writing |
| 598 | 620 |
\ref lgf-format "LEMON Graph Format". |
| 599 | 621 |
*/ |
| 600 | 622 |
|
| 601 | 623 |
/** |
| 602 | 624 |
@defgroup eps_io Postscript Exporting |
| 603 | 625 |
@ingroup io_group |
| 604 | 626 |
\brief General \c EPS drawer and graph exporter |
| 605 | 627 |
|
| 606 | 628 |
This group contains general \c EPS drawing methods and special |
| 607 | 629 |
graph exporting tools. |
| 608 | 630 |
*/ |
| 609 | 631 |
|
| 610 | 632 |
/** |
| 611 |
@defgroup dimacs_group DIMACS |
|
| 633 |
@defgroup dimacs_group DIMACS Format |
|
| 612 | 634 |
@ingroup io_group |
| 613 | 635 |
\brief Read and write files in DIMACS format |
| 614 | 636 |
|
| 615 | 637 |
Tools to read a digraph from or write it to a file in DIMACS format data. |
| 616 | 638 |
*/ |
| 617 | 639 |
|
| 618 | 640 |
/** |
| 619 | 641 |
@defgroup nauty_group NAUTY Format |
| 620 | 642 |
@ingroup io_group |
| 621 | 643 |
\brief Read \e Nauty format |
| 622 | 644 |
|
| 623 | 645 |
Tool to read graphs from \e Nauty format data. |
| 624 | 646 |
*/ |
| 625 | 647 |
|
| 626 | 648 |
/** |
| 627 | 649 |
@defgroup concept Concepts |
| 628 | 650 |
\brief Skeleton classes and concept checking classes |
| 629 | 651 |
|
| 630 | 652 |
This group contains the data/algorithm skeletons and concept checking |
| 631 | 653 |
classes implemented in LEMON. |
| 632 | 654 |
|
| 633 | 655 |
The purpose of the classes in this group is fourfold. |
| 634 | 656 |
|
| 635 | 657 |
- These classes contain the documentations of the %concepts. In order |
| 636 | 658 |
to avoid document multiplications, an implementation of a concept |
| 637 | 659 |
simply refers to the corresponding concept class. |
| 638 | 660 |
|
| 639 | 661 |
- These classes declare every functions, <tt>typedef</tt>s etc. an |
| 640 | 662 |
implementation of the %concepts should provide, however completely |
| 641 | 663 |
without implementations and real data structures behind the |
| 642 | 664 |
interface. On the other hand they should provide nothing else. All |
| 643 | 665 |
the algorithms working on a data structure meeting a certain concept |
| 644 | 666 |
should compile with these classes. (Though it will not run properly, |
| 645 | 667 |
of course.) In this way it is easily to check if an algorithm |
| 646 | 668 |
doesn't use any extra feature of a certain implementation. |
| 647 | 669 |
|
| 648 | 670 |
- The concept descriptor classes also provide a <em>checker class</em> |
| 649 | 671 |
that makes it possible to check whether a certain implementation of a |
| 650 | 672 |
concept indeed provides all the required features. |
| 651 | 673 |
|
| 652 | 674 |
- Finally, They can serve as a skeleton of a new implementation of a concept. |
| 653 | 675 |
*/ |
| 654 | 676 |
|
| 655 | 677 |
/** |
| 656 | 678 |
@defgroup graph_concepts Graph Structure Concepts |
| 657 | 679 |
@ingroup concept |
| 658 | 680 |
\brief Skeleton and concept checking classes for graph structures |
| 659 | 681 |
|
| 660 | 682 |
This group contains the skeletons and concept checking classes of LEMON's |
| 661 | 683 |
graph structures and helper classes used to implement these. |
| 662 | 684 |
*/ |
| 663 | 685 |
|
| 664 | 686 |
/** |
| 665 | 687 |
@defgroup map_concepts Map Concepts |
| 666 | 688 |
@ingroup concept |
| 667 | 689 |
\brief Skeleton and concept checking classes for maps |
| 668 | 690 |
|
| 669 | 691 |
This group contains the skeletons and concept checking classes of maps. |
| 670 | 692 |
*/ |
| 671 | 693 |
|
| 672 | 694 |
/** |
| 695 |
@defgroup tools Standalone Utility Applications |
|
| 696 |
|
|
| 697 |
Some utility applications are listed here. |
|
| 698 |
|
|
| 699 |
The standard compilation procedure (<tt>./configure;make</tt>) will compile |
|
| 700 |
them, as well. |
|
| 701 |
*/ |
|
| 702 |
|
|
| 703 |
/** |
|
| 673 | 704 |
\anchor demoprograms |
| 674 | 705 |
|
| 675 | 706 |
@defgroup demos Demo Programs |
| 676 | 707 |
|
| 677 | 708 |
Some demo programs are listed here. Their full source codes can be found in |
| 678 | 709 |
the \c demo subdirectory of the source tree. |
| 679 | 710 |
|
| 680 | 711 |
In order to compile them, use the <tt>make demo</tt> or the |
| 681 | 712 |
<tt>make check</tt> commands. |
| 682 | 713 |
*/ |
| 683 | 714 |
|
| 684 |
/** |
|
| 685 |
@defgroup tools Standalone Utility Applications |
|
| 686 |
|
|
| 687 |
Some utility applications are listed here. |
|
| 688 |
|
|
| 689 |
The standard compilation procedure (<tt>./configure;make</tt>) will compile |
|
| 690 |
them, as well. |
|
| 691 |
*/ |
|
| 692 |
|
|
| 693 | 715 |
} |
| ... | ... |
@@ -2,146 +2,147 @@ |
| 2 | 2 |
* |
| 3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
| 4 | 4 |
* |
| 5 | 5 |
* Copyright (C) 2003-2009 |
| 6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
| 7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
| 8 | 8 |
* |
| 9 | 9 |
* Permission to use, modify and distribute this software is granted |
| 10 | 10 |
* provided that this copyright notice appears in all copies. For |
| 11 | 11 |
* precise terms see the accompanying LICENSE file. |
| 12 | 12 |
* |
| 13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
| 14 | 14 |
* express or implied, and with no claim as to its suitability for any |
| 15 | 15 |
* purpose. |
| 16 | 16 |
* |
| 17 | 17 |
*/ |
| 18 | 18 |
|
| 19 | 19 |
#ifndef LEMON_BFS_H |
| 20 | 20 |
#define LEMON_BFS_H |
| 21 | 21 |
|
| 22 | 22 |
///\ingroup search |
| 23 | 23 |
///\file |
| 24 | 24 |
///\brief BFS algorithm. |
| 25 | 25 |
|
| 26 | 26 |
#include <lemon/list_graph.h> |
| 27 | 27 |
#include <lemon/bits/path_dump.h> |
| 28 | 28 |
#include <lemon/core.h> |
| 29 | 29 |
#include <lemon/error.h> |
| 30 | 30 |
#include <lemon/maps.h> |
| 31 | 31 |
#include <lemon/path.h> |
| 32 | 32 |
|
| 33 | 33 |
namespace lemon {
|
| 34 | 34 |
|
| 35 | 35 |
///Default traits class of Bfs class. |
| 36 | 36 |
|
| 37 | 37 |
///Default traits class of Bfs class. |
| 38 | 38 |
///\tparam GR Digraph type. |
| 39 | 39 |
template<class GR> |
| 40 | 40 |
struct BfsDefaultTraits |
| 41 | 41 |
{
|
| 42 | 42 |
///The type of the digraph the algorithm runs on. |
| 43 | 43 |
typedef GR Digraph; |
| 44 | 44 |
|
| 45 | 45 |
///\brief The type of the map that stores the predecessor |
| 46 | 46 |
///arcs of the shortest paths. |
| 47 | 47 |
/// |
| 48 | 48 |
///The type of the map that stores the predecessor |
| 49 | 49 |
///arcs of the shortest paths. |
| 50 |
///It must |
|
| 50 |
///It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
|
| 51 | 51 |
typedef typename Digraph::template NodeMap<typename Digraph::Arc> PredMap; |
| 52 | 52 |
///Instantiates a \c PredMap. |
| 53 | 53 |
|
| 54 | 54 |
///This function instantiates a \ref PredMap. |
| 55 | 55 |
///\param g is the digraph, to which we would like to define the |
| 56 | 56 |
///\ref PredMap. |
| 57 | 57 |
static PredMap *createPredMap(const Digraph &g) |
| 58 | 58 |
{
|
| 59 | 59 |
return new PredMap(g); |
| 60 | 60 |
} |
| 61 | 61 |
|
| 62 | 62 |
///The type of the map that indicates which nodes are processed. |
| 63 | 63 |
|
| 64 | 64 |
///The type of the map that indicates which nodes are processed. |
| 65 |
///It must |
|
| 65 |
///It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
|
| 66 |
///By default it is a NullMap. |
|
| 66 | 67 |
typedef NullMap<typename Digraph::Node,bool> ProcessedMap; |
| 67 | 68 |
///Instantiates a \c ProcessedMap. |
| 68 | 69 |
|
| 69 | 70 |
///This function instantiates a \ref ProcessedMap. |
| 70 | 71 |
///\param g is the digraph, to which |
| 71 | 72 |
///we would like to define the \ref ProcessedMap |
| 72 | 73 |
#ifdef DOXYGEN |
| 73 | 74 |
static ProcessedMap *createProcessedMap(const Digraph &g) |
| 74 | 75 |
#else |
| 75 | 76 |
static ProcessedMap *createProcessedMap(const Digraph &) |
| 76 | 77 |
#endif |
| 77 | 78 |
{
|
| 78 | 79 |
return new ProcessedMap(); |
| 79 | 80 |
} |
| 80 | 81 |
|
| 81 | 82 |
///The type of the map that indicates which nodes are reached. |
| 82 | 83 |
|
| 83 | 84 |
///The type of the map that indicates which nodes are reached. |
| 84 |
///It must |
|
| 85 |
///It must conform to the \ref concepts::ReadWriteMap "ReadWriteMap" concept. |
|
| 85 | 86 |
typedef typename Digraph::template NodeMap<bool> ReachedMap; |
| 86 | 87 |
///Instantiates a \c ReachedMap. |
| 87 | 88 |
|
| 88 | 89 |
///This function instantiates a \ref ReachedMap. |
| 89 | 90 |
///\param g is the digraph, to which |
| 90 | 91 |
///we would like to define the \ref ReachedMap. |
| 91 | 92 |
static ReachedMap *createReachedMap(const Digraph &g) |
| 92 | 93 |
{
|
| 93 | 94 |
return new ReachedMap(g); |
| 94 | 95 |
} |
| 95 | 96 |
|
| 96 | 97 |
///The type of the map that stores the distances of the nodes. |
| 97 | 98 |
|
| 98 | 99 |
///The type of the map that stores the distances of the nodes. |
| 99 |
///It must |
|
| 100 |
///It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
|
| 100 | 101 |
typedef typename Digraph::template NodeMap<int> DistMap; |
| 101 | 102 |
///Instantiates a \c DistMap. |
| 102 | 103 |
|
| 103 | 104 |
///This function instantiates a \ref DistMap. |
| 104 | 105 |
///\param g is the digraph, to which we would like to define the |
| 105 | 106 |
///\ref DistMap. |
| 106 | 107 |
static DistMap *createDistMap(const Digraph &g) |
| 107 | 108 |
{
|
| 108 | 109 |
return new DistMap(g); |
| 109 | 110 |
} |
| 110 | 111 |
}; |
| 111 | 112 |
|
| 112 | 113 |
///%BFS algorithm class. |
| 113 | 114 |
|
| 114 | 115 |
///\ingroup search |
| 115 | 116 |
///This class provides an efficient implementation of the %BFS algorithm. |
| 116 | 117 |
/// |
| 117 | 118 |
///There is also a \ref bfs() "function-type interface" for the BFS |
| 118 | 119 |
///algorithm, which is convenient in the simplier cases and it can be |
| 119 | 120 |
///used easier. |
| 120 | 121 |
/// |
| 121 | 122 |
///\tparam GR The type of the digraph the algorithm runs on. |
| 122 | 123 |
///The default type is \ref ListDigraph. |
| 123 | 124 |
#ifdef DOXYGEN |
| 124 | 125 |
template <typename GR, |
| 125 | 126 |
typename TR> |
| 126 | 127 |
#else |
| 127 | 128 |
template <typename GR=ListDigraph, |
| 128 | 129 |
typename TR=BfsDefaultTraits<GR> > |
| 129 | 130 |
#endif |
| 130 | 131 |
class Bfs {
|
| 131 | 132 |
public: |
| 132 | 133 |
|
| 133 | 134 |
///The type of the digraph the algorithm runs on. |
| 134 | 135 |
typedef typename TR::Digraph Digraph; |
| 135 | 136 |
|
| 136 | 137 |
///\brief The type of the map that stores the predecessor arcs of the |
| 137 | 138 |
///shortest paths. |
| 138 | 139 |
typedef typename TR::PredMap PredMap; |
| 139 | 140 |
///The type of the map that stores the distances of the nodes. |
| 140 | 141 |
typedef typename TR::DistMap DistMap; |
| 141 | 142 |
///The type of the map that indicates which nodes are reached. |
| 142 | 143 |
typedef typename TR::ReachedMap ReachedMap; |
| 143 | 144 |
///The type of the map that indicates which nodes are processed. |
| 144 | 145 |
typedef typename TR::ProcessedMap ProcessedMap; |
| 145 | 146 |
///The type of the paths. |
| 146 | 147 |
typedef PredMapPath<Digraph, PredMap> Path; |
| 147 | 148 |
|
| ... | ... |
@@ -180,157 +181,157 @@ |
| 180 | 181 |
|
| 181 | 182 |
//Creates the maps if necessary. |
| 182 | 183 |
void create_maps() |
| 183 | 184 |
{
|
| 184 | 185 |
if(!_pred) {
|
| 185 | 186 |
local_pred = true; |
| 186 | 187 |
_pred = Traits::createPredMap(*G); |
| 187 | 188 |
} |
| 188 | 189 |
if(!_dist) {
|
| 189 | 190 |
local_dist = true; |
| 190 | 191 |
_dist = Traits::createDistMap(*G); |
| 191 | 192 |
} |
| 192 | 193 |
if(!_reached) {
|
| 193 | 194 |
local_reached = true; |
| 194 | 195 |
_reached = Traits::createReachedMap(*G); |
| 195 | 196 |
} |
| 196 | 197 |
if(!_processed) {
|
| 197 | 198 |
local_processed = true; |
| 198 | 199 |
_processed = Traits::createProcessedMap(*G); |
| 199 | 200 |
} |
| 200 | 201 |
} |
| 201 | 202 |
|
| 202 | 203 |
protected: |
| 203 | 204 |
|
| 204 | 205 |
Bfs() {}
|
| 205 | 206 |
|
| 206 | 207 |
public: |
| 207 | 208 |
|
| 208 | 209 |
typedef Bfs Create; |
| 209 | 210 |
|
| 210 | 211 |
///\name Named Template Parameters |
| 211 | 212 |
|
| 212 | 213 |
///@{
|
| 213 | 214 |
|
| 214 | 215 |
template <class T> |
| 215 | 216 |
struct SetPredMapTraits : public Traits {
|
| 216 | 217 |
typedef T PredMap; |
| 217 | 218 |
static PredMap *createPredMap(const Digraph &) |
| 218 | 219 |
{
|
| 219 | 220 |
LEMON_ASSERT(false, "PredMap is not initialized"); |
| 220 | 221 |
return 0; // ignore warnings |
| 221 | 222 |
} |
| 222 | 223 |
}; |
| 223 | 224 |
///\brief \ref named-templ-param "Named parameter" for setting |
| 224 | 225 |
///\c PredMap type. |
| 225 | 226 |
/// |
| 226 | 227 |
///\ref named-templ-param "Named parameter" for setting |
| 227 | 228 |
///\c PredMap type. |
| 228 |
///It must |
|
| 229 |
///It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
|
| 229 | 230 |
template <class T> |
| 230 | 231 |
struct SetPredMap : public Bfs< Digraph, SetPredMapTraits<T> > {
|
| 231 | 232 |
typedef Bfs< Digraph, SetPredMapTraits<T> > Create; |
| 232 | 233 |
}; |
| 233 | 234 |
|
| 234 | 235 |
template <class T> |
| 235 | 236 |
struct SetDistMapTraits : public Traits {
|
| 236 | 237 |
typedef T DistMap; |
| 237 | 238 |
static DistMap *createDistMap(const Digraph &) |
| 238 | 239 |
{
|
| 239 | 240 |
LEMON_ASSERT(false, "DistMap is not initialized"); |
| 240 | 241 |
return 0; // ignore warnings |
| 241 | 242 |
} |
| 242 | 243 |
}; |
| 243 | 244 |
///\brief \ref named-templ-param "Named parameter" for setting |
| 244 | 245 |
///\c DistMap type. |
| 245 | 246 |
/// |
| 246 | 247 |
///\ref named-templ-param "Named parameter" for setting |
| 247 | 248 |
///\c DistMap type. |
| 248 |
///It must |
|
| 249 |
///It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
|
| 249 | 250 |
template <class T> |
| 250 | 251 |
struct SetDistMap : public Bfs< Digraph, SetDistMapTraits<T> > {
|
| 251 | 252 |
typedef Bfs< Digraph, SetDistMapTraits<T> > Create; |
| 252 | 253 |
}; |
| 253 | 254 |
|
| 254 | 255 |
template <class T> |
| 255 | 256 |
struct SetReachedMapTraits : public Traits {
|
| 256 | 257 |
typedef T ReachedMap; |
| 257 | 258 |
static ReachedMap *createReachedMap(const Digraph &) |
| 258 | 259 |
{
|
| 259 | 260 |
LEMON_ASSERT(false, "ReachedMap is not initialized"); |
| 260 | 261 |
return 0; // ignore warnings |
| 261 | 262 |
} |
| 262 | 263 |
}; |
| 263 | 264 |
///\brief \ref named-templ-param "Named parameter" for setting |
| 264 | 265 |
///\c ReachedMap type. |
| 265 | 266 |
/// |
| 266 | 267 |
///\ref named-templ-param "Named parameter" for setting |
| 267 | 268 |
///\c ReachedMap type. |
| 268 |
///It must |
|
| 269 |
///It must conform to the \ref concepts::ReadWriteMap "ReadWriteMap" concept. |
|
| 269 | 270 |
template <class T> |
| 270 | 271 |
struct SetReachedMap : public Bfs< Digraph, SetReachedMapTraits<T> > {
|
| 271 | 272 |
typedef Bfs< Digraph, SetReachedMapTraits<T> > Create; |
| 272 | 273 |
}; |
| 273 | 274 |
|
| 274 | 275 |
template <class T> |
| 275 | 276 |
struct SetProcessedMapTraits : public Traits {
|
| 276 | 277 |
typedef T ProcessedMap; |
| 277 | 278 |
static ProcessedMap *createProcessedMap(const Digraph &) |
| 278 | 279 |
{
|
| 279 | 280 |
LEMON_ASSERT(false, "ProcessedMap is not initialized"); |
| 280 | 281 |
return 0; // ignore warnings |
| 281 | 282 |
} |
| 282 | 283 |
}; |
| 283 | 284 |
///\brief \ref named-templ-param "Named parameter" for setting |
| 284 | 285 |
///\c ProcessedMap type. |
| 285 | 286 |
/// |
| 286 | 287 |
///\ref named-templ-param "Named parameter" for setting |
| 287 | 288 |
///\c ProcessedMap type. |
| 288 |
///It must |
|
| 289 |
///It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
|
| 289 | 290 |
template <class T> |
| 290 | 291 |
struct SetProcessedMap : public Bfs< Digraph, SetProcessedMapTraits<T> > {
|
| 291 | 292 |
typedef Bfs< Digraph, SetProcessedMapTraits<T> > Create; |
| 292 | 293 |
}; |
| 293 | 294 |
|
| 294 | 295 |
struct SetStandardProcessedMapTraits : public Traits {
|
| 295 | 296 |
typedef typename Digraph::template NodeMap<bool> ProcessedMap; |
| 296 | 297 |
static ProcessedMap *createProcessedMap(const Digraph &g) |
| 297 | 298 |
{
|
| 298 | 299 |
return new ProcessedMap(g); |
| 299 | 300 |
return 0; // ignore warnings |
| 300 | 301 |
} |
| 301 | 302 |
}; |
| 302 | 303 |
///\brief \ref named-templ-param "Named parameter" for setting |
| 303 | 304 |
///\c ProcessedMap type to be <tt>Digraph::NodeMap<bool></tt>. |
| 304 | 305 |
/// |
| 305 | 306 |
///\ref named-templ-param "Named parameter" for setting |
| 306 | 307 |
///\c ProcessedMap type to be <tt>Digraph::NodeMap<bool></tt>. |
| 307 | 308 |
///If you don't set it explicitly, it will be automatically allocated. |
| 308 | 309 |
struct SetStandardProcessedMap : |
| 309 | 310 |
public Bfs< Digraph, SetStandardProcessedMapTraits > {
|
| 310 | 311 |
typedef Bfs< Digraph, SetStandardProcessedMapTraits > Create; |
| 311 | 312 |
}; |
| 312 | 313 |
|
| 313 | 314 |
///@} |
| 314 | 315 |
|
| 315 | 316 |
public: |
| 316 | 317 |
|
| 317 | 318 |
///Constructor. |
| 318 | 319 |
|
| 319 | 320 |
///Constructor. |
| 320 | 321 |
///\param g The digraph the algorithm runs on. |
| 321 | 322 |
Bfs(const Digraph &g) : |
| 322 | 323 |
G(&g), |
| 323 | 324 |
_pred(NULL), local_pred(false), |
| 324 | 325 |
_dist(NULL), local_dist(false), |
| 325 | 326 |
_reached(NULL), local_reached(false), |
| 326 | 327 |
_processed(NULL), local_processed(false) |
| 327 | 328 |
{ }
|
| 328 | 329 |
|
| 329 | 330 |
///Destructor. |
| 330 | 331 |
~Bfs() |
| 331 | 332 |
{
|
| 332 | 333 |
if(local_pred) delete _pred; |
| 333 | 334 |
if(local_dist) delete _dist; |
| 334 | 335 |
if(local_reached) delete _reached; |
| 335 | 336 |
if(local_processed) delete _processed; |
| 336 | 337 |
} |
| ... | ... |
@@ -368,98 +369,98 @@ |
| 368 | 369 |
local_reached=false; |
| 369 | 370 |
} |
| 370 | 371 |
_reached = &m; |
| 371 | 372 |
return *this; |
| 372 | 373 |
} |
| 373 | 374 |
|
| 374 | 375 |
///Sets the map that indicates which nodes are processed. |
| 375 | 376 |
|
| 376 | 377 |
///Sets the map that indicates which nodes are processed. |
| 377 | 378 |
///If you don't use this function before calling \ref run(Node) "run()" |
| 378 | 379 |
///or \ref init(), an instance will be allocated automatically. |
| 379 | 380 |
///The destructor deallocates this automatically allocated map, |
| 380 | 381 |
///of course. |
| 381 | 382 |
///\return <tt> (*this) </tt> |
| 382 | 383 |
Bfs &processedMap(ProcessedMap &m) |
| 383 | 384 |
{
|
| 384 | 385 |
if(local_processed) {
|
| 385 | 386 |
delete _processed; |
| 386 | 387 |
local_processed=false; |
| 387 | 388 |
} |
| 388 | 389 |
_processed = &m; |
| 389 | 390 |
return *this; |
| 390 | 391 |
} |
| 391 | 392 |
|
| 392 | 393 |
///Sets the map that stores the distances of the nodes. |
| 393 | 394 |
|
| 394 | 395 |
///Sets the map that stores the distances of the nodes calculated by |
| 395 | 396 |
///the algorithm. |
| 396 | 397 |
///If you don't use this function before calling \ref run(Node) "run()" |
| 397 | 398 |
///or \ref init(), an instance will be allocated automatically. |
| 398 | 399 |
///The destructor deallocates this automatically allocated map, |
| 399 | 400 |
///of course. |
| 400 | 401 |
///\return <tt> (*this) </tt> |
| 401 | 402 |
Bfs &distMap(DistMap &m) |
| 402 | 403 |
{
|
| 403 | 404 |
if(local_dist) {
|
| 404 | 405 |
delete _dist; |
| 405 | 406 |
local_dist=false; |
| 406 | 407 |
} |
| 407 | 408 |
_dist = &m; |
| 408 | 409 |
return *this; |
| 409 | 410 |
} |
| 410 | 411 |
|
| 411 | 412 |
public: |
| 412 | 413 |
|
| 413 | 414 |
///\name Execution Control |
| 414 | 415 |
///The simplest way to execute the BFS algorithm is to use one of the |
| 415 | 416 |
///member functions called \ref run(Node) "run()".\n |
| 416 |
///If you need more control on the execution, first you have to call |
|
| 417 |
///\ref init(), then you can add several source nodes with |
|
| 417 |
///If you need better control on the execution, you have to call |
|
| 418 |
///\ref init() first, then you can add several source nodes with |
|
| 418 | 419 |
///\ref addSource(). Finally the actual path computation can be |
| 419 | 420 |
///performed with one of the \ref start() functions. |
| 420 | 421 |
|
| 421 | 422 |
///@{
|
| 422 | 423 |
|
| 423 | 424 |
///\brief Initializes the internal data structures. |
| 424 | 425 |
/// |
| 425 | 426 |
///Initializes the internal data structures. |
| 426 | 427 |
void init() |
| 427 | 428 |
{
|
| 428 | 429 |
create_maps(); |
| 429 | 430 |
_queue.resize(countNodes(*G)); |
| 430 | 431 |
_queue_head=_queue_tail=0; |
| 431 | 432 |
_curr_dist=1; |
| 432 | 433 |
for ( NodeIt u(*G) ; u!=INVALID ; ++u ) {
|
| 433 | 434 |
_pred->set(u,INVALID); |
| 434 | 435 |
_reached->set(u,false); |
| 435 | 436 |
_processed->set(u,false); |
| 436 | 437 |
} |
| 437 | 438 |
} |
| 438 | 439 |
|
| 439 | 440 |
///Adds a new source node. |
| 440 | 441 |
|
| 441 | 442 |
///Adds a new source node to the set of nodes to be processed. |
| 442 | 443 |
/// |
| 443 | 444 |
void addSource(Node s) |
| 444 | 445 |
{
|
| 445 | 446 |
if(!(*_reached)[s]) |
| 446 | 447 |
{
|
| 447 | 448 |
_reached->set(s,true); |
| 448 | 449 |
_pred->set(s,INVALID); |
| 449 | 450 |
_dist->set(s,0); |
| 450 | 451 |
_queue[_queue_head++]=s; |
| 451 | 452 |
_queue_next_dist=_queue_head; |
| 452 | 453 |
} |
| 453 | 454 |
} |
| 454 | 455 |
|
| 455 | 456 |
///Processes the next node. |
| 456 | 457 |
|
| 457 | 458 |
///Processes the next node. |
| 458 | 459 |
/// |
| 459 | 460 |
///\return The processed node. |
| 460 | 461 |
/// |
| 461 | 462 |
///\pre The queue must not be empty. |
| 462 | 463 |
Node processNextNode() |
| 463 | 464 |
{
|
| 464 | 465 |
if(_queue_tail==_queue_next_dist) {
|
| 465 | 466 |
_curr_dist++; |
| ... | ... |
@@ -692,485 +693,481 @@ |
| 692 | 693 |
/// b.start(t); |
| 693 | 694 |
///\endcode |
| 694 | 695 |
bool run(Node s,Node t) {
|
| 695 | 696 |
init(); |
| 696 | 697 |
addSource(s); |
| 697 | 698 |
start(t); |
| 698 | 699 |
return reached(t); |
| 699 | 700 |
} |
| 700 | 701 |
|
| 701 | 702 |
///Runs the algorithm to visit all nodes in the digraph. |
| 702 | 703 |
|
| 703 | 704 |
///This method runs the %BFS algorithm in order to |
| 704 | 705 |
///compute the shortest path to each node. |
| 705 | 706 |
/// |
| 706 | 707 |
///The algorithm computes |
| 707 | 708 |
///- the shortest path tree (forest), |
| 708 | 709 |
///- the distance of each node from the root(s). |
| 709 | 710 |
/// |
| 710 | 711 |
///\note <tt>b.run(s)</tt> is just a shortcut of the following code. |
| 711 | 712 |
///\code |
| 712 | 713 |
/// b.init(); |
| 713 | 714 |
/// for (NodeIt n(gr); n != INVALID; ++n) {
|
| 714 | 715 |
/// if (!b.reached(n)) {
|
| 715 | 716 |
/// b.addSource(n); |
| 716 | 717 |
/// b.start(); |
| 717 | 718 |
/// } |
| 718 | 719 |
/// } |
| 719 | 720 |
///\endcode |
| 720 | 721 |
void run() {
|
| 721 | 722 |
init(); |
| 722 | 723 |
for (NodeIt n(*G); n != INVALID; ++n) {
|
| 723 | 724 |
if (!reached(n)) {
|
| 724 | 725 |
addSource(n); |
| 725 | 726 |
start(); |
| 726 | 727 |
} |
| 727 | 728 |
} |
| 728 | 729 |
} |
| 729 | 730 |
|
| 730 | 731 |
///@} |
| 731 | 732 |
|
| 732 | 733 |
///\name Query Functions |
| 733 | 734 |
///The results of the BFS algorithm can be obtained using these |
| 734 | 735 |
///functions.\n |
| 735 | 736 |
///Either \ref run(Node) "run()" or \ref start() should be called |
| 736 | 737 |
///before using them. |
| 737 | 738 |
|
| 738 | 739 |
///@{
|
| 739 | 740 |
|
| 740 |
///The shortest path to |
|
| 741 |
///The shortest path to the given node. |
|
| 741 | 742 |
|
| 742 |
///Returns the shortest path to |
|
| 743 |
///Returns the shortest path to the given node from the root(s). |
|
| 743 | 744 |
/// |
| 744 | 745 |
///\warning \c t should be reached from the root(s). |
| 745 | 746 |
/// |
| 746 | 747 |
///\pre Either \ref run(Node) "run()" or \ref init() |
| 747 | 748 |
///must be called before using this function. |
| 748 | 749 |
Path path(Node t) const { return Path(*G, *_pred, t); }
|
| 749 | 750 |
|
| 750 |
///The distance of |
|
| 751 |
///The distance of the given node from the root(s). |
|
| 751 | 752 |
|
| 752 |
///Returns the distance of |
|
| 753 |
///Returns the distance of the given node from the root(s). |
|
| 753 | 754 |
/// |
| 754 | 755 |
///\warning If node \c v is not reached from the root(s), then |
| 755 | 756 |
///the return value of this function is undefined. |
| 756 | 757 |
/// |
| 757 | 758 |
///\pre Either \ref run(Node) "run()" or \ref init() |
| 758 | 759 |
///must be called before using this function. |
| 759 | 760 |
int dist(Node v) const { return (*_dist)[v]; }
|
| 760 | 761 |
|
| 761 |
///Returns the 'previous arc' of the shortest path tree for a node. |
|
| 762 |
|
|
| 762 |
///\brief Returns the 'previous arc' of the shortest path tree for |
|
| 763 |
///the given node. |
|
| 764 |
/// |
|
| 763 | 765 |
///This function returns the 'previous arc' of the shortest path |
| 764 | 766 |
///tree for the node \c v, i.e. it returns the last arc of a |
| 765 | 767 |
///shortest path from a root to \c v. It is \c INVALID if \c v |
| 766 | 768 |
///is not reached from the root(s) or if \c v is a root. |
| 767 | 769 |
/// |
| 768 | 770 |
///The shortest path tree used here is equal to the shortest path |
| 769 |
///tree used in \ref predNode(). |
|
| 771 |
///tree used in \ref predNode() and \ref predMap(). |
|
| 770 | 772 |
/// |
| 771 | 773 |
///\pre Either \ref run(Node) "run()" or \ref init() |
| 772 | 774 |
///must be called before using this function. |
| 773 | 775 |
Arc predArc(Node v) const { return (*_pred)[v];}
|
| 774 | 776 |
|
| 775 |
///Returns the 'previous node' of the shortest path tree for a node. |
|
| 776 |
|
|
| 777 |
///\brief Returns the 'previous node' of the shortest path tree for |
|
| 778 |
///the given node. |
|
| 779 |
/// |
|
| 777 | 780 |
///This function returns the 'previous node' of the shortest path |
| 778 | 781 |
///tree for the node \c v, i.e. it returns the last but one node |
| 779 |
/// |
|
| 782 |
///of a shortest path from a root to \c v. It is \c INVALID |
|
| 780 | 783 |
///if \c v is not reached from the root(s) or if \c v is a root. |
| 781 | 784 |
/// |
| 782 | 785 |
///The shortest path tree used here is equal to the shortest path |
| 783 |
///tree used in \ref predArc(). |
|
| 786 |
///tree used in \ref predArc() and \ref predMap(). |
|
| 784 | 787 |
/// |
| 785 | 788 |
///\pre Either \ref run(Node) "run()" or \ref init() |
| 786 | 789 |
///must be called before using this function. |
| 787 | 790 |
Node predNode(Node v) const { return (*_pred)[v]==INVALID ? INVALID:
|
| 788 | 791 |
G->source((*_pred)[v]); } |
| 789 | 792 |
|
| 790 | 793 |
///\brief Returns a const reference to the node map that stores the |
| 791 | 794 |
/// distances of the nodes. |
| 792 | 795 |
/// |
| 793 | 796 |
///Returns a const reference to the node map that stores the distances |
| 794 | 797 |
///of the nodes calculated by the algorithm. |
| 795 | 798 |
/// |
| 796 | 799 |
///\pre Either \ref run(Node) "run()" or \ref init() |
| 797 | 800 |
///must be called before using this function. |
| 798 | 801 |
const DistMap &distMap() const { return *_dist;}
|
| 799 | 802 |
|
| 800 | 803 |
///\brief Returns a const reference to the node map that stores the |
| 801 | 804 |
///predecessor arcs. |
| 802 | 805 |
/// |
| 803 | 806 |
///Returns a const reference to the node map that stores the predecessor |
| 804 |
///arcs, which form the shortest path tree. |
|
| 807 |
///arcs, which form the shortest path tree (forest). |
|
| 805 | 808 |
/// |
| 806 | 809 |
///\pre Either \ref run(Node) "run()" or \ref init() |
| 807 | 810 |
///must be called before using this function. |
| 808 | 811 |
const PredMap &predMap() const { return *_pred;}
|
| 809 | 812 |
|
| 810 |
///Checks if |
|
| 813 |
///Checks if the given node is reached from the root(s). |
|
| 811 | 814 |
|
| 812 | 815 |
///Returns \c true if \c v is reached from the root(s). |
| 813 | 816 |
/// |
| 814 | 817 |
///\pre Either \ref run(Node) "run()" or \ref init() |
| 815 | 818 |
///must be called before using this function. |
| 816 | 819 |
bool reached(Node v) const { return (*_reached)[v]; }
|
| 817 | 820 |
|
| 818 | 821 |
///@} |
| 819 | 822 |
}; |
| 820 | 823 |
|
| 821 | 824 |
///Default traits class of bfs() function. |
| 822 | 825 |
|
| 823 | 826 |
///Default traits class of bfs() function. |
| 824 | 827 |
///\tparam GR Digraph type. |
| 825 | 828 |
template<class GR> |
| 826 | 829 |
struct BfsWizardDefaultTraits |
| 827 | 830 |
{
|
| 828 | 831 |
///The type of the digraph the algorithm runs on. |
| 829 | 832 |
typedef GR Digraph; |
| 830 | 833 |
|
| 831 | 834 |
///\brief The type of the map that stores the predecessor |
| 832 | 835 |
///arcs of the shortest paths. |
| 833 | 836 |
/// |
| 834 | 837 |
///The type of the map that stores the predecessor |
| 835 | 838 |
///arcs of the shortest paths. |
| 836 |
///It must |
|
| 839 |
///It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
|
| 837 | 840 |
typedef typename Digraph::template NodeMap<typename Digraph::Arc> PredMap; |
| 838 | 841 |
///Instantiates a PredMap. |
| 839 | 842 |
|
| 840 | 843 |
///This function instantiates a PredMap. |
| 841 | 844 |
///\param g is the digraph, to which we would like to define the |
| 842 | 845 |
///PredMap. |
| 843 | 846 |
static PredMap *createPredMap(const Digraph &g) |
| 844 | 847 |
{
|
| 845 | 848 |
return new PredMap(g); |
| 846 | 849 |
} |
| 847 | 850 |
|
| 848 | 851 |
///The type of the map that indicates which nodes are processed. |
| 849 | 852 |
|
| 850 | 853 |
///The type of the map that indicates which nodes are processed. |
| 851 |
///It must |
|
| 854 |
///It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
|
| 852 | 855 |
///By default it is a NullMap. |
| 853 | 856 |
typedef NullMap<typename Digraph::Node,bool> ProcessedMap; |
| 854 | 857 |
///Instantiates a ProcessedMap. |
| 855 | 858 |
|
| 856 | 859 |
///This function instantiates a ProcessedMap. |
| 857 | 860 |
///\param g is the digraph, to which |
| 858 | 861 |
///we would like to define the ProcessedMap. |
| 859 | 862 |
#ifdef DOXYGEN |
| 860 | 863 |
static ProcessedMap *createProcessedMap(const Digraph &g) |
| 861 | 864 |
#else |
| 862 | 865 |
static ProcessedMap *createProcessedMap(const Digraph &) |
| 863 | 866 |
#endif |
| 864 | 867 |
{
|
| 865 | 868 |
return new ProcessedMap(); |
| 866 | 869 |
} |
| 867 | 870 |
|
| 868 | 871 |
///The type of the map that indicates which nodes are reached. |
| 869 | 872 |
|
| 870 | 873 |
///The type of the map that indicates which nodes are reached. |
| 871 |
///It must |
|
| 874 |
///It must conform to the \ref concepts::ReadWriteMap "ReadWriteMap" concept. |
|
| 872 | 875 |
typedef typename Digraph::template NodeMap<bool> ReachedMap; |
| 873 | 876 |
///Instantiates a ReachedMap. |
| 874 | 877 |
|
| 875 | 878 |
///This function instantiates a ReachedMap. |
| 876 | 879 |
///\param g is the digraph, to which |
| 877 | 880 |
///we would like to define the ReachedMap. |
| 878 | 881 |
static ReachedMap *createReachedMap(const Digraph &g) |
| 879 | 882 |
{
|
| 880 | 883 |
return new ReachedMap(g); |
| 881 | 884 |
} |
| 882 | 885 |
|
| 883 | 886 |
///The type of the map that stores the distances of the nodes. |
| 884 | 887 |
|
| 885 | 888 |
///The type of the map that stores the distances of the nodes. |
| 886 |
///It must |
|
| 889 |
///It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
|
| 887 | 890 |
typedef typename Digraph::template NodeMap<int> DistMap; |
| 888 | 891 |
///Instantiates a DistMap. |
| 889 | 892 |
|
| 890 | 893 |
///This function instantiates a DistMap. |
| 891 | 894 |
///\param g is the digraph, to which we would like to define |
| 892 | 895 |
///the DistMap |
| 893 | 896 |
static DistMap *createDistMap(const Digraph &g) |
| 894 | 897 |
{
|
| 895 | 898 |
return new DistMap(g); |
| 896 | 899 |
} |
| 897 | 900 |
|
| 898 | 901 |
///The type of the shortest paths. |
| 899 | 902 |
|
| 900 | 903 |
///The type of the shortest paths. |
| 901 |
///It must |
|
| 904 |
///It must conform to the \ref concepts::Path "Path" concept. |
|
| 902 | 905 |
typedef lemon::Path<Digraph> Path; |
| 903 | 906 |
}; |
| 904 | 907 |
|
| 905 | 908 |
/// Default traits class used by BfsWizard |
| 906 | 909 |
|
| 907 |
/// To make it easier to use Bfs algorithm |
|
| 908 |
/// we have created a wizard class. |
|
| 909 |
/// This \ref BfsWizard class needs default traits, |
|
| 910 |
/// as well as the \ref Bfs class. |
|
| 911 |
/// The \ref BfsWizardBase is a class to be the default traits of the |
|
| 912 |
/// \ref BfsWizard class. |
|
| 910 |
/// Default traits class used by BfsWizard. |
|
| 911 |
/// \tparam GR The type of the digraph. |
|
| 913 | 912 |
template<class GR> |
| 914 | 913 |
class BfsWizardBase : public BfsWizardDefaultTraits<GR> |
| 915 | 914 |
{
|
| 916 | 915 |
|
| 917 | 916 |
typedef BfsWizardDefaultTraits<GR> Base; |
| 918 | 917 |
protected: |
| 919 | 918 |
//The type of the nodes in the digraph. |
| 920 | 919 |
typedef typename Base::Digraph::Node Node; |
| 921 | 920 |
|
| 922 | 921 |
//Pointer to the digraph the algorithm runs on. |
| 923 | 922 |
void *_g; |
| 924 | 923 |
//Pointer to the map of reached nodes. |
| 925 | 924 |
void *_reached; |
| 926 | 925 |
//Pointer to the map of processed nodes. |
| 927 | 926 |
void *_processed; |
| 928 | 927 |
//Pointer to the map of predecessors arcs. |
| 929 | 928 |
void *_pred; |
| 930 | 929 |
//Pointer to the map of distances. |
| 931 | 930 |
void *_dist; |
| 932 | 931 |
//Pointer to the shortest path to the target node. |
| 933 | 932 |
void *_path; |
| 934 | 933 |
//Pointer to the distance of the target node. |
| 935 | 934 |
int *_di; |
| 936 | 935 |
|
| 937 | 936 |
public: |
| 938 | 937 |
/// Constructor. |
| 939 | 938 |
|
| 940 |
/// This constructor does not require parameters, |
|
| 939 |
/// This constructor does not require parameters, it initiates |
|
| 941 | 940 |
/// all of the attributes to \c 0. |
| 942 | 941 |
BfsWizardBase() : _g(0), _reached(0), _processed(0), _pred(0), |
| 943 | 942 |
_dist(0), _path(0), _di(0) {}
|
| 944 | 943 |
|
| 945 | 944 |
/// Constructor. |
| 946 | 945 |
|
| 947 | 946 |
/// This constructor requires one parameter, |
| 948 | 947 |
/// others are initiated to \c 0. |
| 949 | 948 |
/// \param g The digraph the algorithm runs on. |
| 950 | 949 |
BfsWizardBase(const GR &g) : |
| 951 | 950 |
_g(reinterpret_cast<void*>(const_cast<GR*>(&g))), |
| 952 | 951 |
_reached(0), _processed(0), _pred(0), _dist(0), _path(0), _di(0) {}
|
| 953 | 952 |
|
| 954 | 953 |
}; |
| 955 | 954 |
|
| 956 | 955 |
/// Auxiliary class for the function-type interface of BFS algorithm. |
| 957 | 956 |
|
| 958 | 957 |
/// This auxiliary class is created to implement the |
| 959 | 958 |
/// \ref bfs() "function-type interface" of \ref Bfs algorithm. |
| 960 | 959 |
/// It does not have own \ref run(Node) "run()" method, it uses the |
| 961 | 960 |
/// functions and features of the plain \ref Bfs. |
| 962 | 961 |
/// |
| 963 | 962 |
/// This class should only be used through the \ref bfs() function, |
| 964 | 963 |
/// which makes it easier to use the algorithm. |
| 965 | 964 |
template<class TR> |
| 966 | 965 |
class BfsWizard : public TR |
| 967 | 966 |
{
|
| 968 | 967 |
typedef TR Base; |
| 969 | 968 |
|
| 970 |
///The type of the digraph the algorithm runs on. |
|
| 971 | 969 |
typedef typename TR::Digraph Digraph; |
| 972 | 970 |
|
| 973 | 971 |
typedef typename Digraph::Node Node; |
| 974 | 972 |
typedef typename Digraph::NodeIt NodeIt; |
| 975 | 973 |
typedef typename Digraph::Arc Arc; |
| 976 | 974 |
typedef typename Digraph::OutArcIt OutArcIt; |
| 977 | 975 |
|
| 978 |
///\brief The type of the map that stores the predecessor |
|
| 979 |
///arcs of the shortest paths. |
|
| 980 | 976 |
typedef typename TR::PredMap PredMap; |
| 981 |
///\brief The type of the map that stores the distances of the nodes. |
|
| 982 | 977 |
typedef typename TR::DistMap DistMap; |
| 983 |
///\brief The type of the map that indicates which nodes are reached. |
|
| 984 | 978 |
typedef typename TR::ReachedMap ReachedMap; |
| 985 |
///\brief The type of the map that indicates which nodes are processed. |
|
| 986 | 979 |
typedef typename TR::ProcessedMap ProcessedMap; |
| 987 |
///The type of the shortest paths |
|
| 988 | 980 |
typedef typename TR::Path Path; |
| 989 | 981 |
|
| 990 | 982 |
public: |
| 991 | 983 |
|
| 992 | 984 |
/// Constructor. |
| 993 | 985 |
BfsWizard() : TR() {}
|
| 994 | 986 |
|
| 995 | 987 |
/// Constructor that requires parameters. |
| 996 | 988 |
|
| 997 | 989 |
/// Constructor that requires parameters. |
| 998 | 990 |
/// These parameters will be the default values for the traits class. |
| 999 | 991 |
/// \param g The digraph the algorithm runs on. |
| 1000 | 992 |
BfsWizard(const Digraph &g) : |
| 1001 | 993 |
TR(g) {}
|
| 1002 | 994 |
|
| 1003 | 995 |
///Copy constructor |
| 1004 | 996 |
BfsWizard(const TR &b) : TR(b) {}
|
| 1005 | 997 |
|
| 1006 | 998 |
~BfsWizard() {}
|
| 1007 | 999 |
|
| 1008 | 1000 |
///Runs BFS algorithm from the given source node. |
| 1009 | 1001 |
|
| 1010 | 1002 |
///This method runs BFS algorithm from node \c s |
| 1011 | 1003 |
///in order to compute the shortest path to each node. |
| 1012 | 1004 |
void run(Node s) |
| 1013 | 1005 |
{
|
| 1014 | 1006 |
Bfs<Digraph,TR> alg(*reinterpret_cast<const Digraph*>(Base::_g)); |
| 1015 | 1007 |
if (Base::_pred) |
| 1016 | 1008 |
alg.predMap(*reinterpret_cast<PredMap*>(Base::_pred)); |
| 1017 | 1009 |
if (Base::_dist) |
| 1018 | 1010 |
alg.distMap(*reinterpret_cast<DistMap*>(Base::_dist)); |
| 1019 | 1011 |
if (Base::_reached) |
| 1020 | 1012 |
alg.reachedMap(*reinterpret_cast<ReachedMap*>(Base::_reached)); |
| 1021 | 1013 |
if (Base::_processed) |
| 1022 | 1014 |
alg.processedMap(*reinterpret_cast<ProcessedMap*>(Base::_processed)); |
| 1023 | 1015 |
if (s!=INVALID) |
| 1024 | 1016 |
alg.run(s); |
| 1025 | 1017 |
else |
| 1026 | 1018 |
alg.run(); |
| 1027 | 1019 |
} |
| 1028 | 1020 |
|
| 1029 | 1021 |
///Finds the shortest path between \c s and \c t. |
| 1030 | 1022 |
|
| 1031 | 1023 |
///This method runs BFS algorithm from node \c s |
| 1032 | 1024 |
///in order to compute the shortest path to node \c t |
| 1033 | 1025 |
///(it stops searching when \c t is processed). |
| 1034 | 1026 |
/// |
| 1035 | 1027 |
///\return \c true if \c t is reachable form \c s. |
| 1036 | 1028 |
bool run(Node s, Node t) |
| 1037 | 1029 |
{
|
| 1038 | 1030 |
Bfs<Digraph,TR> alg(*reinterpret_cast<const Digraph*>(Base::_g)); |
| 1039 | 1031 |
if (Base::_pred) |
| 1040 | 1032 |
alg.predMap(*reinterpret_cast<PredMap*>(Base::_pred)); |
| 1041 | 1033 |
if (Base::_dist) |
| 1042 | 1034 |
alg.distMap(*reinterpret_cast<DistMap*>(Base::_dist)); |
| 1043 | 1035 |
if (Base::_reached) |
| 1044 | 1036 |
alg.reachedMap(*reinterpret_cast<ReachedMap*>(Base::_reached)); |
| 1045 | 1037 |
if (Base::_processed) |
| 1046 | 1038 |
alg.processedMap(*reinterpret_cast<ProcessedMap*>(Base::_processed)); |
| 1047 | 1039 |
alg.run(s,t); |
| 1048 | 1040 |
if (Base::_path) |
| 1049 | 1041 |
*reinterpret_cast<Path*>(Base::_path) = alg.path(t); |
| 1050 | 1042 |
if (Base::_di) |
| 1051 | 1043 |
*Base::_di = alg.dist(t); |
| 1052 | 1044 |
return alg.reached(t); |
| 1053 | 1045 |
} |
| 1054 | 1046 |
|
| 1055 | 1047 |
///Runs BFS algorithm to visit all nodes in the digraph. |
| 1056 | 1048 |
|
| 1057 | 1049 |
///This method runs BFS algorithm in order to compute |
| 1058 | 1050 |
///the shortest path to each node. |
| 1059 | 1051 |
void run() |
| 1060 | 1052 |
{
|
| 1061 | 1053 |
run(INVALID); |
| 1062 | 1054 |
} |
| 1063 | 1055 |
|
| 1064 | 1056 |
template<class T> |
| 1065 | 1057 |
struct SetPredMapBase : public Base {
|
| 1066 | 1058 |
typedef T PredMap; |
| 1067 | 1059 |
static PredMap *createPredMap(const Digraph &) { return 0; };
|
| 1068 | 1060 |
SetPredMapBase(const TR &b) : TR(b) {}
|
| 1069 | 1061 |
}; |
| 1070 |
///\brief \ref named-func-param "Named parameter" |
|
| 1071 |
///for setting PredMap object. |
|
| 1062 |
|
|
| 1063 |
///\brief \ref named-templ-param "Named parameter" for setting |
|
| 1064 |
///the predecessor map. |
|
| 1072 | 1065 |
/// |
| 1073 |
///\ref named-func-param "Named parameter" |
|
| 1074 |
///for setting PredMap object. |
|
| 1066 |
///\ref named-templ-param "Named parameter" function for setting |
|
| 1067 |
///the map that stores the predecessor arcs of the nodes. |
|
| 1075 | 1068 |
template<class T> |
| 1076 | 1069 |
BfsWizard<SetPredMapBase<T> > predMap(const T &t) |
| 1077 | 1070 |
{
|
| 1078 | 1071 |
Base::_pred=reinterpret_cast<void*>(const_cast<T*>(&t)); |
| 1079 | 1072 |
return BfsWizard<SetPredMapBase<T> >(*this); |
| 1080 | 1073 |
} |
| 1081 | 1074 |
|
| 1082 | 1075 |
template<class T> |
| 1083 | 1076 |
struct SetReachedMapBase : public Base {
|
| 1084 | 1077 |
typedef T ReachedMap; |
| 1085 | 1078 |
static ReachedMap *createReachedMap(const Digraph &) { return 0; };
|
| 1086 | 1079 |
SetReachedMapBase(const TR &b) : TR(b) {}
|
| 1087 | 1080 |
}; |
| 1088 |
///\brief \ref named-func-param "Named parameter" |
|
| 1089 |
///for setting ReachedMap object. |
|
| 1081 |
|
|
| 1082 |
///\brief \ref named-templ-param "Named parameter" for setting |
|
| 1083 |
///the reached map. |
|
| 1090 | 1084 |
/// |
| 1091 |
/// \ref named-func-param "Named parameter" |
|
| 1092 |
///for setting ReachedMap object. |
|
| 1085 |
///\ref named-templ-param "Named parameter" function for setting |
|
| 1086 |
///the map that indicates which nodes are reached. |
|
| 1093 | 1087 |
template<class T> |
| 1094 | 1088 |
BfsWizard<SetReachedMapBase<T> > reachedMap(const T &t) |
| 1095 | 1089 |
{
|
| 1096 | 1090 |
Base::_reached=reinterpret_cast<void*>(const_cast<T*>(&t)); |
| 1097 | 1091 |
return BfsWizard<SetReachedMapBase<T> >(*this); |
| 1098 | 1092 |
} |
| 1099 | 1093 |
|
| 1100 | 1094 |
template<class T> |
| 1101 | 1095 |
struct SetDistMapBase : public Base {
|
| 1102 | 1096 |
typedef T DistMap; |
| 1103 | 1097 |
static DistMap *createDistMap(const Digraph &) { return 0; };
|
| 1104 | 1098 |
SetDistMapBase(const TR &b) : TR(b) {}
|
| 1105 | 1099 |
}; |
| 1106 |
///\brief \ref named-func-param "Named parameter" |
|
| 1107 |
///for setting DistMap object. |
|
| 1100 |
|
|
| 1101 |
///\brief \ref named-templ-param "Named parameter" for setting |
|
| 1102 |
///the distance map. |
|
| 1108 | 1103 |
/// |
| 1109 |
/// \ref named-func-param "Named parameter" |
|
| 1110 |
///for setting DistMap object. |
|
| 1104 |
///\ref named-templ-param "Named parameter" function for setting |
|
| 1105 |
///the map that stores the distances of the nodes calculated |
|
| 1106 |
///by the algorithm. |
|
| 1111 | 1107 |
template<class T> |
| 1112 | 1108 |
BfsWizard<SetDistMapBase<T> > distMap(const T &t) |
| 1113 | 1109 |
{
|
| 1114 | 1110 |
Base::_dist=reinterpret_cast<void*>(const_cast<T*>(&t)); |
| 1115 | 1111 |
return BfsWizard<SetDistMapBase<T> >(*this); |
| 1116 | 1112 |
} |
| 1117 | 1113 |
|
| 1118 | 1114 |
template<class T> |
| 1119 | 1115 |
struct SetProcessedMapBase : public Base {
|
| 1120 | 1116 |
typedef T ProcessedMap; |
| 1121 | 1117 |
static ProcessedMap *createProcessedMap(const Digraph &) { return 0; };
|
| 1122 | 1118 |
SetProcessedMapBase(const TR &b) : TR(b) {}
|
| 1123 | 1119 |
}; |
| 1124 |
///\brief \ref named-func-param "Named parameter" |
|
| 1125 |
///for setting ProcessedMap object. |
|
| 1120 |
|
|
| 1121 |
///\brief \ref named-func-param "Named parameter" for setting |
|
| 1122 |
///the processed map. |
|
| 1126 | 1123 |
/// |
| 1127 |
/// \ref named-func-param "Named parameter" |
|
| 1128 |
///for setting ProcessedMap object. |
|
| 1124 |
///\ref named-templ-param "Named parameter" function for setting |
|
| 1125 |
///the map that indicates which nodes are processed. |
|
| 1129 | 1126 |
template<class T> |
| 1130 | 1127 |
BfsWizard<SetProcessedMapBase<T> > processedMap(const T &t) |
| 1131 | 1128 |
{
|
| 1132 | 1129 |
Base::_processed=reinterpret_cast<void*>(const_cast<T*>(&t)); |
| 1133 | 1130 |
return BfsWizard<SetProcessedMapBase<T> >(*this); |
| 1134 | 1131 |
} |
| 1135 | 1132 |
|
| 1136 | 1133 |
template<class T> |
| 1137 | 1134 |
struct SetPathBase : public Base {
|
| 1138 | 1135 |
typedef T Path; |
| 1139 | 1136 |
SetPathBase(const TR &b) : TR(b) {}
|
| 1140 | 1137 |
}; |
| 1141 | 1138 |
///\brief \ref named-func-param "Named parameter" |
| 1142 | 1139 |
///for getting the shortest path to the target node. |
| 1143 | 1140 |
/// |
| 1144 | 1141 |
///\ref named-func-param "Named parameter" |
| 1145 | 1142 |
///for getting the shortest path to the target node. |
| 1146 | 1143 |
template<class T> |
| 1147 | 1144 |
BfsWizard<SetPathBase<T> > path(const T &t) |
| 1148 | 1145 |
{
|
| 1149 | 1146 |
Base::_path=reinterpret_cast<void*>(const_cast<T*>(&t)); |
| 1150 | 1147 |
return BfsWizard<SetPathBase<T> >(*this); |
| 1151 | 1148 |
} |
| 1152 | 1149 |
|
| 1153 | 1150 |
///\brief \ref named-func-param "Named parameter" |
| 1154 | 1151 |
///for getting the distance of the target node. |
| 1155 | 1152 |
/// |
| 1156 | 1153 |
///\ref named-func-param "Named parameter" |
| 1157 | 1154 |
///for getting the distance of the target node. |
| 1158 | 1155 |
BfsWizard dist(const int &d) |
| 1159 | 1156 |
{
|
| 1160 | 1157 |
Base::_di=const_cast<int*>(&d); |
| 1161 | 1158 |
return *this; |
| 1162 | 1159 |
} |
| 1163 | 1160 |
|
| 1164 | 1161 |
}; |
| 1165 | 1162 |
|
| 1166 | 1163 |
///Function-type interface for BFS algorithm. |
| 1167 | 1164 |
|
| 1168 | 1165 |
/// \ingroup search |
| 1169 | 1166 |
///Function-type interface for BFS algorithm. |
| 1170 | 1167 |
/// |
| 1171 | 1168 |
///This function also has several \ref named-func-param "named parameters", |
| 1172 | 1169 |
///they are declared as the members of class \ref BfsWizard. |
| 1173 | 1170 |
///The following examples show how to use these parameters. |
| 1174 | 1171 |
///\code |
| 1175 | 1172 |
/// // Compute shortest path from node s to each node |
| 1176 | 1173 |
/// bfs(g).predMap(preds).distMap(dists).run(s); |
| ... | ... |
@@ -1219,97 +1216,97 @@ |
| 1219 | 1216 |
/// \brief Called when an arc is examined but its target node is |
| 1220 | 1217 |
/// already discovered. |
| 1221 | 1218 |
/// |
| 1222 | 1219 |
/// This function is called when an arc is examined but its target node is |
| 1223 | 1220 |
/// already discovered. |
| 1224 | 1221 |
void examine(const Arc& arc) {}
|
| 1225 | 1222 |
}; |
| 1226 | 1223 |
#else |
| 1227 | 1224 |
template <typename GR> |
| 1228 | 1225 |
struct BfsVisitor {
|
| 1229 | 1226 |
typedef GR Digraph; |
| 1230 | 1227 |
typedef typename Digraph::Arc Arc; |
| 1231 | 1228 |
typedef typename Digraph::Node Node; |
| 1232 | 1229 |
void start(const Node&) {}
|
| 1233 | 1230 |
void reach(const Node&) {}
|
| 1234 | 1231 |
void process(const Node&) {}
|
| 1235 | 1232 |
void discover(const Arc&) {}
|
| 1236 | 1233 |
void examine(const Arc&) {}
|
| 1237 | 1234 |
|
| 1238 | 1235 |
template <typename _Visitor> |
| 1239 | 1236 |
struct Constraints {
|
| 1240 | 1237 |
void constraints() {
|
| 1241 | 1238 |
Arc arc; |
| 1242 | 1239 |
Node node; |
| 1243 | 1240 |
visitor.start(node); |
| 1244 | 1241 |
visitor.reach(node); |
| 1245 | 1242 |
visitor.process(node); |
| 1246 | 1243 |
visitor.discover(arc); |
| 1247 | 1244 |
visitor.examine(arc); |
| 1248 | 1245 |
} |
| 1249 | 1246 |
_Visitor& visitor; |
| 1250 | 1247 |
}; |
| 1251 | 1248 |
}; |
| 1252 | 1249 |
#endif |
| 1253 | 1250 |
|
| 1254 | 1251 |
/// \brief Default traits class of BfsVisit class. |
| 1255 | 1252 |
/// |
| 1256 | 1253 |
/// Default traits class of BfsVisit class. |
| 1257 | 1254 |
/// \tparam GR The type of the digraph the algorithm runs on. |
| 1258 | 1255 |
template<class GR> |
| 1259 | 1256 |
struct BfsVisitDefaultTraits {
|
| 1260 | 1257 |
|
| 1261 | 1258 |
/// \brief The type of the digraph the algorithm runs on. |
| 1262 | 1259 |
typedef GR Digraph; |
| 1263 | 1260 |
|
| 1264 | 1261 |
/// \brief The type of the map that indicates which nodes are reached. |
| 1265 | 1262 |
/// |
| 1266 | 1263 |
/// The type of the map that indicates which nodes are reached. |
| 1267 |
/// It must |
|
| 1264 |
/// It must conform to the \ref concepts::ReadWriteMap "ReadWriteMap" concept. |
|
| 1268 | 1265 |
typedef typename Digraph::template NodeMap<bool> ReachedMap; |
| 1269 | 1266 |
|
| 1270 | 1267 |
/// \brief Instantiates a ReachedMap. |
| 1271 | 1268 |
/// |
| 1272 | 1269 |
/// This function instantiates a ReachedMap. |
| 1273 | 1270 |
/// \param digraph is the digraph, to which |
| 1274 | 1271 |
/// we would like to define the ReachedMap. |
| 1275 | 1272 |
static ReachedMap *createReachedMap(const Digraph &digraph) {
|
| 1276 | 1273 |
return new ReachedMap(digraph); |
| 1277 | 1274 |
} |
| 1278 | 1275 |
|
| 1279 | 1276 |
}; |
| 1280 | 1277 |
|
| 1281 | 1278 |
/// \ingroup search |
| 1282 | 1279 |
/// |
| 1283 | 1280 |
/// \brief BFS algorithm class with visitor interface. |
| 1284 | 1281 |
/// |
| 1285 | 1282 |
/// This class provides an efficient implementation of the BFS algorithm |
| 1286 | 1283 |
/// with visitor interface. |
| 1287 | 1284 |
/// |
| 1288 | 1285 |
/// The BfsVisit class provides an alternative interface to the Bfs |
| 1289 | 1286 |
/// class. It works with callback mechanism, the BfsVisit object calls |
| 1290 | 1287 |
/// the member functions of the \c Visitor class on every BFS event. |
| 1291 | 1288 |
/// |
| 1292 | 1289 |
/// This interface of the BFS algorithm should be used in special cases |
| 1293 | 1290 |
/// when extra actions have to be performed in connection with certain |
| 1294 | 1291 |
/// events of the BFS algorithm. Otherwise consider to use Bfs or bfs() |
| 1295 | 1292 |
/// instead. |
| 1296 | 1293 |
/// |
| 1297 | 1294 |
/// \tparam GR The type of the digraph the algorithm runs on. |
| 1298 | 1295 |
/// The default type is \ref ListDigraph. |
| 1299 | 1296 |
/// The value of GR is not used directly by \ref BfsVisit, |
| 1300 | 1297 |
/// it is only passed to \ref BfsVisitDefaultTraits. |
| 1301 | 1298 |
/// \tparam VS The Visitor type that is used by the algorithm. |
| 1302 | 1299 |
/// \ref BfsVisitor "BfsVisitor<GR>" is an empty visitor, which |
| 1303 | 1300 |
/// does not observe the BFS events. If you want to observe the BFS |
| 1304 | 1301 |
/// events, you should implement your own visitor class. |
| 1305 | 1302 |
/// \tparam TR Traits class to set various data types used by the |
| 1306 | 1303 |
/// algorithm. The default traits class is |
| 1307 | 1304 |
/// \ref BfsVisitDefaultTraits "BfsVisitDefaultTraits<GR>". |
| 1308 | 1305 |
/// See \ref BfsVisitDefaultTraits for the documentation of |
| 1309 | 1306 |
/// a BFS visit traits class. |
| 1310 | 1307 |
#ifdef DOXYGEN |
| 1311 | 1308 |
template <typename GR, typename VS, typename TR> |
| 1312 | 1309 |
#else |
| 1313 | 1310 |
template <typename GR = ListDigraph, |
| 1314 | 1311 |
typename VS = BfsVisitor<GR>, |
| 1315 | 1312 |
typename TR = BfsVisitDefaultTraits<GR> > |
| ... | ... |
@@ -1380,98 +1377,98 @@ |
| 1380 | 1377 |
/// |
| 1381 | 1378 |
/// \ref named-templ-param "Named parameter" for setting ReachedMap type. |
| 1382 | 1379 |
template <class T> |
| 1383 | 1380 |
struct SetReachedMap : public BfsVisit< Digraph, Visitor, |
| 1384 | 1381 |
SetReachedMapTraits<T> > {
|
| 1385 | 1382 |
typedef BfsVisit< Digraph, Visitor, SetReachedMapTraits<T> > Create; |
| 1386 | 1383 |
}; |
| 1387 | 1384 |
///@} |
| 1388 | 1385 |
|
| 1389 | 1386 |
public: |
| 1390 | 1387 |
|
| 1391 | 1388 |
/// \brief Constructor. |
| 1392 | 1389 |
/// |
| 1393 | 1390 |
/// Constructor. |
| 1394 | 1391 |
/// |
| 1395 | 1392 |
/// \param digraph The digraph the algorithm runs on. |
| 1396 | 1393 |
/// \param visitor The visitor object of the algorithm. |
| 1397 | 1394 |
BfsVisit(const Digraph& digraph, Visitor& visitor) |
| 1398 | 1395 |
: _digraph(&digraph), _visitor(&visitor), |
| 1399 | 1396 |
_reached(0), local_reached(false) {}
|
| 1400 | 1397 |
|
| 1401 | 1398 |
/// \brief Destructor. |
| 1402 | 1399 |
~BfsVisit() {
|
| 1403 | 1400 |
if(local_reached) delete _reached; |
| 1404 | 1401 |
} |
| 1405 | 1402 |
|
| 1406 | 1403 |
/// \brief Sets the map that indicates which nodes are reached. |
| 1407 | 1404 |
/// |
| 1408 | 1405 |
/// Sets the map that indicates which nodes are reached. |
| 1409 | 1406 |
/// If you don't use this function before calling \ref run(Node) "run()" |
| 1410 | 1407 |
/// or \ref init(), an instance will be allocated automatically. |
| 1411 | 1408 |
/// The destructor deallocates this automatically allocated map, |
| 1412 | 1409 |
/// of course. |
| 1413 | 1410 |
/// \return <tt> (*this) </tt> |
| 1414 | 1411 |
BfsVisit &reachedMap(ReachedMap &m) {
|
| 1415 | 1412 |
if(local_reached) {
|
| 1416 | 1413 |
delete _reached; |
| 1417 | 1414 |
local_reached = false; |
| 1418 | 1415 |
} |
| 1419 | 1416 |
_reached = &m; |
| 1420 | 1417 |
return *this; |
| 1421 | 1418 |
} |
| 1422 | 1419 |
|
| 1423 | 1420 |
public: |
| 1424 | 1421 |
|
| 1425 | 1422 |
/// \name Execution Control |
| 1426 | 1423 |
/// The simplest way to execute the BFS algorithm is to use one of the |
| 1427 | 1424 |
/// member functions called \ref run(Node) "run()".\n |
| 1428 |
/// If you need more control on the execution, first you have to call |
|
| 1429 |
/// \ref init(), then you can add several source nodes with |
|
| 1425 |
/// If you need better control on the execution, you have to call |
|
| 1426 |
/// \ref init() first, then you can add several source nodes with |
|
| 1430 | 1427 |
/// \ref addSource(). Finally the actual path computation can be |
| 1431 | 1428 |
/// performed with one of the \ref start() functions. |
| 1432 | 1429 |
|
| 1433 | 1430 |
/// @{
|
| 1434 | 1431 |
|
| 1435 | 1432 |
/// \brief Initializes the internal data structures. |
| 1436 | 1433 |
/// |
| 1437 | 1434 |
/// Initializes the internal data structures. |
| 1438 | 1435 |
void init() {
|
| 1439 | 1436 |
create_maps(); |
| 1440 | 1437 |
_list.resize(countNodes(*_digraph)); |
| 1441 | 1438 |
_list_front = _list_back = -1; |
| 1442 | 1439 |
for (NodeIt u(*_digraph) ; u != INVALID ; ++u) {
|
| 1443 | 1440 |
_reached->set(u, false); |
| 1444 | 1441 |
} |
| 1445 | 1442 |
} |
| 1446 | 1443 |
|
| 1447 | 1444 |
/// \brief Adds a new source node. |
| 1448 | 1445 |
/// |
| 1449 | 1446 |
/// Adds a new source node to the set of nodes to be processed. |
| 1450 | 1447 |
void addSource(Node s) {
|
| 1451 | 1448 |
if(!(*_reached)[s]) {
|
| 1452 | 1449 |
_reached->set(s,true); |
| 1453 | 1450 |
_visitor->start(s); |
| 1454 | 1451 |
_visitor->reach(s); |
| 1455 | 1452 |
_list[++_list_back] = s; |
| 1456 | 1453 |
} |
| 1457 | 1454 |
} |
| 1458 | 1455 |
|
| 1459 | 1456 |
/// \brief Processes the next node. |
| 1460 | 1457 |
/// |
| 1461 | 1458 |
/// Processes the next node. |
| 1462 | 1459 |
/// |
| 1463 | 1460 |
/// \return The processed node. |
| 1464 | 1461 |
/// |
| 1465 | 1462 |
/// \pre The queue must not be empty. |
| 1466 | 1463 |
Node processNextNode() {
|
| 1467 | 1464 |
Node n = _list[++_list_front]; |
| 1468 | 1465 |
_visitor->process(n); |
| 1469 | 1466 |
Arc e; |
| 1470 | 1467 |
for (_digraph->firstOut(e, n); e != INVALID; _digraph->nextOut(e)) {
|
| 1471 | 1468 |
Node m = _digraph->target(e); |
| 1472 | 1469 |
if (!(*_reached)[m]) {
|
| 1473 | 1470 |
_visitor->discover(e); |
| 1474 | 1471 |
_visitor->reach(m); |
| 1475 | 1472 |
_reached->set(m, true); |
| 1476 | 1473 |
_list[++_list_back] = m; |
| 1477 | 1474 |
} else {
|
| ... | ... |
@@ -1690,63 +1687,63 @@ |
| 1690 | 1687 |
/// b.start(t); |
| 1691 | 1688 |
///\endcode |
| 1692 | 1689 |
bool run(Node s,Node t) {
|
| 1693 | 1690 |
init(); |
| 1694 | 1691 |
addSource(s); |
| 1695 | 1692 |
start(t); |
| 1696 | 1693 |
return reached(t); |
| 1697 | 1694 |
} |
| 1698 | 1695 |
|
| 1699 | 1696 |
/// \brief Runs the algorithm to visit all nodes in the digraph. |
| 1700 | 1697 |
/// |
| 1701 | 1698 |
/// This method runs the %BFS algorithm in order to |
| 1702 | 1699 |
/// compute the shortest path to each node. |
| 1703 | 1700 |
/// |
| 1704 | 1701 |
/// The algorithm computes |
| 1705 | 1702 |
/// - the shortest path tree (forest), |
| 1706 | 1703 |
/// - the distance of each node from the root(s). |
| 1707 | 1704 |
/// |
| 1708 | 1705 |
/// \note <tt>b.run(s)</tt> is just a shortcut of the following code. |
| 1709 | 1706 |
///\code |
| 1710 | 1707 |
/// b.init(); |
| 1711 | 1708 |
/// for (NodeIt n(gr); n != INVALID; ++n) {
|
| 1712 | 1709 |
/// if (!b.reached(n)) {
|
| 1713 | 1710 |
/// b.addSource(n); |
| 1714 | 1711 |
/// b.start(); |
| 1715 | 1712 |
/// } |
| 1716 | 1713 |
/// } |
| 1717 | 1714 |
///\endcode |
| 1718 | 1715 |
void run() {
|
| 1719 | 1716 |
init(); |
| 1720 | 1717 |
for (NodeIt it(*_digraph); it != INVALID; ++it) {
|
| 1721 | 1718 |
if (!reached(it)) {
|
| 1722 | 1719 |
addSource(it); |
| 1723 | 1720 |
start(); |
| 1724 | 1721 |
} |
| 1725 | 1722 |
} |
| 1726 | 1723 |
} |
| 1727 | 1724 |
|
| 1728 | 1725 |
///@} |
| 1729 | 1726 |
|
| 1730 | 1727 |
/// \name Query Functions |
| 1731 | 1728 |
/// The results of the BFS algorithm can be obtained using these |
| 1732 | 1729 |
/// functions.\n |
| 1733 | 1730 |
/// Either \ref run(Node) "run()" or \ref start() should be called |
| 1734 | 1731 |
/// before using them. |
| 1735 | 1732 |
|
| 1736 | 1733 |
///@{
|
| 1737 | 1734 |
|
| 1738 |
/// \brief Checks if |
|
| 1735 |
/// \brief Checks if the given node is reached from the root(s). |
|
| 1739 | 1736 |
/// |
| 1740 | 1737 |
/// Returns \c true if \c v is reached from the root(s). |
| 1741 | 1738 |
/// |
| 1742 | 1739 |
/// \pre Either \ref run(Node) "run()" or \ref init() |
| 1743 | 1740 |
/// must be called before using this function. |
| 1744 | 1741 |
bool reached(Node v) const { return (*_reached)[v]; }
|
| 1745 | 1742 |
|
| 1746 | 1743 |
///@} |
| 1747 | 1744 |
|
| 1748 | 1745 |
}; |
| 1749 | 1746 |
|
| 1750 | 1747 |
} //END OF NAMESPACE LEMON |
| 1751 | 1748 |
|
| 1752 | 1749 |
#endif |
| ... | ... |
@@ -4,96 +4,98 @@ |
| 4 | 4 |
* |
| 5 | 5 |
* Copyright (C) 2003-2009 |
| 6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
| 7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
| 8 | 8 |
* |
| 9 | 9 |
* Permission to use, modify and distribute this software is granted |
| 10 | 10 |
* provided that this copyright notice appears in all copies. For |
| 11 | 11 |
* precise terms see the accompanying LICENSE file. |
| 12 | 12 |
* |
| 13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
| 14 | 14 |
* express or implied, and with no claim as to its suitability for any |
| 15 | 15 |
* purpose. |
| 16 | 16 |
* |
| 17 | 17 |
*/ |
| 18 | 18 |
|
| 19 | 19 |
#ifndef LEMON_BITS_MAP_EXTENDER_H |
| 20 | 20 |
#define LEMON_BITS_MAP_EXTENDER_H |
| 21 | 21 |
|
| 22 | 22 |
#include <iterator> |
| 23 | 23 |
|
| 24 | 24 |
#include <lemon/bits/traits.h> |
| 25 | 25 |
|
| 26 | 26 |
#include <lemon/concept_check.h> |
| 27 | 27 |
#include <lemon/concepts/maps.h> |
| 28 | 28 |
|
| 29 | 29 |
//\file |
| 30 | 30 |
//\brief Extenders for iterable maps. |
| 31 | 31 |
|
| 32 | 32 |
namespace lemon {
|
| 33 | 33 |
|
| 34 | 34 |
// \ingroup graphbits |
| 35 | 35 |
// |
| 36 | 36 |
// \brief Extender for maps |
| 37 | 37 |
template <typename _Map> |
| 38 | 38 |
class MapExtender : public _Map {
|
| 39 | 39 |
typedef _Map Parent; |
| 40 | 40 |
typedef typename Parent::GraphType GraphType; |
| 41 | 41 |
|
| 42 | 42 |
public: |
| 43 | 43 |
|
| 44 | 44 |
typedef MapExtender Map; |
| 45 | 45 |
typedef typename Parent::Key Item; |
| 46 | 46 |
|
| 47 | 47 |
typedef typename Parent::Key Key; |
| 48 | 48 |
typedef typename Parent::Value Value; |
| 49 | 49 |
typedef typename Parent::Reference Reference; |
| 50 | 50 |
typedef typename Parent::ConstReference ConstReference; |
| 51 | 51 |
|
| 52 |
typedef typename Parent::ReferenceMapTag ReferenceMapTag; |
|
| 53 |
|
|
| 52 | 54 |
class MapIt; |
| 53 | 55 |
class ConstMapIt; |
| 54 | 56 |
|
| 55 | 57 |
friend class MapIt; |
| 56 | 58 |
friend class ConstMapIt; |
| 57 | 59 |
|
| 58 | 60 |
public: |
| 59 | 61 |
|
| 60 | 62 |
MapExtender(const GraphType& graph) |
| 61 | 63 |
: Parent(graph) {}
|
| 62 | 64 |
|
| 63 | 65 |
MapExtender(const GraphType& graph, const Value& value) |
| 64 | 66 |
: Parent(graph, value) {}
|
| 65 | 67 |
|
| 66 | 68 |
private: |
| 67 | 69 |
MapExtender& operator=(const MapExtender& cmap) {
|
| 68 | 70 |
return operator=<MapExtender>(cmap); |
| 69 | 71 |
} |
| 70 | 72 |
|
| 71 | 73 |
template <typename CMap> |
| 72 | 74 |
MapExtender& operator=(const CMap& cmap) {
|
| 73 | 75 |
Parent::operator=(cmap); |
| 74 | 76 |
return *this; |
| 75 | 77 |
} |
| 76 | 78 |
|
| 77 | 79 |
public: |
| 78 | 80 |
class MapIt : public Item {
|
| 79 | 81 |
typedef Item Parent; |
| 80 | 82 |
|
| 81 | 83 |
public: |
| 82 | 84 |
|
| 83 | 85 |
typedef typename Map::Value Value; |
| 84 | 86 |
|
| 85 | 87 |
MapIt() {}
|
| 86 | 88 |
|
| 87 | 89 |
MapIt(Invalid i) : Parent(i) { }
|
| 88 | 90 |
|
| 89 | 91 |
explicit MapIt(Map& _map) : map(_map) {
|
| 90 | 92 |
map.notifier()->first(*this); |
| 91 | 93 |
} |
| 92 | 94 |
|
| 93 | 95 |
MapIt(const Map& _map, const Item& item) |
| 94 | 96 |
: Parent(item), map(_map) {}
|
| 95 | 97 |
|
| 96 | 98 |
MapIt& operator++() {
|
| 97 | 99 |
map.notifier()->next(*this); |
| 98 | 100 |
return *this; |
| 99 | 101 |
} |
| ... | ... |
@@ -146,96 +148,98 @@ |
| 146 | 148 |
const Map& map; |
| 147 | 149 |
}; |
| 148 | 150 |
|
| 149 | 151 |
class ItemIt : public Item {
|
| 150 | 152 |
typedef Item Parent; |
| 151 | 153 |
|
| 152 | 154 |
public: |
| 153 | 155 |
|
| 154 | 156 |
ItemIt() {}
|
| 155 | 157 |
|
| 156 | 158 |
ItemIt(Invalid i) : Parent(i) { }
|
| 157 | 159 |
|
| 158 | 160 |
explicit ItemIt(Map& _map) : map(_map) {
|
| 159 | 161 |
map.notifier()->first(*this); |
| 160 | 162 |
} |
| 161 | 163 |
|
| 162 | 164 |
ItemIt(const Map& _map, const Item& item) |
| 163 | 165 |
: Parent(item), map(_map) {}
|
| 164 | 166 |
|
| 165 | 167 |
ItemIt& operator++() {
|
| 166 | 168 |
map.notifier()->next(*this); |
| 167 | 169 |
return *this; |
| 168 | 170 |
} |
| 169 | 171 |
|
| 170 | 172 |
protected: |
| 171 | 173 |
const Map& map; |
| 172 | 174 |
|
| 173 | 175 |
}; |
| 174 | 176 |
}; |
| 175 | 177 |
|
| 176 | 178 |
// \ingroup graphbits |
| 177 | 179 |
// |
| 178 | 180 |
// \brief Extender for maps which use a subset of the items. |
| 179 | 181 |
template <typename _Graph, typename _Map> |
| 180 | 182 |
class SubMapExtender : public _Map {
|
| 181 | 183 |
typedef _Map Parent; |
| 182 | 184 |
typedef _Graph GraphType; |
| 183 | 185 |
|
| 184 | 186 |
public: |
| 185 | 187 |
|
| 186 | 188 |
typedef SubMapExtender Map; |
| 187 | 189 |
typedef typename Parent::Key Item; |
| 188 | 190 |
|
| 189 | 191 |
typedef typename Parent::Key Key; |
| 190 | 192 |
typedef typename Parent::Value Value; |
| 191 | 193 |
typedef typename Parent::Reference Reference; |
| 192 | 194 |
typedef typename Parent::ConstReference ConstReference; |
| 193 | 195 |
|
| 196 |
typedef typename Parent::ReferenceMapTag ReferenceMapTag; |
|
| 197 |
|
|
| 194 | 198 |
class MapIt; |
| 195 | 199 |
class ConstMapIt; |
| 196 | 200 |
|
| 197 | 201 |
friend class MapIt; |
| 198 | 202 |
friend class ConstMapIt; |
| 199 | 203 |
|
| 200 | 204 |
public: |
| 201 | 205 |
|
| 202 | 206 |
SubMapExtender(const GraphType& _graph) |
| 203 | 207 |
: Parent(_graph), graph(_graph) {}
|
| 204 | 208 |
|
| 205 | 209 |
SubMapExtender(const GraphType& _graph, const Value& _value) |
| 206 | 210 |
: Parent(_graph, _value), graph(_graph) {}
|
| 207 | 211 |
|
| 208 | 212 |
private: |
| 209 | 213 |
SubMapExtender& operator=(const SubMapExtender& cmap) {
|
| 210 | 214 |
return operator=<MapExtender>(cmap); |
| 211 | 215 |
} |
| 212 | 216 |
|
| 213 | 217 |
template <typename CMap> |
| 214 | 218 |
SubMapExtender& operator=(const CMap& cmap) {
|
| 215 | 219 |
checkConcept<concepts::ReadMap<Key, Value>, CMap>(); |
| 216 | 220 |
Item it; |
| 217 | 221 |
for (graph.first(it); it != INVALID; graph.next(it)) {
|
| 218 | 222 |
Parent::set(it, cmap[it]); |
| 219 | 223 |
} |
| 220 | 224 |
return *this; |
| 221 | 225 |
} |
| 222 | 226 |
|
| 223 | 227 |
public: |
| 224 | 228 |
class MapIt : public Item {
|
| 225 | 229 |
typedef Item Parent; |
| 226 | 230 |
|
| 227 | 231 |
public: |
| 228 | 232 |
typedef typename Map::Value Value; |
| 229 | 233 |
|
| 230 | 234 |
MapIt() {}
|
| 231 | 235 |
|
| 232 | 236 |
MapIt(Invalid i) : Parent(i) { }
|
| 233 | 237 |
|
| 234 | 238 |
explicit MapIt(Map& _map) : map(_map) {
|
| 235 | 239 |
map.graph.first(*this); |
| 236 | 240 |
} |
| 237 | 241 |
|
| 238 | 242 |
MapIt(const Map& _map, const Item& item) |
| 239 | 243 |
: Parent(item), map(_map) {}
|
| 240 | 244 |
|
| 241 | 245 |
MapIt& operator++() {
|
| ... | ... |
@@ -27,114 +27,121 @@ |
| 27 | 27 |
///\file |
| 28 | 28 |
///\brief Push-relabel algorithm for finding a feasible circulation. |
| 29 | 29 |
/// |
| 30 | 30 |
namespace lemon {
|
| 31 | 31 |
|
| 32 | 32 |
/// \brief Default traits class of Circulation class. |
| 33 | 33 |
/// |
| 34 | 34 |
/// Default traits class of Circulation class. |
| 35 | 35 |
/// |
| 36 | 36 |
/// \tparam GR Type of the digraph the algorithm runs on. |
| 37 | 37 |
/// \tparam LM The type of the lower bound map. |
| 38 | 38 |
/// \tparam UM The type of the upper bound (capacity) map. |
| 39 | 39 |
/// \tparam SM The type of the supply map. |
| 40 | 40 |
template <typename GR, typename LM, |
| 41 | 41 |
typename UM, typename SM> |
| 42 | 42 |
struct CirculationDefaultTraits {
|
| 43 | 43 |
|
| 44 | 44 |
/// \brief The type of the digraph the algorithm runs on. |
| 45 | 45 |
typedef GR Digraph; |
| 46 | 46 |
|
| 47 | 47 |
/// \brief The type of the lower bound map. |
| 48 | 48 |
/// |
| 49 | 49 |
/// The type of the map that stores the lower bounds on the arcs. |
| 50 | 50 |
/// It must conform to the \ref concepts::ReadMap "ReadMap" concept. |
| 51 | 51 |
typedef LM LowerMap; |
| 52 | 52 |
|
| 53 | 53 |
/// \brief The type of the upper bound (capacity) map. |
| 54 | 54 |
/// |
| 55 | 55 |
/// The type of the map that stores the upper bounds (capacities) |
| 56 | 56 |
/// on the arcs. |
| 57 | 57 |
/// It must conform to the \ref concepts::ReadMap "ReadMap" concept. |
| 58 | 58 |
typedef UM UpperMap; |
| 59 | 59 |
|
| 60 | 60 |
/// \brief The type of supply map. |
| 61 | 61 |
/// |
| 62 | 62 |
/// The type of the map that stores the signed supply values of the |
| 63 | 63 |
/// nodes. |
| 64 | 64 |
/// It must conform to the \ref concepts::ReadMap "ReadMap" concept. |
| 65 | 65 |
typedef SM SupplyMap; |
| 66 | 66 |
|
| 67 | 67 |
/// \brief The type of the flow and supply values. |
| 68 | 68 |
typedef typename SupplyMap::Value Value; |
| 69 | 69 |
|
| 70 | 70 |
/// \brief The type of the map that stores the flow values. |
| 71 | 71 |
/// |
| 72 | 72 |
/// The type of the map that stores the flow values. |
| 73 | 73 |
/// It must conform to the \ref concepts::ReadWriteMap "ReadWriteMap" |
| 74 | 74 |
/// concept. |
| 75 |
#ifdef DOXYGEN |
|
| 76 |
typedef GR::ArcMap<Value> FlowMap; |
|
| 77 |
#else |
|
| 75 | 78 |
typedef typename Digraph::template ArcMap<Value> FlowMap; |
| 79 |
#endif |
|
| 76 | 80 |
|
| 77 | 81 |
/// \brief Instantiates a FlowMap. |
| 78 | 82 |
/// |
| 79 | 83 |
/// This function instantiates a \ref FlowMap. |
| 80 | 84 |
/// \param digraph The digraph for which we would like to define |
| 81 | 85 |
/// the flow map. |
| 82 | 86 |
static FlowMap* createFlowMap(const Digraph& digraph) {
|
| 83 | 87 |
return new FlowMap(digraph); |
| 84 | 88 |
} |
| 85 | 89 |
|
| 86 | 90 |
/// \brief The elevator type used by the algorithm. |
| 87 | 91 |
/// |
| 88 | 92 |
/// The elevator type used by the algorithm. |
| 89 | 93 |
/// |
| 90 |
/// \sa Elevator |
|
| 91 |
/// \sa LinkedElevator |
|
| 94 |
/// \sa Elevator, LinkedElevator |
|
| 95 |
#ifdef DOXYGEN |
|
| 96 |
typedef lemon::Elevator<GR, GR::Node> Elevator; |
|
| 97 |
#else |
|
| 92 | 98 |
typedef lemon::Elevator<Digraph, typename Digraph::Node> Elevator; |
| 99 |
#endif |
|
| 93 | 100 |
|
| 94 | 101 |
/// \brief Instantiates an Elevator. |
| 95 | 102 |
/// |
| 96 | 103 |
/// This function instantiates an \ref Elevator. |
| 97 | 104 |
/// \param digraph The digraph for which we would like to define |
| 98 | 105 |
/// the elevator. |
| 99 | 106 |
/// \param max_level The maximum level of the elevator. |
| 100 | 107 |
static Elevator* createElevator(const Digraph& digraph, int max_level) {
|
| 101 | 108 |
return new Elevator(digraph, max_level); |
| 102 | 109 |
} |
| 103 | 110 |
|
| 104 | 111 |
/// \brief The tolerance used by the algorithm |
| 105 | 112 |
/// |
| 106 | 113 |
/// The tolerance used by the algorithm to handle inexact computation. |
| 107 | 114 |
typedef lemon::Tolerance<Value> Tolerance; |
| 108 | 115 |
|
| 109 | 116 |
}; |
| 110 | 117 |
|
| 111 | 118 |
/** |
| 112 | 119 |
\brief Push-relabel algorithm for the network circulation problem. |
| 113 | 120 |
|
| 114 | 121 |
\ingroup max_flow |
| 115 | 122 |
This class implements a push-relabel algorithm for the \e network |
| 116 | 123 |
\e circulation problem. |
| 117 | 124 |
It is to find a feasible circulation when lower and upper bounds |
| 118 | 125 |
are given for the flow values on the arcs and lower bounds are |
| 119 | 126 |
given for the difference between the outgoing and incoming flow |
| 120 | 127 |
at the nodes. |
| 121 | 128 |
|
| 122 | 129 |
The exact formulation of this problem is the following. |
| 123 | 130 |
Let \f$G=(V,A)\f$ be a digraph, \f$lower: A\rightarrow\mathbf{R}\f$
|
| 124 | 131 |
\f$upper: A\rightarrow\mathbf{R}\cup\{\infty\}\f$ denote the lower and
|
| 125 | 132 |
upper bounds on the arcs, for which \f$lower(uv) \leq upper(uv)\f$ |
| 126 | 133 |
holds for all \f$uv\in A\f$, and \f$sup: V\rightarrow\mathbf{R}\f$
|
| 127 | 134 |
denotes the signed supply values of the nodes. |
| 128 | 135 |
If \f$sup(u)>0\f$, then \f$u\f$ is a supply node with \f$sup(u)\f$ |
| 129 | 136 |
supply, if \f$sup(u)<0\f$, then \f$u\f$ is a demand node with |
| 130 | 137 |
\f$-sup(u)\f$ demand. |
| 131 | 138 |
A feasible circulation is an \f$f: A\rightarrow\mathbf{R}\f$
|
| 132 | 139 |
solution of the following problem. |
| 133 | 140 |
|
| 134 | 141 |
\f[ \sum_{uv\in A} f(uv) - \sum_{vu\in A} f(vu)
|
| 135 | 142 |
\geq sup(u) \quad \forall u\in V, \f] |
| 136 | 143 |
\f[ lower(uv) \leq f(uv) \leq upper(uv) \quad \forall uv\in A. \f] |
| 137 | 144 |
|
| 138 | 145 |
The sum of the supply values, i.e. \f$\sum_{u\in V} sup(u)\f$ must be
|
| 139 | 146 |
zero or negative in order to have a feasible solution (since the sum |
| 140 | 147 |
of the expressions on the left-hand side of the inequalities is zero). |
| ... | ... |
@@ -424,98 +431,98 @@ |
| 424 | 431 |
} |
| 425 | 432 |
|
| 426 | 433 |
/// \brief Sets the elevator used by algorithm. |
| 427 | 434 |
/// |
| 428 | 435 |
/// Sets the elevator used by algorithm. |
| 429 | 436 |
/// If you don't use this function before calling \ref run() or |
| 430 | 437 |
/// \ref init(), an instance will be allocated automatically. |
| 431 | 438 |
/// The destructor deallocates this automatically allocated elevator, |
| 432 | 439 |
/// of course. |
| 433 | 440 |
/// \return <tt>(*this)</tt> |
| 434 | 441 |
Circulation& elevator(Elevator& elevator) {
|
| 435 | 442 |
if (_local_level) {
|
| 436 | 443 |
delete _level; |
| 437 | 444 |
_local_level = false; |
| 438 | 445 |
} |
| 439 | 446 |
_level = &elevator; |
| 440 | 447 |
return *this; |
| 441 | 448 |
} |
| 442 | 449 |
|
| 443 | 450 |
/// \brief Returns a const reference to the elevator. |
| 444 | 451 |
/// |
| 445 | 452 |
/// Returns a const reference to the elevator. |
| 446 | 453 |
/// |
| 447 | 454 |
/// \pre Either \ref run() or \ref init() must be called before |
| 448 | 455 |
/// using this function. |
| 449 | 456 |
const Elevator& elevator() const {
|
| 450 | 457 |
return *_level; |
| 451 | 458 |
} |
| 452 | 459 |
|
| 453 | 460 |
/// \brief Sets the tolerance used by the algorithm. |
| 454 | 461 |
/// |
| 455 | 462 |
/// Sets the tolerance object used by the algorithm. |
| 456 | 463 |
/// \return <tt>(*this)</tt> |
| 457 | 464 |
Circulation& tolerance(const Tolerance& tolerance) {
|
| 458 | 465 |
_tol = tolerance; |
| 459 | 466 |
return *this; |
| 460 | 467 |
} |
| 461 | 468 |
|
| 462 | 469 |
/// \brief Returns a const reference to the tolerance. |
| 463 | 470 |
/// |
| 464 | 471 |
/// Returns a const reference to the tolerance object used by |
| 465 | 472 |
/// the algorithm. |
| 466 | 473 |
const Tolerance& tolerance() const {
|
| 467 | 474 |
return _tol; |
| 468 | 475 |
} |
| 469 | 476 |
|
| 470 | 477 |
/// \name Execution Control |
| 471 | 478 |
/// The simplest way to execute the algorithm is to call \ref run().\n |
| 472 |
/// If you need more control on the initial solution or the execution, |
|
| 473 |
/// first you have to call one of the \ref init() functions, then |
|
| 479 |
/// If you need better control on the initial solution or the execution, |
|
| 480 |
/// you have to call one of the \ref init() functions first, then |
|
| 474 | 481 |
/// the \ref start() function. |
| 475 | 482 |
|
| 476 | 483 |
///@{
|
| 477 | 484 |
|
| 478 | 485 |
/// Initializes the internal data structures. |
| 479 | 486 |
|
| 480 | 487 |
/// Initializes the internal data structures and sets all flow values |
| 481 | 488 |
/// to the lower bound. |
| 482 | 489 |
void init() |
| 483 | 490 |
{
|
| 484 | 491 |
LEMON_DEBUG(checkBoundMaps(), |
| 485 | 492 |
"Upper bounds must be greater or equal to the lower bounds"); |
| 486 | 493 |
|
| 487 | 494 |
createStructures(); |
| 488 | 495 |
|
| 489 | 496 |
for(NodeIt n(_g);n!=INVALID;++n) {
|
| 490 | 497 |
(*_excess)[n] = (*_supply)[n]; |
| 491 | 498 |
} |
| 492 | 499 |
|
| 493 | 500 |
for (ArcIt e(_g);e!=INVALID;++e) {
|
| 494 | 501 |
_flow->set(e, (*_lo)[e]); |
| 495 | 502 |
(*_excess)[_g.target(e)] += (*_flow)[e]; |
| 496 | 503 |
(*_excess)[_g.source(e)] -= (*_flow)[e]; |
| 497 | 504 |
} |
| 498 | 505 |
|
| 499 | 506 |
// global relabeling tested, but in general case it provides |
| 500 | 507 |
// worse performance for random digraphs |
| 501 | 508 |
_level->initStart(); |
| 502 | 509 |
for(NodeIt n(_g);n!=INVALID;++n) |
| 503 | 510 |
_level->initAddItem(n); |
| 504 | 511 |
_level->initFinish(); |
| 505 | 512 |
for(NodeIt n(_g);n!=INVALID;++n) |
| 506 | 513 |
if(_tol.positive((*_excess)[n])) |
| 507 | 514 |
_level->activate(n); |
| 508 | 515 |
} |
| 509 | 516 |
|
| 510 | 517 |
/// Initializes the internal data structures using a greedy approach. |
| 511 | 518 |
|
| 512 | 519 |
/// Initializes the internal data structures using a greedy approach |
| 513 | 520 |
/// to construct the initial solution. |
| 514 | 521 |
void greedyInit() |
| 515 | 522 |
{
|
| 516 | 523 |
LEMON_DEBUG(checkBoundMaps(), |
| 517 | 524 |
"Upper bounds must be greater or equal to the lower bounds"); |
| 518 | 525 |
|
| 519 | 526 |
createStructures(); |
| 520 | 527 |
|
| 521 | 528 |
for(NodeIt n(_g);n!=INVALID;++n) {
|
| ... | ... |
@@ -137,80 +137,81 @@ |
| 137 | 137 |
|
| 138 | 138 |
template<typename _ReadWriteMap> |
| 139 | 139 |
struct Constraints {
|
| 140 | 140 |
void constraints() {
|
| 141 | 141 |
checkConcept<ReadMap<K, T>, _ReadWriteMap >(); |
| 142 | 142 |
checkConcept<WriteMap<K, T>, _ReadWriteMap >(); |
| 143 | 143 |
} |
| 144 | 144 |
}; |
| 145 | 145 |
}; |
| 146 | 146 |
|
| 147 | 147 |
|
| 148 | 148 |
/// Dereferable map concept |
| 149 | 149 |
|
| 150 | 150 |
/// Dereferable map concept. |
| 151 | 151 |
/// |
| 152 | 152 |
template<typename K, typename T, typename R, typename CR> |
| 153 | 153 |
class ReferenceMap : public ReadWriteMap<K,T> |
| 154 | 154 |
{
|
| 155 | 155 |
public: |
| 156 | 156 |
/// Tag for reference maps. |
| 157 | 157 |
typedef True ReferenceMapTag; |
| 158 | 158 |
/// The key type of the map. |
| 159 | 159 |
typedef K Key; |
| 160 | 160 |
/// \brief The value type of the map. |
| 161 | 161 |
/// (The type of objects associated with the keys). |
| 162 | 162 |
typedef T Value; |
| 163 | 163 |
/// The reference type of the map. |
| 164 | 164 |
typedef R Reference; |
| 165 | 165 |
/// The const reference type of the map. |
| 166 | 166 |
typedef CR ConstReference; |
| 167 | 167 |
|
| 168 | 168 |
public: |
| 169 | 169 |
|
| 170 | 170 |
/// Returns a reference to the value associated with the given key. |
| 171 | 171 |
Reference operator[](const Key &) {
|
| 172 | 172 |
return *static_cast<Value *>(0); |
| 173 | 173 |
} |
| 174 | 174 |
|
| 175 | 175 |
/// Returns a const reference to the value associated with the given key. |
| 176 | 176 |
ConstReference operator[](const Key &) const {
|
| 177 | 177 |
return *static_cast<Value *>(0); |
| 178 | 178 |
} |
| 179 | 179 |
|
| 180 | 180 |
/// Sets the value associated with the given key. |
| 181 | 181 |
void set(const Key &k,const Value &t) { operator[](k)=t; }
|
| 182 | 182 |
|
| 183 | 183 |
template<typename _ReferenceMap> |
| 184 | 184 |
struct Constraints {
|
| 185 |
|
|
| 185 |
typename enable_if<typename _ReferenceMap::ReferenceMapTag, void>::type |
|
| 186 |
constraints() {
|
|
| 186 | 187 |
checkConcept<ReadWriteMap<K, T>, _ReferenceMap >(); |
| 187 | 188 |
ref = m[key]; |
| 188 | 189 |
m[key] = val; |
| 189 | 190 |
m[key] = ref; |
| 190 | 191 |
m[key] = cref; |
| 191 | 192 |
own_ref = m[own_key]; |
| 192 | 193 |
m[own_key] = own_val; |
| 193 | 194 |
m[own_key] = own_ref; |
| 194 | 195 |
m[own_key] = own_cref; |
| 195 | 196 |
m[key] = m[own_key]; |
| 196 | 197 |
m[own_key] = m[key]; |
| 197 | 198 |
} |
| 198 | 199 |
const Key& key; |
| 199 | 200 |
Value& val; |
| 200 | 201 |
Reference ref; |
| 201 | 202 |
ConstReference cref; |
| 202 | 203 |
const typename _ReferenceMap::Key& own_key; |
| 203 | 204 |
typename _ReferenceMap::Value& own_val; |
| 204 | 205 |
typename _ReferenceMap::Reference own_ref; |
| 205 | 206 |
typename _ReferenceMap::ConstReference own_cref; |
| 206 | 207 |
_ReferenceMap& m; |
| 207 | 208 |
}; |
| 208 | 209 |
}; |
| 209 | 210 |
|
| 210 | 211 |
// @} |
| 211 | 212 |
|
| 212 | 213 |
} //namespace concepts |
| 213 | 214 |
|
| 214 | 215 |
} //namespace lemon |
| 215 | 216 |
|
| 216 | 217 |
#endif |
| ... | ... |
@@ -2,146 +2,147 @@ |
| 2 | 2 |
* |
| 3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
| 4 | 4 |
* |
| 5 | 5 |
* Copyright (C) 2003-2009 |
| 6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
| 7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
| 8 | 8 |
* |
| 9 | 9 |
* Permission to use, modify and distribute this software is granted |
| 10 | 10 |
* provided that this copyright notice appears in all copies. For |
| 11 | 11 |
* precise terms see the accompanying LICENSE file. |
| 12 | 12 |
* |
| 13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
| 14 | 14 |
* express or implied, and with no claim as to its suitability for any |
| 15 | 15 |
* purpose. |
| 16 | 16 |
* |
| 17 | 17 |
*/ |
| 18 | 18 |
|
| 19 | 19 |
#ifndef LEMON_DFS_H |
| 20 | 20 |
#define LEMON_DFS_H |
| 21 | 21 |
|
| 22 | 22 |
///\ingroup search |
| 23 | 23 |
///\file |
| 24 | 24 |
///\brief DFS algorithm. |
| 25 | 25 |
|
| 26 | 26 |
#include <lemon/list_graph.h> |
| 27 | 27 |
#include <lemon/bits/path_dump.h> |
| 28 | 28 |
#include <lemon/core.h> |
| 29 | 29 |
#include <lemon/error.h> |
| 30 | 30 |
#include <lemon/maps.h> |
| 31 | 31 |
#include <lemon/path.h> |
| 32 | 32 |
|
| 33 | 33 |
namespace lemon {
|
| 34 | 34 |
|
| 35 | 35 |
///Default traits class of Dfs class. |
| 36 | 36 |
|
| 37 | 37 |
///Default traits class of Dfs class. |
| 38 | 38 |
///\tparam GR Digraph type. |
| 39 | 39 |
template<class GR> |
| 40 | 40 |
struct DfsDefaultTraits |
| 41 | 41 |
{
|
| 42 | 42 |
///The type of the digraph the algorithm runs on. |
| 43 | 43 |
typedef GR Digraph; |
| 44 | 44 |
|
| 45 | 45 |
///\brief The type of the map that stores the predecessor |
| 46 | 46 |
///arcs of the %DFS paths. |
| 47 | 47 |
/// |
| 48 | 48 |
///The type of the map that stores the predecessor |
| 49 | 49 |
///arcs of the %DFS paths. |
| 50 |
///It must |
|
| 50 |
///It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
|
| 51 | 51 |
typedef typename Digraph::template NodeMap<typename Digraph::Arc> PredMap; |
| 52 | 52 |
///Instantiates a \c PredMap. |
| 53 | 53 |
|
| 54 | 54 |
///This function instantiates a \ref PredMap. |
| 55 | 55 |
///\param g is the digraph, to which we would like to define the |
| 56 | 56 |
///\ref PredMap. |
| 57 | 57 |
static PredMap *createPredMap(const Digraph &g) |
| 58 | 58 |
{
|
| 59 | 59 |
return new PredMap(g); |
| 60 | 60 |
} |
| 61 | 61 |
|
| 62 | 62 |
///The type of the map that indicates which nodes are processed. |
| 63 | 63 |
|
| 64 | 64 |
///The type of the map that indicates which nodes are processed. |
| 65 |
///It must |
|
| 65 |
///It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
|
| 66 |
///By default it is a NullMap. |
|
| 66 | 67 |
typedef NullMap<typename Digraph::Node,bool> ProcessedMap; |
| 67 | 68 |
///Instantiates a \c ProcessedMap. |
| 68 | 69 |
|
| 69 | 70 |
///This function instantiates a \ref ProcessedMap. |
| 70 | 71 |
///\param g is the digraph, to which |
| 71 | 72 |
///we would like to define the \ref ProcessedMap. |
| 72 | 73 |
#ifdef DOXYGEN |
| 73 | 74 |
static ProcessedMap *createProcessedMap(const Digraph &g) |
| 74 | 75 |
#else |
| 75 | 76 |
static ProcessedMap *createProcessedMap(const Digraph &) |
| 76 | 77 |
#endif |
| 77 | 78 |
{
|
| 78 | 79 |
return new ProcessedMap(); |
| 79 | 80 |
} |
| 80 | 81 |
|
| 81 | 82 |
///The type of the map that indicates which nodes are reached. |
| 82 | 83 |
|
| 83 | 84 |
///The type of the map that indicates which nodes are reached. |
| 84 |
///It must |
|
| 85 |
///It must conform to the \ref concepts::ReadWriteMap "ReadWriteMap" concept. |
|
| 85 | 86 |
typedef typename Digraph::template NodeMap<bool> ReachedMap; |
| 86 | 87 |
///Instantiates a \c ReachedMap. |
| 87 | 88 |
|
| 88 | 89 |
///This function instantiates a \ref ReachedMap. |
| 89 | 90 |
///\param g is the digraph, to which |
| 90 | 91 |
///we would like to define the \ref ReachedMap. |
| 91 | 92 |
static ReachedMap *createReachedMap(const Digraph &g) |
| 92 | 93 |
{
|
| 93 | 94 |
return new ReachedMap(g); |
| 94 | 95 |
} |
| 95 | 96 |
|
| 96 | 97 |
///The type of the map that stores the distances of the nodes. |
| 97 | 98 |
|
| 98 | 99 |
///The type of the map that stores the distances of the nodes. |
| 99 |
///It must |
|
| 100 |
///It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
|
| 100 | 101 |
typedef typename Digraph::template NodeMap<int> DistMap; |
| 101 | 102 |
///Instantiates a \c DistMap. |
| 102 | 103 |
|
| 103 | 104 |
///This function instantiates a \ref DistMap. |
| 104 | 105 |
///\param g is the digraph, to which we would like to define the |
| 105 | 106 |
///\ref DistMap. |
| 106 | 107 |
static DistMap *createDistMap(const Digraph &g) |
| 107 | 108 |
{
|
| 108 | 109 |
return new DistMap(g); |
| 109 | 110 |
} |
| 110 | 111 |
}; |
| 111 | 112 |
|
| 112 | 113 |
///%DFS algorithm class. |
| 113 | 114 |
|
| 114 | 115 |
///\ingroup search |
| 115 | 116 |
///This class provides an efficient implementation of the %DFS algorithm. |
| 116 | 117 |
/// |
| 117 | 118 |
///There is also a \ref dfs() "function-type interface" for the DFS |
| 118 | 119 |
///algorithm, which is convenient in the simplier cases and it can be |
| 119 | 120 |
///used easier. |
| 120 | 121 |
/// |
| 121 | 122 |
///\tparam GR The type of the digraph the algorithm runs on. |
| 122 | 123 |
///The default type is \ref ListDigraph. |
| 123 | 124 |
#ifdef DOXYGEN |
| 124 | 125 |
template <typename GR, |
| 125 | 126 |
typename TR> |
| 126 | 127 |
#else |
| 127 | 128 |
template <typename GR=ListDigraph, |
| 128 | 129 |
typename TR=DfsDefaultTraits<GR> > |
| 129 | 130 |
#endif |
| 130 | 131 |
class Dfs {
|
| 131 | 132 |
public: |
| 132 | 133 |
|
| 133 | 134 |
///The type of the digraph the algorithm runs on. |
| 134 | 135 |
typedef typename TR::Digraph Digraph; |
| 135 | 136 |
|
| 136 | 137 |
///\brief The type of the map that stores the predecessor arcs of the |
| 137 | 138 |
///DFS paths. |
| 138 | 139 |
typedef typename TR::PredMap PredMap; |
| 139 | 140 |
///The type of the map that stores the distances of the nodes. |
| 140 | 141 |
typedef typename TR::DistMap DistMap; |
| 141 | 142 |
///The type of the map that indicates which nodes are reached. |
| 142 | 143 |
typedef typename TR::ReachedMap ReachedMap; |
| 143 | 144 |
///The type of the map that indicates which nodes are processed. |
| 144 | 145 |
typedef typename TR::ProcessedMap ProcessedMap; |
| 145 | 146 |
///The type of the paths. |
| 146 | 147 |
typedef PredMapPath<Digraph, PredMap> Path; |
| 147 | 148 |
|
| ... | ... |
@@ -179,157 +180,157 @@ |
| 179 | 180 |
|
| 180 | 181 |
//Creates the maps if necessary. |
| 181 | 182 |
void create_maps() |
| 182 | 183 |
{
|
| 183 | 184 |
if(!_pred) {
|
| 184 | 185 |
local_pred = true; |
| 185 | 186 |
_pred = Traits::createPredMap(*G); |
| 186 | 187 |
} |
| 187 | 188 |
if(!_dist) {
|
| 188 | 189 |
local_dist = true; |
| 189 | 190 |
_dist = Traits::createDistMap(*G); |
| 190 | 191 |
} |
| 191 | 192 |
if(!_reached) {
|
| 192 | 193 |
local_reached = true; |
| 193 | 194 |
_reached = Traits::createReachedMap(*G); |
| 194 | 195 |
} |
| 195 | 196 |
if(!_processed) {
|
| 196 | 197 |
local_processed = true; |
| 197 | 198 |
_processed = Traits::createProcessedMap(*G); |
| 198 | 199 |
} |
| 199 | 200 |
} |
| 200 | 201 |
|
| 201 | 202 |
protected: |
| 202 | 203 |
|
| 203 | 204 |
Dfs() {}
|
| 204 | 205 |
|
| 205 | 206 |
public: |
| 206 | 207 |
|
| 207 | 208 |
typedef Dfs Create; |
| 208 | 209 |
|
| 209 | 210 |
///\name Named Template Parameters |
| 210 | 211 |
|
| 211 | 212 |
///@{
|
| 212 | 213 |
|
| 213 | 214 |
template <class T> |
| 214 | 215 |
struct SetPredMapTraits : public Traits {
|
| 215 | 216 |
typedef T PredMap; |
| 216 | 217 |
static PredMap *createPredMap(const Digraph &) |
| 217 | 218 |
{
|
| 218 | 219 |
LEMON_ASSERT(false, "PredMap is not initialized"); |
| 219 | 220 |
return 0; // ignore warnings |
| 220 | 221 |
} |
| 221 | 222 |
}; |
| 222 | 223 |
///\brief \ref named-templ-param "Named parameter" for setting |
| 223 | 224 |
///\c PredMap type. |
| 224 | 225 |
/// |
| 225 | 226 |
///\ref named-templ-param "Named parameter" for setting |
| 226 | 227 |
///\c PredMap type. |
| 227 |
///It must |
|
| 228 |
///It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
|
| 228 | 229 |
template <class T> |
| 229 | 230 |
struct SetPredMap : public Dfs<Digraph, SetPredMapTraits<T> > {
|
| 230 | 231 |
typedef Dfs<Digraph, SetPredMapTraits<T> > Create; |
| 231 | 232 |
}; |
| 232 | 233 |
|
| 233 | 234 |
template <class T> |
| 234 | 235 |
struct SetDistMapTraits : public Traits {
|
| 235 | 236 |
typedef T DistMap; |
| 236 | 237 |
static DistMap *createDistMap(const Digraph &) |
| 237 | 238 |
{
|
| 238 | 239 |
LEMON_ASSERT(false, "DistMap is not initialized"); |
| 239 | 240 |
return 0; // ignore warnings |
| 240 | 241 |
} |
| 241 | 242 |
}; |
| 242 | 243 |
///\brief \ref named-templ-param "Named parameter" for setting |
| 243 | 244 |
///\c DistMap type. |
| 244 | 245 |
/// |
| 245 | 246 |
///\ref named-templ-param "Named parameter" for setting |
| 246 | 247 |
///\c DistMap type. |
| 247 |
///It must |
|
| 248 |
///It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
|
| 248 | 249 |
template <class T> |
| 249 | 250 |
struct SetDistMap : public Dfs< Digraph, SetDistMapTraits<T> > {
|
| 250 | 251 |
typedef Dfs<Digraph, SetDistMapTraits<T> > Create; |
| 251 | 252 |
}; |
| 252 | 253 |
|
| 253 | 254 |
template <class T> |
| 254 | 255 |
struct SetReachedMapTraits : public Traits {
|
| 255 | 256 |
typedef T ReachedMap; |
| 256 | 257 |
static ReachedMap *createReachedMap(const Digraph &) |
| 257 | 258 |
{
|
| 258 | 259 |
LEMON_ASSERT(false, "ReachedMap is not initialized"); |
| 259 | 260 |
return 0; // ignore warnings |
| 260 | 261 |
} |
| 261 | 262 |
}; |
| 262 | 263 |
///\brief \ref named-templ-param "Named parameter" for setting |
| 263 | 264 |
///\c ReachedMap type. |
| 264 | 265 |
/// |
| 265 | 266 |
///\ref named-templ-param "Named parameter" for setting |
| 266 | 267 |
///\c ReachedMap type. |
| 267 |
///It must |
|
| 268 |
///It must conform to the \ref concepts::ReadWriteMap "ReadWriteMap" concept. |
|
| 268 | 269 |
template <class T> |
| 269 | 270 |
struct SetReachedMap : public Dfs< Digraph, SetReachedMapTraits<T> > {
|
| 270 | 271 |
typedef Dfs< Digraph, SetReachedMapTraits<T> > Create; |
| 271 | 272 |
}; |
| 272 | 273 |
|
| 273 | 274 |
template <class T> |
| 274 | 275 |
struct SetProcessedMapTraits : public Traits {
|
| 275 | 276 |
typedef T ProcessedMap; |
| 276 | 277 |
static ProcessedMap *createProcessedMap(const Digraph &) |
| 277 | 278 |
{
|
| 278 | 279 |
LEMON_ASSERT(false, "ProcessedMap is not initialized"); |
| 279 | 280 |
return 0; // ignore warnings |
| 280 | 281 |
} |
| 281 | 282 |
}; |
| 282 | 283 |
///\brief \ref named-templ-param "Named parameter" for setting |
| 283 | 284 |
///\c ProcessedMap type. |
| 284 | 285 |
/// |
| 285 | 286 |
///\ref named-templ-param "Named parameter" for setting |
| 286 | 287 |
///\c ProcessedMap type. |
| 287 |
///It must |
|
| 288 |
///It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
|
| 288 | 289 |
template <class T> |
| 289 | 290 |
struct SetProcessedMap : public Dfs< Digraph, SetProcessedMapTraits<T> > {
|
| 290 | 291 |
typedef Dfs< Digraph, SetProcessedMapTraits<T> > Create; |
| 291 | 292 |
}; |
| 292 | 293 |
|
| 293 | 294 |
struct SetStandardProcessedMapTraits : public Traits {
|
| 294 | 295 |
typedef typename Digraph::template NodeMap<bool> ProcessedMap; |
| 295 | 296 |
static ProcessedMap *createProcessedMap(const Digraph &g) |
| 296 | 297 |
{
|
| 297 | 298 |
return new ProcessedMap(g); |
| 298 | 299 |
} |
| 299 | 300 |
}; |
| 300 | 301 |
///\brief \ref named-templ-param "Named parameter" for setting |
| 301 | 302 |
///\c ProcessedMap type to be <tt>Digraph::NodeMap<bool></tt>. |
| 302 | 303 |
/// |
| 303 | 304 |
///\ref named-templ-param "Named parameter" for setting |
| 304 | 305 |
///\c ProcessedMap type to be <tt>Digraph::NodeMap<bool></tt>. |
| 305 | 306 |
///If you don't set it explicitly, it will be automatically allocated. |
| 306 | 307 |
struct SetStandardProcessedMap : |
| 307 | 308 |
public Dfs< Digraph, SetStandardProcessedMapTraits > {
|
| 308 | 309 |
typedef Dfs< Digraph, SetStandardProcessedMapTraits > Create; |
| 309 | 310 |
}; |
| 310 | 311 |
|
| 311 | 312 |
///@} |
| 312 | 313 |
|
| 313 | 314 |
public: |
| 314 | 315 |
|
| 315 | 316 |
///Constructor. |
| 316 | 317 |
|
| 317 | 318 |
///Constructor. |
| 318 | 319 |
///\param g The digraph the algorithm runs on. |
| 319 | 320 |
Dfs(const Digraph &g) : |
| 320 | 321 |
G(&g), |
| 321 | 322 |
_pred(NULL), local_pred(false), |
| 322 | 323 |
_dist(NULL), local_dist(false), |
| 323 | 324 |
_reached(NULL), local_reached(false), |
| 324 | 325 |
_processed(NULL), local_processed(false) |
| 325 | 326 |
{ }
|
| 326 | 327 |
|
| 327 | 328 |
///Destructor. |
| 328 | 329 |
~Dfs() |
| 329 | 330 |
{
|
| 330 | 331 |
if(local_pred) delete _pred; |
| 331 | 332 |
if(local_dist) delete _dist; |
| 332 | 333 |
if(local_reached) delete _reached; |
| 333 | 334 |
if(local_processed) delete _processed; |
| 334 | 335 |
} |
| 335 | 336 |
|
| ... | ... |
@@ -366,98 +367,98 @@ |
| 366 | 367 |
local_reached=false; |
| 367 | 368 |
} |
| 368 | 369 |
_reached = &m; |
| 369 | 370 |
return *this; |
| 370 | 371 |
} |
| 371 | 372 |
|
| 372 | 373 |
///Sets the map that indicates which nodes are processed. |
| 373 | 374 |
|
| 374 | 375 |
///Sets the map that indicates which nodes are processed. |
| 375 | 376 |
///If you don't use this function before calling \ref run(Node) "run()" |
| 376 | 377 |
///or \ref init(), an instance will be allocated automatically. |
| 377 | 378 |
///The destructor deallocates this automatically allocated map, |
| 378 | 379 |
///of course. |
| 379 | 380 |
///\return <tt> (*this) </tt> |
| 380 | 381 |
Dfs &processedMap(ProcessedMap &m) |
| 381 | 382 |
{
|
| 382 | 383 |
if(local_processed) {
|
| 383 | 384 |
delete _processed; |
| 384 | 385 |
local_processed=false; |
| 385 | 386 |
} |
| 386 | 387 |
_processed = &m; |
| 387 | 388 |
return *this; |
| 388 | 389 |
} |
| 389 | 390 |
|
| 390 | 391 |
///Sets the map that stores the distances of the nodes. |
| 391 | 392 |
|
| 392 | 393 |
///Sets the map that stores the distances of the nodes calculated by |
| 393 | 394 |
///the algorithm. |
| 394 | 395 |
///If you don't use this function before calling \ref run(Node) "run()" |
| 395 | 396 |
///or \ref init(), an instance will be allocated automatically. |
| 396 | 397 |
///The destructor deallocates this automatically allocated map, |
| 397 | 398 |
///of course. |
| 398 | 399 |
///\return <tt> (*this) </tt> |
| 399 | 400 |
Dfs &distMap(DistMap &m) |
| 400 | 401 |
{
|
| 401 | 402 |
if(local_dist) {
|
| 402 | 403 |
delete _dist; |
| 403 | 404 |
local_dist=false; |
| 404 | 405 |
} |
| 405 | 406 |
_dist = &m; |
| 406 | 407 |
return *this; |
| 407 | 408 |
} |
| 408 | 409 |
|
| 409 | 410 |
public: |
| 410 | 411 |
|
| 411 | 412 |
///\name Execution Control |
| 412 | 413 |
///The simplest way to execute the DFS algorithm is to use one of the |
| 413 | 414 |
///member functions called \ref run(Node) "run()".\n |
| 414 |
///If you need more control on the execution, first you have to call |
|
| 415 |
///\ref init(), then you can add a source node with \ref addSource() |
|
| 415 |
///If you need better control on the execution, you have to call |
|
| 416 |
///\ref init() first, then you can add a source node with \ref addSource() |
|
| 416 | 417 |
///and perform the actual computation with \ref start(). |
| 417 | 418 |
///This procedure can be repeated if there are nodes that have not |
| 418 | 419 |
///been reached. |
| 419 | 420 |
|
| 420 | 421 |
///@{
|
| 421 | 422 |
|
| 422 | 423 |
///\brief Initializes the internal data structures. |
| 423 | 424 |
/// |
| 424 | 425 |
///Initializes the internal data structures. |
| 425 | 426 |
void init() |
| 426 | 427 |
{
|
| 427 | 428 |
create_maps(); |
| 428 | 429 |
_stack.resize(countNodes(*G)); |
| 429 | 430 |
_stack_head=-1; |
| 430 | 431 |
for ( NodeIt u(*G) ; u!=INVALID ; ++u ) {
|
| 431 | 432 |
_pred->set(u,INVALID); |
| 432 | 433 |
_reached->set(u,false); |
| 433 | 434 |
_processed->set(u,false); |
| 434 | 435 |
} |
| 435 | 436 |
} |
| 436 | 437 |
|
| 437 | 438 |
///Adds a new source node. |
| 438 | 439 |
|
| 439 | 440 |
///Adds a new source node to the set of nodes to be processed. |
| 440 | 441 |
/// |
| 441 | 442 |
///\pre The stack must be empty. Otherwise the algorithm gives |
| 442 | 443 |
///wrong results. (One of the outgoing arcs of all the source nodes |
| 443 | 444 |
///except for the last one will not be visited and distances will |
| 444 | 445 |
///also be wrong.) |
| 445 | 446 |
void addSource(Node s) |
| 446 | 447 |
{
|
| 447 | 448 |
LEMON_DEBUG(emptyQueue(), "The stack is not empty."); |
| 448 | 449 |
if(!(*_reached)[s]) |
| 449 | 450 |
{
|
| 450 | 451 |
_reached->set(s,true); |
| 451 | 452 |
_pred->set(s,INVALID); |
| 452 | 453 |
OutArcIt e(*G,s); |
| 453 | 454 |
if(e!=INVALID) {
|
| 454 | 455 |
_stack[++_stack_head]=e; |
| 455 | 456 |
_dist->set(s,_stack_head); |
| 456 | 457 |
} |
| 457 | 458 |
else {
|
| 458 | 459 |
_processed->set(s,true); |
| 459 | 460 |
_dist->set(s,0); |
| 460 | 461 |
} |
| 461 | 462 |
} |
| 462 | 463 |
} |
| 463 | 464 |
|
| ... | ... |
@@ -624,485 +625,479 @@ |
| 624 | 625 |
/// d.start(t); |
| 625 | 626 |
///\endcode |
| 626 | 627 |
bool run(Node s,Node t) {
|
| 627 | 628 |
init(); |
| 628 | 629 |
addSource(s); |
| 629 | 630 |
start(t); |
| 630 | 631 |
return reached(t); |
| 631 | 632 |
} |
| 632 | 633 |
|
| 633 | 634 |
///Runs the algorithm to visit all nodes in the digraph. |
| 634 | 635 |
|
| 635 | 636 |
///This method runs the %DFS algorithm in order to compute the |
| 636 | 637 |
///%DFS path to each node. |
| 637 | 638 |
/// |
| 638 | 639 |
///The algorithm computes |
| 639 | 640 |
///- the %DFS tree (forest), |
| 640 | 641 |
///- the distance of each node from the root(s) in the %DFS tree. |
| 641 | 642 |
/// |
| 642 | 643 |
///\note <tt>d.run()</tt> is just a shortcut of the following code. |
| 643 | 644 |
///\code |
| 644 | 645 |
/// d.init(); |
| 645 | 646 |
/// for (NodeIt n(digraph); n != INVALID; ++n) {
|
| 646 | 647 |
/// if (!d.reached(n)) {
|
| 647 | 648 |
/// d.addSource(n); |
| 648 | 649 |
/// d.start(); |
| 649 | 650 |
/// } |
| 650 | 651 |
/// } |
| 651 | 652 |
///\endcode |
| 652 | 653 |
void run() {
|
| 653 | 654 |
init(); |
| 654 | 655 |
for (NodeIt it(*G); it != INVALID; ++it) {
|
| 655 | 656 |
if (!reached(it)) {
|
| 656 | 657 |
addSource(it); |
| 657 | 658 |
start(); |
| 658 | 659 |
} |
| 659 | 660 |
} |
| 660 | 661 |
} |
| 661 | 662 |
|
| 662 | 663 |
///@} |
| 663 | 664 |
|
| 664 | 665 |
///\name Query Functions |
| 665 | 666 |
///The results of the DFS algorithm can be obtained using these |
| 666 | 667 |
///functions.\n |
| 667 | 668 |
///Either \ref run(Node) "run()" or \ref start() should be called |
| 668 | 669 |
///before using them. |
| 669 | 670 |
|
| 670 | 671 |
///@{
|
| 671 | 672 |
|
| 672 |
///The DFS path to |
|
| 673 |
///The DFS path to the given node. |
|
| 673 | 674 |
|
| 674 |
///Returns the DFS path to |
|
| 675 |
///Returns the DFS path to the given node from the root(s). |
|
| 675 | 676 |
/// |
| 676 | 677 |
///\warning \c t should be reached from the root(s). |
| 677 | 678 |
/// |
| 678 | 679 |
///\pre Either \ref run(Node) "run()" or \ref init() |
| 679 | 680 |
///must be called before using this function. |
| 680 | 681 |
Path path(Node t) const { return Path(*G, *_pred, t); }
|
| 681 | 682 |
|
| 682 |
///The distance of |
|
| 683 |
///The distance of the given node from the root(s). |
|
| 683 | 684 |
|
| 684 |
///Returns the distance of |
|
| 685 |
///Returns the distance of the given node from the root(s). |
|
| 685 | 686 |
/// |
| 686 | 687 |
///\warning If node \c v is not reached from the root(s), then |
| 687 | 688 |
///the return value of this function is undefined. |
| 688 | 689 |
/// |
| 689 | 690 |
///\pre Either \ref run(Node) "run()" or \ref init() |
| 690 | 691 |
///must be called before using this function. |
| 691 | 692 |
int dist(Node v) const { return (*_dist)[v]; }
|
| 692 | 693 |
|
| 693 |
///Returns the 'previous arc' of the %DFS tree for |
|
| 694 |
///Returns the 'previous arc' of the %DFS tree for the given node. |
|
| 694 | 695 |
|
| 695 | 696 |
///This function returns the 'previous arc' of the %DFS tree for the |
| 696 | 697 |
///node \c v, i.e. it returns the last arc of a %DFS path from a |
| 697 | 698 |
///root to \c v. It is \c INVALID if \c v is not reached from the |
| 698 | 699 |
///root(s) or if \c v is a root. |
| 699 | 700 |
/// |
| 700 | 701 |
///The %DFS tree used here is equal to the %DFS tree used in |
| 701 |
///\ref predNode(). |
|
| 702 |
///\ref predNode() and \ref predMap(). |
|
| 702 | 703 |
/// |
| 703 | 704 |
///\pre Either \ref run(Node) "run()" or \ref init() |
| 704 | 705 |
///must be called before using this function. |
| 705 | 706 |
Arc predArc(Node v) const { return (*_pred)[v];}
|
| 706 | 707 |
|
| 707 |
///Returns the 'previous node' of the %DFS tree. |
|
| 708 |
///Returns the 'previous node' of the %DFS tree for the given node. |
|
| 708 | 709 |
|
| 709 | 710 |
///This function returns the 'previous node' of the %DFS |
| 710 | 711 |
///tree for the node \c v, i.e. it returns the last but one node |
| 711 |
/// |
|
| 712 |
///of a %DFS path from a root to \c v. It is \c INVALID |
|
| 712 | 713 |
///if \c v is not reached from the root(s) or if \c v is a root. |
| 713 | 714 |
/// |
| 714 | 715 |
///The %DFS tree used here is equal to the %DFS tree used in |
| 715 |
///\ref predArc(). |
|
| 716 |
///\ref predArc() and \ref predMap(). |
|
| 716 | 717 |
/// |
| 717 | 718 |
///\pre Either \ref run(Node) "run()" or \ref init() |
| 718 | 719 |
///must be called before using this function. |
| 719 | 720 |
Node predNode(Node v) const { return (*_pred)[v]==INVALID ? INVALID:
|
| 720 | 721 |
G->source((*_pred)[v]); } |
| 721 | 722 |
|
| 722 | 723 |
///\brief Returns a const reference to the node map that stores the |
| 723 | 724 |
///distances of the nodes. |
| 724 | 725 |
/// |
| 725 | 726 |
///Returns a const reference to the node map that stores the |
| 726 | 727 |
///distances of the nodes calculated by the algorithm. |
| 727 | 728 |
/// |
| 728 | 729 |
///\pre Either \ref run(Node) "run()" or \ref init() |
| 729 | 730 |
///must be called before using this function. |
| 730 | 731 |
const DistMap &distMap() const { return *_dist;}
|
| 731 | 732 |
|
| 732 | 733 |
///\brief Returns a const reference to the node map that stores the |
| 733 | 734 |
///predecessor arcs. |
| 734 | 735 |
/// |
| 735 | 736 |
///Returns a const reference to the node map that stores the predecessor |
| 736 |
///arcs, which form the DFS tree. |
|
| 737 |
///arcs, which form the DFS tree (forest). |
|
| 737 | 738 |
/// |
| 738 | 739 |
///\pre Either \ref run(Node) "run()" or \ref init() |
| 739 | 740 |
///must be called before using this function. |
| 740 | 741 |
const PredMap &predMap() const { return *_pred;}
|
| 741 | 742 |
|
| 742 |
///Checks if |
|
| 743 |
///Checks if the given node. node is reached from the root(s). |
|
| 743 | 744 |
|
| 744 | 745 |
///Returns \c true if \c v is reached from the root(s). |
| 745 | 746 |
/// |
| 746 | 747 |
///\pre Either \ref run(Node) "run()" or \ref init() |
| 747 | 748 |
///must be called before using this function. |
| 748 | 749 |
bool reached(Node v) const { return (*_reached)[v]; }
|
| 749 | 750 |
|
| 750 | 751 |
///@} |
| 751 | 752 |
}; |
| 752 | 753 |
|
| 753 | 754 |
///Default traits class of dfs() function. |
| 754 | 755 |
|
| 755 | 756 |
///Default traits class of dfs() function. |
| 756 | 757 |
///\tparam GR Digraph type. |
| 757 | 758 |
template<class GR> |
| 758 | 759 |
struct DfsWizardDefaultTraits |
| 759 | 760 |
{
|
| 760 | 761 |
///The type of the digraph the algorithm runs on. |
| 761 | 762 |
typedef GR Digraph; |
| 762 | 763 |
|
| 763 | 764 |
///\brief The type of the map that stores the predecessor |
| 764 | 765 |
///arcs of the %DFS paths. |
| 765 | 766 |
/// |
| 766 | 767 |
///The type of the map that stores the predecessor |
| 767 | 768 |
///arcs of the %DFS paths. |
| 768 |
///It must |
|
| 769 |
///It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
|
| 769 | 770 |
typedef typename Digraph::template NodeMap<typename Digraph::Arc> PredMap; |
| 770 | 771 |
///Instantiates a PredMap. |
| 771 | 772 |
|
| 772 | 773 |
///This function instantiates a PredMap. |
| 773 | 774 |
///\param g is the digraph, to which we would like to define the |
| 774 | 775 |
///PredMap. |
| 775 | 776 |
static PredMap *createPredMap(const Digraph &g) |
| 776 | 777 |
{
|
| 777 | 778 |
return new PredMap(g); |
| 778 | 779 |
} |
| 779 | 780 |
|
| 780 | 781 |
///The type of the map that indicates which nodes are processed. |
| 781 | 782 |
|
| 782 | 783 |
///The type of the map that indicates which nodes are processed. |
| 783 |
///It must |
|
| 784 |
///It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
|
| 784 | 785 |
///By default it is a NullMap. |
| 785 | 786 |
typedef NullMap<typename Digraph::Node,bool> ProcessedMap; |
| 786 | 787 |
///Instantiates a ProcessedMap. |
| 787 | 788 |
|
| 788 | 789 |
///This function instantiates a ProcessedMap. |
| 789 | 790 |
///\param g is the digraph, to which |
| 790 | 791 |
///we would like to define the ProcessedMap. |
| 791 | 792 |
#ifdef DOXYGEN |
| 792 | 793 |
static ProcessedMap *createProcessedMap(const Digraph &g) |
| 793 | 794 |
#else |
| 794 | 795 |
static ProcessedMap *createProcessedMap(const Digraph &) |
| 795 | 796 |
#endif |
| 796 | 797 |
{
|
| 797 | 798 |
return new ProcessedMap(); |
| 798 | 799 |
} |
| 799 | 800 |
|
| 800 | 801 |
///The type of the map that indicates which nodes are reached. |
| 801 | 802 |
|
| 802 | 803 |
///The type of the map that indicates which nodes are reached. |
| 803 |
///It must |
|
| 804 |
///It must conform to the \ref concepts::ReadWriteMap "ReadWriteMap" concept. |
|
| 804 | 805 |
typedef typename Digraph::template NodeMap<bool> ReachedMap; |
| 805 | 806 |
///Instantiates a ReachedMap. |
| 806 | 807 |
|
| 807 | 808 |
///This function instantiates a ReachedMap. |
| 808 | 809 |
///\param g is the digraph, to which |
| 809 | 810 |
///we would like to define the ReachedMap. |
| 810 | 811 |
static ReachedMap *createReachedMap(const Digraph &g) |
| 811 | 812 |
{
|
| 812 | 813 |
return new ReachedMap(g); |
| 813 | 814 |
} |
| 814 | 815 |
|
| 815 | 816 |
///The type of the map that stores the distances of the nodes. |
| 816 | 817 |
|
| 817 | 818 |
///The type of the map that stores the distances of the nodes. |
| 818 |
///It must |
|
| 819 |
///It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
|
| 819 | 820 |
typedef typename Digraph::template NodeMap<int> DistMap; |
| 820 | 821 |
///Instantiates a DistMap. |
| 821 | 822 |
|
| 822 | 823 |
///This function instantiates a DistMap. |
| 823 | 824 |
///\param g is the digraph, to which we would like to define |
| 824 | 825 |
///the DistMap |
| 825 | 826 |
static DistMap *createDistMap(const Digraph &g) |
| 826 | 827 |
{
|
| 827 | 828 |
return new DistMap(g); |
| 828 | 829 |
} |
| 829 | 830 |
|
| 830 | 831 |
///The type of the DFS paths. |
| 831 | 832 |
|
| 832 | 833 |
///The type of the DFS paths. |
| 833 |
///It must |
|
| 834 |
///It must conform to the \ref concepts::Path "Path" concept. |
|
| 834 | 835 |
typedef lemon::Path<Digraph> Path; |
| 835 | 836 |
}; |
| 836 | 837 |
|
| 837 | 838 |
/// Default traits class used by DfsWizard |
| 838 | 839 |
|
| 839 |
/// To make it easier to use Dfs algorithm |
|
| 840 |
/// we have created a wizard class. |
|
| 841 |
/// This \ref DfsWizard class needs default traits, |
|
| 842 |
/// as well as the \ref Dfs class. |
|
| 843 |
/// The \ref DfsWizardBase is a class to be the default traits of the |
|
| 844 |
/// \ref DfsWizard class. |
|
| 840 |
/// Default traits class used by DfsWizard. |
|
| 841 |
/// \tparam GR The type of the digraph. |
|
| 845 | 842 |
template<class GR> |
| 846 | 843 |
class DfsWizardBase : public DfsWizardDefaultTraits<GR> |
| 847 | 844 |
{
|
| 848 | 845 |
|
| 849 | 846 |
typedef DfsWizardDefaultTraits<GR> Base; |
| 850 | 847 |
protected: |
| 851 | 848 |
//The type of the nodes in the digraph. |
| 852 | 849 |
typedef typename Base::Digraph::Node Node; |
| 853 | 850 |
|
| 854 | 851 |
//Pointer to the digraph the algorithm runs on. |
| 855 | 852 |
void *_g; |
| 856 | 853 |
//Pointer to the map of reached nodes. |
| 857 | 854 |
void *_reached; |
| 858 | 855 |
//Pointer to the map of processed nodes. |
| 859 | 856 |
void *_processed; |
| 860 | 857 |
//Pointer to the map of predecessors arcs. |
| 861 | 858 |
void *_pred; |
| 862 | 859 |
//Pointer to the map of distances. |
| 863 | 860 |
void *_dist; |
| 864 | 861 |
//Pointer to the DFS path to the target node. |
| 865 | 862 |
void *_path; |
| 866 | 863 |
//Pointer to the distance of the target node. |
| 867 | 864 |
int *_di; |
| 868 | 865 |
|
| 869 | 866 |
public: |
| 870 | 867 |
/// Constructor. |
| 871 | 868 |
|
| 872 |
/// This constructor does not require parameters, |
|
| 869 |
/// This constructor does not require parameters, it initiates |
|
| 873 | 870 |
/// all of the attributes to \c 0. |
| 874 | 871 |
DfsWizardBase() : _g(0), _reached(0), _processed(0), _pred(0), |
| 875 | 872 |
_dist(0), _path(0), _di(0) {}
|
| 876 | 873 |
|
| 877 | 874 |
/// Constructor. |
| 878 | 875 |
|
| 879 | 876 |
/// This constructor requires one parameter, |
| 880 | 877 |
/// others are initiated to \c 0. |
| 881 | 878 |
/// \param g The digraph the algorithm runs on. |
| 882 | 879 |
DfsWizardBase(const GR &g) : |
| 883 | 880 |
_g(reinterpret_cast<void*>(const_cast<GR*>(&g))), |
| 884 | 881 |
_reached(0), _processed(0), _pred(0), _dist(0), _path(0), _di(0) {}
|
| 885 | 882 |
|
| 886 | 883 |
}; |
| 887 | 884 |
|
| 888 | 885 |
/// Auxiliary class for the function-type interface of DFS algorithm. |
| 889 | 886 |
|
| 890 | 887 |
/// This auxiliary class is created to implement the |
| 891 | 888 |
/// \ref dfs() "function-type interface" of \ref Dfs algorithm. |
| 892 | 889 |
/// It does not have own \ref run(Node) "run()" method, it uses the |
| 893 | 890 |
/// functions and features of the plain \ref Dfs. |
| 894 | 891 |
/// |
| 895 | 892 |
/// This class should only be used through the \ref dfs() function, |
| 896 | 893 |
/// which makes it easier to use the algorithm. |
| 897 | 894 |
template<class TR> |
| 898 | 895 |
class DfsWizard : public TR |
| 899 | 896 |
{
|
| 900 | 897 |
typedef TR Base; |
| 901 | 898 |
|
| 902 |
///The type of the digraph the algorithm runs on. |
|
| 903 | 899 |
typedef typename TR::Digraph Digraph; |
| 904 | 900 |
|
| 905 | 901 |
typedef typename Digraph::Node Node; |
| 906 | 902 |
typedef typename Digraph::NodeIt NodeIt; |
| 907 | 903 |
typedef typename Digraph::Arc Arc; |
| 908 | 904 |
typedef typename Digraph::OutArcIt OutArcIt; |
| 909 | 905 |
|
| 910 |
///\brief The type of the map that stores the predecessor |
|
| 911 |
///arcs of the DFS paths. |
|
| 912 | 906 |
typedef typename TR::PredMap PredMap; |
| 913 |
///\brief The type of the map that stores the distances of the nodes. |
|
| 914 | 907 |
typedef typename TR::DistMap DistMap; |
| 915 |
///\brief The type of the map that indicates which nodes are reached. |
|
| 916 | 908 |
typedef typename TR::ReachedMap ReachedMap; |
| 917 |
///\brief The type of the map that indicates which nodes are processed. |
|
| 918 | 909 |
typedef typename TR::ProcessedMap ProcessedMap; |
| 919 |
///The type of the DFS paths |
|
| 920 | 910 |
typedef typename TR::Path Path; |
| 921 | 911 |
|
| 922 | 912 |
public: |
| 923 | 913 |
|
| 924 | 914 |
/// Constructor. |
| 925 | 915 |
DfsWizard() : TR() {}
|
| 926 | 916 |
|
| 927 | 917 |
/// Constructor that requires parameters. |
| 928 | 918 |
|
| 929 | 919 |
/// Constructor that requires parameters. |
| 930 | 920 |
/// These parameters will be the default values for the traits class. |
| 931 | 921 |
/// \param g The digraph the algorithm runs on. |
| 932 | 922 |
DfsWizard(const Digraph &g) : |
| 933 | 923 |
TR(g) {}
|
| 934 | 924 |
|
| 935 | 925 |
///Copy constructor |
| 936 | 926 |
DfsWizard(const TR &b) : TR(b) {}
|
| 937 | 927 |
|
| 938 | 928 |
~DfsWizard() {}
|
| 939 | 929 |
|
| 940 | 930 |
///Runs DFS algorithm from the given source node. |
| 941 | 931 |
|
| 942 | 932 |
///This method runs DFS algorithm from node \c s |
| 943 | 933 |
///in order to compute the DFS path to each node. |
| 944 | 934 |
void run(Node s) |
| 945 | 935 |
{
|
| 946 | 936 |
Dfs<Digraph,TR> alg(*reinterpret_cast<const Digraph*>(Base::_g)); |
| 947 | 937 |
if (Base::_pred) |
| 948 | 938 |
alg.predMap(*reinterpret_cast<PredMap*>(Base::_pred)); |
| 949 | 939 |
if (Base::_dist) |
| 950 | 940 |
alg.distMap(*reinterpret_cast<DistMap*>(Base::_dist)); |
| 951 | 941 |
if (Base::_reached) |
| 952 | 942 |
alg.reachedMap(*reinterpret_cast<ReachedMap*>(Base::_reached)); |
| 953 | 943 |
if (Base::_processed) |
| 954 | 944 |
alg.processedMap(*reinterpret_cast<ProcessedMap*>(Base::_processed)); |
| 955 | 945 |
if (s!=INVALID) |
| 956 | 946 |
alg.run(s); |
| 957 | 947 |
else |
| 958 | 948 |
alg.run(); |
| 959 | 949 |
} |
| 960 | 950 |
|
| 961 | 951 |
///Finds the DFS path between \c s and \c t. |
| 962 | 952 |
|
| 963 | 953 |
///This method runs DFS algorithm from node \c s |
| 964 | 954 |
///in order to compute the DFS path to node \c t |
| 965 | 955 |
///(it stops searching when \c t is processed). |
| 966 | 956 |
/// |
| 967 | 957 |
///\return \c true if \c t is reachable form \c s. |
| 968 | 958 |
bool run(Node s, Node t) |
| 969 | 959 |
{
|
| 970 | 960 |
Dfs<Digraph,TR> alg(*reinterpret_cast<const Digraph*>(Base::_g)); |
| 971 | 961 |
if (Base::_pred) |
| 972 | 962 |
alg.predMap(*reinterpret_cast<PredMap*>(Base::_pred)); |
| 973 | 963 |
if (Base::_dist) |
| 974 | 964 |
alg.distMap(*reinterpret_cast<DistMap*>(Base::_dist)); |
| 975 | 965 |
if (Base::_reached) |
| 976 | 966 |
alg.reachedMap(*reinterpret_cast<ReachedMap*>(Base::_reached)); |
| 977 | 967 |
if (Base::_processed) |
| 978 | 968 |
alg.processedMap(*reinterpret_cast<ProcessedMap*>(Base::_processed)); |
| 979 | 969 |
alg.run(s,t); |
| 980 | 970 |
if (Base::_path) |
| 981 | 971 |
*reinterpret_cast<Path*>(Base::_path) = alg.path(t); |
| 982 | 972 |
if (Base::_di) |
| 983 | 973 |
*Base::_di = alg.dist(t); |
| 984 | 974 |
return alg.reached(t); |
| 985 | 975 |
} |
| 986 | 976 |
|
| 987 | 977 |
///Runs DFS algorithm to visit all nodes in the digraph. |
| 988 | 978 |
|
| 989 | 979 |
///This method runs DFS algorithm in order to compute |
| 990 | 980 |
///the DFS path to each node. |
| 991 | 981 |
void run() |
| 992 | 982 |
{
|
| 993 | 983 |
run(INVALID); |
| 994 | 984 |
} |
| 995 | 985 |
|
| 996 | 986 |
template<class T> |
| 997 | 987 |
struct SetPredMapBase : public Base {
|
| 998 | 988 |
typedef T PredMap; |
| 999 | 989 |
static PredMap *createPredMap(const Digraph &) { return 0; };
|
| 1000 | 990 |
SetPredMapBase(const TR &b) : TR(b) {}
|
| 1001 | 991 |
}; |
| 1002 |
///\brief \ref named-func-param "Named parameter" |
|
| 1003 |
///for setting PredMap object. |
|
| 992 |
|
|
| 993 |
///\brief \ref named-templ-param "Named parameter" for setting |
|
| 994 |
///the predecessor map. |
|
| 1004 | 995 |
/// |
| 1005 |
///\ref named-func-param "Named parameter" |
|
| 1006 |
///for setting PredMap object. |
|
| 996 |
///\ref named-templ-param "Named parameter" function for setting |
|
| 997 |
///the map that stores the predecessor arcs of the nodes. |
|
| 1007 | 998 |
template<class T> |
| 1008 | 999 |
DfsWizard<SetPredMapBase<T> > predMap(const T &t) |
| 1009 | 1000 |
{
|
| 1010 | 1001 |
Base::_pred=reinterpret_cast<void*>(const_cast<T*>(&t)); |
| 1011 | 1002 |
return DfsWizard<SetPredMapBase<T> >(*this); |
| 1012 | 1003 |
} |
| 1013 | 1004 |
|
| 1014 | 1005 |
template<class T> |
| 1015 | 1006 |
struct SetReachedMapBase : public Base {
|
| 1016 | 1007 |
typedef T ReachedMap; |
| 1017 | 1008 |
static ReachedMap *createReachedMap(const Digraph &) { return 0; };
|
| 1018 | 1009 |
SetReachedMapBase(const TR &b) : TR(b) {}
|
| 1019 | 1010 |
}; |
| 1020 |
///\brief \ref named-func-param "Named parameter" |
|
| 1021 |
///for setting ReachedMap object. |
|
| 1011 |
|
|
| 1012 |
///\brief \ref named-templ-param "Named parameter" for setting |
|
| 1013 |
///the reached map. |
|
| 1022 | 1014 |
/// |
| 1023 |
/// \ref named-func-param "Named parameter" |
|
| 1024 |
///for setting ReachedMap object. |
|
| 1015 |
///\ref named-templ-param "Named parameter" function for setting |
|
| 1016 |
///the map that indicates which nodes are reached. |
|
| 1025 | 1017 |
template<class T> |
| 1026 | 1018 |
DfsWizard<SetReachedMapBase<T> > reachedMap(const T &t) |
| 1027 | 1019 |
{
|
| 1028 | 1020 |
Base::_reached=reinterpret_cast<void*>(const_cast<T*>(&t)); |
| 1029 | 1021 |
return DfsWizard<SetReachedMapBase<T> >(*this); |
| 1030 | 1022 |
} |
| 1031 | 1023 |
|
| 1032 | 1024 |
template<class T> |
| 1033 | 1025 |
struct SetDistMapBase : public Base {
|
| 1034 | 1026 |
typedef T DistMap; |
| 1035 | 1027 |
static DistMap *createDistMap(const Digraph &) { return 0; };
|
| 1036 | 1028 |
SetDistMapBase(const TR &b) : TR(b) {}
|
| 1037 | 1029 |
}; |
| 1038 |
///\brief \ref named-func-param "Named parameter" |
|
| 1039 |
///for setting DistMap object. |
|
| 1030 |
|
|
| 1031 |
///\brief \ref named-templ-param "Named parameter" for setting |
|
| 1032 |
///the distance map. |
|
| 1040 | 1033 |
/// |
| 1041 |
/// \ref named-func-param "Named parameter" |
|
| 1042 |
///for setting DistMap object. |
|
| 1034 |
///\ref named-templ-param "Named parameter" function for setting |
|
| 1035 |
///the map that stores the distances of the nodes calculated |
|
| 1036 |
///by the algorithm. |
|
| 1043 | 1037 |
template<class T> |
| 1044 | 1038 |
DfsWizard<SetDistMapBase<T> > distMap(const T &t) |
| 1045 | 1039 |
{
|
| 1046 | 1040 |
Base::_dist=reinterpret_cast<void*>(const_cast<T*>(&t)); |
| 1047 | 1041 |
return DfsWizard<SetDistMapBase<T> >(*this); |
| 1048 | 1042 |
} |
| 1049 | 1043 |
|
| 1050 | 1044 |
template<class T> |
| 1051 | 1045 |
struct SetProcessedMapBase : public Base {
|
| 1052 | 1046 |
typedef T ProcessedMap; |
| 1053 | 1047 |
static ProcessedMap *createProcessedMap(const Digraph &) { return 0; };
|
| 1054 | 1048 |
SetProcessedMapBase(const TR &b) : TR(b) {}
|
| 1055 | 1049 |
}; |
| 1056 |
///\brief \ref named-func-param "Named parameter" |
|
| 1057 |
///for setting ProcessedMap object. |
|
| 1050 |
|
|
| 1051 |
///\brief \ref named-func-param "Named parameter" for setting |
|
| 1052 |
///the processed map. |
|
| 1058 | 1053 |
/// |
| 1059 |
/// \ref named-func-param "Named parameter" |
|
| 1060 |
///for setting ProcessedMap object. |
|
| 1054 |
///\ref named-templ-param "Named parameter" function for setting |
|
| 1055 |
///the map that indicates which nodes are processed. |
|
| 1061 | 1056 |
template<class T> |
| 1062 | 1057 |
DfsWizard<SetProcessedMapBase<T> > processedMap(const T &t) |
| 1063 | 1058 |
{
|
| 1064 | 1059 |
Base::_processed=reinterpret_cast<void*>(const_cast<T*>(&t)); |
| 1065 | 1060 |
return DfsWizard<SetProcessedMapBase<T> >(*this); |
| 1066 | 1061 |
} |
| 1067 | 1062 |
|
| 1068 | 1063 |
template<class T> |
| 1069 | 1064 |
struct SetPathBase : public Base {
|
| 1070 | 1065 |
typedef T Path; |
| 1071 | 1066 |
SetPathBase(const TR &b) : TR(b) {}
|
| 1072 | 1067 |
}; |
| 1073 | 1068 |
///\brief \ref named-func-param "Named parameter" |
| 1074 | 1069 |
///for getting the DFS path to the target node. |
| 1075 | 1070 |
/// |
| 1076 | 1071 |
///\ref named-func-param "Named parameter" |
| 1077 | 1072 |
///for getting the DFS path to the target node. |
| 1078 | 1073 |
template<class T> |
| 1079 | 1074 |
DfsWizard<SetPathBase<T> > path(const T &t) |
| 1080 | 1075 |
{
|
| 1081 | 1076 |
Base::_path=reinterpret_cast<void*>(const_cast<T*>(&t)); |
| 1082 | 1077 |
return DfsWizard<SetPathBase<T> >(*this); |
| 1083 | 1078 |
} |
| 1084 | 1079 |
|
| 1085 | 1080 |
///\brief \ref named-func-param "Named parameter" |
| 1086 | 1081 |
///for getting the distance of the target node. |
| 1087 | 1082 |
/// |
| 1088 | 1083 |
///\ref named-func-param "Named parameter" |
| 1089 | 1084 |
///for getting the distance of the target node. |
| 1090 | 1085 |
DfsWizard dist(const int &d) |
| 1091 | 1086 |
{
|
| 1092 | 1087 |
Base::_di=const_cast<int*>(&d); |
| 1093 | 1088 |
return *this; |
| 1094 | 1089 |
} |
| 1095 | 1090 |
|
| 1096 | 1091 |
}; |
| 1097 | 1092 |
|
| 1098 | 1093 |
///Function-type interface for DFS algorithm. |
| 1099 | 1094 |
|
| 1100 | 1095 |
///\ingroup search |
| 1101 | 1096 |
///Function-type interface for DFS algorithm. |
| 1102 | 1097 |
/// |
| 1103 | 1098 |
///This function also has several \ref named-func-param "named parameters", |
| 1104 | 1099 |
///they are declared as the members of class \ref DfsWizard. |
| 1105 | 1100 |
///The following examples show how to use these parameters. |
| 1106 | 1101 |
///\code |
| 1107 | 1102 |
/// // Compute the DFS tree |
| 1108 | 1103 |
/// dfs(g).predMap(preds).distMap(dists).run(s); |
| ... | ... |
@@ -1163,97 +1158,97 @@ |
| 1163 | 1158 |
/// This function is called when the DFS steps back on an arc. |
| 1164 | 1159 |
void backtrack(const Arc& arc) {}
|
| 1165 | 1160 |
}; |
| 1166 | 1161 |
#else |
| 1167 | 1162 |
template <typename GR> |
| 1168 | 1163 |
struct DfsVisitor {
|
| 1169 | 1164 |
typedef GR Digraph; |
| 1170 | 1165 |
typedef typename Digraph::Arc Arc; |
| 1171 | 1166 |
typedef typename Digraph::Node Node; |
| 1172 | 1167 |
void start(const Node&) {}
|
| 1173 | 1168 |
void stop(const Node&) {}
|
| 1174 | 1169 |
void reach(const Node&) {}
|
| 1175 | 1170 |
void discover(const Arc&) {}
|
| 1176 | 1171 |
void examine(const Arc&) {}
|
| 1177 | 1172 |
void leave(const Node&) {}
|
| 1178 | 1173 |
void backtrack(const Arc&) {}
|
| 1179 | 1174 |
|
| 1180 | 1175 |
template <typename _Visitor> |
| 1181 | 1176 |
struct Constraints {
|
| 1182 | 1177 |
void constraints() {
|
| 1183 | 1178 |
Arc arc; |
| 1184 | 1179 |
Node node; |
| 1185 | 1180 |
visitor.start(node); |
| 1186 | 1181 |
visitor.stop(arc); |
| 1187 | 1182 |
visitor.reach(node); |
| 1188 | 1183 |
visitor.discover(arc); |
| 1189 | 1184 |
visitor.examine(arc); |
| 1190 | 1185 |
visitor.leave(node); |
| 1191 | 1186 |
visitor.backtrack(arc); |
| 1192 | 1187 |
} |
| 1193 | 1188 |
_Visitor& visitor; |
| 1194 | 1189 |
}; |
| 1195 | 1190 |
}; |
| 1196 | 1191 |
#endif |
| 1197 | 1192 |
|
| 1198 | 1193 |
/// \brief Default traits class of DfsVisit class. |
| 1199 | 1194 |
/// |
| 1200 | 1195 |
/// Default traits class of DfsVisit class. |
| 1201 | 1196 |
/// \tparam _Digraph The type of the digraph the algorithm runs on. |
| 1202 | 1197 |
template<class GR> |
| 1203 | 1198 |
struct DfsVisitDefaultTraits {
|
| 1204 | 1199 |
|
| 1205 | 1200 |
/// \brief The type of the digraph the algorithm runs on. |
| 1206 | 1201 |
typedef GR Digraph; |
| 1207 | 1202 |
|
| 1208 | 1203 |
/// \brief The type of the map that indicates which nodes are reached. |
| 1209 | 1204 |
/// |
| 1210 | 1205 |
/// The type of the map that indicates which nodes are reached. |
| 1211 |
/// It must |
|
| 1206 |
/// It must conform to the \ref concepts::ReadWriteMap "ReadWriteMap" concept. |
|
| 1212 | 1207 |
typedef typename Digraph::template NodeMap<bool> ReachedMap; |
| 1213 | 1208 |
|
| 1214 | 1209 |
/// \brief Instantiates a ReachedMap. |
| 1215 | 1210 |
/// |
| 1216 | 1211 |
/// This function instantiates a ReachedMap. |
| 1217 | 1212 |
/// \param digraph is the digraph, to which |
| 1218 | 1213 |
/// we would like to define the ReachedMap. |
| 1219 | 1214 |
static ReachedMap *createReachedMap(const Digraph &digraph) {
|
| 1220 | 1215 |
return new ReachedMap(digraph); |
| 1221 | 1216 |
} |
| 1222 | 1217 |
|
| 1223 | 1218 |
}; |
| 1224 | 1219 |
|
| 1225 | 1220 |
/// \ingroup search |
| 1226 | 1221 |
/// |
| 1227 | 1222 |
/// \brief DFS algorithm class with visitor interface. |
| 1228 | 1223 |
/// |
| 1229 | 1224 |
/// This class provides an efficient implementation of the DFS algorithm |
| 1230 | 1225 |
/// with visitor interface. |
| 1231 | 1226 |
/// |
| 1232 | 1227 |
/// The DfsVisit class provides an alternative interface to the Dfs |
| 1233 | 1228 |
/// class. It works with callback mechanism, the DfsVisit object calls |
| 1234 | 1229 |
/// the member functions of the \c Visitor class on every DFS event. |
| 1235 | 1230 |
/// |
| 1236 | 1231 |
/// This interface of the DFS algorithm should be used in special cases |
| 1237 | 1232 |
/// when extra actions have to be performed in connection with certain |
| 1238 | 1233 |
/// events of the DFS algorithm. Otherwise consider to use Dfs or dfs() |
| 1239 | 1234 |
/// instead. |
| 1240 | 1235 |
/// |
| 1241 | 1236 |
/// \tparam GR The type of the digraph the algorithm runs on. |
| 1242 | 1237 |
/// The default type is \ref ListDigraph. |
| 1243 | 1238 |
/// The value of GR is not used directly by \ref DfsVisit, |
| 1244 | 1239 |
/// it is only passed to \ref DfsVisitDefaultTraits. |
| 1245 | 1240 |
/// \tparam VS The Visitor type that is used by the algorithm. |
| 1246 | 1241 |
/// \ref DfsVisitor "DfsVisitor<GR>" is an empty visitor, which |
| 1247 | 1242 |
/// does not observe the DFS events. If you want to observe the DFS |
| 1248 | 1243 |
/// events, you should implement your own visitor class. |
| 1249 | 1244 |
/// \tparam TR Traits class to set various data types used by the |
| 1250 | 1245 |
/// algorithm. The default traits class is |
| 1251 | 1246 |
/// \ref DfsVisitDefaultTraits "DfsVisitDefaultTraits<GR>". |
| 1252 | 1247 |
/// See \ref DfsVisitDefaultTraits for the documentation of |
| 1253 | 1248 |
/// a DFS visit traits class. |
| 1254 | 1249 |
#ifdef DOXYGEN |
| 1255 | 1250 |
template <typename GR, typename VS, typename TR> |
| 1256 | 1251 |
#else |
| 1257 | 1252 |
template <typename GR = ListDigraph, |
| 1258 | 1253 |
typename VS = DfsVisitor<GR>, |
| 1259 | 1254 |
typename TR = DfsVisitDefaultTraits<GR> > |
| ... | ... |
@@ -1324,98 +1319,98 @@ |
| 1324 | 1319 |
/// |
| 1325 | 1320 |
/// \ref named-templ-param "Named parameter" for setting ReachedMap type. |
| 1326 | 1321 |
template <class T> |
| 1327 | 1322 |
struct SetReachedMap : public DfsVisit< Digraph, Visitor, |
| 1328 | 1323 |
SetReachedMapTraits<T> > {
|
| 1329 | 1324 |
typedef DfsVisit< Digraph, Visitor, SetReachedMapTraits<T> > Create; |
| 1330 | 1325 |
}; |
| 1331 | 1326 |
///@} |
| 1332 | 1327 |
|
| 1333 | 1328 |
public: |
| 1334 | 1329 |
|
| 1335 | 1330 |
/// \brief Constructor. |
| 1336 | 1331 |
/// |
| 1337 | 1332 |
/// Constructor. |
| 1338 | 1333 |
/// |
| 1339 | 1334 |
/// \param digraph The digraph the algorithm runs on. |
| 1340 | 1335 |
/// \param visitor The visitor object of the algorithm. |
| 1341 | 1336 |
DfsVisit(const Digraph& digraph, Visitor& visitor) |
| 1342 | 1337 |
: _digraph(&digraph), _visitor(&visitor), |
| 1343 | 1338 |
_reached(0), local_reached(false) {}
|
| 1344 | 1339 |
|
| 1345 | 1340 |
/// \brief Destructor. |
| 1346 | 1341 |
~DfsVisit() {
|
| 1347 | 1342 |
if(local_reached) delete _reached; |
| 1348 | 1343 |
} |
| 1349 | 1344 |
|
| 1350 | 1345 |
/// \brief Sets the map that indicates which nodes are reached. |
| 1351 | 1346 |
/// |
| 1352 | 1347 |
/// Sets the map that indicates which nodes are reached. |
| 1353 | 1348 |
/// If you don't use this function before calling \ref run(Node) "run()" |
| 1354 | 1349 |
/// or \ref init(), an instance will be allocated automatically. |
| 1355 | 1350 |
/// The destructor deallocates this automatically allocated map, |
| 1356 | 1351 |
/// of course. |
| 1357 | 1352 |
/// \return <tt> (*this) </tt> |
| 1358 | 1353 |
DfsVisit &reachedMap(ReachedMap &m) {
|
| 1359 | 1354 |
if(local_reached) {
|
| 1360 | 1355 |
delete _reached; |
| 1361 | 1356 |
local_reached=false; |
| 1362 | 1357 |
} |
| 1363 | 1358 |
_reached = &m; |
| 1364 | 1359 |
return *this; |
| 1365 | 1360 |
} |
| 1366 | 1361 |
|
| 1367 | 1362 |
public: |
| 1368 | 1363 |
|
| 1369 | 1364 |
/// \name Execution Control |
| 1370 | 1365 |
/// The simplest way to execute the DFS algorithm is to use one of the |
| 1371 | 1366 |
/// member functions called \ref run(Node) "run()".\n |
| 1372 |
/// If you need more control on the execution, first you have to call |
|
| 1373 |
/// \ref init(), then you can add a source node with \ref addSource() |
|
| 1367 |
/// If you need better control on the execution, you have to call |
|
| 1368 |
/// \ref init() first, then you can add a source node with \ref addSource() |
|
| 1374 | 1369 |
/// and perform the actual computation with \ref start(). |
| 1375 | 1370 |
/// This procedure can be repeated if there are nodes that have not |
| 1376 | 1371 |
/// been reached. |
| 1377 | 1372 |
|
| 1378 | 1373 |
/// @{
|
| 1379 | 1374 |
|
| 1380 | 1375 |
/// \brief Initializes the internal data structures. |
| 1381 | 1376 |
/// |
| 1382 | 1377 |
/// Initializes the internal data structures. |
| 1383 | 1378 |
void init() {
|
| 1384 | 1379 |
create_maps(); |
| 1385 | 1380 |
_stack.resize(countNodes(*_digraph)); |
| 1386 | 1381 |
_stack_head = -1; |
| 1387 | 1382 |
for (NodeIt u(*_digraph) ; u != INVALID ; ++u) {
|
| 1388 | 1383 |
_reached->set(u, false); |
| 1389 | 1384 |
} |
| 1390 | 1385 |
} |
| 1391 | 1386 |
|
| 1392 | 1387 |
/// \brief Adds a new source node. |
| 1393 | 1388 |
/// |
| 1394 | 1389 |
/// Adds a new source node to the set of nodes to be processed. |
| 1395 | 1390 |
/// |
| 1396 | 1391 |
/// \pre The stack must be empty. Otherwise the algorithm gives |
| 1397 | 1392 |
/// wrong results. (One of the outgoing arcs of all the source nodes |
| 1398 | 1393 |
/// except for the last one will not be visited and distances will |
| 1399 | 1394 |
/// also be wrong.) |
| 1400 | 1395 |
void addSource(Node s) |
| 1401 | 1396 |
{
|
| 1402 | 1397 |
LEMON_DEBUG(emptyQueue(), "The stack is not empty."); |
| 1403 | 1398 |
if(!(*_reached)[s]) {
|
| 1404 | 1399 |
_reached->set(s,true); |
| 1405 | 1400 |
_visitor->start(s); |
| 1406 | 1401 |
_visitor->reach(s); |
| 1407 | 1402 |
Arc e; |
| 1408 | 1403 |
_digraph->firstOut(e, s); |
| 1409 | 1404 |
if (e != INVALID) {
|
| 1410 | 1405 |
_stack[++_stack_head] = e; |
| 1411 | 1406 |
} else {
|
| 1412 | 1407 |
_visitor->leave(s); |
| 1413 | 1408 |
_visitor->stop(s); |
| 1414 | 1409 |
} |
| 1415 | 1410 |
} |
| 1416 | 1411 |
} |
| 1417 | 1412 |
|
| 1418 | 1413 |
/// \brief Processes the next arc. |
| 1419 | 1414 |
/// |
| 1420 | 1415 |
/// Processes the next arc. |
| 1421 | 1416 |
/// |
| ... | ... |
@@ -1575,63 +1570,63 @@ |
| 1575 | 1570 |
/// d.start(t); |
| 1576 | 1571 |
///\endcode |
| 1577 | 1572 |
bool run(Node s,Node t) {
|
| 1578 | 1573 |
init(); |
| 1579 | 1574 |
addSource(s); |
| 1580 | 1575 |
start(t); |
| 1581 | 1576 |
return reached(t); |
| 1582 | 1577 |
} |
| 1583 | 1578 |
|
| 1584 | 1579 |
/// \brief Runs the algorithm to visit all nodes in the digraph. |
| 1585 | 1580 |
|
| 1586 | 1581 |
/// This method runs the %DFS algorithm in order to |
| 1587 | 1582 |
/// compute the %DFS path to each node. |
| 1588 | 1583 |
/// |
| 1589 | 1584 |
/// The algorithm computes |
| 1590 | 1585 |
/// - the %DFS tree (forest), |
| 1591 | 1586 |
/// - the distance of each node from the root(s) in the %DFS tree. |
| 1592 | 1587 |
/// |
| 1593 | 1588 |
/// \note <tt>d.run()</tt> is just a shortcut of the following code. |
| 1594 | 1589 |
///\code |
| 1595 | 1590 |
/// d.init(); |
| 1596 | 1591 |
/// for (NodeIt n(digraph); n != INVALID; ++n) {
|
| 1597 | 1592 |
/// if (!d.reached(n)) {
|
| 1598 | 1593 |
/// d.addSource(n); |
| 1599 | 1594 |
/// d.start(); |
| 1600 | 1595 |
/// } |
| 1601 | 1596 |
/// } |
| 1602 | 1597 |
///\endcode |
| 1603 | 1598 |
void run() {
|
| 1604 | 1599 |
init(); |
| 1605 | 1600 |
for (NodeIt it(*_digraph); it != INVALID; ++it) {
|
| 1606 | 1601 |
if (!reached(it)) {
|
| 1607 | 1602 |
addSource(it); |
| 1608 | 1603 |
start(); |
| 1609 | 1604 |
} |
| 1610 | 1605 |
} |
| 1611 | 1606 |
} |
| 1612 | 1607 |
|
| 1613 | 1608 |
///@} |
| 1614 | 1609 |
|
| 1615 | 1610 |
/// \name Query Functions |
| 1616 | 1611 |
/// The results of the DFS algorithm can be obtained using these |
| 1617 | 1612 |
/// functions.\n |
| 1618 | 1613 |
/// Either \ref run(Node) "run()" or \ref start() should be called |
| 1619 | 1614 |
/// before using them. |
| 1620 | 1615 |
|
| 1621 | 1616 |
///@{
|
| 1622 | 1617 |
|
| 1623 |
/// \brief Checks if |
|
| 1618 |
/// \brief Checks if the given node is reached from the root(s). |
|
| 1624 | 1619 |
/// |
| 1625 | 1620 |
/// Returns \c true if \c v is reached from the root(s). |
| 1626 | 1621 |
/// |
| 1627 | 1622 |
/// \pre Either \ref run(Node) "run()" or \ref init() |
| 1628 | 1623 |
/// must be called before using this function. |
| 1629 | 1624 |
bool reached(Node v) const { return (*_reached)[v]; }
|
| 1630 | 1625 |
|
| 1631 | 1626 |
///@} |
| 1632 | 1627 |
|
| 1633 | 1628 |
}; |
| 1634 | 1629 |
|
| 1635 | 1630 |
} //END OF NAMESPACE LEMON |
| 1636 | 1631 |
|
| 1637 | 1632 |
#endif |
| ... | ... |
@@ -25,228 +25,232 @@ |
| 25 | 25 |
|
| 26 | 26 |
#include <limits> |
| 27 | 27 |
#include <lemon/list_graph.h> |
| 28 | 28 |
#include <lemon/bin_heap.h> |
| 29 | 29 |
#include <lemon/bits/path_dump.h> |
| 30 | 30 |
#include <lemon/core.h> |
| 31 | 31 |
#include <lemon/error.h> |
| 32 | 32 |
#include <lemon/maps.h> |
| 33 | 33 |
#include <lemon/path.h> |
| 34 | 34 |
|
| 35 | 35 |
namespace lemon {
|
| 36 | 36 |
|
| 37 | 37 |
/// \brief Default operation traits for the Dijkstra algorithm class. |
| 38 | 38 |
/// |
| 39 | 39 |
/// This operation traits class defines all computational operations and |
| 40 | 40 |
/// constants which are used in the Dijkstra algorithm. |
| 41 | 41 |
template <typename V> |
| 42 | 42 |
struct DijkstraDefaultOperationTraits {
|
| 43 | 43 |
/// \e |
| 44 | 44 |
typedef V Value; |
| 45 | 45 |
/// \brief Gives back the zero value of the type. |
| 46 | 46 |
static Value zero() {
|
| 47 | 47 |
return static_cast<Value>(0); |
| 48 | 48 |
} |
| 49 | 49 |
/// \brief Gives back the sum of the given two elements. |
| 50 | 50 |
static Value plus(const Value& left, const Value& right) {
|
| 51 | 51 |
return left + right; |
| 52 | 52 |
} |
| 53 | 53 |
/// \brief Gives back true only if the first value is less than the second. |
| 54 | 54 |
static bool less(const Value& left, const Value& right) {
|
| 55 | 55 |
return left < right; |
| 56 | 56 |
} |
| 57 | 57 |
}; |
| 58 | 58 |
|
| 59 | 59 |
///Default traits class of Dijkstra class. |
| 60 | 60 |
|
| 61 | 61 |
///Default traits class of Dijkstra class. |
| 62 | 62 |
///\tparam GR The type of the digraph. |
| 63 | 63 |
///\tparam LEN The type of the length map. |
| 64 | 64 |
template<typename GR, typename LEN> |
| 65 | 65 |
struct DijkstraDefaultTraits |
| 66 | 66 |
{
|
| 67 | 67 |
///The type of the digraph the algorithm runs on. |
| 68 | 68 |
typedef GR Digraph; |
| 69 | 69 |
|
| 70 | 70 |
///The type of the map that stores the arc lengths. |
| 71 | 71 |
|
| 72 | 72 |
///The type of the map that stores the arc lengths. |
| 73 |
///It must |
|
| 73 |
///It must conform to the \ref concepts::ReadMap "ReadMap" concept. |
|
| 74 | 74 |
typedef LEN LengthMap; |
| 75 |
///The type of the |
|
| 75 |
///The type of the arc lengths. |
|
| 76 | 76 |
typedef typename LEN::Value Value; |
| 77 | 77 |
|
| 78 | 78 |
/// Operation traits for %Dijkstra algorithm. |
| 79 | 79 |
|
| 80 | 80 |
/// This class defines the operations that are used in the algorithm. |
| 81 | 81 |
/// \see DijkstraDefaultOperationTraits |
| 82 | 82 |
typedef DijkstraDefaultOperationTraits<Value> OperationTraits; |
| 83 | 83 |
|
| 84 | 84 |
/// The cross reference type used by the heap. |
| 85 | 85 |
|
| 86 | 86 |
/// The cross reference type used by the heap. |
| 87 | 87 |
/// Usually it is \c Digraph::NodeMap<int>. |
| 88 | 88 |
typedef typename Digraph::template NodeMap<int> HeapCrossRef; |
| 89 | 89 |
///Instantiates a \c HeapCrossRef. |
| 90 | 90 |
|
| 91 | 91 |
///This function instantiates a \ref HeapCrossRef. |
| 92 | 92 |
/// \param g is the digraph, to which we would like to define the |
| 93 | 93 |
/// \ref HeapCrossRef. |
| 94 | 94 |
static HeapCrossRef *createHeapCrossRef(const Digraph &g) |
| 95 | 95 |
{
|
| 96 | 96 |
return new HeapCrossRef(g); |
| 97 | 97 |
} |
| 98 | 98 |
|
| 99 | 99 |
///The heap type used by the %Dijkstra algorithm. |
| 100 | 100 |
|
| 101 | 101 |
///The heap type used by the Dijkstra algorithm. |
| 102 | 102 |
/// |
| 103 | 103 |
///\sa BinHeap |
| 104 | 104 |
///\sa Dijkstra |
| 105 | 105 |
typedef BinHeap<typename LEN::Value, HeapCrossRef, std::less<Value> > Heap; |
| 106 | 106 |
///Instantiates a \c Heap. |
| 107 | 107 |
|
| 108 | 108 |
///This function instantiates a \ref Heap. |
| 109 | 109 |
static Heap *createHeap(HeapCrossRef& r) |
| 110 | 110 |
{
|
| 111 | 111 |
return new Heap(r); |
| 112 | 112 |
} |
| 113 | 113 |
|
| 114 | 114 |
///\brief The type of the map that stores the predecessor |
| 115 | 115 |
///arcs of the shortest paths. |
| 116 | 116 |
/// |
| 117 | 117 |
///The type of the map that stores the predecessor |
| 118 | 118 |
///arcs of the shortest paths. |
| 119 |
///It must |
|
| 119 |
///It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
|
| 120 | 120 |
typedef typename Digraph::template NodeMap<typename Digraph::Arc> PredMap; |
| 121 | 121 |
///Instantiates a \c PredMap. |
| 122 | 122 |
|
| 123 | 123 |
///This function instantiates a \ref PredMap. |
| 124 | 124 |
///\param g is the digraph, to which we would like to define the |
| 125 | 125 |
///\ref PredMap. |
| 126 | 126 |
static PredMap *createPredMap(const Digraph &g) |
| 127 | 127 |
{
|
| 128 | 128 |
return new PredMap(g); |
| 129 | 129 |
} |
| 130 | 130 |
|
| 131 | 131 |
///The type of the map that indicates which nodes are processed. |
| 132 | 132 |
|
| 133 | 133 |
///The type of the map that indicates which nodes are processed. |
| 134 |
///It must |
|
| 134 |
///It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
|
| 135 | 135 |
///By default it is a NullMap. |
| 136 | 136 |
typedef NullMap<typename Digraph::Node,bool> ProcessedMap; |
| 137 | 137 |
///Instantiates a \c ProcessedMap. |
| 138 | 138 |
|
| 139 | 139 |
///This function instantiates a \ref ProcessedMap. |
| 140 | 140 |
///\param g is the digraph, to which |
| 141 | 141 |
///we would like to define the \ref ProcessedMap. |
| 142 | 142 |
#ifdef DOXYGEN |
| 143 | 143 |
static ProcessedMap *createProcessedMap(const Digraph &g) |
| 144 | 144 |
#else |
| 145 | 145 |
static ProcessedMap *createProcessedMap(const Digraph &) |
| 146 | 146 |
#endif |
| 147 | 147 |
{
|
| 148 | 148 |
return new ProcessedMap(); |
| 149 | 149 |
} |
| 150 | 150 |
|
| 151 | 151 |
///The type of the map that stores the distances of the nodes. |
| 152 | 152 |
|
| 153 | 153 |
///The type of the map that stores the distances of the nodes. |
| 154 |
///It must |
|
| 154 |
///It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
|
| 155 | 155 |
typedef typename Digraph::template NodeMap<typename LEN::Value> DistMap; |
| 156 | 156 |
///Instantiates a \c DistMap. |
| 157 | 157 |
|
| 158 | 158 |
///This function instantiates a \ref DistMap. |
| 159 | 159 |
///\param g is the digraph, to which we would like to define |
| 160 | 160 |
///the \ref DistMap. |
| 161 | 161 |
static DistMap *createDistMap(const Digraph &g) |
| 162 | 162 |
{
|
| 163 | 163 |
return new DistMap(g); |
| 164 | 164 |
} |
| 165 | 165 |
}; |
| 166 | 166 |
|
| 167 | 167 |
///%Dijkstra algorithm class. |
| 168 | 168 |
|
| 169 | 169 |
/// \ingroup shortest_path |
| 170 | 170 |
///This class provides an efficient implementation of the %Dijkstra algorithm. |
| 171 | 171 |
/// |
| 172 |
///The %Dijkstra algorithm solves the single-source shortest path problem |
|
| 173 |
///when all arc lengths are non-negative. If there are negative lengths, |
|
| 174 |
///the BellmanFord algorithm should be used instead. |
|
| 175 |
/// |
|
| 172 | 176 |
///The arc lengths are passed to the algorithm using a |
| 173 | 177 |
///\ref concepts::ReadMap "ReadMap", |
| 174 | 178 |
///so it is easy to change it to any kind of length. |
| 175 | 179 |
///The type of the length is determined by the |
| 176 | 180 |
///\ref concepts::ReadMap::Value "Value" of the length map. |
| 177 | 181 |
///It is also possible to change the underlying priority heap. |
| 178 | 182 |
/// |
| 179 | 183 |
///There is also a \ref dijkstra() "function-type interface" for the |
| 180 | 184 |
///%Dijkstra algorithm, which is convenient in the simplier cases and |
| 181 | 185 |
///it can be used easier. |
| 182 | 186 |
/// |
| 183 | 187 |
///\tparam GR The type of the digraph the algorithm runs on. |
| 184 | 188 |
///The default type is \ref ListDigraph. |
| 185 | 189 |
///\tparam LEN A \ref concepts::ReadMap "readable" arc map that specifies |
| 186 | 190 |
///the lengths of the arcs. |
| 187 | 191 |
///It is read once for each arc, so the map may involve in |
| 188 | 192 |
///relatively time consuming process to compute the arc lengths if |
| 189 | 193 |
///it is necessary. The default map type is \ref |
| 190 | 194 |
///concepts::Digraph::ArcMap "GR::ArcMap<int>". |
| 191 | 195 |
#ifdef DOXYGEN |
| 192 | 196 |
template <typename GR, typename LEN, typename TR> |
| 193 | 197 |
#else |
| 194 | 198 |
template <typename GR=ListDigraph, |
| 195 | 199 |
typename LEN=typename GR::template ArcMap<int>, |
| 196 | 200 |
typename TR=DijkstraDefaultTraits<GR,LEN> > |
| 197 | 201 |
#endif |
| 198 | 202 |
class Dijkstra {
|
| 199 | 203 |
public: |
| 200 | 204 |
|
| 201 | 205 |
///The type of the digraph the algorithm runs on. |
| 202 | 206 |
typedef typename TR::Digraph Digraph; |
| 203 | 207 |
|
| 204 |
///The type of the |
|
| 208 |
///The type of the arc lengths. |
|
| 205 | 209 |
typedef typename TR::LengthMap::Value Value; |
| 206 | 210 |
///The type of the map that stores the arc lengths. |
| 207 | 211 |
typedef typename TR::LengthMap LengthMap; |
| 208 | 212 |
///\brief The type of the map that stores the predecessor arcs of the |
| 209 | 213 |
///shortest paths. |
| 210 | 214 |
typedef typename TR::PredMap PredMap; |
| 211 | 215 |
///The type of the map that stores the distances of the nodes. |
| 212 | 216 |
typedef typename TR::DistMap DistMap; |
| 213 | 217 |
///The type of the map that indicates which nodes are processed. |
| 214 | 218 |
typedef typename TR::ProcessedMap ProcessedMap; |
| 215 | 219 |
///The type of the paths. |
| 216 | 220 |
typedef PredMapPath<Digraph, PredMap> Path; |
| 217 | 221 |
///The cross reference type used for the current heap. |
| 218 | 222 |
typedef typename TR::HeapCrossRef HeapCrossRef; |
| 219 | 223 |
///The heap type used by the algorithm. |
| 220 | 224 |
typedef typename TR::Heap Heap; |
| 221 | 225 |
///\brief The \ref DijkstraDefaultOperationTraits "operation traits class" |
| 222 | 226 |
///of the algorithm. |
| 223 | 227 |
typedef typename TR::OperationTraits OperationTraits; |
| 224 | 228 |
|
| 225 | 229 |
///The \ref DijkstraDefaultTraits "traits class" of the algorithm. |
| 226 | 230 |
typedef TR Traits; |
| 227 | 231 |
|
| 228 | 232 |
private: |
| 229 | 233 |
|
| 230 | 234 |
typedef typename Digraph::Node Node; |
| 231 | 235 |
typedef typename Digraph::NodeIt NodeIt; |
| 232 | 236 |
typedef typename Digraph::Arc Arc; |
| 233 | 237 |
typedef typename Digraph::OutArcIt OutArcIt; |
| 234 | 238 |
|
| 235 | 239 |
//Pointer to the underlying digraph. |
| 236 | 240 |
const Digraph *G; |
| 237 | 241 |
//Pointer to the length map. |
| 238 | 242 |
const LengthMap *_length; |
| 239 | 243 |
//Pointer to the map of predecessors arcs. |
| 240 | 244 |
PredMap *_pred; |
| 241 | 245 |
//Indicates if _pred is locally allocated (true) or not. |
| 242 | 246 |
bool local_pred; |
| 243 | 247 |
//Pointer to the map of distances. |
| 244 | 248 |
DistMap *_dist; |
| 245 | 249 |
//Indicates if _dist is locally allocated (true) or not. |
| 246 | 250 |
bool local_dist; |
| 247 | 251 |
//Pointer to the map of processed status of the nodes. |
| 248 | 252 |
ProcessedMap *_processed; |
| 249 | 253 |
//Indicates if _processed is locally allocated (true) or not. |
| 250 | 254 |
bool local_processed; |
| 251 | 255 |
//Pointer to the heap cross references. |
| 252 | 256 |
HeapCrossRef *_heap_cross_ref; |
| ... | ... |
@@ -259,235 +263,236 @@ |
| 259 | 263 |
|
| 260 | 264 |
//Creates the maps if necessary. |
| 261 | 265 |
void create_maps() |
| 262 | 266 |
{
|
| 263 | 267 |
if(!_pred) {
|
| 264 | 268 |
local_pred = true; |
| 265 | 269 |
_pred = Traits::createPredMap(*G); |
| 266 | 270 |
} |
| 267 | 271 |
if(!_dist) {
|
| 268 | 272 |
local_dist = true; |
| 269 | 273 |
_dist = Traits::createDistMap(*G); |
| 270 | 274 |
} |
| 271 | 275 |
if(!_processed) {
|
| 272 | 276 |
local_processed = true; |
| 273 | 277 |
_processed = Traits::createProcessedMap(*G); |
| 274 | 278 |
} |
| 275 | 279 |
if (!_heap_cross_ref) {
|
| 276 | 280 |
local_heap_cross_ref = true; |
| 277 | 281 |
_heap_cross_ref = Traits::createHeapCrossRef(*G); |
| 278 | 282 |
} |
| 279 | 283 |
if (!_heap) {
|
| 280 | 284 |
local_heap = true; |
| 281 | 285 |
_heap = Traits::createHeap(*_heap_cross_ref); |
| 282 | 286 |
} |
| 283 | 287 |
} |
| 284 | 288 |
|
| 285 | 289 |
public: |
| 286 | 290 |
|
| 287 | 291 |
typedef Dijkstra Create; |
| 288 | 292 |
|
| 289 | 293 |
///\name Named Template Parameters |
| 290 | 294 |
|
| 291 | 295 |
///@{
|
| 292 | 296 |
|
| 293 | 297 |
template <class T> |
| 294 | 298 |
struct SetPredMapTraits : public Traits {
|
| 295 | 299 |
typedef T PredMap; |
| 296 | 300 |
static PredMap *createPredMap(const Digraph &) |
| 297 | 301 |
{
|
| 298 | 302 |
LEMON_ASSERT(false, "PredMap is not initialized"); |
| 299 | 303 |
return 0; // ignore warnings |
| 300 | 304 |
} |
| 301 | 305 |
}; |
| 302 | 306 |
///\brief \ref named-templ-param "Named parameter" for setting |
| 303 | 307 |
///\c PredMap type. |
| 304 | 308 |
/// |
| 305 | 309 |
///\ref named-templ-param "Named parameter" for setting |
| 306 | 310 |
///\c PredMap type. |
| 307 |
///It must |
|
| 311 |
///It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
|
| 308 | 312 |
template <class T> |
| 309 | 313 |
struct SetPredMap |
| 310 | 314 |
: public Dijkstra< Digraph, LengthMap, SetPredMapTraits<T> > {
|
| 311 | 315 |
typedef Dijkstra< Digraph, LengthMap, SetPredMapTraits<T> > Create; |
| 312 | 316 |
}; |
| 313 | 317 |
|
| 314 | 318 |
template <class T> |
| 315 | 319 |
struct SetDistMapTraits : public Traits {
|
| 316 | 320 |
typedef T DistMap; |
| 317 | 321 |
static DistMap *createDistMap(const Digraph &) |
| 318 | 322 |
{
|
| 319 | 323 |
LEMON_ASSERT(false, "DistMap is not initialized"); |
| 320 | 324 |
return 0; // ignore warnings |
| 321 | 325 |
} |
| 322 | 326 |
}; |
| 323 | 327 |
///\brief \ref named-templ-param "Named parameter" for setting |
| 324 | 328 |
///\c DistMap type. |
| 325 | 329 |
/// |
| 326 | 330 |
///\ref named-templ-param "Named parameter" for setting |
| 327 | 331 |
///\c DistMap type. |
| 328 |
///It must |
|
| 332 |
///It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
|
| 329 | 333 |
template <class T> |
| 330 | 334 |
struct SetDistMap |
| 331 | 335 |
: public Dijkstra< Digraph, LengthMap, SetDistMapTraits<T> > {
|
| 332 | 336 |
typedef Dijkstra< Digraph, LengthMap, SetDistMapTraits<T> > Create; |
| 333 | 337 |
}; |
| 334 | 338 |
|
| 335 | 339 |
template <class T> |
| 336 | 340 |
struct SetProcessedMapTraits : public Traits {
|
| 337 | 341 |
typedef T ProcessedMap; |
| 338 | 342 |
static ProcessedMap *createProcessedMap(const Digraph &) |
| 339 | 343 |
{
|
| 340 | 344 |
LEMON_ASSERT(false, "ProcessedMap is not initialized"); |
| 341 | 345 |
return 0; // ignore warnings |
| 342 | 346 |
} |
| 343 | 347 |
}; |
| 344 | 348 |
///\brief \ref named-templ-param "Named parameter" for setting |
| 345 | 349 |
///\c ProcessedMap type. |
| 346 | 350 |
/// |
| 347 | 351 |
///\ref named-templ-param "Named parameter" for setting |
| 348 | 352 |
///\c ProcessedMap type. |
| 349 |
///It must |
|
| 353 |
///It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
|
| 350 | 354 |
template <class T> |
| 351 | 355 |
struct SetProcessedMap |
| 352 | 356 |
: public Dijkstra< Digraph, LengthMap, SetProcessedMapTraits<T> > {
|
| 353 | 357 |
typedef Dijkstra< Digraph, LengthMap, SetProcessedMapTraits<T> > Create; |
| 354 | 358 |
}; |
| 355 | 359 |
|
| 356 | 360 |
struct SetStandardProcessedMapTraits : public Traits {
|
| 357 | 361 |
typedef typename Digraph::template NodeMap<bool> ProcessedMap; |
| 358 | 362 |
static ProcessedMap *createProcessedMap(const Digraph &g) |
| 359 | 363 |
{
|
| 360 | 364 |
return new ProcessedMap(g); |
| 361 | 365 |
} |
| 362 | 366 |
}; |
| 363 | 367 |
///\brief \ref named-templ-param "Named parameter" for setting |
| 364 | 368 |
///\c ProcessedMap type to be <tt>Digraph::NodeMap<bool></tt>. |
| 365 | 369 |
/// |
| 366 | 370 |
///\ref named-templ-param "Named parameter" for setting |
| 367 | 371 |
///\c ProcessedMap type to be <tt>Digraph::NodeMap<bool></tt>. |
| 368 | 372 |
///If you don't set it explicitly, it will be automatically allocated. |
| 369 | 373 |
struct SetStandardProcessedMap |
| 370 | 374 |
: public Dijkstra< Digraph, LengthMap, SetStandardProcessedMapTraits > {
|
| 371 | 375 |
typedef Dijkstra< Digraph, LengthMap, SetStandardProcessedMapTraits > |
| 372 | 376 |
Create; |
| 373 | 377 |
}; |
| 374 | 378 |
|
| 375 | 379 |
template <class H, class CR> |
| 376 | 380 |
struct SetHeapTraits : public Traits {
|
| 377 | 381 |
typedef CR HeapCrossRef; |
| 378 | 382 |
typedef H Heap; |
| 379 | 383 |
static HeapCrossRef *createHeapCrossRef(const Digraph &) {
|
| 380 | 384 |
LEMON_ASSERT(false, "HeapCrossRef is not initialized"); |
| 381 | 385 |
return 0; // ignore warnings |
| 382 | 386 |
} |
| 383 | 387 |
static Heap *createHeap(HeapCrossRef &) |
| 384 | 388 |
{
|
| 385 | 389 |
LEMON_ASSERT(false, "Heap is not initialized"); |
| 386 | 390 |
return 0; // ignore warnings |
| 387 | 391 |
} |
| 388 | 392 |
}; |
| 389 | 393 |
///\brief \ref named-templ-param "Named parameter" for setting |
| 390 | 394 |
///heap and cross reference types |
| 391 | 395 |
/// |
| 392 | 396 |
///\ref named-templ-param "Named parameter" for setting heap and cross |
| 393 | 397 |
///reference types. If this named parameter is used, then external |
| 394 | 398 |
///heap and cross reference objects must be passed to the algorithm |
| 395 | 399 |
///using the \ref heap() function before calling \ref run(Node) "run()" |
| 396 | 400 |
///or \ref init(). |
| 397 | 401 |
///\sa SetStandardHeap |
| 398 | 402 |
template <class H, class CR = typename Digraph::template NodeMap<int> > |
| 399 | 403 |
struct SetHeap |
| 400 | 404 |
: public Dijkstra< Digraph, LengthMap, SetHeapTraits<H, CR> > {
|
| 401 | 405 |
typedef Dijkstra< Digraph, LengthMap, SetHeapTraits<H, CR> > Create; |
| 402 | 406 |
}; |
| 403 | 407 |
|
| 404 | 408 |
template <class H, class CR> |
| 405 | 409 |
struct SetStandardHeapTraits : public Traits {
|
| 406 | 410 |
typedef CR HeapCrossRef; |
| 407 | 411 |
typedef H Heap; |
| 408 | 412 |
static HeapCrossRef *createHeapCrossRef(const Digraph &G) {
|
| 409 | 413 |
return new HeapCrossRef(G); |
| 410 | 414 |
} |
| 411 | 415 |
static Heap *createHeap(HeapCrossRef &R) |
| 412 | 416 |
{
|
| 413 | 417 |
return new Heap(R); |
| 414 | 418 |
} |
| 415 | 419 |
}; |
| 416 | 420 |
///\brief \ref named-templ-param "Named parameter" for setting |
| 417 | 421 |
///heap and cross reference types with automatic allocation |
| 418 | 422 |
/// |
| 419 | 423 |
///\ref named-templ-param "Named parameter" for setting heap and cross |
| 420 | 424 |
///reference types with automatic allocation. |
| 421 | 425 |
///They should have standard constructor interfaces to be able to |
| 422 | 426 |
///automatically created by the algorithm (i.e. the digraph should be |
| 423 | 427 |
///passed to the constructor of the cross reference and the cross |
| 424 | 428 |
///reference should be passed to the constructor of the heap). |
| 425 | 429 |
///However external heap and cross reference objects could also be |
| 426 | 430 |
///passed to the algorithm using the \ref heap() function before |
| 427 | 431 |
///calling \ref run(Node) "run()" or \ref init(). |
| 428 | 432 |
///\sa SetHeap |
| 429 | 433 |
template <class H, class CR = typename Digraph::template NodeMap<int> > |
| 430 | 434 |
struct SetStandardHeap |
| 431 | 435 |
: public Dijkstra< Digraph, LengthMap, SetStandardHeapTraits<H, CR> > {
|
| 432 | 436 |
typedef Dijkstra< Digraph, LengthMap, SetStandardHeapTraits<H, CR> > |
| 433 | 437 |
Create; |
| 434 | 438 |
}; |
| 435 | 439 |
|
| 436 | 440 |
template <class T> |
| 437 | 441 |
struct SetOperationTraitsTraits : public Traits {
|
| 438 | 442 |
typedef T OperationTraits; |
| 439 | 443 |
}; |
| 440 | 444 |
|
| 441 | 445 |
/// \brief \ref named-templ-param "Named parameter" for setting |
| 442 | 446 |
///\c OperationTraits type |
| 443 | 447 |
/// |
| 444 | 448 |
///\ref named-templ-param "Named parameter" for setting |
| 445 | 449 |
///\c OperationTraits type. |
| 450 |
/// For more information see \ref DijkstraDefaultOperationTraits. |
|
| 446 | 451 |
template <class T> |
| 447 | 452 |
struct SetOperationTraits |
| 448 | 453 |
: public Dijkstra<Digraph, LengthMap, SetOperationTraitsTraits<T> > {
|
| 449 | 454 |
typedef Dijkstra<Digraph, LengthMap, SetOperationTraitsTraits<T> > |
| 450 | 455 |
Create; |
| 451 | 456 |
}; |
| 452 | 457 |
|
| 453 | 458 |
///@} |
| 454 | 459 |
|
| 455 | 460 |
protected: |
| 456 | 461 |
|
| 457 | 462 |
Dijkstra() {}
|
| 458 | 463 |
|
| 459 | 464 |
public: |
| 460 | 465 |
|
| 461 | 466 |
///Constructor. |
| 462 | 467 |
|
| 463 | 468 |
///Constructor. |
| 464 | 469 |
///\param g The digraph the algorithm runs on. |
| 465 | 470 |
///\param length The length map used by the algorithm. |
| 466 | 471 |
Dijkstra(const Digraph& g, const LengthMap& length) : |
| 467 | 472 |
G(&g), _length(&length), |
| 468 | 473 |
_pred(NULL), local_pred(false), |
| 469 | 474 |
_dist(NULL), local_dist(false), |
| 470 | 475 |
_processed(NULL), local_processed(false), |
| 471 | 476 |
_heap_cross_ref(NULL), local_heap_cross_ref(false), |
| 472 | 477 |
_heap(NULL), local_heap(false) |
| 473 | 478 |
{ }
|
| 474 | 479 |
|
| 475 | 480 |
///Destructor. |
| 476 | 481 |
~Dijkstra() |
| 477 | 482 |
{
|
| 478 | 483 |
if(local_pred) delete _pred; |
| 479 | 484 |
if(local_dist) delete _dist; |
| 480 | 485 |
if(local_processed) delete _processed; |
| 481 | 486 |
if(local_heap_cross_ref) delete _heap_cross_ref; |
| 482 | 487 |
if(local_heap) delete _heap; |
| 483 | 488 |
} |
| 484 | 489 |
|
| 485 | 490 |
///Sets the length map. |
| 486 | 491 |
|
| 487 | 492 |
///Sets the length map. |
| 488 | 493 |
///\return <tt> (*this) </tt> |
| 489 | 494 |
Dijkstra &lengthMap(const LengthMap &m) |
| 490 | 495 |
{
|
| 491 | 496 |
_length = &m; |
| 492 | 497 |
return *this; |
| 493 | 498 |
} |
| ... | ... |
@@ -539,98 +544,98 @@ |
| 539 | 544 |
///\return <tt> (*this) </tt> |
| 540 | 545 |
Dijkstra &distMap(DistMap &m) |
| 541 | 546 |
{
|
| 542 | 547 |
if(local_dist) {
|
| 543 | 548 |
delete _dist; |
| 544 | 549 |
local_dist=false; |
| 545 | 550 |
} |
| 546 | 551 |
_dist = &m; |
| 547 | 552 |
return *this; |
| 548 | 553 |
} |
| 549 | 554 |
|
| 550 | 555 |
///Sets the heap and the cross reference used by algorithm. |
| 551 | 556 |
|
| 552 | 557 |
///Sets the heap and the cross reference used by algorithm. |
| 553 | 558 |
///If you don't use this function before calling \ref run(Node) "run()" |
| 554 | 559 |
///or \ref init(), heap and cross reference instances will be |
| 555 | 560 |
///allocated automatically. |
| 556 | 561 |
///The destructor deallocates these automatically allocated objects, |
| 557 | 562 |
///of course. |
| 558 | 563 |
///\return <tt> (*this) </tt> |
| 559 | 564 |
Dijkstra &heap(Heap& hp, HeapCrossRef &cr) |
| 560 | 565 |
{
|
| 561 | 566 |
if(local_heap_cross_ref) {
|
| 562 | 567 |
delete _heap_cross_ref; |
| 563 | 568 |
local_heap_cross_ref=false; |
| 564 | 569 |
} |
| 565 | 570 |
_heap_cross_ref = &cr; |
| 566 | 571 |
if(local_heap) {
|
| 567 | 572 |
delete _heap; |
| 568 | 573 |
local_heap=false; |
| 569 | 574 |
} |
| 570 | 575 |
_heap = &hp; |
| 571 | 576 |
return *this; |
| 572 | 577 |
} |
| 573 | 578 |
|
| 574 | 579 |
private: |
| 575 | 580 |
|
| 576 | 581 |
void finalizeNodeData(Node v,Value dst) |
| 577 | 582 |
{
|
| 578 | 583 |
_processed->set(v,true); |
| 579 | 584 |
_dist->set(v, dst); |
| 580 | 585 |
} |
| 581 | 586 |
|
| 582 | 587 |
public: |
| 583 | 588 |
|
| 584 | 589 |
///\name Execution Control |
| 585 | 590 |
///The simplest way to execute the %Dijkstra algorithm is to use |
| 586 | 591 |
///one of the member functions called \ref run(Node) "run()".\n |
| 587 |
///If you need more control on the execution, first you have to call |
|
| 588 |
///\ref init(), then you can add several source nodes with |
|
| 592 |
///If you need better control on the execution, you have to call |
|
| 593 |
///\ref init() first, then you can add several source nodes with |
|
| 589 | 594 |
///\ref addSource(). Finally the actual path computation can be |
| 590 | 595 |
///performed with one of the \ref start() functions. |
| 591 | 596 |
|
| 592 | 597 |
///@{
|
| 593 | 598 |
|
| 594 | 599 |
///\brief Initializes the internal data structures. |
| 595 | 600 |
/// |
| 596 | 601 |
///Initializes the internal data structures. |
| 597 | 602 |
void init() |
| 598 | 603 |
{
|
| 599 | 604 |
create_maps(); |
| 600 | 605 |
_heap->clear(); |
| 601 | 606 |
for ( NodeIt u(*G) ; u!=INVALID ; ++u ) {
|
| 602 | 607 |
_pred->set(u,INVALID); |
| 603 | 608 |
_processed->set(u,false); |
| 604 | 609 |
_heap_cross_ref->set(u,Heap::PRE_HEAP); |
| 605 | 610 |
} |
| 606 | 611 |
} |
| 607 | 612 |
|
| 608 | 613 |
///Adds a new source node. |
| 609 | 614 |
|
| 610 | 615 |
///Adds a new source node to the priority heap. |
| 611 | 616 |
///The optional second parameter is the initial distance of the node. |
| 612 | 617 |
/// |
| 613 | 618 |
///The function checks if the node has already been added to the heap and |
| 614 | 619 |
///it is pushed to the heap only if either it was not in the heap |
| 615 | 620 |
///or the shortest path found till then is shorter than \c dst. |
| 616 | 621 |
void addSource(Node s,Value dst=OperationTraits::zero()) |
| 617 | 622 |
{
|
| 618 | 623 |
if(_heap->state(s) != Heap::IN_HEAP) {
|
| 619 | 624 |
_heap->push(s,dst); |
| 620 | 625 |
} else if(OperationTraits::less((*_heap)[s], dst)) {
|
| 621 | 626 |
_heap->set(s,dst); |
| 622 | 627 |
_pred->set(s,INVALID); |
| 623 | 628 |
} |
| 624 | 629 |
} |
| 625 | 630 |
|
| 626 | 631 |
///Processes the next node in the priority heap |
| 627 | 632 |
|
| 628 | 633 |
///Processes the next node in the priority heap. |
| 629 | 634 |
/// |
| 630 | 635 |
///\return The processed node. |
| 631 | 636 |
/// |
| 632 | 637 |
///\warning The priority heap must not be empty. |
| 633 | 638 |
Node processNextNode() |
| 634 | 639 |
{
|
| 635 | 640 |
Node v=_heap->top(); |
| 636 | 641 |
Value oldvalue=_heap->prio(); |
| ... | ... |
@@ -756,534 +761,529 @@ |
| 756 | 761 |
///Runs the algorithm from the given source node. |
| 757 | 762 |
|
| 758 | 763 |
///This method runs the %Dijkstra algorithm from node \c s |
| 759 | 764 |
///in order to compute the shortest path to each node. |
| 760 | 765 |
/// |
| 761 | 766 |
///The algorithm computes |
| 762 | 767 |
///- the shortest path tree, |
| 763 | 768 |
///- the distance of each node from the root. |
| 764 | 769 |
/// |
| 765 | 770 |
///\note <tt>d.run(s)</tt> is just a shortcut of the following code. |
| 766 | 771 |
///\code |
| 767 | 772 |
/// d.init(); |
| 768 | 773 |
/// d.addSource(s); |
| 769 | 774 |
/// d.start(); |
| 770 | 775 |
///\endcode |
| 771 | 776 |
void run(Node s) {
|
| 772 | 777 |
init(); |
| 773 | 778 |
addSource(s); |
| 774 | 779 |
start(); |
| 775 | 780 |
} |
| 776 | 781 |
|
| 777 | 782 |
///Finds the shortest path between \c s and \c t. |
| 778 | 783 |
|
| 779 | 784 |
///This method runs the %Dijkstra algorithm from node \c s |
| 780 | 785 |
///in order to compute the shortest path to node \c t |
| 781 | 786 |
///(it stops searching when \c t is processed). |
| 782 | 787 |
/// |
| 783 | 788 |
///\return \c true if \c t is reachable form \c s. |
| 784 | 789 |
/// |
| 785 | 790 |
///\note Apart from the return value, <tt>d.run(s,t)</tt> is just a |
| 786 | 791 |
///shortcut of the following code. |
| 787 | 792 |
///\code |
| 788 | 793 |
/// d.init(); |
| 789 | 794 |
/// d.addSource(s); |
| 790 | 795 |
/// d.start(t); |
| 791 | 796 |
///\endcode |
| 792 | 797 |
bool run(Node s,Node t) {
|
| 793 | 798 |
init(); |
| 794 | 799 |
addSource(s); |
| 795 | 800 |
start(t); |
| 796 | 801 |
return (*_heap_cross_ref)[t] == Heap::POST_HEAP; |
| 797 | 802 |
} |
| 798 | 803 |
|
| 799 | 804 |
///@} |
| 800 | 805 |
|
| 801 | 806 |
///\name Query Functions |
| 802 | 807 |
///The results of the %Dijkstra algorithm can be obtained using these |
| 803 | 808 |
///functions.\n |
| 804 |
///Either \ref run(Node) "run()" or \ref |
|
| 809 |
///Either \ref run(Node) "run()" or \ref init() should be called |
|
| 805 | 810 |
///before using them. |
| 806 | 811 |
|
| 807 | 812 |
///@{
|
| 808 | 813 |
|
| 809 |
///The shortest path to |
|
| 814 |
///The shortest path to the given node. |
|
| 810 | 815 |
|
| 811 |
///Returns the shortest path to |
|
| 816 |
///Returns the shortest path to the given node from the root(s). |
|
| 812 | 817 |
/// |
| 813 | 818 |
///\warning \c t should be reached from the root(s). |
| 814 | 819 |
/// |
| 815 | 820 |
///\pre Either \ref run(Node) "run()" or \ref init() |
| 816 | 821 |
///must be called before using this function. |
| 817 | 822 |
Path path(Node t) const { return Path(*G, *_pred, t); }
|
| 818 | 823 |
|
| 819 |
///The distance of |
|
| 824 |
///The distance of the given node from the root(s). |
|
| 820 | 825 |
|
| 821 |
///Returns the distance of |
|
| 826 |
///Returns the distance of the given node from the root(s). |
|
| 822 | 827 |
/// |
| 823 | 828 |
///\warning If node \c v is not reached from the root(s), then |
| 824 | 829 |
///the return value of this function is undefined. |
| 825 | 830 |
/// |
| 826 | 831 |
///\pre Either \ref run(Node) "run()" or \ref init() |
| 827 | 832 |
///must be called before using this function. |
| 828 | 833 |
Value dist(Node v) const { return (*_dist)[v]; }
|
| 829 | 834 |
|
| 830 |
///Returns the 'previous arc' of the shortest path tree for a node. |
|
| 831 |
|
|
| 835 |
///\brief Returns the 'previous arc' of the shortest path tree for |
|
| 836 |
///the given node. |
|
| 837 |
/// |
|
| 832 | 838 |
///This function returns the 'previous arc' of the shortest path |
| 833 | 839 |
///tree for the node \c v, i.e. it returns the last arc of a |
| 834 | 840 |
///shortest path from a root to \c v. It is \c INVALID if \c v |
| 835 | 841 |
///is not reached from the root(s) or if \c v is a root. |
| 836 | 842 |
/// |
| 837 | 843 |
///The shortest path tree used here is equal to the shortest path |
| 838 |
///tree used in \ref predNode(). |
|
| 844 |
///tree used in \ref predNode() and \ref predMap(). |
|
| 839 | 845 |
/// |
| 840 | 846 |
///\pre Either \ref run(Node) "run()" or \ref init() |
| 841 | 847 |
///must be called before using this function. |
| 842 | 848 |
Arc predArc(Node v) const { return (*_pred)[v]; }
|
| 843 | 849 |
|
| 844 |
///Returns the 'previous node' of the shortest path tree for a node. |
|
| 845 |
|
|
| 850 |
///\brief Returns the 'previous node' of the shortest path tree for |
|
| 851 |
///the given node. |
|
| 852 |
/// |
|
| 846 | 853 |
///This function returns the 'previous node' of the shortest path |
| 847 | 854 |
///tree for the node \c v, i.e. it returns the last but one node |
| 848 |
/// |
|
| 855 |
///of a shortest path from a root to \c v. It is \c INVALID |
|
| 849 | 856 |
///if \c v is not reached from the root(s) or if \c v is a root. |
| 850 | 857 |
/// |
| 851 | 858 |
///The shortest path tree used here is equal to the shortest path |
| 852 |
///tree used in \ref predArc(). |
|
| 859 |
///tree used in \ref predArc() and \ref predMap(). |
|
| 853 | 860 |
/// |
| 854 | 861 |
///\pre Either \ref run(Node) "run()" or \ref init() |
| 855 | 862 |
///must be called before using this function. |
| 856 | 863 |
Node predNode(Node v) const { return (*_pred)[v]==INVALID ? INVALID:
|
| 857 | 864 |
G->source((*_pred)[v]); } |
| 858 | 865 |
|
| 859 | 866 |
///\brief Returns a const reference to the node map that stores the |
| 860 | 867 |
///distances of the nodes. |
| 861 | 868 |
/// |
| 862 | 869 |
///Returns a const reference to the node map that stores the distances |
| 863 | 870 |
///of the nodes calculated by the algorithm. |
| 864 | 871 |
/// |
| 865 | 872 |
///\pre Either \ref run(Node) "run()" or \ref init() |
| 866 | 873 |
///must be called before using this function. |
| 867 | 874 |
const DistMap &distMap() const { return *_dist;}
|
| 868 | 875 |
|
| 869 | 876 |
///\brief Returns a const reference to the node map that stores the |
| 870 | 877 |
///predecessor arcs. |
| 871 | 878 |
/// |
| 872 | 879 |
///Returns a const reference to the node map that stores the predecessor |
| 873 |
///arcs, which form the shortest path tree. |
|
| 880 |
///arcs, which form the shortest path tree (forest). |
|
| 874 | 881 |
/// |
| 875 | 882 |
///\pre Either \ref run(Node) "run()" or \ref init() |
| 876 | 883 |
///must be called before using this function. |
| 877 | 884 |
const PredMap &predMap() const { return *_pred;}
|
| 878 | 885 |
|
| 879 |
///Checks if |
|
| 886 |
///Checks if the given node is reached from the root(s). |
|
| 880 | 887 |
|
| 881 | 888 |
///Returns \c true if \c v is reached from the root(s). |
| 882 | 889 |
/// |
| 883 | 890 |
///\pre Either \ref run(Node) "run()" or \ref init() |
| 884 | 891 |
///must be called before using this function. |
| 885 | 892 |
bool reached(Node v) const { return (*_heap_cross_ref)[v] !=
|
| 886 | 893 |
Heap::PRE_HEAP; } |
| 887 | 894 |
|
| 888 | 895 |
///Checks if a node is processed. |
| 889 | 896 |
|
| 890 | 897 |
///Returns \c true if \c v is processed, i.e. the shortest |
| 891 | 898 |
///path to \c v has already found. |
| 892 | 899 |
/// |
| 893 | 900 |
///\pre Either \ref run(Node) "run()" or \ref init() |
| 894 | 901 |
///must be called before using this function. |
| 895 | 902 |
bool processed(Node v) const { return (*_heap_cross_ref)[v] ==
|
| 896 | 903 |
Heap::POST_HEAP; } |
| 897 | 904 |
|
| 898 |
///The current distance of |
|
| 905 |
///The current distance of the given node from the root(s). |
|
| 899 | 906 |
|
| 900 |
///Returns the current distance of |
|
| 907 |
///Returns the current distance of the given node from the root(s). |
|
| 901 | 908 |
///It may be decreased in the following processes. |
| 902 | 909 |
/// |
| 903 | 910 |
///\pre Either \ref run(Node) "run()" or \ref init() |
| 904 | 911 |
///must be called before using this function and |
| 905 | 912 |
///node \c v must be reached but not necessarily processed. |
| 906 | 913 |
Value currentDist(Node v) const {
|
| 907 | 914 |
return processed(v) ? (*_dist)[v] : (*_heap)[v]; |
| 908 | 915 |
} |
| 909 | 916 |
|
| 910 | 917 |
///@} |
| 911 | 918 |
}; |
| 912 | 919 |
|
| 913 | 920 |
|
| 914 | 921 |
///Default traits class of dijkstra() function. |
| 915 | 922 |
|
| 916 | 923 |
///Default traits class of dijkstra() function. |
| 917 | 924 |
///\tparam GR The type of the digraph. |
| 918 | 925 |
///\tparam LEN The type of the length map. |
| 919 | 926 |
template<class GR, class LEN> |
| 920 | 927 |
struct DijkstraWizardDefaultTraits |
| 921 | 928 |
{
|
| 922 | 929 |
///The type of the digraph the algorithm runs on. |
| 923 | 930 |
typedef GR Digraph; |
| 924 | 931 |
///The type of the map that stores the arc lengths. |
| 925 | 932 |
|
| 926 | 933 |
///The type of the map that stores the arc lengths. |
| 927 |
///It must |
|
| 934 |
///It must conform to the \ref concepts::ReadMap "ReadMap" concept. |
|
| 928 | 935 |
typedef LEN LengthMap; |
| 929 |
///The type of the |
|
| 936 |
///The type of the arc lengths. |
|
| 930 | 937 |
typedef typename LEN::Value Value; |
| 931 | 938 |
|
| 932 | 939 |
/// Operation traits for Dijkstra algorithm. |
| 933 | 940 |
|
| 934 | 941 |
/// This class defines the operations that are used in the algorithm. |
| 935 | 942 |
/// \see DijkstraDefaultOperationTraits |
| 936 | 943 |
typedef DijkstraDefaultOperationTraits<Value> OperationTraits; |
| 937 | 944 |
|
| 938 | 945 |
/// The cross reference type used by the heap. |
| 939 | 946 |
|
| 940 | 947 |
/// The cross reference type used by the heap. |
| 941 | 948 |
/// Usually it is \c Digraph::NodeMap<int>. |
| 942 | 949 |
typedef typename Digraph::template NodeMap<int> HeapCrossRef; |
| 943 | 950 |
///Instantiates a \ref HeapCrossRef. |
| 944 | 951 |
|
| 945 | 952 |
///This function instantiates a \ref HeapCrossRef. |
| 946 | 953 |
/// \param g is the digraph, to which we would like to define the |
| 947 | 954 |
/// HeapCrossRef. |
| 948 | 955 |
static HeapCrossRef *createHeapCrossRef(const Digraph &g) |
| 949 | 956 |
{
|
| 950 | 957 |
return new HeapCrossRef(g); |
| 951 | 958 |
} |
| 952 | 959 |
|
| 953 | 960 |
///The heap type used by the Dijkstra algorithm. |
| 954 | 961 |
|
| 955 | 962 |
///The heap type used by the Dijkstra algorithm. |
| 956 | 963 |
/// |
| 957 | 964 |
///\sa BinHeap |
| 958 | 965 |
///\sa Dijkstra |
| 959 | 966 |
typedef BinHeap<Value, typename Digraph::template NodeMap<int>, |
| 960 | 967 |
std::less<Value> > Heap; |
| 961 | 968 |
|
| 962 | 969 |
///Instantiates a \ref Heap. |
| 963 | 970 |
|
| 964 | 971 |
///This function instantiates a \ref Heap. |
| 965 | 972 |
/// \param r is the HeapCrossRef which is used. |
| 966 | 973 |
static Heap *createHeap(HeapCrossRef& r) |
| 967 | 974 |
{
|
| 968 | 975 |
return new Heap(r); |
| 969 | 976 |
} |
| 970 | 977 |
|
| 971 | 978 |
///\brief The type of the map that stores the predecessor |
| 972 | 979 |
///arcs of the shortest paths. |
| 973 | 980 |
/// |
| 974 | 981 |
///The type of the map that stores the predecessor |
| 975 | 982 |
///arcs of the shortest paths. |
| 976 |
///It must |
|
| 983 |
///It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
|
| 977 | 984 |
typedef typename Digraph::template NodeMap<typename Digraph::Arc> PredMap; |
| 978 | 985 |
///Instantiates a PredMap. |
| 979 | 986 |
|
| 980 | 987 |
///This function instantiates a PredMap. |
| 981 | 988 |
///\param g is the digraph, to which we would like to define the |
| 982 | 989 |
///PredMap. |
| 983 | 990 |
static PredMap *createPredMap(const Digraph &g) |
| 984 | 991 |
{
|
| 985 | 992 |
return new PredMap(g); |
| 986 | 993 |
} |
| 987 | 994 |
|
| 988 | 995 |
///The type of the map that indicates which nodes are processed. |
| 989 | 996 |
|
| 990 | 997 |
///The type of the map that indicates which nodes are processed. |
| 991 |
///It must |
|
| 998 |
///It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
|
| 992 | 999 |
///By default it is a NullMap. |
| 993 | 1000 |
typedef NullMap<typename Digraph::Node,bool> ProcessedMap; |
| 994 | 1001 |
///Instantiates a ProcessedMap. |
| 995 | 1002 |
|
| 996 | 1003 |
///This function instantiates a ProcessedMap. |
| 997 | 1004 |
///\param g is the digraph, to which |
| 998 | 1005 |
///we would like to define the ProcessedMap. |
| 999 | 1006 |
#ifdef DOXYGEN |
| 1000 | 1007 |
static ProcessedMap *createProcessedMap(const Digraph &g) |
| 1001 | 1008 |
#else |
| 1002 | 1009 |
static ProcessedMap *createProcessedMap(const Digraph &) |
| 1003 | 1010 |
#endif |
| 1004 | 1011 |
{
|
| 1005 | 1012 |
return new ProcessedMap(); |
| 1006 | 1013 |
} |
| 1007 | 1014 |
|
| 1008 | 1015 |
///The type of the map that stores the distances of the nodes. |
| 1009 | 1016 |
|
| 1010 | 1017 |
///The type of the map that stores the distances of the nodes. |
| 1011 |
///It must |
|
| 1018 |
///It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
|
| 1012 | 1019 |
typedef typename Digraph::template NodeMap<typename LEN::Value> DistMap; |
| 1013 | 1020 |
///Instantiates a DistMap. |
| 1014 | 1021 |
|
| 1015 | 1022 |
///This function instantiates a DistMap. |
| 1016 | 1023 |
///\param g is the digraph, to which we would like to define |
| 1017 | 1024 |
///the DistMap |
| 1018 | 1025 |
static DistMap *createDistMap(const Digraph &g) |
| 1019 | 1026 |
{
|
| 1020 | 1027 |
return new DistMap(g); |
| 1021 | 1028 |
} |
| 1022 | 1029 |
|
| 1023 | 1030 |
///The type of the shortest paths. |
| 1024 | 1031 |
|
| 1025 | 1032 |
///The type of the shortest paths. |
| 1026 |
///It must |
|
| 1033 |
///It must conform to the \ref concepts::Path "Path" concept. |
|
| 1027 | 1034 |
typedef lemon::Path<Digraph> Path; |
| 1028 | 1035 |
}; |
| 1029 | 1036 |
|
| 1030 | 1037 |
/// Default traits class used by DijkstraWizard |
| 1031 | 1038 |
|
| 1032 |
/// To make it easier to use Dijkstra algorithm |
|
| 1033 |
/// we have created a wizard class. |
|
| 1034 |
/// This \ref DijkstraWizard class needs default traits, |
|
| 1035 |
/// as well as the \ref Dijkstra class. |
|
| 1036 |
/// The \ref DijkstraWizardBase is a class to be the default traits of the |
|
| 1037 |
/// \ref DijkstraWizard class. |
|
| 1039 |
/// Default traits class used by DijkstraWizard. |
|
| 1040 |
/// \tparam GR The type of the digraph. |
|
| 1041 |
/// \tparam LEN The type of the length map. |
|
| 1038 | 1042 |
template<typename GR, typename LEN> |
| 1039 | 1043 |
class DijkstraWizardBase : public DijkstraWizardDefaultTraits<GR,LEN> |
| 1040 | 1044 |
{
|
| 1041 | 1045 |
typedef DijkstraWizardDefaultTraits<GR,LEN> Base; |
| 1042 | 1046 |
protected: |
| 1043 | 1047 |
//The type of the nodes in the digraph. |
| 1044 | 1048 |
typedef typename Base::Digraph::Node Node; |
| 1045 | 1049 |
|
| 1046 | 1050 |
//Pointer to the digraph the algorithm runs on. |
| 1047 | 1051 |
void *_g; |
| 1048 | 1052 |
//Pointer to the length map. |
| 1049 | 1053 |
void *_length; |
| 1050 | 1054 |
//Pointer to the map of processed nodes. |
| 1051 | 1055 |
void *_processed; |
| 1052 | 1056 |
//Pointer to the map of predecessors arcs. |
| 1053 | 1057 |
void *_pred; |
| 1054 | 1058 |
//Pointer to the map of distances. |
| 1055 | 1059 |
void *_dist; |
| 1056 | 1060 |
//Pointer to the shortest path to the target node. |
| 1057 | 1061 |
void *_path; |
| 1058 | 1062 |
//Pointer to the distance of the target node. |
| 1059 | 1063 |
void *_di; |
| 1060 | 1064 |
|
| 1061 | 1065 |
public: |
| 1062 | 1066 |
/// Constructor. |
| 1063 | 1067 |
|
| 1064 | 1068 |
/// This constructor does not require parameters, therefore it initiates |
| 1065 | 1069 |
/// all of the attributes to \c 0. |
| 1066 | 1070 |
DijkstraWizardBase() : _g(0), _length(0), _processed(0), _pred(0), |
| 1067 | 1071 |
_dist(0), _path(0), _di(0) {}
|
| 1068 | 1072 |
|
| 1069 | 1073 |
/// Constructor. |
| 1070 | 1074 |
|
| 1071 | 1075 |
/// This constructor requires two parameters, |
| 1072 | 1076 |
/// others are initiated to \c 0. |
| 1073 | 1077 |
/// \param g The digraph the algorithm runs on. |
| 1074 | 1078 |
/// \param l The length map. |
| 1075 | 1079 |
DijkstraWizardBase(const GR &g,const LEN &l) : |
| 1076 | 1080 |
_g(reinterpret_cast<void*>(const_cast<GR*>(&g))), |
| 1077 | 1081 |
_length(reinterpret_cast<void*>(const_cast<LEN*>(&l))), |
| 1078 | 1082 |
_processed(0), _pred(0), _dist(0), _path(0), _di(0) {}
|
| 1079 | 1083 |
|
| 1080 | 1084 |
}; |
| 1081 | 1085 |
|
| 1082 | 1086 |
/// Auxiliary class for the function-type interface of Dijkstra algorithm. |
| 1083 | 1087 |
|
| 1084 | 1088 |
/// This auxiliary class is created to implement the |
| 1085 | 1089 |
/// \ref dijkstra() "function-type interface" of \ref Dijkstra algorithm. |
| 1086 | 1090 |
/// It does not have own \ref run(Node) "run()" method, it uses the |
| 1087 | 1091 |
/// functions and features of the plain \ref Dijkstra. |
| 1088 | 1092 |
/// |
| 1089 | 1093 |
/// This class should only be used through the \ref dijkstra() function, |
| 1090 | 1094 |
/// which makes it easier to use the algorithm. |
| 1091 | 1095 |
template<class TR> |
| 1092 | 1096 |
class DijkstraWizard : public TR |
| 1093 | 1097 |
{
|
| 1094 | 1098 |
typedef TR Base; |
| 1095 | 1099 |
|
| 1096 |
///The type of the digraph the algorithm runs on. |
|
| 1097 | 1100 |
typedef typename TR::Digraph Digraph; |
| 1098 | 1101 |
|
| 1099 | 1102 |
typedef typename Digraph::Node Node; |
| 1100 | 1103 |
typedef typename Digraph::NodeIt NodeIt; |
| 1101 | 1104 |
typedef typename Digraph::Arc Arc; |
| 1102 | 1105 |
typedef typename Digraph::OutArcIt OutArcIt; |
| 1103 | 1106 |
|
| 1104 |
///The type of the map that stores the arc lengths. |
|
| 1105 | 1107 |
typedef typename TR::LengthMap LengthMap; |
| 1106 |
///The type of the length of the arcs. |
|
| 1107 | 1108 |
typedef typename LengthMap::Value Value; |
| 1108 |
///\brief The type of the map that stores the predecessor |
|
| 1109 |
///arcs of the shortest paths. |
|
| 1110 | 1109 |
typedef typename TR::PredMap PredMap; |
| 1111 |
///The type of the map that stores the distances of the nodes. |
|
| 1112 | 1110 |
typedef typename TR::DistMap DistMap; |
| 1113 |
///The type of the map that indicates which nodes are processed. |
|
| 1114 | 1111 |
typedef typename TR::ProcessedMap ProcessedMap; |
| 1115 |
///The type of the shortest paths |
|
| 1116 | 1112 |
typedef typename TR::Path Path; |
| 1117 |
///The heap type used by the dijkstra algorithm. |
|
| 1118 | 1113 |
typedef typename TR::Heap Heap; |
| 1119 | 1114 |
|
| 1120 | 1115 |
public: |
| 1121 | 1116 |
|
| 1122 | 1117 |
/// Constructor. |
| 1123 | 1118 |
DijkstraWizard() : TR() {}
|
| 1124 | 1119 |
|
| 1125 | 1120 |
/// Constructor that requires parameters. |
| 1126 | 1121 |
|
| 1127 | 1122 |
/// Constructor that requires parameters. |
| 1128 | 1123 |
/// These parameters will be the default values for the traits class. |
| 1129 | 1124 |
/// \param g The digraph the algorithm runs on. |
| 1130 | 1125 |
/// \param l The length map. |
| 1131 | 1126 |
DijkstraWizard(const Digraph &g, const LengthMap &l) : |
| 1132 | 1127 |
TR(g,l) {}
|
| 1133 | 1128 |
|
| 1134 | 1129 |
///Copy constructor |
| 1135 | 1130 |
DijkstraWizard(const TR &b) : TR(b) {}
|
| 1136 | 1131 |
|
| 1137 | 1132 |
~DijkstraWizard() {}
|
| 1138 | 1133 |
|
| 1139 | 1134 |
///Runs Dijkstra algorithm from the given source node. |
| 1140 | 1135 |
|
| 1141 | 1136 |
///This method runs %Dijkstra algorithm from the given source node |
| 1142 | 1137 |
///in order to compute the shortest path to each node. |
| 1143 | 1138 |
void run(Node s) |
| 1144 | 1139 |
{
|
| 1145 | 1140 |
Dijkstra<Digraph,LengthMap,TR> |
| 1146 | 1141 |
dijk(*reinterpret_cast<const Digraph*>(Base::_g), |
| 1147 | 1142 |
*reinterpret_cast<const LengthMap*>(Base::_length)); |
| 1148 | 1143 |
if (Base::_pred) |
| 1149 | 1144 |
dijk.predMap(*reinterpret_cast<PredMap*>(Base::_pred)); |
| 1150 | 1145 |
if (Base::_dist) |
| 1151 | 1146 |
dijk.distMap(*reinterpret_cast<DistMap*>(Base::_dist)); |
| 1152 | 1147 |
if (Base::_processed) |
| 1153 | 1148 |
dijk.processedMap(*reinterpret_cast<ProcessedMap*>(Base::_processed)); |
| 1154 | 1149 |
dijk.run(s); |
| 1155 | 1150 |
} |
| 1156 | 1151 |
|
| 1157 | 1152 |
///Finds the shortest path between \c s and \c t. |
| 1158 | 1153 |
|
| 1159 | 1154 |
///This method runs the %Dijkstra algorithm from node \c s |
| 1160 | 1155 |
///in order to compute the shortest path to node \c t |
| 1161 | 1156 |
///(it stops searching when \c t is processed). |
| 1162 | 1157 |
/// |
| 1163 | 1158 |
///\return \c true if \c t is reachable form \c s. |
| 1164 | 1159 |
bool run(Node s, Node t) |
| 1165 | 1160 |
{
|
| 1166 | 1161 |
Dijkstra<Digraph,LengthMap,TR> |
| 1167 | 1162 |
dijk(*reinterpret_cast<const Digraph*>(Base::_g), |
| 1168 | 1163 |
*reinterpret_cast<const LengthMap*>(Base::_length)); |
| 1169 | 1164 |
if (Base::_pred) |
| 1170 | 1165 |
dijk.predMap(*reinterpret_cast<PredMap*>(Base::_pred)); |
| 1171 | 1166 |
if (Base::_dist) |
| 1172 | 1167 |
dijk.distMap(*reinterpret_cast<DistMap*>(Base::_dist)); |
| 1173 | 1168 |
if (Base::_processed) |
| 1174 | 1169 |
dijk.processedMap(*reinterpret_cast<ProcessedMap*>(Base::_processed)); |
| 1175 | 1170 |
dijk.run(s,t); |
| 1176 | 1171 |
if (Base::_path) |
| 1177 | 1172 |
*reinterpret_cast<Path*>(Base::_path) = dijk.path(t); |
| 1178 | 1173 |
if (Base::_di) |
| 1179 | 1174 |
*reinterpret_cast<Value*>(Base::_di) = dijk.dist(t); |
| 1180 | 1175 |
return dijk.reached(t); |
| 1181 | 1176 |
} |
| 1182 | 1177 |
|
| 1183 | 1178 |
template<class T> |
| 1184 | 1179 |
struct SetPredMapBase : public Base {
|
| 1185 | 1180 |
typedef T PredMap; |
| 1186 | 1181 |
static PredMap *createPredMap(const Digraph &) { return 0; };
|
| 1187 | 1182 |
SetPredMapBase(const TR &b) : TR(b) {}
|
| 1188 | 1183 |
}; |
| 1189 |
///\brief \ref named-func-param "Named parameter" |
|
| 1190 |
///for setting PredMap object. |
|
| 1184 |
|
|
| 1185 |
///\brief \ref named-templ-param "Named parameter" for setting |
|
| 1186 |
///the predecessor map. |
|
| 1191 | 1187 |
/// |
| 1192 |
///\ref named-func-param "Named parameter" |
|
| 1193 |
///for setting PredMap object. |
|
| 1188 |
///\ref named-templ-param "Named parameter" function for setting |
|
| 1189 |
///the map that stores the predecessor arcs of the nodes. |
|
| 1194 | 1190 |
template<class T> |
| 1195 | 1191 |
DijkstraWizard<SetPredMapBase<T> > predMap(const T &t) |
| 1196 | 1192 |
{
|
| 1197 | 1193 |
Base::_pred=reinterpret_cast<void*>(const_cast<T*>(&t)); |
| 1198 | 1194 |
return DijkstraWizard<SetPredMapBase<T> >(*this); |
| 1199 | 1195 |
} |
| 1200 | 1196 |
|
| 1201 | 1197 |
template<class T> |
| 1202 | 1198 |
struct SetDistMapBase : public Base {
|
| 1203 | 1199 |
typedef T DistMap; |
| 1204 | 1200 |
static DistMap *createDistMap(const Digraph &) { return 0; };
|
| 1205 | 1201 |
SetDistMapBase(const TR &b) : TR(b) {}
|
| 1206 | 1202 |
}; |
| 1207 |
///\brief \ref named-func-param "Named parameter" |
|
| 1208 |
///for setting DistMap object. |
|
| 1203 |
|
|
| 1204 |
///\brief \ref named-templ-param "Named parameter" for setting |
|
| 1205 |
///the distance map. |
|
| 1209 | 1206 |
/// |
| 1210 |
///\ref named-func-param "Named parameter" |
|
| 1211 |
///for setting DistMap object. |
|
| 1207 |
///\ref named-templ-param "Named parameter" function for setting |
|
| 1208 |
///the map that stores the distances of the nodes calculated |
|
| 1209 |
///by the algorithm. |
|
| 1212 | 1210 |
template<class T> |
| 1213 | 1211 |
DijkstraWizard<SetDistMapBase<T> > distMap(const T &t) |
| 1214 | 1212 |
{
|
| 1215 | 1213 |
Base::_dist=reinterpret_cast<void*>(const_cast<T*>(&t)); |
| 1216 | 1214 |
return DijkstraWizard<SetDistMapBase<T> >(*this); |
| 1217 | 1215 |
} |
| 1218 | 1216 |
|
| 1219 | 1217 |
template<class T> |
| 1220 | 1218 |
struct SetProcessedMapBase : public Base {
|
| 1221 | 1219 |
typedef T ProcessedMap; |
| 1222 | 1220 |
static ProcessedMap *createProcessedMap(const Digraph &) { return 0; };
|
| 1223 | 1221 |
SetProcessedMapBase(const TR &b) : TR(b) {}
|
| 1224 | 1222 |
}; |
| 1225 |
///\brief \ref named-func-param "Named parameter" |
|
| 1226 |
///for setting ProcessedMap object. |
|
| 1223 |
|
|
| 1224 |
///\brief \ref named-func-param "Named parameter" for setting |
|
| 1225 |
///the processed map. |
|
| 1227 | 1226 |
/// |
| 1228 |
/// \ref named-func-param "Named parameter" |
|
| 1229 |
///for setting ProcessedMap object. |
|
| 1227 |
///\ref named-templ-param "Named parameter" function for setting |
|
| 1228 |
///the map that indicates which nodes are processed. |
|
| 1230 | 1229 |
template<class T> |
| 1231 | 1230 |
DijkstraWizard<SetProcessedMapBase<T> > processedMap(const T &t) |
| 1232 | 1231 |
{
|
| 1233 | 1232 |
Base::_processed=reinterpret_cast<void*>(const_cast<T*>(&t)); |
| 1234 | 1233 |
return DijkstraWizard<SetProcessedMapBase<T> >(*this); |
| 1235 | 1234 |
} |
| 1236 | 1235 |
|
| 1237 | 1236 |
template<class T> |
| 1238 | 1237 |
struct SetPathBase : public Base {
|
| 1239 | 1238 |
typedef T Path; |
| 1240 | 1239 |
SetPathBase(const TR &b) : TR(b) {}
|
| 1241 | 1240 |
}; |
| 1241 |
|
|
| 1242 | 1242 |
///\brief \ref named-func-param "Named parameter" |
| 1243 | 1243 |
///for getting the shortest path to the target node. |
| 1244 | 1244 |
/// |
| 1245 | 1245 |
///\ref named-func-param "Named parameter" |
| 1246 | 1246 |
///for getting the shortest path to the target node. |
| 1247 | 1247 |
template<class T> |
| 1248 | 1248 |
DijkstraWizard<SetPathBase<T> > path(const T &t) |
| 1249 | 1249 |
{
|
| 1250 | 1250 |
Base::_path=reinterpret_cast<void*>(const_cast<T*>(&t)); |
| 1251 | 1251 |
return DijkstraWizard<SetPathBase<T> >(*this); |
| 1252 | 1252 |
} |
| 1253 | 1253 |
|
| 1254 | 1254 |
///\brief \ref named-func-param "Named parameter" |
| 1255 | 1255 |
///for getting the distance of the target node. |
| 1256 | 1256 |
/// |
| 1257 | 1257 |
///\ref named-func-param "Named parameter" |
| 1258 | 1258 |
///for getting the distance of the target node. |
| 1259 | 1259 |
DijkstraWizard dist(const Value &d) |
| 1260 | 1260 |
{
|
| 1261 | 1261 |
Base::_di=reinterpret_cast<void*>(const_cast<Value*>(&d)); |
| 1262 | 1262 |
return *this; |
| 1263 | 1263 |
} |
| 1264 | 1264 |
|
| 1265 | 1265 |
}; |
| 1266 | 1266 |
|
| 1267 | 1267 |
///Function-type interface for Dijkstra algorithm. |
| 1268 | 1268 |
|
| 1269 | 1269 |
/// \ingroup shortest_path |
| 1270 | 1270 |
///Function-type interface for Dijkstra algorithm. |
| 1271 | 1271 |
/// |
| 1272 | 1272 |
///This function also has several \ref named-func-param "named parameters", |
| 1273 | 1273 |
///they are declared as the members of class \ref DijkstraWizard. |
| 1274 | 1274 |
///The following examples show how to use these parameters. |
| 1275 | 1275 |
///\code |
| 1276 | 1276 |
/// // Compute shortest path from node s to each node |
| 1277 | 1277 |
/// dijkstra(g,length).predMap(preds).distMap(dists).run(s); |
| 1278 | 1278 |
/// |
| 1279 | 1279 |
/// // Compute shortest path from s to t |
| 1280 | 1280 |
/// bool reached = dijkstra(g,length).path(p).dist(d).run(s,t); |
| 1281 | 1281 |
///\endcode |
| 1282 | 1282 |
///\warning Don't forget to put the \ref DijkstraWizard::run(Node) "run()" |
| 1283 | 1283 |
///to the end of the parameter list. |
| 1284 | 1284 |
///\sa DijkstraWizard |
| 1285 | 1285 |
///\sa Dijkstra |
| 1286 | 1286 |
template<typename GR, typename LEN> |
| 1287 | 1287 |
DijkstraWizard<DijkstraWizardBase<GR,LEN> > |
| 1288 | 1288 |
dijkstra(const GR &digraph, const LEN &length) |
| 1289 | 1289 |
{
|
| 1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
| 2 | 2 |
* |
| 3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
| 4 | 4 |
* |
| 5 | 5 |
* Copyright (C) 2003-2009 |
| 6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
| 7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
| 8 | 8 |
* |
| 9 | 9 |
* Permission to use, modify and distribute this software is granted |
| 10 | 10 |
* provided that this copyright notice appears in all copies. For |
| 11 | 11 |
* precise terms see the accompanying LICENSE file. |
| 12 | 12 |
* |
| 13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
| 14 | 14 |
* express or implied, and with no claim as to its suitability for any |
| 15 | 15 |
* purpose. |
| 16 | 16 |
* |
| 17 | 17 |
*/ |
| 18 | 18 |
|
| 19 | 19 |
#ifndef LEMON_DIM2_H |
| 20 | 20 |
#define LEMON_DIM2_H |
| 21 | 21 |
|
| 22 | 22 |
#include <iostream> |
| 23 | 23 |
|
| 24 |
///\ingroup |
|
| 24 |
///\ingroup geomdat |
|
| 25 | 25 |
///\file |
| 26 | 26 |
///\brief A simple two dimensional vector and a bounding box implementation |
| 27 |
/// |
|
| 28 |
/// The class \ref lemon::dim2::Point "dim2::Point" implements |
|
| 29 |
/// a two dimensional vector with the usual operations. |
|
| 30 |
/// |
|
| 31 |
/// The class \ref lemon::dim2::Box "dim2::Box" can be used to determine |
|
| 32 |
/// the rectangular bounding box of a set of |
|
| 33 |
/// \ref lemon::dim2::Point "dim2::Point"'s. |
|
| 34 | 27 |
|
| 35 | 28 |
namespace lemon {
|
| 36 | 29 |
|
| 37 | 30 |
///Tools for handling two dimensional coordinates |
| 38 | 31 |
|
| 39 | 32 |
///This namespace is a storage of several |
| 40 | 33 |
///tools for handling two dimensional coordinates |
| 41 | 34 |
namespace dim2 {
|
| 42 | 35 |
|
| 43 |
/// \addtogroup |
|
| 36 |
/// \addtogroup geomdat |
|
| 44 | 37 |
/// @{
|
| 45 | 38 |
|
| 46 | 39 |
/// Two dimensional vector (plain vector) |
| 47 | 40 |
|
| 48 | 41 |
/// A simple two dimensional vector (plain vector) implementation |
| 49 | 42 |
/// with the usual vector operations. |
| 50 | 43 |
template<typename T> |
| 51 | 44 |
class Point {
|
| 52 | 45 |
|
| 53 | 46 |
public: |
| 54 | 47 |
|
| 55 | 48 |
typedef T Value; |
| 56 | 49 |
|
| 57 | 50 |
///First coordinate |
| 58 | 51 |
T x; |
| 59 | 52 |
///Second coordinate |
| 60 | 53 |
T y; |
| 61 | 54 |
|
| 62 | 55 |
///Default constructor |
| 63 | 56 |
Point() {}
|
| 64 | 57 |
|
| 65 | 58 |
///Construct an instance from coordinates |
| 66 | 59 |
Point(T a, T b) : x(a), y(b) { }
|
| 67 | 60 |
|
| 68 | 61 |
///Returns the dimension of the vector (i.e. returns 2). |
| 69 | 62 |
|
| 70 | 63 |
///The dimension of the vector. |
| 71 | 64 |
///This function always returns 2. |
| 72 | 65 |
int size() const { return 2; }
|
| 73 | 66 |
|
| 74 | 67 |
///Subscripting operator |
| 75 | 68 |
|
| 76 | 69 |
///\c p[0] is \c p.x and \c p[1] is \c p.y |
| 77 | 70 |
/// |
| 78 | 71 |
T& operator[](int idx) { return idx == 0 ? x : y; }
|
| 79 | 72 |
|
| 80 | 73 |
///Const subscripting operator |
| 81 | 74 |
|
| 82 | 75 |
///\c p[0] is \c p.x and \c p[1] is \c p.y |
| 83 | 76 |
/// |
| 84 | 77 |
const T& operator[](int idx) const { return idx == 0 ? x : y; }
|
| 85 | 78 |
|
| 86 | 79 |
///Conversion constructor |
| 87 | 80 |
template<class TT> Point(const Point<TT> &p) : x(p.x), y(p.y) {}
|
| 88 | 81 |
|
| 89 | 82 |
///Give back the square of the norm of the vector |
| 90 | 83 |
T normSquare() const {
|
| 91 | 84 |
return x*x+y*y; |
| ... | ... |
@@ -314,197 +314,197 @@ |
| 314 | 314 |
} |
| 315 | 315 |
tn = (*_pred)[tn]; |
| 316 | 316 |
} else {
|
| 317 | 317 |
if ((*_weight)[sn] <= value) {
|
| 318 | 318 |
rn = sn; |
| 319 | 319 |
s_root = true; |
| 320 | 320 |
value = (*_weight)[sn]; |
| 321 | 321 |
} |
| 322 | 322 |
sn = (*_pred)[sn]; |
| 323 | 323 |
} |
| 324 | 324 |
} |
| 325 | 325 |
|
| 326 | 326 |
typename Graph::template NodeMap<bool> reached(_graph, false); |
| 327 | 327 |
reached[_root] = true; |
| 328 | 328 |
cutMap.set(_root, !s_root); |
| 329 | 329 |
reached[rn] = true; |
| 330 | 330 |
cutMap.set(rn, s_root); |
| 331 | 331 |
|
| 332 | 332 |
std::vector<Node> st; |
| 333 | 333 |
for (NodeIt n(_graph); n != INVALID; ++n) {
|
| 334 | 334 |
st.clear(); |
| 335 | 335 |
Node nn = n; |
| 336 | 336 |
while (!reached[nn]) {
|
| 337 | 337 |
st.push_back(nn); |
| 338 | 338 |
nn = (*_pred)[nn]; |
| 339 | 339 |
} |
| 340 | 340 |
while (!st.empty()) {
|
| 341 | 341 |
cutMap.set(st.back(), cutMap[nn]); |
| 342 | 342 |
st.pop_back(); |
| 343 | 343 |
} |
| 344 | 344 |
} |
| 345 | 345 |
|
| 346 | 346 |
return value; |
| 347 | 347 |
} |
| 348 | 348 |
|
| 349 | 349 |
///@} |
| 350 | 350 |
|
| 351 | 351 |
friend class MinCutNodeIt; |
| 352 | 352 |
|
| 353 | 353 |
/// Iterate on the nodes of a minimum cut |
| 354 | 354 |
|
| 355 | 355 |
/// This iterator class lists the nodes of a minimum cut found by |
| 356 | 356 |
/// GomoryHu. Before using it, you must allocate a GomoryHu class |
| 357 | 357 |
/// and call its \ref GomoryHu::run() "run()" method. |
| 358 | 358 |
/// |
| 359 | 359 |
/// This example counts the nodes in the minimum cut separating \c s from |
| 360 | 360 |
/// \c t. |
| 361 | 361 |
/// \code |
| 362 |
/// |
|
| 362 |
/// GomoryHu<Graph> gom(g, capacities); |
|
| 363 | 363 |
/// gom.run(); |
| 364 | 364 |
/// int cnt=0; |
| 365 |
/// for( |
|
| 365 |
/// for(GomoryHu<Graph>::MinCutNodeIt n(gom,s,t); n!=INVALID; ++n) ++cnt; |
|
| 366 | 366 |
/// \endcode |
| 367 | 367 |
class MinCutNodeIt |
| 368 | 368 |
{
|
| 369 | 369 |
bool _side; |
| 370 | 370 |
typename Graph::NodeIt _node_it; |
| 371 | 371 |
typename Graph::template NodeMap<bool> _cut; |
| 372 | 372 |
public: |
| 373 | 373 |
/// Constructor |
| 374 | 374 |
|
| 375 | 375 |
/// Constructor. |
| 376 | 376 |
/// |
| 377 | 377 |
MinCutNodeIt(GomoryHu const &gomory, |
| 378 | 378 |
///< The GomoryHu class. You must call its |
| 379 | 379 |
/// run() method |
| 380 | 380 |
/// before initializing this iterator. |
| 381 | 381 |
const Node& s, ///< The base node. |
| 382 | 382 |
const Node& t, |
| 383 | 383 |
///< The node you want to separate from node \c s. |
| 384 | 384 |
bool side=true |
| 385 | 385 |
///< If it is \c true (default) then the iterator lists |
| 386 | 386 |
/// the nodes of the component containing \c s, |
| 387 | 387 |
/// otherwise it lists the other component. |
| 388 | 388 |
/// \note As the minimum cut is not always unique, |
| 389 | 389 |
/// \code |
| 390 | 390 |
/// MinCutNodeIt(gomory, s, t, true); |
| 391 | 391 |
/// \endcode |
| 392 | 392 |
/// and |
| 393 | 393 |
/// \code |
| 394 | 394 |
/// MinCutNodeIt(gomory, t, s, false); |
| 395 | 395 |
/// \endcode |
| 396 | 396 |
/// does not necessarily give the same set of nodes. |
| 397 | 397 |
/// However it is ensured that |
| 398 | 398 |
/// \code |
| 399 | 399 |
/// MinCutNodeIt(gomory, s, t, true); |
| 400 | 400 |
/// \endcode |
| 401 | 401 |
/// and |
| 402 | 402 |
/// \code |
| 403 | 403 |
/// MinCutNodeIt(gomory, s, t, false); |
| 404 | 404 |
/// \endcode |
| 405 | 405 |
/// together list each node exactly once. |
| 406 | 406 |
) |
| 407 | 407 |
: _side(side), _cut(gomory._graph) |
| 408 | 408 |
{
|
| 409 | 409 |
gomory.minCutMap(s,t,_cut); |
| 410 | 410 |
for(_node_it=typename Graph::NodeIt(gomory._graph); |
| 411 | 411 |
_node_it!=INVALID && _cut[_node_it]!=_side; |
| 412 | 412 |
++_node_it) {}
|
| 413 | 413 |
} |
| 414 | 414 |
/// Conversion to \c Node |
| 415 | 415 |
|
| 416 | 416 |
/// Conversion to \c Node. |
| 417 | 417 |
/// |
| 418 | 418 |
operator typename Graph::Node() const |
| 419 | 419 |
{
|
| 420 | 420 |
return _node_it; |
| 421 | 421 |
} |
| 422 | 422 |
bool operator==(Invalid) { return _node_it==INVALID; }
|
| 423 | 423 |
bool operator!=(Invalid) { return _node_it!=INVALID; }
|
| 424 | 424 |
/// Next node |
| 425 | 425 |
|
| 426 | 426 |
/// Next node. |
| 427 | 427 |
/// |
| 428 | 428 |
MinCutNodeIt &operator++() |
| 429 | 429 |
{
|
| 430 | 430 |
for(++_node_it;_node_it!=INVALID&&_cut[_node_it]!=_side;++_node_it) {}
|
| 431 | 431 |
return *this; |
| 432 | 432 |
} |
| 433 | 433 |
/// Postfix incrementation |
| 434 | 434 |
|
| 435 | 435 |
/// Postfix incrementation. |
| 436 | 436 |
/// |
| 437 | 437 |
/// \warning This incrementation |
| 438 | 438 |
/// returns a \c Node, not a \c MinCutNodeIt, as one may |
| 439 | 439 |
/// expect. |
| 440 | 440 |
typename Graph::Node operator++(int) |
| 441 | 441 |
{
|
| 442 | 442 |
typename Graph::Node n=*this; |
| 443 | 443 |
++(*this); |
| 444 | 444 |
return n; |
| 445 | 445 |
} |
| 446 | 446 |
}; |
| 447 | 447 |
|
| 448 | 448 |
friend class MinCutEdgeIt; |
| 449 | 449 |
|
| 450 | 450 |
/// Iterate on the edges of a minimum cut |
| 451 | 451 |
|
| 452 | 452 |
/// This iterator class lists the edges of a minimum cut found by |
| 453 | 453 |
/// GomoryHu. Before using it, you must allocate a GomoryHu class |
| 454 | 454 |
/// and call its \ref GomoryHu::run() "run()" method. |
| 455 | 455 |
/// |
| 456 | 456 |
/// This example computes the value of the minimum cut separating \c s from |
| 457 | 457 |
/// \c t. |
| 458 | 458 |
/// \code |
| 459 |
/// |
|
| 459 |
/// GomoryHu<Graph> gom(g, capacities); |
|
| 460 | 460 |
/// gom.run(); |
| 461 | 461 |
/// int value=0; |
| 462 |
/// for( |
|
| 462 |
/// for(GomoryHu<Graph>::MinCutEdgeIt e(gom,s,t); e!=INVALID; ++e) |
|
| 463 | 463 |
/// value+=capacities[e]; |
| 464 | 464 |
/// \endcode |
| 465 | 465 |
/// The result will be the same as the value returned by |
| 466 | 466 |
/// \ref GomoryHu::minCutValue() "gom.minCutValue(s,t)". |
| 467 | 467 |
class MinCutEdgeIt |
| 468 | 468 |
{
|
| 469 | 469 |
bool _side; |
| 470 | 470 |
const Graph &_graph; |
| 471 | 471 |
typename Graph::NodeIt _node_it; |
| 472 | 472 |
typename Graph::OutArcIt _arc_it; |
| 473 | 473 |
typename Graph::template NodeMap<bool> _cut; |
| 474 | 474 |
void step() |
| 475 | 475 |
{
|
| 476 | 476 |
++_arc_it; |
| 477 | 477 |
while(_node_it!=INVALID && _arc_it==INVALID) |
| 478 | 478 |
{
|
| 479 | 479 |
for(++_node_it;_node_it!=INVALID&&!_cut[_node_it];++_node_it) {}
|
| 480 | 480 |
if(_node_it!=INVALID) |
| 481 | 481 |
_arc_it=typename Graph::OutArcIt(_graph,_node_it); |
| 482 | 482 |
} |
| 483 | 483 |
} |
| 484 | 484 |
|
| 485 | 485 |
public: |
| 486 | 486 |
/// Constructor |
| 487 | 487 |
|
| 488 | 488 |
/// Constructor. |
| 489 | 489 |
/// |
| 490 | 490 |
MinCutEdgeIt(GomoryHu const &gomory, |
| 491 | 491 |
///< The GomoryHu class. You must call its |
| 492 | 492 |
/// run() method |
| 493 | 493 |
/// before initializing this iterator. |
| 494 | 494 |
const Node& s, ///< The base node. |
| 495 | 495 |
const Node& t, |
| 496 | 496 |
///< The node you want to separate from node \c s. |
| 497 | 497 |
bool side=true |
| 498 | 498 |
///< If it is \c true (default) then the listed arcs |
| 499 | 499 |
/// will be oriented from the |
| 500 | 500 |
/// nodes of the component containing \c s, |
| 501 | 501 |
/// otherwise they will be oriented in the opposite |
| 502 | 502 |
/// direction. |
| 503 | 503 |
) |
| 504 | 504 |
: _graph(gomory._graph), _cut(_graph) |
| 505 | 505 |
{
|
| 506 | 506 |
gomory.minCutMap(s,t,_cut); |
| 507 | 507 |
if(!side) |
| 508 | 508 |
for(typename Graph::NodeIt n(_graph);n!=INVALID;++n) |
| 509 | 509 |
_cut[n]=!_cut[n]; |
| 510 | 510 |
| ... | ... |
@@ -11,273 +11,273 @@ |
| 11 | 11 |
* precise terms see the accompanying LICENSE file. |
| 12 | 12 |
* |
| 13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
| 14 | 14 |
* express or implied, and with no claim as to its suitability for any |
| 15 | 15 |
* purpose. |
| 16 | 16 |
* |
| 17 | 17 |
*/ |
| 18 | 18 |
|
| 19 | 19 |
#ifndef LEMON_MAPS_H |
| 20 | 20 |
#define LEMON_MAPS_H |
| 21 | 21 |
|
| 22 | 22 |
#include <iterator> |
| 23 | 23 |
#include <functional> |
| 24 | 24 |
#include <vector> |
| 25 | 25 |
#include <map> |
| 26 | 26 |
|
| 27 | 27 |
#include <lemon/core.h> |
| 28 | 28 |
|
| 29 | 29 |
///\file |
| 30 | 30 |
///\ingroup maps |
| 31 | 31 |
///\brief Miscellaneous property maps |
| 32 | 32 |
|
| 33 | 33 |
namespace lemon {
|
| 34 | 34 |
|
| 35 | 35 |
/// \addtogroup maps |
| 36 | 36 |
/// @{
|
| 37 | 37 |
|
| 38 | 38 |
/// Base class of maps. |
| 39 | 39 |
|
| 40 | 40 |
/// Base class of maps. It provides the necessary type definitions |
| 41 | 41 |
/// required by the map %concepts. |
| 42 | 42 |
template<typename K, typename V> |
| 43 | 43 |
class MapBase {
|
| 44 | 44 |
public: |
| 45 | 45 |
/// \brief The key type of the map. |
| 46 | 46 |
typedef K Key; |
| 47 | 47 |
/// \brief The value type of the map. |
| 48 | 48 |
/// (The type of objects associated with the keys). |
| 49 | 49 |
typedef V Value; |
| 50 | 50 |
}; |
| 51 | 51 |
|
| 52 | 52 |
|
| 53 | 53 |
/// Null map. (a.k.a. DoNothingMap) |
| 54 | 54 |
|
| 55 | 55 |
/// This map can be used if you have to provide a map only for |
| 56 | 56 |
/// its type definitions, or if you have to provide a writable map, |
| 57 | 57 |
/// but data written to it is not required (i.e. it will be sent to |
| 58 | 58 |
/// <tt>/dev/null</tt>). |
| 59 |
/// It conforms the \ref concepts::ReadWriteMap "ReadWriteMap" concept. |
|
| 59 |
/// It conforms to the \ref concepts::ReadWriteMap "ReadWriteMap" concept. |
|
| 60 | 60 |
/// |
| 61 | 61 |
/// \sa ConstMap |
| 62 | 62 |
template<typename K, typename V> |
| 63 | 63 |
class NullMap : public MapBase<K, V> {
|
| 64 | 64 |
public: |
| 65 | 65 |
///\e |
| 66 | 66 |
typedef K Key; |
| 67 | 67 |
///\e |
| 68 | 68 |
typedef V Value; |
| 69 | 69 |
|
| 70 | 70 |
/// Gives back a default constructed element. |
| 71 | 71 |
Value operator[](const Key&) const { return Value(); }
|
| 72 | 72 |
/// Absorbs the value. |
| 73 | 73 |
void set(const Key&, const Value&) {}
|
| 74 | 74 |
}; |
| 75 | 75 |
|
| 76 | 76 |
/// Returns a \c NullMap class |
| 77 | 77 |
|
| 78 | 78 |
/// This function just returns a \c NullMap class. |
| 79 | 79 |
/// \relates NullMap |
| 80 | 80 |
template <typename K, typename V> |
| 81 | 81 |
NullMap<K, V> nullMap() {
|
| 82 | 82 |
return NullMap<K, V>(); |
| 83 | 83 |
} |
| 84 | 84 |
|
| 85 | 85 |
|
| 86 | 86 |
/// Constant map. |
| 87 | 87 |
|
| 88 | 88 |
/// This \ref concepts::ReadMap "readable map" assigns a specified |
| 89 | 89 |
/// value to each key. |
| 90 | 90 |
/// |
| 91 | 91 |
/// In other aspects it is equivalent to \c NullMap. |
| 92 |
/// So it conforms the \ref concepts::ReadWriteMap "ReadWriteMap" |
|
| 92 |
/// So it conforms to the \ref concepts::ReadWriteMap "ReadWriteMap" |
|
| 93 | 93 |
/// concept, but it absorbs the data written to it. |
| 94 | 94 |
/// |
| 95 | 95 |
/// The simplest way of using this map is through the constMap() |
| 96 | 96 |
/// function. |
| 97 | 97 |
/// |
| 98 | 98 |
/// \sa NullMap |
| 99 | 99 |
/// \sa IdentityMap |
| 100 | 100 |
template<typename K, typename V> |
| 101 | 101 |
class ConstMap : public MapBase<K, V> {
|
| 102 | 102 |
private: |
| 103 | 103 |
V _value; |
| 104 | 104 |
public: |
| 105 | 105 |
///\e |
| 106 | 106 |
typedef K Key; |
| 107 | 107 |
///\e |
| 108 | 108 |
typedef V Value; |
| 109 | 109 |
|
| 110 | 110 |
/// Default constructor |
| 111 | 111 |
|
| 112 | 112 |
/// Default constructor. |
| 113 | 113 |
/// The value of the map will be default constructed. |
| 114 | 114 |
ConstMap() {}
|
| 115 | 115 |
|
| 116 | 116 |
/// Constructor with specified initial value |
| 117 | 117 |
|
| 118 | 118 |
/// Constructor with specified initial value. |
| 119 | 119 |
/// \param v The initial value of the map. |
| 120 | 120 |
ConstMap(const Value &v) : _value(v) {}
|
| 121 | 121 |
|
| 122 | 122 |
/// Gives back the specified value. |
| 123 | 123 |
Value operator[](const Key&) const { return _value; }
|
| 124 | 124 |
|
| 125 | 125 |
/// Absorbs the value. |
| 126 | 126 |
void set(const Key&, const Value&) {}
|
| 127 | 127 |
|
| 128 | 128 |
/// Sets the value that is assigned to each key. |
| 129 | 129 |
void setAll(const Value &v) {
|
| 130 | 130 |
_value = v; |
| 131 | 131 |
} |
| 132 | 132 |
|
| 133 | 133 |
template<typename V1> |
| 134 | 134 |
ConstMap(const ConstMap<K, V1> &, const Value &v) : _value(v) {}
|
| 135 | 135 |
}; |
| 136 | 136 |
|
| 137 | 137 |
/// Returns a \c ConstMap class |
| 138 | 138 |
|
| 139 | 139 |
/// This function just returns a \c ConstMap class. |
| 140 | 140 |
/// \relates ConstMap |
| 141 | 141 |
template<typename K, typename V> |
| 142 | 142 |
inline ConstMap<K, V> constMap(const V &v) {
|
| 143 | 143 |
return ConstMap<K, V>(v); |
| 144 | 144 |
} |
| 145 | 145 |
|
| 146 | 146 |
template<typename K, typename V> |
| 147 | 147 |
inline ConstMap<K, V> constMap() {
|
| 148 | 148 |
return ConstMap<K, V>(); |
| 149 | 149 |
} |
| 150 | 150 |
|
| 151 | 151 |
|
| 152 | 152 |
template<typename T, T v> |
| 153 | 153 |
struct Const {};
|
| 154 | 154 |
|
| 155 | 155 |
/// Constant map with inlined constant value. |
| 156 | 156 |
|
| 157 | 157 |
/// This \ref concepts::ReadMap "readable map" assigns a specified |
| 158 | 158 |
/// value to each key. |
| 159 | 159 |
/// |
| 160 | 160 |
/// In other aspects it is equivalent to \c NullMap. |
| 161 |
/// So it conforms the \ref concepts::ReadWriteMap "ReadWriteMap" |
|
| 161 |
/// So it conforms to the \ref concepts::ReadWriteMap "ReadWriteMap" |
|
| 162 | 162 |
/// concept, but it absorbs the data written to it. |
| 163 | 163 |
/// |
| 164 | 164 |
/// The simplest way of using this map is through the constMap() |
| 165 | 165 |
/// function. |
| 166 | 166 |
/// |
| 167 | 167 |
/// \sa NullMap |
| 168 | 168 |
/// \sa IdentityMap |
| 169 | 169 |
template<typename K, typename V, V v> |
| 170 | 170 |
class ConstMap<K, Const<V, v> > : public MapBase<K, V> {
|
| 171 | 171 |
public: |
| 172 | 172 |
///\e |
| 173 | 173 |
typedef K Key; |
| 174 | 174 |
///\e |
| 175 | 175 |
typedef V Value; |
| 176 | 176 |
|
| 177 | 177 |
/// Constructor. |
| 178 | 178 |
ConstMap() {}
|
| 179 | 179 |
|
| 180 | 180 |
/// Gives back the specified value. |
| 181 | 181 |
Value operator[](const Key&) const { return v; }
|
| 182 | 182 |
|
| 183 | 183 |
/// Absorbs the value. |
| 184 | 184 |
void set(const Key&, const Value&) {}
|
| 185 | 185 |
}; |
| 186 | 186 |
|
| 187 | 187 |
/// Returns a \c ConstMap class with inlined constant value |
| 188 | 188 |
|
| 189 | 189 |
/// This function just returns a \c ConstMap class with inlined |
| 190 | 190 |
/// constant value. |
| 191 | 191 |
/// \relates ConstMap |
| 192 | 192 |
template<typename K, typename V, V v> |
| 193 | 193 |
inline ConstMap<K, Const<V, v> > constMap() {
|
| 194 | 194 |
return ConstMap<K, Const<V, v> >(); |
| 195 | 195 |
} |
| 196 | 196 |
|
| 197 | 197 |
|
| 198 | 198 |
/// Identity map. |
| 199 | 199 |
|
| 200 | 200 |
/// This \ref concepts::ReadMap "read-only map" gives back the given |
| 201 | 201 |
/// key as value without any modification. |
| 202 | 202 |
/// |
| 203 | 203 |
/// \sa ConstMap |
| 204 | 204 |
template <typename T> |
| 205 | 205 |
class IdentityMap : public MapBase<T, T> {
|
| 206 | 206 |
public: |
| 207 | 207 |
///\e |
| 208 | 208 |
typedef T Key; |
| 209 | 209 |
///\e |
| 210 | 210 |
typedef T Value; |
| 211 | 211 |
|
| 212 | 212 |
/// Gives back the given value without any modification. |
| 213 | 213 |
Value operator[](const Key &k) const {
|
| 214 | 214 |
return k; |
| 215 | 215 |
} |
| 216 | 216 |
}; |
| 217 | 217 |
|
| 218 | 218 |
/// Returns an \c IdentityMap class |
| 219 | 219 |
|
| 220 | 220 |
/// This function just returns an \c IdentityMap class. |
| 221 | 221 |
/// \relates IdentityMap |
| 222 | 222 |
template<typename T> |
| 223 | 223 |
inline IdentityMap<T> identityMap() {
|
| 224 | 224 |
return IdentityMap<T>(); |
| 225 | 225 |
} |
| 226 | 226 |
|
| 227 | 227 |
|
| 228 | 228 |
/// \brief Map for storing values for integer keys from the range |
| 229 | 229 |
/// <tt>[0..size-1]</tt>. |
| 230 | 230 |
/// |
| 231 | 231 |
/// This map is essentially a wrapper for \c std::vector. It assigns |
| 232 | 232 |
/// values to integer keys from the range <tt>[0..size-1]</tt>. |
| 233 | 233 |
/// It can be used with some data structures, for example |
| 234 | 234 |
/// \c UnionFind, \c BinHeap, when the used items are small |
| 235 |
/// integers. This map conforms the \ref concepts::ReferenceMap |
|
| 235 |
/// integers. This map conforms to the \ref concepts::ReferenceMap |
|
| 236 | 236 |
/// "ReferenceMap" concept. |
| 237 | 237 |
/// |
| 238 | 238 |
/// The simplest way of using this map is through the rangeMap() |
| 239 | 239 |
/// function. |
| 240 | 240 |
template <typename V> |
| 241 | 241 |
class RangeMap : public MapBase<int, V> {
|
| 242 | 242 |
template <typename V1> |
| 243 | 243 |
friend class RangeMap; |
| 244 | 244 |
private: |
| 245 | 245 |
|
| 246 | 246 |
typedef std::vector<V> Vector; |
| 247 | 247 |
Vector _vector; |
| 248 | 248 |
|
| 249 | 249 |
public: |
| 250 | 250 |
|
| 251 | 251 |
/// Key type |
| 252 | 252 |
typedef int Key; |
| 253 | 253 |
/// Value type |
| 254 | 254 |
typedef V Value; |
| 255 | 255 |
/// Reference type |
| 256 | 256 |
typedef typename Vector::reference Reference; |
| 257 | 257 |
/// Const reference type |
| 258 | 258 |
typedef typename Vector::const_reference ConstReference; |
| 259 | 259 |
|
| 260 | 260 |
typedef True ReferenceMapTag; |
| 261 | 261 |
|
| 262 | 262 |
public: |
| 263 | 263 |
|
| 264 | 264 |
/// Constructor with specified default value. |
| 265 | 265 |
RangeMap(int size = 0, const Value &value = Value()) |
| 266 | 266 |
: _vector(size, value) {}
|
| 267 | 267 |
|
| 268 | 268 |
/// Constructs the map from an appropriate \c std::vector. |
| 269 | 269 |
template <typename V1> |
| 270 | 270 |
RangeMap(const std::vector<V1>& vector) |
| 271 | 271 |
: _vector(vector.begin(), vector.end()) {}
|
| 272 | 272 |
|
| 273 | 273 |
/// Constructs the map from another \c RangeMap. |
| 274 | 274 |
template <typename V1> |
| 275 | 275 |
RangeMap(const RangeMap<V1> &c) |
| 276 | 276 |
: _vector(c._vector.begin(), c._vector.end()) {}
|
| 277 | 277 |
|
| 278 | 278 |
/// Returns the size of the map. |
| 279 | 279 |
int size() {
|
| 280 | 280 |
return _vector.size(); |
| 281 | 281 |
} |
| 282 | 282 |
|
| 283 | 283 |
/// Resizes the map. |
| ... | ... |
@@ -295,97 +295,97 @@ |
| 295 | 295 |
|
| 296 | 296 |
RangeMap& operator=(const RangeMap&); |
| 297 | 297 |
|
| 298 | 298 |
public: |
| 299 | 299 |
|
| 300 | 300 |
///\e |
| 301 | 301 |
Reference operator[](const Key &k) {
|
| 302 | 302 |
return _vector[k]; |
| 303 | 303 |
} |
| 304 | 304 |
|
| 305 | 305 |
///\e |
| 306 | 306 |
ConstReference operator[](const Key &k) const {
|
| 307 | 307 |
return _vector[k]; |
| 308 | 308 |
} |
| 309 | 309 |
|
| 310 | 310 |
///\e |
| 311 | 311 |
void set(const Key &k, const Value &v) {
|
| 312 | 312 |
_vector[k] = v; |
| 313 | 313 |
} |
| 314 | 314 |
}; |
| 315 | 315 |
|
| 316 | 316 |
/// Returns a \c RangeMap class |
| 317 | 317 |
|
| 318 | 318 |
/// This function just returns a \c RangeMap class. |
| 319 | 319 |
/// \relates RangeMap |
| 320 | 320 |
template<typename V> |
| 321 | 321 |
inline RangeMap<V> rangeMap(int size = 0, const V &value = V()) {
|
| 322 | 322 |
return RangeMap<V>(size, value); |
| 323 | 323 |
} |
| 324 | 324 |
|
| 325 | 325 |
/// \brief Returns a \c RangeMap class created from an appropriate |
| 326 | 326 |
/// \c std::vector |
| 327 | 327 |
|
| 328 | 328 |
/// This function just returns a \c RangeMap class created from an |
| 329 | 329 |
/// appropriate \c std::vector. |
| 330 | 330 |
/// \relates RangeMap |
| 331 | 331 |
template<typename V> |
| 332 | 332 |
inline RangeMap<V> rangeMap(const std::vector<V> &vector) {
|
| 333 | 333 |
return RangeMap<V>(vector); |
| 334 | 334 |
} |
| 335 | 335 |
|
| 336 | 336 |
|
| 337 | 337 |
/// Map type based on \c std::map |
| 338 | 338 |
|
| 339 | 339 |
/// This map is essentially a wrapper for \c std::map with addition |
| 340 | 340 |
/// that you can specify a default value for the keys that are not |
| 341 | 341 |
/// stored actually. This value can be different from the default |
| 342 | 342 |
/// contructed value (i.e. \c %Value()). |
| 343 |
/// This type conforms the \ref concepts::ReferenceMap "ReferenceMap" |
|
| 343 |
/// This type conforms to the \ref concepts::ReferenceMap "ReferenceMap" |
|
| 344 | 344 |
/// concept. |
| 345 | 345 |
/// |
| 346 | 346 |
/// This map is useful if a default value should be assigned to most of |
| 347 | 347 |
/// the keys and different values should be assigned only to a few |
| 348 | 348 |
/// keys (i.e. the map is "sparse"). |
| 349 | 349 |
/// The name of this type also refers to this important usage. |
| 350 | 350 |
/// |
| 351 | 351 |
/// Apart form that this map can be used in many other cases since it |
| 352 | 352 |
/// is based on \c std::map, which is a general associative container. |
| 353 | 353 |
/// However keep in mind that it is usually not as efficient as other |
| 354 | 354 |
/// maps. |
| 355 | 355 |
/// |
| 356 | 356 |
/// The simplest way of using this map is through the sparseMap() |
| 357 | 357 |
/// function. |
| 358 | 358 |
template <typename K, typename V, typename Comp = std::less<K> > |
| 359 | 359 |
class SparseMap : public MapBase<K, V> {
|
| 360 | 360 |
template <typename K1, typename V1, typename C1> |
| 361 | 361 |
friend class SparseMap; |
| 362 | 362 |
public: |
| 363 | 363 |
|
| 364 | 364 |
/// Key type |
| 365 | 365 |
typedef K Key; |
| 366 | 366 |
/// Value type |
| 367 | 367 |
typedef V Value; |
| 368 | 368 |
/// Reference type |
| 369 | 369 |
typedef Value& Reference; |
| 370 | 370 |
/// Const reference type |
| 371 | 371 |
typedef const Value& ConstReference; |
| 372 | 372 |
|
| 373 | 373 |
typedef True ReferenceMapTag; |
| 374 | 374 |
|
| 375 | 375 |
private: |
| 376 | 376 |
|
| 377 | 377 |
typedef std::map<K, V, Comp> Map; |
| 378 | 378 |
Map _map; |
| 379 | 379 |
Value _value; |
| 380 | 380 |
|
| 381 | 381 |
public: |
| 382 | 382 |
|
| 383 | 383 |
/// \brief Constructor with specified default value. |
| 384 | 384 |
SparseMap(const Value &value = Value()) : _value(value) {}
|
| 385 | 385 |
/// \brief Constructs the map from an appropriate \c std::map, and |
| 386 | 386 |
/// explicitly specifies a default value. |
| 387 | 387 |
template <typename V1, typename Comp1> |
| 388 | 388 |
SparseMap(const std::map<Key, V1, Comp1> &map, |
| 389 | 389 |
const Value &value = Value()) |
| 390 | 390 |
: _map(map.begin(), map.end()), _value(value) {}
|
| 391 | 391 |
|
| ... | ... |
@@ -661,97 +661,97 @@ |
| 661 | 661 |
/// This class converts a map to an STL style (unary) functor. |
| 662 | 662 |
/// That is it provides an <tt>operator()</tt> to read its values. |
| 663 | 663 |
/// |
| 664 | 664 |
/// For the sake of convenience it also works as a usual |
| 665 | 665 |
/// \ref concepts::ReadMap "readable map", i.e. <tt>operator[]</tt> |
| 666 | 666 |
/// and the \c Key and \c Value typedefs also exist. |
| 667 | 667 |
/// |
| 668 | 668 |
/// The simplest way of using this map is through the mapToFunctor() |
| 669 | 669 |
/// function. |
| 670 | 670 |
/// |
| 671 | 671 |
///\sa FunctorToMap |
| 672 | 672 |
template <typename M> |
| 673 | 673 |
class MapToFunctor : public MapBase<typename M::Key, typename M::Value> {
|
| 674 | 674 |
const M &_m; |
| 675 | 675 |
public: |
| 676 | 676 |
///\e |
| 677 | 677 |
typedef typename M::Key Key; |
| 678 | 678 |
///\e |
| 679 | 679 |
typedef typename M::Value Value; |
| 680 | 680 |
|
| 681 | 681 |
typedef typename M::Key argument_type; |
| 682 | 682 |
typedef typename M::Value result_type; |
| 683 | 683 |
|
| 684 | 684 |
/// Constructor |
| 685 | 685 |
MapToFunctor(const M &m) : _m(m) {}
|
| 686 | 686 |
///\e |
| 687 | 687 |
Value operator()(const Key &k) const { return _m[k]; }
|
| 688 | 688 |
///\e |
| 689 | 689 |
Value operator[](const Key &k) const { return _m[k]; }
|
| 690 | 690 |
}; |
| 691 | 691 |
|
| 692 | 692 |
/// Returns a \c MapToFunctor class |
| 693 | 693 |
|
| 694 | 694 |
/// This function just returns a \c MapToFunctor class. |
| 695 | 695 |
/// \relates MapToFunctor |
| 696 | 696 |
template<typename M> |
| 697 | 697 |
inline MapToFunctor<M> mapToFunctor(const M &m) {
|
| 698 | 698 |
return MapToFunctor<M>(m); |
| 699 | 699 |
} |
| 700 | 700 |
|
| 701 | 701 |
|
| 702 | 702 |
/// \brief Map adaptor to convert the \c Value type of a map to |
| 703 | 703 |
/// another type using the default conversion. |
| 704 | 704 |
|
| 705 | 705 |
/// Map adaptor to convert the \c Value type of a \ref concepts::ReadMap |
| 706 | 706 |
/// "readable map" to another type using the default conversion. |
| 707 | 707 |
/// The \c Key type of it is inherited from \c M and the \c Value |
| 708 | 708 |
/// type is \c V. |
| 709 |
/// This type conforms the \ref concepts::ReadMap "ReadMap" concept. |
|
| 709 |
/// This type conforms to the \ref concepts::ReadMap "ReadMap" concept. |
|
| 710 | 710 |
/// |
| 711 | 711 |
/// The simplest way of using this map is through the convertMap() |
| 712 | 712 |
/// function. |
| 713 | 713 |
template <typename M, typename V> |
| 714 | 714 |
class ConvertMap : public MapBase<typename M::Key, V> {
|
| 715 | 715 |
const M &_m; |
| 716 | 716 |
public: |
| 717 | 717 |
///\e |
| 718 | 718 |
typedef typename M::Key Key; |
| 719 | 719 |
///\e |
| 720 | 720 |
typedef V Value; |
| 721 | 721 |
|
| 722 | 722 |
/// Constructor |
| 723 | 723 |
|
| 724 | 724 |
/// Constructor. |
| 725 | 725 |
/// \param m The underlying map. |
| 726 | 726 |
ConvertMap(const M &m) : _m(m) {}
|
| 727 | 727 |
|
| 728 | 728 |
///\e |
| 729 | 729 |
Value operator[](const Key &k) const { return _m[k]; }
|
| 730 | 730 |
}; |
| 731 | 731 |
|
| 732 | 732 |
/// Returns a \c ConvertMap class |
| 733 | 733 |
|
| 734 | 734 |
/// This function just returns a \c ConvertMap class. |
| 735 | 735 |
/// \relates ConvertMap |
| 736 | 736 |
template<typename V, typename M> |
| 737 | 737 |
inline ConvertMap<M, V> convertMap(const M &map) {
|
| 738 | 738 |
return ConvertMap<M, V>(map); |
| 739 | 739 |
} |
| 740 | 740 |
|
| 741 | 741 |
|
| 742 | 742 |
/// Applies all map setting operations to two maps |
| 743 | 743 |
|
| 744 | 744 |
/// This map has two \ref concepts::WriteMap "writable map" parameters |
| 745 | 745 |
/// and each write request will be passed to both of them. |
| 746 | 746 |
/// If \c M1 is also \ref concepts::ReadMap "readable", then the read |
| 747 | 747 |
/// operations will return the corresponding values of \c M1. |
| 748 | 748 |
/// |
| 749 | 749 |
/// The \c Key and \c Value types are inherited from \c M1. |
| 750 | 750 |
/// The \c Key and \c Value of \c M2 must be convertible from those |
| 751 | 751 |
/// of \c M1. |
| 752 | 752 |
/// |
| 753 | 753 |
/// The simplest way of using this map is through the forkMap() |
| 754 | 754 |
/// function. |
| 755 | 755 |
template<typename M1, typename M2> |
| 756 | 756 |
class ForkMap : public MapBase<typename M1::Key, typename M1::Value> {
|
| 757 | 757 |
M1 &_m1; |
| ... | ... |
@@ -1744,444 +1744,483 @@ |
| 1744 | 1744 |
typename KEY = typename _maps_bits::IteratorTraits<IT>::Value> |
| 1745 | 1745 |
#endif |
| 1746 | 1746 |
class LoggerBoolMap : public MapBase<KEY, bool> {
|
| 1747 | 1747 |
public: |
| 1748 | 1748 |
|
| 1749 | 1749 |
///\e |
| 1750 | 1750 |
typedef KEY Key; |
| 1751 | 1751 |
///\e |
| 1752 | 1752 |
typedef bool Value; |
| 1753 | 1753 |
///\e |
| 1754 | 1754 |
typedef IT Iterator; |
| 1755 | 1755 |
|
| 1756 | 1756 |
/// Constructor |
| 1757 | 1757 |
LoggerBoolMap(Iterator it) |
| 1758 | 1758 |
: _begin(it), _end(it) {}
|
| 1759 | 1759 |
|
| 1760 | 1760 |
/// Gives back the given iterator set for the first key |
| 1761 | 1761 |
Iterator begin() const {
|
| 1762 | 1762 |
return _begin; |
| 1763 | 1763 |
} |
| 1764 | 1764 |
|
| 1765 | 1765 |
/// Gives back the the 'after the last' iterator |
| 1766 | 1766 |
Iterator end() const {
|
| 1767 | 1767 |
return _end; |
| 1768 | 1768 |
} |
| 1769 | 1769 |
|
| 1770 | 1770 |
/// The set function of the map |
| 1771 | 1771 |
void set(const Key& key, Value value) {
|
| 1772 | 1772 |
if (value) {
|
| 1773 | 1773 |
*_end++ = key; |
| 1774 | 1774 |
} |
| 1775 | 1775 |
} |
| 1776 | 1776 |
|
| 1777 | 1777 |
private: |
| 1778 | 1778 |
Iterator _begin; |
| 1779 | 1779 |
Iterator _end; |
| 1780 | 1780 |
}; |
| 1781 | 1781 |
|
| 1782 | 1782 |
/// Returns a \c LoggerBoolMap class |
| 1783 | 1783 |
|
| 1784 | 1784 |
/// This function just returns a \c LoggerBoolMap class. |
| 1785 | 1785 |
/// |
| 1786 | 1786 |
/// The most important usage of it is storing certain nodes or arcs |
| 1787 | 1787 |
/// that were marked \c true by an algorithm. |
| 1788 | 1788 |
/// For example it makes easier to store the nodes in the processing |
| 1789 | 1789 |
/// order of Dfs algorithm, as the following examples show. |
| 1790 | 1790 |
/// \code |
| 1791 | 1791 |
/// std::vector<Node> v; |
| 1792 |
/// dfs(g |
|
| 1792 |
/// dfs(g).processedMap(loggerBoolMap(std::back_inserter(v))).run(s); |
|
| 1793 | 1793 |
/// \endcode |
| 1794 | 1794 |
/// \code |
| 1795 | 1795 |
/// std::vector<Node> v(countNodes(g)); |
| 1796 |
/// dfs(g |
|
| 1796 |
/// dfs(g).processedMap(loggerBoolMap(v.begin())).run(s); |
|
| 1797 | 1797 |
/// \endcode |
| 1798 | 1798 |
/// |
| 1799 | 1799 |
/// \note The container of the iterator must contain enough space |
| 1800 | 1800 |
/// for the elements or the iterator should be an inserter iterator. |
| 1801 | 1801 |
/// |
| 1802 | 1802 |
/// \note LoggerBoolMap is just \ref concepts::WriteMap "writable", so |
| 1803 | 1803 |
/// it cannot be used when a readable map is needed, for example as |
| 1804 | 1804 |
/// \c ReachedMap for \c Bfs, \c Dfs and \c Dijkstra algorithms. |
| 1805 | 1805 |
/// |
| 1806 | 1806 |
/// \relates LoggerBoolMap |
| 1807 | 1807 |
template<typename Iterator> |
| 1808 | 1808 |
inline LoggerBoolMap<Iterator> loggerBoolMap(Iterator it) {
|
| 1809 | 1809 |
return LoggerBoolMap<Iterator>(it); |
| 1810 | 1810 |
} |
| 1811 | 1811 |
|
| 1812 | 1812 |
/// @} |
| 1813 | 1813 |
|
| 1814 | 1814 |
/// \addtogroup graph_maps |
| 1815 | 1815 |
/// @{
|
| 1816 | 1816 |
|
| 1817 | 1817 |
/// \brief Provides an immutable and unique id for each item in a graph. |
| 1818 | 1818 |
/// |
| 1819 | 1819 |
/// IdMap provides a unique and immutable id for each item of the |
| 1820 | 1820 |
/// same type (\c Node, \c Arc or \c Edge) in a graph. This id is |
| 1821 | 1821 |
/// - \b unique: different items get different ids, |
| 1822 | 1822 |
/// - \b immutable: the id of an item does not change (even if you |
| 1823 | 1823 |
/// delete other nodes). |
| 1824 | 1824 |
/// |
| 1825 | 1825 |
/// Using this map you get access (i.e. can read) the inner id values of |
| 1826 | 1826 |
/// the items stored in the graph, which is returned by the \c id() |
| 1827 | 1827 |
/// function of the graph. This map can be inverted with its member |
| 1828 |
/// class \c InverseMap or with the \c operator() member. |
|
| 1828 |
/// class \c InverseMap or with the \c operator()() member. |
|
| 1829 | 1829 |
/// |
| 1830 | 1830 |
/// \tparam GR The graph type. |
| 1831 | 1831 |
/// \tparam K The key type of the map (\c GR::Node, \c GR::Arc or |
| 1832 | 1832 |
/// \c GR::Edge). |
| 1833 | 1833 |
/// |
| 1834 | 1834 |
/// \see RangeIdMap |
| 1835 | 1835 |
template <typename GR, typename K> |
| 1836 | 1836 |
class IdMap : public MapBase<K, int> {
|
| 1837 | 1837 |
public: |
| 1838 | 1838 |
/// The graph type of IdMap. |
| 1839 | 1839 |
typedef GR Graph; |
| 1840 | 1840 |
typedef GR Digraph; |
| 1841 | 1841 |
/// The key type of IdMap (\c Node, \c Arc or \c Edge). |
| 1842 | 1842 |
typedef K Item; |
| 1843 | 1843 |
/// The key type of IdMap (\c Node, \c Arc or \c Edge). |
| 1844 | 1844 |
typedef K Key; |
| 1845 | 1845 |
/// The value type of IdMap. |
| 1846 | 1846 |
typedef int Value; |
| 1847 | 1847 |
|
| 1848 | 1848 |
/// \brief Constructor. |
| 1849 | 1849 |
/// |
| 1850 | 1850 |
/// Constructor of the map. |
| 1851 | 1851 |
explicit IdMap(const Graph& graph) : _graph(&graph) {}
|
| 1852 | 1852 |
|
| 1853 | 1853 |
/// \brief Gives back the \e id of the item. |
| 1854 | 1854 |
/// |
| 1855 | 1855 |
/// Gives back the immutable and unique \e id of the item. |
| 1856 | 1856 |
int operator[](const Item& item) const { return _graph->id(item);}
|
| 1857 | 1857 |
|
| 1858 | 1858 |
/// \brief Gives back the \e item by its id. |
| 1859 | 1859 |
/// |
| 1860 | 1860 |
/// Gives back the \e item by its id. |
| 1861 | 1861 |
Item operator()(int id) { return _graph->fromId(id, Item()); }
|
| 1862 | 1862 |
|
| 1863 | 1863 |
private: |
| 1864 | 1864 |
const Graph* _graph; |
| 1865 | 1865 |
|
| 1866 | 1866 |
public: |
| 1867 | 1867 |
|
| 1868 |
/// \brief |
|
| 1868 |
/// \brief The inverse map type of IdMap. |
|
| 1869 | 1869 |
/// |
| 1870 |
/// |
|
| 1870 |
/// The inverse map type of IdMap. The subscript operator gives back |
|
| 1871 |
/// an item by its id. |
|
| 1872 |
/// This type conforms to the \ref concepts::ReadMap "ReadMap" concept. |
|
| 1871 | 1873 |
/// \see inverse() |
| 1872 | 1874 |
class InverseMap {
|
| 1873 | 1875 |
public: |
| 1874 | 1876 |
|
| 1875 | 1877 |
/// \brief Constructor. |
| 1876 | 1878 |
/// |
| 1877 | 1879 |
/// Constructor for creating an id-to-item map. |
| 1878 | 1880 |
explicit InverseMap(const Graph& graph) : _graph(&graph) {}
|
| 1879 | 1881 |
|
| 1880 | 1882 |
/// \brief Constructor. |
| 1881 | 1883 |
/// |
| 1882 | 1884 |
/// Constructor for creating an id-to-item map. |
| 1883 | 1885 |
explicit InverseMap(const IdMap& map) : _graph(map._graph) {}
|
| 1884 | 1886 |
|
| 1885 |
/// \brief Gives back |
|
| 1887 |
/// \brief Gives back an item by its id. |
|
| 1886 | 1888 |
/// |
| 1887 |
/// Gives back |
|
| 1889 |
/// Gives back an item by its id. |
|
| 1888 | 1890 |
Item operator[](int id) const { return _graph->fromId(id, Item());}
|
| 1889 | 1891 |
|
| 1890 | 1892 |
private: |
| 1891 | 1893 |
const Graph* _graph; |
| 1892 | 1894 |
}; |
| 1893 | 1895 |
|
| 1894 | 1896 |
/// \brief Gives back the inverse of the map. |
| 1895 | 1897 |
/// |
| 1896 | 1898 |
/// Gives back the inverse of the IdMap. |
| 1897 | 1899 |
InverseMap inverse() const { return InverseMap(*_graph);}
|
| 1898 | 1900 |
}; |
| 1899 | 1901 |
|
| 1902 |
/// \brief Returns an \c IdMap class. |
|
| 1903 |
/// |
|
| 1904 |
/// This function just returns an \c IdMap class. |
|
| 1905 |
/// \relates IdMap |
|
| 1906 |
template <typename K, typename GR> |
|
| 1907 |
inline IdMap<GR, K> idMap(const GR& graph) {
|
|
| 1908 |
return IdMap<GR, K>(graph); |
|
| 1909 |
} |
|
| 1900 | 1910 |
|
| 1901 | 1911 |
/// \brief General cross reference graph map type. |
| 1902 | 1912 |
|
| 1903 | 1913 |
/// This class provides simple invertable graph maps. |
| 1904 | 1914 |
/// It wraps a standard graph map (\c NodeMap, \c ArcMap or \c EdgeMap) |
| 1905 | 1915 |
/// and if a key is set to a new value, then stores it in the inverse map. |
| 1906 |
/// The values of the map can be accessed |
|
| 1907 |
/// with stl compatible forward iterator. |
|
| 1916 |
/// The graph items can be accessed by their values either using |
|
| 1917 |
/// \c InverseMap or \c operator()(), and the values of the map can be |
|
| 1918 |
/// accessed with an STL compatible forward iterator (\c ValueIt). |
|
| 1919 |
/// |
|
| 1920 |
/// This map is intended to be used when all associated values are |
|
| 1921 |
/// different (the map is actually invertable) or there are only a few |
|
| 1922 |
/// items with the same value. |
|
| 1923 |
/// Otherwise consider to use \c IterableValueMap, which is more |
|
| 1924 |
/// suitable and more efficient for such cases. It provides iterators |
|
| 1925 |
/// to traverse the items with the same associated value, however |
|
| 1926 |
/// it does not have \c InverseMap. |
|
| 1908 | 1927 |
/// |
| 1909 | 1928 |
/// This type is not reference map, so it cannot be modified with |
| 1910 | 1929 |
/// the subscript operator. |
| 1911 | 1930 |
/// |
| 1912 | 1931 |
/// \tparam GR The graph type. |
| 1913 | 1932 |
/// \tparam K The key type of the map (\c GR::Node, \c GR::Arc or |
| 1914 | 1933 |
/// \c GR::Edge). |
| 1915 | 1934 |
/// \tparam V The value type of the map. |
| 1916 | 1935 |
/// |
| 1917 | 1936 |
/// \see IterableValueMap |
| 1918 | 1937 |
template <typename GR, typename K, typename V> |
| 1919 | 1938 |
class CrossRefMap |
| 1920 | 1939 |
: protected ItemSetTraits<GR, K>::template Map<V>::Type {
|
| 1921 | 1940 |
private: |
| 1922 | 1941 |
|
| 1923 | 1942 |
typedef typename ItemSetTraits<GR, K>:: |
| 1924 | 1943 |
template Map<V>::Type Map; |
| 1925 | 1944 |
|
| 1926 | 1945 |
typedef std::multimap<V, K> Container; |
| 1927 | 1946 |
Container _inv_map; |
| 1928 | 1947 |
|
| 1929 | 1948 |
public: |
| 1930 | 1949 |
|
| 1931 | 1950 |
/// The graph type of CrossRefMap. |
| 1932 | 1951 |
typedef GR Graph; |
| 1933 | 1952 |
typedef GR Digraph; |
| 1934 | 1953 |
/// The key type of CrossRefMap (\c Node, \c Arc or \c Edge). |
| 1935 | 1954 |
typedef K Item; |
| 1936 | 1955 |
/// The key type of CrossRefMap (\c Node, \c Arc or \c Edge). |
| 1937 | 1956 |
typedef K Key; |
| 1938 | 1957 |
/// The value type of CrossRefMap. |
| 1939 | 1958 |
typedef V Value; |
| 1940 | 1959 |
|
| 1941 | 1960 |
/// \brief Constructor. |
| 1942 | 1961 |
/// |
| 1943 | 1962 |
/// Construct a new CrossRefMap for the given graph. |
| 1944 | 1963 |
explicit CrossRefMap(const Graph& graph) : Map(graph) {}
|
| 1945 | 1964 |
|
| 1946 | 1965 |
/// \brief Forward iterator for values. |
| 1947 | 1966 |
/// |
| 1948 |
/// This iterator is an |
|
| 1967 |
/// This iterator is an STL compatible forward |
|
| 1949 | 1968 |
/// iterator on the values of the map. The values can |
| 1950 | 1969 |
/// be accessed in the <tt>[beginValue, endValue)</tt> range. |
| 1951 | 1970 |
/// They are considered with multiplicity, so each value is |
| 1952 | 1971 |
/// traversed for each item it is assigned to. |
| 1953 |
class |
|
| 1972 |
class ValueIt |
|
| 1954 | 1973 |
: public std::iterator<std::forward_iterator_tag, Value> {
|
| 1955 | 1974 |
friend class CrossRefMap; |
| 1956 | 1975 |
private: |
| 1957 |
|
|
| 1976 |
ValueIt(typename Container::const_iterator _it) |
|
| 1958 | 1977 |
: it(_it) {}
|
| 1959 | 1978 |
public: |
| 1960 | 1979 |
|
| 1961 |
ValueIterator() {}
|
|
| 1962 |
|
|
| 1963 |
ValueIterator& operator++() { ++it; return *this; }
|
|
| 1964 |
ValueIterator operator++(int) {
|
|
| 1965 |
|
|
| 1980 |
/// Constructor |
|
| 1981 |
ValueIt() {}
|
|
| 1982 |
|
|
| 1983 |
/// \e |
|
| 1984 |
ValueIt& operator++() { ++it; return *this; }
|
|
| 1985 |
/// \e |
|
| 1986 |
ValueIt operator++(int) {
|
|
| 1987 |
ValueIt tmp(*this); |
|
| 1966 | 1988 |
operator++(); |
| 1967 | 1989 |
return tmp; |
| 1968 | 1990 |
} |
| 1969 | 1991 |
|
| 1992 |
/// \e |
|
| 1970 | 1993 |
const Value& operator*() const { return it->first; }
|
| 1994 |
/// \e |
|
| 1971 | 1995 |
const Value* operator->() const { return &(it->first); }
|
| 1972 | 1996 |
|
| 1973 |
bool operator==(ValueIterator jt) const { return it == jt.it; }
|
|
| 1974 |
bool operator!=(ValueIterator jt) const { return it != jt.it; }
|
|
| 1997 |
/// \e |
|
| 1998 |
bool operator==(ValueIt jt) const { return it == jt.it; }
|
|
| 1999 |
/// \e |
|
| 2000 |
bool operator!=(ValueIt jt) const { return it != jt.it; }
|
|
| 1975 | 2001 |
|
| 1976 | 2002 |
private: |
| 1977 | 2003 |
typename Container::const_iterator it; |
| 1978 | 2004 |
}; |
| 2005 |
|
|
| 2006 |
/// Alias for \c ValueIt |
|
| 2007 |
typedef ValueIt ValueIterator; |
|
| 1979 | 2008 |
|
| 1980 | 2009 |
/// \brief Returns an iterator to the first value. |
| 1981 | 2010 |
/// |
| 1982 |
/// Returns an |
|
| 2011 |
/// Returns an STL compatible iterator to the |
|
| 1983 | 2012 |
/// first value of the map. The values of the |
| 1984 | 2013 |
/// map can be accessed in the <tt>[beginValue, endValue)</tt> |
| 1985 | 2014 |
/// range. |
| 1986 |
ValueIterator beginValue() const {
|
|
| 1987 |
return ValueIterator(_inv_map.begin()); |
|
| 2015 |
ValueIt beginValue() const {
|
|
| 2016 |
return ValueIt(_inv_map.begin()); |
|
| 1988 | 2017 |
} |
| 1989 | 2018 |
|
| 1990 | 2019 |
/// \brief Returns an iterator after the last value. |
| 1991 | 2020 |
/// |
| 1992 |
/// Returns an |
|
| 2021 |
/// Returns an STL compatible iterator after the |
|
| 1993 | 2022 |
/// last value of the map. The values of the |
| 1994 | 2023 |
/// map can be accessed in the <tt>[beginValue, endValue)</tt> |
| 1995 | 2024 |
/// range. |
| 1996 |
ValueIterator endValue() const {
|
|
| 1997 |
return ValueIterator(_inv_map.end()); |
|
| 2025 |
ValueIt endValue() const {
|
|
| 2026 |
return ValueIt(_inv_map.end()); |
|
| 1998 | 2027 |
} |
| 1999 | 2028 |
|
| 2000 | 2029 |
/// \brief Sets the value associated with the given key. |
| 2001 | 2030 |
/// |
| 2002 | 2031 |
/// Sets the value associated with the given key. |
| 2003 | 2032 |
void set(const Key& key, const Value& val) {
|
| 2004 | 2033 |
Value oldval = Map::operator[](key); |
| 2005 | 2034 |
typename Container::iterator it; |
| 2006 | 2035 |
for (it = _inv_map.equal_range(oldval).first; |
| 2007 | 2036 |
it != _inv_map.equal_range(oldval).second; ++it) {
|
| 2008 | 2037 |
if (it->second == key) {
|
| 2009 | 2038 |
_inv_map.erase(it); |
| 2010 | 2039 |
break; |
| 2011 | 2040 |
} |
| 2012 | 2041 |
} |
| 2013 | 2042 |
_inv_map.insert(std::make_pair(val, key)); |
| 2014 | 2043 |
Map::set(key, val); |
| 2015 | 2044 |
} |
| 2016 | 2045 |
|
| 2017 | 2046 |
/// \brief Returns the value associated with the given key. |
| 2018 | 2047 |
/// |
| 2019 | 2048 |
/// Returns the value associated with the given key. |
| 2020 | 2049 |
typename MapTraits<Map>::ConstReturnValue |
| 2021 | 2050 |
operator[](const Key& key) const {
|
| 2022 | 2051 |
return Map::operator[](key); |
| 2023 | 2052 |
} |
| 2024 | 2053 |
|
| 2025 | 2054 |
/// \brief Gives back an item by its value. |
| 2026 | 2055 |
/// |
| 2027 | 2056 |
/// This function gives back an item that is assigned to |
| 2028 | 2057 |
/// the given value or \c INVALID if no such item exists. |
| 2029 | 2058 |
/// If there are more items with the same associated value, |
| 2030 | 2059 |
/// only one of them is returned. |
| 2031 | 2060 |
Key operator()(const Value& val) const {
|
| 2032 | 2061 |
typename Container::const_iterator it = _inv_map.find(val); |
| 2033 | 2062 |
return it != _inv_map.end() ? it->second : INVALID; |
| 2034 | 2063 |
} |
| 2064 |
|
|
| 2065 |
/// \brief Returns the number of items with the given value. |
|
| 2066 |
/// |
|
| 2067 |
/// This function returns the number of items with the given value |
|
| 2068 |
/// associated with it. |
|
| 2069 |
int count(const Value &val) const {
|
|
| 2070 |
return _inv_map.count(val); |
|
| 2071 |
} |
|
| 2035 | 2072 |
|
| 2036 | 2073 |
protected: |
| 2037 | 2074 |
|
| 2038 | 2075 |
/// \brief Erase the key from the map and the inverse map. |
| 2039 | 2076 |
/// |
| 2040 | 2077 |
/// Erase the key from the map and the inverse map. It is called by the |
| 2041 | 2078 |
/// \c AlterationNotifier. |
| 2042 | 2079 |
virtual void erase(const Key& key) {
|
| 2043 | 2080 |
Value val = Map::operator[](key); |
| 2044 | 2081 |
typename Container::iterator it; |
| 2045 | 2082 |
for (it = _inv_map.equal_range(val).first; |
| 2046 | 2083 |
it != _inv_map.equal_range(val).second; ++it) {
|
| 2047 | 2084 |
if (it->second == key) {
|
| 2048 | 2085 |
_inv_map.erase(it); |
| 2049 | 2086 |
break; |
| 2050 | 2087 |
} |
| 2051 | 2088 |
} |
| 2052 | 2089 |
Map::erase(key); |
| 2053 | 2090 |
} |
| 2054 | 2091 |
|
| 2055 | 2092 |
/// \brief Erase more keys from the map and the inverse map. |
| 2056 | 2093 |
/// |
| 2057 | 2094 |
/// Erase more keys from the map and the inverse map. It is called by the |
| 2058 | 2095 |
/// \c AlterationNotifier. |
| 2059 | 2096 |
virtual void erase(const std::vector<Key>& keys) {
|
| 2060 | 2097 |
for (int i = 0; i < int(keys.size()); ++i) {
|
| 2061 | 2098 |
Value val = Map::operator[](keys[i]); |
| 2062 | 2099 |
typename Container::iterator it; |
| 2063 | 2100 |
for (it = _inv_map.equal_range(val).first; |
| 2064 | 2101 |
it != _inv_map.equal_range(val).second; ++it) {
|
| 2065 | 2102 |
if (it->second == keys[i]) {
|
| 2066 | 2103 |
_inv_map.erase(it); |
| 2067 | 2104 |
break; |
| 2068 | 2105 |
} |
| 2069 | 2106 |
} |
| 2070 | 2107 |
} |
| 2071 | 2108 |
Map::erase(keys); |
| 2072 | 2109 |
} |
| 2073 | 2110 |
|
| 2074 | 2111 |
/// \brief Clear the keys from the map and the inverse map. |
| 2075 | 2112 |
/// |
| 2076 | 2113 |
/// Clear the keys from the map and the inverse map. It is called by the |
| 2077 | 2114 |
/// \c AlterationNotifier. |
| 2078 | 2115 |
virtual void clear() {
|
| 2079 | 2116 |
_inv_map.clear(); |
| 2080 | 2117 |
Map::clear(); |
| 2081 | 2118 |
} |
| 2082 | 2119 |
|
| 2083 | 2120 |
public: |
| 2084 | 2121 |
|
| 2085 |
/// \brief The inverse map type. |
|
| 2122 |
/// \brief The inverse map type of CrossRefMap. |
|
| 2086 | 2123 |
/// |
| 2087 |
/// The inverse of this map. The subscript operator of the map |
|
| 2088 |
/// gives back the item that was last assigned to the value. |
|
| 2124 |
/// The inverse map type of CrossRefMap. The subscript operator gives |
|
| 2125 |
/// back an item by its value. |
|
| 2126 |
/// This type conforms to the \ref concepts::ReadMap "ReadMap" concept. |
|
| 2127 |
/// \see inverse() |
|
| 2089 | 2128 |
class InverseMap {
|
| 2090 | 2129 |
public: |
| 2091 | 2130 |
/// \brief Constructor |
| 2092 | 2131 |
/// |
| 2093 | 2132 |
/// Constructor of the InverseMap. |
| 2094 | 2133 |
explicit InverseMap(const CrossRefMap& inverted) |
| 2095 | 2134 |
: _inverted(inverted) {}
|
| 2096 | 2135 |
|
| 2097 | 2136 |
/// The value type of the InverseMap. |
| 2098 | 2137 |
typedef typename CrossRefMap::Key Value; |
| 2099 | 2138 |
/// The key type of the InverseMap. |
| 2100 | 2139 |
typedef typename CrossRefMap::Value Key; |
| 2101 | 2140 |
|
| 2102 | 2141 |
/// \brief Subscript operator. |
| 2103 | 2142 |
/// |
| 2104 | 2143 |
/// Subscript operator. It gives back an item |
| 2105 | 2144 |
/// that is assigned to the given value or \c INVALID |
| 2106 | 2145 |
/// if no such item exists. |
| 2107 | 2146 |
Value operator[](const Key& key) const {
|
| 2108 | 2147 |
return _inverted(key); |
| 2109 | 2148 |
} |
| 2110 | 2149 |
|
| 2111 | 2150 |
private: |
| 2112 | 2151 |
const CrossRefMap& _inverted; |
| 2113 | 2152 |
}; |
| 2114 | 2153 |
|
| 2115 |
/// \brief |
|
| 2154 |
/// \brief Gives back the inverse of the map. |
|
| 2116 | 2155 |
/// |
| 2117 |
/// |
|
| 2156 |
/// Gives back the inverse of the CrossRefMap. |
|
| 2118 | 2157 |
InverseMap inverse() const {
|
| 2119 | 2158 |
return InverseMap(*this); |
| 2120 | 2159 |
} |
| 2121 | 2160 |
|
| 2122 | 2161 |
}; |
| 2123 | 2162 |
|
| 2124 |
/// \brief Provides continuous and unique |
|
| 2163 |
/// \brief Provides continuous and unique id for the |
|
| 2125 | 2164 |
/// items of a graph. |
| 2126 | 2165 |
/// |
| 2127 | 2166 |
/// RangeIdMap provides a unique and continuous |
| 2128 |
/// |
|
| 2167 |
/// id for each item of a given type (\c Node, \c Arc or |
|
| 2129 | 2168 |
/// \c Edge) in a graph. This id is |
| 2130 | 2169 |
/// - \b unique: different items get different ids, |
| 2131 | 2170 |
/// - \b continuous: the range of the ids is the set of integers |
| 2132 | 2171 |
/// between 0 and \c n-1, where \c n is the number of the items of |
| 2133 | 2172 |
/// this type (\c Node, \c Arc or \c Edge). |
| 2134 | 2173 |
/// - So, the ids can change when deleting an item of the same type. |
| 2135 | 2174 |
/// |
| 2136 | 2175 |
/// Thus this id is not (necessarily) the same as what can get using |
| 2137 | 2176 |
/// the \c id() function of the graph or \ref IdMap. |
| 2138 | 2177 |
/// This map can be inverted with its member class \c InverseMap, |
| 2139 |
/// or with the \c operator() member. |
|
| 2178 |
/// or with the \c operator()() member. |
|
| 2140 | 2179 |
/// |
| 2141 | 2180 |
/// \tparam GR The graph type. |
| 2142 | 2181 |
/// \tparam K The key type of the map (\c GR::Node, \c GR::Arc or |
| 2143 | 2182 |
/// \c GR::Edge). |
| 2144 | 2183 |
/// |
| 2145 | 2184 |
/// \see IdMap |
| 2146 | 2185 |
template <typename GR, typename K> |
| 2147 | 2186 |
class RangeIdMap |
| 2148 | 2187 |
: protected ItemSetTraits<GR, K>::template Map<int>::Type {
|
| 2149 | 2188 |
|
| 2150 | 2189 |
typedef typename ItemSetTraits<GR, K>::template Map<int>::Type Map; |
| 2151 | 2190 |
|
| 2152 | 2191 |
public: |
| 2153 | 2192 |
/// The graph type of RangeIdMap. |
| 2154 | 2193 |
typedef GR Graph; |
| 2155 | 2194 |
typedef GR Digraph; |
| 2156 | 2195 |
/// The key type of RangeIdMap (\c Node, \c Arc or \c Edge). |
| 2157 | 2196 |
typedef K Item; |
| 2158 | 2197 |
/// The key type of RangeIdMap (\c Node, \c Arc or \c Edge). |
| 2159 | 2198 |
typedef K Key; |
| 2160 | 2199 |
/// The value type of RangeIdMap. |
| 2161 | 2200 |
typedef int Value; |
| 2162 | 2201 |
|
| 2163 | 2202 |
/// \brief Constructor. |
| 2164 | 2203 |
/// |
| 2165 | 2204 |
/// Constructor. |
| 2166 | 2205 |
explicit RangeIdMap(const Graph& gr) : Map(gr) {
|
| 2167 | 2206 |
Item it; |
| 2168 | 2207 |
const typename Map::Notifier* nf = Map::notifier(); |
| 2169 | 2208 |
for (nf->first(it); it != INVALID; nf->next(it)) {
|
| 2170 | 2209 |
Map::set(it, _inv_map.size()); |
| 2171 | 2210 |
_inv_map.push_back(it); |
| 2172 | 2211 |
} |
| 2173 | 2212 |
} |
| 2174 | 2213 |
|
| 2175 | 2214 |
protected: |
| 2176 | 2215 |
|
| 2177 | 2216 |
/// \brief Adds a new key to the map. |
| 2178 | 2217 |
/// |
| 2179 | 2218 |
/// Add a new key to the map. It is called by the |
| 2180 | 2219 |
/// \c AlterationNotifier. |
| 2181 | 2220 |
virtual void add(const Item& item) {
|
| 2182 | 2221 |
Map::add(item); |
| 2183 | 2222 |
Map::set(item, _inv_map.size()); |
| 2184 | 2223 |
_inv_map.push_back(item); |
| 2185 | 2224 |
} |
| 2186 | 2225 |
|
| 2187 | 2226 |
/// \brief Add more new keys to the map. |
| ... | ... |
@@ -2219,167 +2258,178 @@ |
| 2219 | 2258 |
} |
| 2220 | 2259 |
Map::erase(items); |
| 2221 | 2260 |
} |
| 2222 | 2261 |
|
| 2223 | 2262 |
/// \brief Build the unique map. |
| 2224 | 2263 |
/// |
| 2225 | 2264 |
/// Build the unique map. It is called by the |
| 2226 | 2265 |
/// \c AlterationNotifier. |
| 2227 | 2266 |
virtual void build() {
|
| 2228 | 2267 |
Map::build(); |
| 2229 | 2268 |
Item it; |
| 2230 | 2269 |
const typename Map::Notifier* nf = Map::notifier(); |
| 2231 | 2270 |
for (nf->first(it); it != INVALID; nf->next(it)) {
|
| 2232 | 2271 |
Map::set(it, _inv_map.size()); |
| 2233 | 2272 |
_inv_map.push_back(it); |
| 2234 | 2273 |
} |
| 2235 | 2274 |
} |
| 2236 | 2275 |
|
| 2237 | 2276 |
/// \brief Clear the keys from the map. |
| 2238 | 2277 |
/// |
| 2239 | 2278 |
/// Clear the keys from the map. It is called by the |
| 2240 | 2279 |
/// \c AlterationNotifier. |
| 2241 | 2280 |
virtual void clear() {
|
| 2242 | 2281 |
_inv_map.clear(); |
| 2243 | 2282 |
Map::clear(); |
| 2244 | 2283 |
} |
| 2245 | 2284 |
|
| 2246 | 2285 |
public: |
| 2247 | 2286 |
|
| 2248 | 2287 |
/// \brief Returns the maximal value plus one. |
| 2249 | 2288 |
/// |
| 2250 | 2289 |
/// Returns the maximal value plus one in the map. |
| 2251 | 2290 |
unsigned int size() const {
|
| 2252 | 2291 |
return _inv_map.size(); |
| 2253 | 2292 |
} |
| 2254 | 2293 |
|
| 2255 | 2294 |
/// \brief Swaps the position of the two items in the map. |
| 2256 | 2295 |
/// |
| 2257 | 2296 |
/// Swaps the position of the two items in the map. |
| 2258 | 2297 |
void swap(const Item& p, const Item& q) {
|
| 2259 | 2298 |
int pi = Map::operator[](p); |
| 2260 | 2299 |
int qi = Map::operator[](q); |
| 2261 | 2300 |
Map::set(p, qi); |
| 2262 | 2301 |
_inv_map[qi] = p; |
| 2263 | 2302 |
Map::set(q, pi); |
| 2264 | 2303 |
_inv_map[pi] = q; |
| 2265 | 2304 |
} |
| 2266 | 2305 |
|
| 2267 |
/// \brief Gives back the \e |
|
| 2306 |
/// \brief Gives back the \e range \e id of the item |
|
| 2268 | 2307 |
/// |
| 2269 |
/// Gives back the \e |
|
| 2308 |
/// Gives back the \e range \e id of the item. |
|
| 2270 | 2309 |
int operator[](const Item& item) const {
|
| 2271 | 2310 |
return Map::operator[](item); |
| 2272 | 2311 |
} |
| 2273 | 2312 |
|
| 2274 |
/// \brief Gives back the item belonging to a \e |
|
| 2313 |
/// \brief Gives back the item belonging to a \e range \e id |
|
| 2275 | 2314 |
/// |
| 2276 |
/// Gives back the item belonging to |
|
| 2315 |
/// Gives back the item belonging to the given \e range \e id. |
|
| 2277 | 2316 |
Item operator()(int id) const {
|
| 2278 | 2317 |
return _inv_map[id]; |
| 2279 | 2318 |
} |
| 2280 | 2319 |
|
| 2281 | 2320 |
private: |
| 2282 | 2321 |
|
| 2283 | 2322 |
typedef std::vector<Item> Container; |
| 2284 | 2323 |
Container _inv_map; |
| 2285 | 2324 |
|
| 2286 | 2325 |
public: |
| 2287 | 2326 |
|
| 2288 | 2327 |
/// \brief The inverse map type of RangeIdMap. |
| 2289 | 2328 |
/// |
| 2290 |
/// The inverse map type of RangeIdMap. |
|
| 2329 |
/// The inverse map type of RangeIdMap. The subscript operator gives |
|
| 2330 |
/// back an item by its \e range \e id. |
|
| 2331 |
/// This type conforms to the \ref concepts::ReadMap "ReadMap" concept. |
|
| 2291 | 2332 |
class InverseMap {
|
| 2292 | 2333 |
public: |
| 2293 | 2334 |
/// \brief Constructor |
| 2294 | 2335 |
/// |
| 2295 | 2336 |
/// Constructor of the InverseMap. |
| 2296 | 2337 |
explicit InverseMap(const RangeIdMap& inverted) |
| 2297 | 2338 |
: _inverted(inverted) {}
|
| 2298 | 2339 |
|
| 2299 | 2340 |
|
| 2300 | 2341 |
/// The value type of the InverseMap. |
| 2301 | 2342 |
typedef typename RangeIdMap::Key Value; |
| 2302 | 2343 |
/// The key type of the InverseMap. |
| 2303 | 2344 |
typedef typename RangeIdMap::Value Key; |
| 2304 | 2345 |
|
| 2305 | 2346 |
/// \brief Subscript operator. |
| 2306 | 2347 |
/// |
| 2307 | 2348 |
/// Subscript operator. It gives back the item |
| 2308 |
/// that the |
|
| 2349 |
/// that the given \e range \e id currently belongs to. |
|
| 2309 | 2350 |
Value operator[](const Key& key) const {
|
| 2310 | 2351 |
return _inverted(key); |
| 2311 | 2352 |
} |
| 2312 | 2353 |
|
| 2313 | 2354 |
/// \brief Size of the map. |
| 2314 | 2355 |
/// |
| 2315 | 2356 |
/// Returns the size of the map. |
| 2316 | 2357 |
unsigned int size() const {
|
| 2317 | 2358 |
return _inverted.size(); |
| 2318 | 2359 |
} |
| 2319 | 2360 |
|
| 2320 | 2361 |
private: |
| 2321 | 2362 |
const RangeIdMap& _inverted; |
| 2322 | 2363 |
}; |
| 2323 | 2364 |
|
| 2324 | 2365 |
/// \brief Gives back the inverse of the map. |
| 2325 | 2366 |
/// |
| 2326 |
/// Gives back the inverse of the |
|
| 2367 |
/// Gives back the inverse of the RangeIdMap. |
|
| 2327 | 2368 |
const InverseMap inverse() const {
|
| 2328 | 2369 |
return InverseMap(*this); |
| 2329 | 2370 |
} |
| 2330 | 2371 |
}; |
| 2331 | 2372 |
|
| 2373 |
/// \brief Returns a \c RangeIdMap class. |
|
| 2374 |
/// |
|
| 2375 |
/// This function just returns an \c RangeIdMap class. |
|
| 2376 |
/// \relates RangeIdMap |
|
| 2377 |
template <typename K, typename GR> |
|
| 2378 |
inline RangeIdMap<GR, K> rangeIdMap(const GR& graph) {
|
|
| 2379 |
return RangeIdMap<GR, K>(graph); |
|
| 2380 |
} |
|
| 2381 |
|
|
| 2332 | 2382 |
/// \brief Dynamic iterable \c bool map. |
| 2333 | 2383 |
/// |
| 2334 | 2384 |
/// This class provides a special graph map type which can store a |
| 2335 | 2385 |
/// \c bool value for graph items (\c Node, \c Arc or \c Edge). |
| 2336 | 2386 |
/// For both \c true and \c false values it is possible to iterate on |
| 2337 |
/// the keys. |
|
| 2387 |
/// the keys mapped to the value. |
|
| 2338 | 2388 |
/// |
| 2339 | 2389 |
/// This type is a reference map, so it can be modified with the |
| 2340 | 2390 |
/// subscript operator. |
| 2341 | 2391 |
/// |
| 2342 | 2392 |
/// \tparam GR The graph type. |
| 2343 | 2393 |
/// \tparam K The key type of the map (\c GR::Node, \c GR::Arc or |
| 2344 | 2394 |
/// \c GR::Edge). |
| 2345 | 2395 |
/// |
| 2346 | 2396 |
/// \see IterableIntMap, IterableValueMap |
| 2347 | 2397 |
/// \see CrossRefMap |
| 2348 | 2398 |
template <typename GR, typename K> |
| 2349 | 2399 |
class IterableBoolMap |
| 2350 | 2400 |
: protected ItemSetTraits<GR, K>::template Map<int>::Type {
|
| 2351 | 2401 |
private: |
| 2352 | 2402 |
typedef GR Graph; |
| 2353 | 2403 |
|
| 2354 | 2404 |
typedef typename ItemSetTraits<GR, K>::ItemIt KeyIt; |
| 2355 | 2405 |
typedef typename ItemSetTraits<GR, K>::template Map<int>::Type Parent; |
| 2356 | 2406 |
|
| 2357 | 2407 |
std::vector<K> _array; |
| 2358 | 2408 |
int _sep; |
| 2359 | 2409 |
|
| 2360 | 2410 |
public: |
| 2361 | 2411 |
|
| 2362 | 2412 |
/// Indicates that the map is reference map. |
| 2363 | 2413 |
typedef True ReferenceMapTag; |
| 2364 | 2414 |
|
| 2365 | 2415 |
/// The key type |
| 2366 | 2416 |
typedef K Key; |
| 2367 | 2417 |
/// The value type |
| 2368 | 2418 |
typedef bool Value; |
| 2369 | 2419 |
/// The const reference type. |
| 2370 | 2420 |
typedef const Value& ConstReference; |
| 2371 | 2421 |
|
| 2372 | 2422 |
private: |
| 2373 | 2423 |
|
| 2374 | 2424 |
int position(const Key& key) const {
|
| 2375 | 2425 |
return Parent::operator[](key); |
| 2376 | 2426 |
} |
| 2377 | 2427 |
|
| 2378 | 2428 |
public: |
| 2379 | 2429 |
|
| 2380 | 2430 |
/// \brief Reference to the value of the map. |
| 2381 | 2431 |
/// |
| 2382 | 2432 |
/// This class is similar to the \c bool type. It can be converted to |
| 2383 | 2433 |
/// \c bool and it provides the same operators. |
| 2384 | 2434 |
class Reference {
|
| 2385 | 2435 |
friend class IterableBoolMap; |
| ... | ... |
@@ -2658,96 +2708,101 @@ |
| 2658 | 2708 |
_array[_sep] = _array.back(); |
| 2659 | 2709 |
_array.pop_back(); |
| 2660 | 2710 |
} else {
|
| 2661 | 2711 |
Parent::set(_array.back(), pos); |
| 2662 | 2712 |
_array[pos] = _array.back(); |
| 2663 | 2713 |
_array.pop_back(); |
| 2664 | 2714 |
} |
| 2665 | 2715 |
} |
| 2666 | 2716 |
Parent::erase(keys); |
| 2667 | 2717 |
} |
| 2668 | 2718 |
|
| 2669 | 2719 |
virtual void build() {
|
| 2670 | 2720 |
Parent::build(); |
| 2671 | 2721 |
typename Parent::Notifier* nf = Parent::notifier(); |
| 2672 | 2722 |
Key it; |
| 2673 | 2723 |
for (nf->first(it); it != INVALID; nf->next(it)) {
|
| 2674 | 2724 |
Parent::set(it, _array.size()); |
| 2675 | 2725 |
_array.push_back(it); |
| 2676 | 2726 |
} |
| 2677 | 2727 |
_sep = 0; |
| 2678 | 2728 |
} |
| 2679 | 2729 |
|
| 2680 | 2730 |
virtual void clear() {
|
| 2681 | 2731 |
_array.clear(); |
| 2682 | 2732 |
_sep = 0; |
| 2683 | 2733 |
Parent::clear(); |
| 2684 | 2734 |
} |
| 2685 | 2735 |
|
| 2686 | 2736 |
}; |
| 2687 | 2737 |
|
| 2688 | 2738 |
|
| 2689 | 2739 |
namespace _maps_bits {
|
| 2690 | 2740 |
template <typename Item> |
| 2691 | 2741 |
struct IterableIntMapNode {
|
| 2692 | 2742 |
IterableIntMapNode() : value(-1) {}
|
| 2693 | 2743 |
IterableIntMapNode(int _value) : value(_value) {}
|
| 2694 | 2744 |
Item prev, next; |
| 2695 | 2745 |
int value; |
| 2696 | 2746 |
}; |
| 2697 | 2747 |
} |
| 2698 | 2748 |
|
| 2699 | 2749 |
/// \brief Dynamic iterable integer map. |
| 2700 | 2750 |
/// |
| 2701 | 2751 |
/// This class provides a special graph map type which can store an |
| 2702 | 2752 |
/// integer value for graph items (\c Node, \c Arc or \c Edge). |
| 2703 | 2753 |
/// For each non-negative value it is possible to iterate on the keys |
| 2704 | 2754 |
/// mapped to the value. |
| 2705 | 2755 |
/// |
| 2756 |
/// This map is intended to be used with small integer values, for which |
|
| 2757 |
/// it is efficient, and supports iteration only for non-negative values. |
|
| 2758 |
/// If you need large values and/or iteration for negative integers, |
|
| 2759 |
/// consider to use \ref IterableValueMap instead. |
|
| 2760 |
/// |
|
| 2706 | 2761 |
/// This type is a reference map, so it can be modified with the |
| 2707 | 2762 |
/// subscript operator. |
| 2708 | 2763 |
/// |
| 2709 | 2764 |
/// \note The size of the data structure depends on the largest |
| 2710 | 2765 |
/// value in the map. |
| 2711 | 2766 |
/// |
| 2712 | 2767 |
/// \tparam GR The graph type. |
| 2713 | 2768 |
/// \tparam K The key type of the map (\c GR::Node, \c GR::Arc or |
| 2714 | 2769 |
/// \c GR::Edge). |
| 2715 | 2770 |
/// |
| 2716 | 2771 |
/// \see IterableBoolMap, IterableValueMap |
| 2717 | 2772 |
/// \see CrossRefMap |
| 2718 | 2773 |
template <typename GR, typename K> |
| 2719 | 2774 |
class IterableIntMap |
| 2720 | 2775 |
: protected ItemSetTraits<GR, K>:: |
| 2721 | 2776 |
template Map<_maps_bits::IterableIntMapNode<K> >::Type {
|
| 2722 | 2777 |
public: |
| 2723 | 2778 |
typedef typename ItemSetTraits<GR, K>:: |
| 2724 | 2779 |
template Map<_maps_bits::IterableIntMapNode<K> >::Type Parent; |
| 2725 | 2780 |
|
| 2726 | 2781 |
/// The key type |
| 2727 | 2782 |
typedef K Key; |
| 2728 | 2783 |
/// The value type |
| 2729 | 2784 |
typedef int Value; |
| 2730 | 2785 |
/// The graph type |
| 2731 | 2786 |
typedef GR Graph; |
| 2732 | 2787 |
|
| 2733 | 2788 |
/// \brief Constructor of the map. |
| 2734 | 2789 |
/// |
| 2735 | 2790 |
/// Constructor of the map. It sets all values to -1. |
| 2736 | 2791 |
explicit IterableIntMap(const Graph& graph) |
| 2737 | 2792 |
: Parent(graph) {}
|
| 2738 | 2793 |
|
| 2739 | 2794 |
/// \brief Constructor of the map with a given value. |
| 2740 | 2795 |
/// |
| 2741 | 2796 |
/// Constructor of the map with a given value. |
| 2742 | 2797 |
explicit IterableIntMap(const Graph& graph, int value) |
| 2743 | 2798 |
: Parent(graph, _maps_bits::IterableIntMapNode<K>(value)) {
|
| 2744 | 2799 |
if (value >= 0) {
|
| 2745 | 2800 |
for (typename Parent::ItemIt it(*this); it != INVALID; ++it) {
|
| 2746 | 2801 |
lace(it); |
| 2747 | 2802 |
} |
| 2748 | 2803 |
} |
| 2749 | 2804 |
} |
| 2750 | 2805 |
|
| 2751 | 2806 |
private: |
| 2752 | 2807 |
|
| 2753 | 2808 |
void unlace(const Key& key) {
|
| ... | ... |
@@ -2939,231 +2994,240 @@ |
| 2939 | 2994 |
|
| 2940 | 2995 |
/// \brief Increment operator. |
| 2941 | 2996 |
/// |
| 2942 | 2997 |
/// Increment operator. |
| 2943 | 2998 |
ItemIt& operator++() {
|
| 2944 | 2999 |
Parent::operator=(_map->IterableIntMap::Parent:: |
| 2945 | 3000 |
operator[](static_cast<Parent&>(*this)).next); |
| 2946 | 3001 |
return *this; |
| 2947 | 3002 |
} |
| 2948 | 3003 |
|
| 2949 | 3004 |
private: |
| 2950 | 3005 |
const IterableIntMap* _map; |
| 2951 | 3006 |
}; |
| 2952 | 3007 |
|
| 2953 | 3008 |
protected: |
| 2954 | 3009 |
|
| 2955 | 3010 |
virtual void erase(const Key& key) {
|
| 2956 | 3011 |
unlace(key); |
| 2957 | 3012 |
Parent::erase(key); |
| 2958 | 3013 |
} |
| 2959 | 3014 |
|
| 2960 | 3015 |
virtual void erase(const std::vector<Key>& keys) {
|
| 2961 | 3016 |
for (int i = 0; i < int(keys.size()); ++i) {
|
| 2962 | 3017 |
unlace(keys[i]); |
| 2963 | 3018 |
} |
| 2964 | 3019 |
Parent::erase(keys); |
| 2965 | 3020 |
} |
| 2966 | 3021 |
|
| 2967 | 3022 |
virtual void clear() {
|
| 2968 | 3023 |
_first.clear(); |
| 2969 | 3024 |
Parent::clear(); |
| 2970 | 3025 |
} |
| 2971 | 3026 |
|
| 2972 | 3027 |
private: |
| 2973 | 3028 |
std::vector<Key> _first; |
| 2974 | 3029 |
}; |
| 2975 | 3030 |
|
| 2976 | 3031 |
namespace _maps_bits {
|
| 2977 | 3032 |
template <typename Item, typename Value> |
| 2978 | 3033 |
struct IterableValueMapNode {
|
| 2979 | 3034 |
IterableValueMapNode(Value _value = Value()) : value(_value) {}
|
| 2980 | 3035 |
Item prev, next; |
| 2981 | 3036 |
Value value; |
| 2982 | 3037 |
}; |
| 2983 | 3038 |
} |
| 2984 | 3039 |
|
| 2985 | 3040 |
/// \brief Dynamic iterable map for comparable values. |
| 2986 | 3041 |
/// |
| 2987 |
/// This class provides a special graph map type which can store |
|
| 3042 |
/// This class provides a special graph map type which can store a |
|
| 2988 | 3043 |
/// comparable value for graph items (\c Node, \c Arc or \c Edge). |
| 2989 | 3044 |
/// For each value it is possible to iterate on the keys mapped to |
| 2990 |
/// the value |
|
| 3045 |
/// the value (\c ItemIt), and the values of the map can be accessed |
|
| 3046 |
/// with an STL compatible forward iterator (\c ValueIt). |
|
| 3047 |
/// The map stores a linked list for each value, which contains |
|
| 3048 |
/// the items mapped to the value, and the used values are stored |
|
| 3049 |
/// in balanced binary tree (\c std::map). |
|
| 2991 | 3050 |
/// |
| 2992 |
/// The map stores for each value a linked list with |
|
| 2993 |
/// the items which mapped to the value, and the values are stored |
|
| 2994 |
/// in balanced binary tree. The values of the map can be accessed |
|
| 2995 |
/// with stl compatible forward iterator. |
|
| 3051 |
/// \ref IterableBoolMap and \ref IterableIntMap are similar classes |
|
| 3052 |
/// specialized for \c bool and \c int values, respectively. |
|
| 2996 | 3053 |
/// |
| 2997 | 3054 |
/// This type is not reference map, so it cannot be modified with |
| 2998 | 3055 |
/// the subscript operator. |
| 2999 | 3056 |
/// |
| 3000 | 3057 |
/// \tparam GR The graph type. |
| 3001 | 3058 |
/// \tparam K The key type of the map (\c GR::Node, \c GR::Arc or |
| 3002 | 3059 |
/// \c GR::Edge). |
| 3003 | 3060 |
/// \tparam V The value type of the map. It can be any comparable |
| 3004 | 3061 |
/// value type. |
| 3005 | 3062 |
/// |
| 3006 | 3063 |
/// \see IterableBoolMap, IterableIntMap |
| 3007 | 3064 |
/// \see CrossRefMap |
| 3008 | 3065 |
template <typename GR, typename K, typename V> |
| 3009 | 3066 |
class IterableValueMap |
| 3010 | 3067 |
: protected ItemSetTraits<GR, K>:: |
| 3011 | 3068 |
template Map<_maps_bits::IterableValueMapNode<K, V> >::Type {
|
| 3012 | 3069 |
public: |
| 3013 | 3070 |
typedef typename ItemSetTraits<GR, K>:: |
| 3014 | 3071 |
template Map<_maps_bits::IterableValueMapNode<K, V> >::Type Parent; |
| 3015 | 3072 |
|
| 3016 | 3073 |
/// The key type |
| 3017 | 3074 |
typedef K Key; |
| 3018 | 3075 |
/// The value type |
| 3019 | 3076 |
typedef V Value; |
| 3020 | 3077 |
/// The graph type |
| 3021 | 3078 |
typedef GR Graph; |
| 3022 | 3079 |
|
| 3023 | 3080 |
public: |
| 3024 | 3081 |
|
| 3025 | 3082 |
/// \brief Constructor of the map with a given value. |
| 3026 | 3083 |
/// |
| 3027 | 3084 |
/// Constructor of the map with a given value. |
| 3028 | 3085 |
explicit IterableValueMap(const Graph& graph, |
| 3029 | 3086 |
const Value& value = Value()) |
| 3030 | 3087 |
: Parent(graph, _maps_bits::IterableValueMapNode<K, V>(value)) {
|
| 3031 | 3088 |
for (typename Parent::ItemIt it(*this); it != INVALID; ++it) {
|
| 3032 | 3089 |
lace(it); |
| 3033 | 3090 |
} |
| 3034 | 3091 |
} |
| 3035 | 3092 |
|
| 3036 | 3093 |
protected: |
| 3037 | 3094 |
|
| 3038 | 3095 |
void unlace(const Key& key) {
|
| 3039 | 3096 |
typename Parent::Value& node = Parent::operator[](key); |
| 3040 | 3097 |
if (node.prev != INVALID) {
|
| 3041 | 3098 |
Parent::operator[](node.prev).next = node.next; |
| 3042 | 3099 |
} else {
|
| 3043 | 3100 |
if (node.next != INVALID) {
|
| 3044 | 3101 |
_first[node.value] = node.next; |
| 3045 | 3102 |
} else {
|
| 3046 | 3103 |
_first.erase(node.value); |
| 3047 | 3104 |
} |
| 3048 | 3105 |
} |
| 3049 | 3106 |
if (node.next != INVALID) {
|
| 3050 | 3107 |
Parent::operator[](node.next).prev = node.prev; |
| 3051 | 3108 |
} |
| 3052 | 3109 |
} |
| 3053 | 3110 |
|
| 3054 | 3111 |
void lace(const Key& key) {
|
| 3055 | 3112 |
typename Parent::Value& node = Parent::operator[](key); |
| 3056 | 3113 |
typename std::map<Value, Key>::iterator it = _first.find(node.value); |
| 3057 | 3114 |
if (it == _first.end()) {
|
| 3058 | 3115 |
node.prev = node.next = INVALID; |
| 3059 | 3116 |
_first.insert(std::make_pair(node.value, key)); |
| 3060 | 3117 |
} else {
|
| 3061 | 3118 |
node.prev = INVALID; |
| 3062 | 3119 |
node.next = it->second; |
| 3063 | 3120 |
if (node.next != INVALID) {
|
| 3064 | 3121 |
Parent::operator[](node.next).prev = key; |
| 3065 | 3122 |
} |
| 3066 | 3123 |
it->second = key; |
| 3067 | 3124 |
} |
| 3068 | 3125 |
} |
| 3069 | 3126 |
|
| 3070 | 3127 |
public: |
| 3071 | 3128 |
|
| 3072 | 3129 |
/// \brief Forward iterator for values. |
| 3073 | 3130 |
/// |
| 3074 |
/// This iterator is an |
|
| 3131 |
/// This iterator is an STL compatible forward |
|
| 3075 | 3132 |
/// iterator on the values of the map. The values can |
| 3076 | 3133 |
/// be accessed in the <tt>[beginValue, endValue)</tt> range. |
| 3077 |
class |
|
| 3134 |
class ValueIt |
|
| 3078 | 3135 |
: public std::iterator<std::forward_iterator_tag, Value> {
|
| 3079 | 3136 |
friend class IterableValueMap; |
| 3080 | 3137 |
private: |
| 3081 |
|
|
| 3138 |
ValueIt(typename std::map<Value, Key>::const_iterator _it) |
|
| 3082 | 3139 |
: it(_it) {}
|
| 3083 | 3140 |
public: |
| 3084 | 3141 |
|
| 3085 |
ValueIterator() {}
|
|
| 3086 |
|
|
| 3087 |
ValueIterator& operator++() { ++it; return *this; }
|
|
| 3088 |
ValueIterator operator++(int) {
|
|
| 3089 |
|
|
| 3142 |
/// Constructor |
|
| 3143 |
ValueIt() {}
|
|
| 3144 |
|
|
| 3145 |
/// \e |
|
| 3146 |
ValueIt& operator++() { ++it; return *this; }
|
|
| 3147 |
/// \e |
|
| 3148 |
ValueIt operator++(int) {
|
|
| 3149 |
ValueIt tmp(*this); |
|
| 3090 | 3150 |
operator++(); |
| 3091 | 3151 |
return tmp; |
| 3092 | 3152 |
} |
| 3093 | 3153 |
|
| 3154 |
/// \e |
|
| 3094 | 3155 |
const Value& operator*() const { return it->first; }
|
| 3156 |
/// \e |
|
| 3095 | 3157 |
const Value* operator->() const { return &(it->first); }
|
| 3096 | 3158 |
|
| 3097 |
bool operator==(ValueIterator jt) const { return it == jt.it; }
|
|
| 3098 |
bool operator!=(ValueIterator jt) const { return it != jt.it; }
|
|
| 3159 |
/// \e |
|
| 3160 |
bool operator==(ValueIt jt) const { return it == jt.it; }
|
|
| 3161 |
/// \e |
|
| 3162 |
bool operator!=(ValueIt jt) const { return it != jt.it; }
|
|
| 3099 | 3163 |
|
| 3100 | 3164 |
private: |
| 3101 | 3165 |
typename std::map<Value, Key>::const_iterator it; |
| 3102 | 3166 |
}; |
| 3103 | 3167 |
|
| 3104 | 3168 |
/// \brief Returns an iterator to the first value. |
| 3105 | 3169 |
/// |
| 3106 |
/// Returns an |
|
| 3170 |
/// Returns an STL compatible iterator to the |
|
| 3107 | 3171 |
/// first value of the map. The values of the |
| 3108 | 3172 |
/// map can be accessed in the <tt>[beginValue, endValue)</tt> |
| 3109 | 3173 |
/// range. |
| 3110 |
ValueIterator beginValue() const {
|
|
| 3111 |
return ValueIterator(_first.begin()); |
|
| 3174 |
ValueIt beginValue() const {
|
|
| 3175 |
return ValueIt(_first.begin()); |
|
| 3112 | 3176 |
} |
| 3113 | 3177 |
|
| 3114 | 3178 |
/// \brief Returns an iterator after the last value. |
| 3115 | 3179 |
/// |
| 3116 |
/// Returns an |
|
| 3180 |
/// Returns an STL compatible iterator after the |
|
| 3117 | 3181 |
/// last value of the map. The values of the |
| 3118 | 3182 |
/// map can be accessed in the <tt>[beginValue, endValue)</tt> |
| 3119 | 3183 |
/// range. |
| 3120 |
ValueIterator endValue() const {
|
|
| 3121 |
return ValueIterator(_first.end()); |
|
| 3184 |
ValueIt endValue() const {
|
|
| 3185 |
return ValueIt(_first.end()); |
|
| 3122 | 3186 |
} |
| 3123 | 3187 |
|
| 3124 | 3188 |
/// \brief Set operation of the map. |
| 3125 | 3189 |
/// |
| 3126 | 3190 |
/// Set operation of the map. |
| 3127 | 3191 |
void set(const Key& key, const Value& value) {
|
| 3128 | 3192 |
unlace(key); |
| 3129 | 3193 |
Parent::operator[](key).value = value; |
| 3130 | 3194 |
lace(key); |
| 3131 | 3195 |
} |
| 3132 | 3196 |
|
| 3133 | 3197 |
/// \brief Const subscript operator of the map. |
| 3134 | 3198 |
/// |
| 3135 | 3199 |
/// Const subscript operator of the map. |
| 3136 | 3200 |
const Value& operator[](const Key& key) const {
|
| 3137 | 3201 |
return Parent::operator[](key).value; |
| 3138 | 3202 |
} |
| 3139 | 3203 |
|
| 3140 | 3204 |
/// \brief Iterator for the keys with the same value. |
| 3141 | 3205 |
/// |
| 3142 | 3206 |
/// Iterator for the keys with the same value. It works |
| 3143 | 3207 |
/// like a graph item iterator, it can be converted to |
| 3144 | 3208 |
/// the item type of the map, incremented with \c ++ operator, and |
| 3145 | 3209 |
/// if the iterator leaves the last valid item, it will be equal to |
| 3146 | 3210 |
/// \c INVALID. |
| 3147 | 3211 |
class ItemIt : public Key {
|
| 3148 | 3212 |
public: |
| 3149 | 3213 |
typedef Key Parent; |
| 3150 | 3214 |
|
| 3151 | 3215 |
/// \brief Invalid constructor \& conversion. |
| 3152 | 3216 |
/// |
| 3153 | 3217 |
/// This constructor initializes the iterator to be invalid. |
| 3154 | 3218 |
/// \sa Invalid for more details. |
| 3155 | 3219 |
ItemIt(Invalid) : Parent(INVALID), _map(0) {}
|
| 3156 | 3220 |
|
| 3157 | 3221 |
/// \brief Creates an iterator with a value. |
| 3158 | 3222 |
/// |
| 3159 | 3223 |
/// Creates an iterator with a value. It iterates on the |
| 3160 | 3224 |
/// keys which have the given value. |
| 3161 | 3225 |
/// \param map The IterableValueMap |
| 3162 | 3226 |
/// \param value The value |
| 3163 | 3227 |
ItemIt(const IterableValueMap& map, const Value& value) : _map(&map) {
|
| 3164 | 3228 |
typename std::map<Value, Key>::const_iterator it = |
| 3165 | 3229 |
map._first.find(value); |
| 3166 | 3230 |
if (it == map._first.end()) {
|
| 3167 | 3231 |
Parent::operator=(INVALID); |
| 3168 | 3232 |
} else {
|
| 3169 | 3233 |
Parent::operator=(it->second); |
| ... | ... |
@@ -3191,221 +3255,225 @@ |
| 3191 | 3255 |
unlace(key); |
| 3192 | 3256 |
} |
| 3193 | 3257 |
|
| 3194 | 3258 |
virtual void add(const std::vector<Key>& keys) {
|
| 3195 | 3259 |
Parent::add(keys); |
| 3196 | 3260 |
for (int i = 0; i < int(keys.size()); ++i) {
|
| 3197 | 3261 |
lace(keys[i]); |
| 3198 | 3262 |
} |
| 3199 | 3263 |
} |
| 3200 | 3264 |
|
| 3201 | 3265 |
virtual void erase(const Key& key) {
|
| 3202 | 3266 |
unlace(key); |
| 3203 | 3267 |
Parent::erase(key); |
| 3204 | 3268 |
} |
| 3205 | 3269 |
|
| 3206 | 3270 |
virtual void erase(const std::vector<Key>& keys) {
|
| 3207 | 3271 |
for (int i = 0; i < int(keys.size()); ++i) {
|
| 3208 | 3272 |
unlace(keys[i]); |
| 3209 | 3273 |
} |
| 3210 | 3274 |
Parent::erase(keys); |
| 3211 | 3275 |
} |
| 3212 | 3276 |
|
| 3213 | 3277 |
virtual void build() {
|
| 3214 | 3278 |
Parent::build(); |
| 3215 | 3279 |
for (typename Parent::ItemIt it(*this); it != INVALID; ++it) {
|
| 3216 | 3280 |
lace(it); |
| 3217 | 3281 |
} |
| 3218 | 3282 |
} |
| 3219 | 3283 |
|
| 3220 | 3284 |
virtual void clear() {
|
| 3221 | 3285 |
_first.clear(); |
| 3222 | 3286 |
Parent::clear(); |
| 3223 | 3287 |
} |
| 3224 | 3288 |
|
| 3225 | 3289 |
private: |
| 3226 | 3290 |
std::map<Value, Key> _first; |
| 3227 | 3291 |
}; |
| 3228 | 3292 |
|
| 3229 | 3293 |
/// \brief Map of the source nodes of arcs in a digraph. |
| 3230 | 3294 |
/// |
| 3231 | 3295 |
/// SourceMap provides access for the source node of each arc in a digraph, |
| 3232 | 3296 |
/// which is returned by the \c source() function of the digraph. |
| 3233 | 3297 |
/// \tparam GR The digraph type. |
| 3234 | 3298 |
/// \see TargetMap |
| 3235 | 3299 |
template <typename GR> |
| 3236 | 3300 |
class SourceMap {
|
| 3237 | 3301 |
public: |
| 3238 | 3302 |
|
| 3239 |
///\ |
|
| 3303 |
/// The key type (the \c Arc type of the digraph). |
|
| 3240 | 3304 |
typedef typename GR::Arc Key; |
| 3241 |
///\ |
|
| 3305 |
/// The value type (the \c Node type of the digraph). |
|
| 3242 | 3306 |
typedef typename GR::Node Value; |
| 3243 | 3307 |
|
| 3244 | 3308 |
/// \brief Constructor |
| 3245 | 3309 |
/// |
| 3246 | 3310 |
/// Constructor. |
| 3247 | 3311 |
/// \param digraph The digraph that the map belongs to. |
| 3248 | 3312 |
explicit SourceMap(const GR& digraph) : _graph(digraph) {}
|
| 3249 | 3313 |
|
| 3250 | 3314 |
/// \brief Returns the source node of the given arc. |
| 3251 | 3315 |
/// |
| 3252 | 3316 |
/// Returns the source node of the given arc. |
| 3253 | 3317 |
Value operator[](const Key& arc) const {
|
| 3254 | 3318 |
return _graph.source(arc); |
| 3255 | 3319 |
} |
| 3256 | 3320 |
|
| 3257 | 3321 |
private: |
| 3258 | 3322 |
const GR& _graph; |
| 3259 | 3323 |
}; |
| 3260 | 3324 |
|
| 3261 | 3325 |
/// \brief Returns a \c SourceMap class. |
| 3262 | 3326 |
/// |
| 3263 | 3327 |
/// This function just returns an \c SourceMap class. |
| 3264 | 3328 |
/// \relates SourceMap |
| 3265 | 3329 |
template <typename GR> |
| 3266 | 3330 |
inline SourceMap<GR> sourceMap(const GR& graph) {
|
| 3267 | 3331 |
return SourceMap<GR>(graph); |
| 3268 | 3332 |
} |
| 3269 | 3333 |
|
| 3270 | 3334 |
/// \brief Map of the target nodes of arcs in a digraph. |
| 3271 | 3335 |
/// |
| 3272 | 3336 |
/// TargetMap provides access for the target node of each arc in a digraph, |
| 3273 | 3337 |
/// which is returned by the \c target() function of the digraph. |
| 3274 | 3338 |
/// \tparam GR The digraph type. |
| 3275 | 3339 |
/// \see SourceMap |
| 3276 | 3340 |
template <typename GR> |
| 3277 | 3341 |
class TargetMap {
|
| 3278 | 3342 |
public: |
| 3279 | 3343 |
|
| 3280 |
///\ |
|
| 3344 |
/// The key type (the \c Arc type of the digraph). |
|
| 3281 | 3345 |
typedef typename GR::Arc Key; |
| 3282 |
///\ |
|
| 3346 |
/// The value type (the \c Node type of the digraph). |
|
| 3283 | 3347 |
typedef typename GR::Node Value; |
| 3284 | 3348 |
|
| 3285 | 3349 |
/// \brief Constructor |
| 3286 | 3350 |
/// |
| 3287 | 3351 |
/// Constructor. |
| 3288 | 3352 |
/// \param digraph The digraph that the map belongs to. |
| 3289 | 3353 |
explicit TargetMap(const GR& digraph) : _graph(digraph) {}
|
| 3290 | 3354 |
|
| 3291 | 3355 |
/// \brief Returns the target node of the given arc. |
| 3292 | 3356 |
/// |
| 3293 | 3357 |
/// Returns the target node of the given arc. |
| 3294 | 3358 |
Value operator[](const Key& e) const {
|
| 3295 | 3359 |
return _graph.target(e); |
| 3296 | 3360 |
} |
| 3297 | 3361 |
|
| 3298 | 3362 |
private: |
| 3299 | 3363 |
const GR& _graph; |
| 3300 | 3364 |
}; |
| 3301 | 3365 |
|
| 3302 | 3366 |
/// \brief Returns a \c TargetMap class. |
| 3303 | 3367 |
/// |
| 3304 | 3368 |
/// This function just returns a \c TargetMap class. |
| 3305 | 3369 |
/// \relates TargetMap |
| 3306 | 3370 |
template <typename GR> |
| 3307 | 3371 |
inline TargetMap<GR> targetMap(const GR& graph) {
|
| 3308 | 3372 |
return TargetMap<GR>(graph); |
| 3309 | 3373 |
} |
| 3310 | 3374 |
|
| 3311 | 3375 |
/// \brief Map of the "forward" directed arc view of edges in a graph. |
| 3312 | 3376 |
/// |
| 3313 | 3377 |
/// ForwardMap provides access for the "forward" directed arc view of |
| 3314 | 3378 |
/// each edge in a graph, which is returned by the \c direct() function |
| 3315 | 3379 |
/// of the graph with \c true parameter. |
| 3316 | 3380 |
/// \tparam GR The graph type. |
| 3317 | 3381 |
/// \see BackwardMap |
| 3318 | 3382 |
template <typename GR> |
| 3319 | 3383 |
class ForwardMap {
|
| 3320 | 3384 |
public: |
| 3321 | 3385 |
|
| 3386 |
/// The key type (the \c Edge type of the digraph). |
|
| 3387 |
typedef typename GR::Edge Key; |
|
| 3388 |
/// The value type (the \c Arc type of the digraph). |
|
| 3322 | 3389 |
typedef typename GR::Arc Value; |
| 3323 |
typedef typename GR::Edge Key; |
|
| 3324 | 3390 |
|
| 3325 | 3391 |
/// \brief Constructor |
| 3326 | 3392 |
/// |
| 3327 | 3393 |
/// Constructor. |
| 3328 | 3394 |
/// \param graph The graph that the map belongs to. |
| 3329 | 3395 |
explicit ForwardMap(const GR& graph) : _graph(graph) {}
|
| 3330 | 3396 |
|
| 3331 | 3397 |
/// \brief Returns the "forward" directed arc view of the given edge. |
| 3332 | 3398 |
/// |
| 3333 | 3399 |
/// Returns the "forward" directed arc view of the given edge. |
| 3334 | 3400 |
Value operator[](const Key& key) const {
|
| 3335 | 3401 |
return _graph.direct(key, true); |
| 3336 | 3402 |
} |
| 3337 | 3403 |
|
| 3338 | 3404 |
private: |
| 3339 | 3405 |
const GR& _graph; |
| 3340 | 3406 |
}; |
| 3341 | 3407 |
|
| 3342 | 3408 |
/// \brief Returns a \c ForwardMap class. |
| 3343 | 3409 |
/// |
| 3344 | 3410 |
/// This function just returns an \c ForwardMap class. |
| 3345 | 3411 |
/// \relates ForwardMap |
| 3346 | 3412 |
template <typename GR> |
| 3347 | 3413 |
inline ForwardMap<GR> forwardMap(const GR& graph) {
|
| 3348 | 3414 |
return ForwardMap<GR>(graph); |
| 3349 | 3415 |
} |
| 3350 | 3416 |
|
| 3351 | 3417 |
/// \brief Map of the "backward" directed arc view of edges in a graph. |
| 3352 | 3418 |
/// |
| 3353 | 3419 |
/// BackwardMap provides access for the "backward" directed arc view of |
| 3354 | 3420 |
/// each edge in a graph, which is returned by the \c direct() function |
| 3355 | 3421 |
/// of the graph with \c false parameter. |
| 3356 | 3422 |
/// \tparam GR The graph type. |
| 3357 | 3423 |
/// \see ForwardMap |
| 3358 | 3424 |
template <typename GR> |
| 3359 | 3425 |
class BackwardMap {
|
| 3360 | 3426 |
public: |
| 3361 | 3427 |
|
| 3428 |
/// The key type (the \c Edge type of the digraph). |
|
| 3429 |
typedef typename GR::Edge Key; |
|
| 3430 |
/// The value type (the \c Arc type of the digraph). |
|
| 3362 | 3431 |
typedef typename GR::Arc Value; |
| 3363 |
typedef typename GR::Edge Key; |
|
| 3364 | 3432 |
|
| 3365 | 3433 |
/// \brief Constructor |
| 3366 | 3434 |
/// |
| 3367 | 3435 |
/// Constructor. |
| 3368 | 3436 |
/// \param graph The graph that the map belongs to. |
| 3369 | 3437 |
explicit BackwardMap(const GR& graph) : _graph(graph) {}
|
| 3370 | 3438 |
|
| 3371 | 3439 |
/// \brief Returns the "backward" directed arc view of the given edge. |
| 3372 | 3440 |
/// |
| 3373 | 3441 |
/// Returns the "backward" directed arc view of the given edge. |
| 3374 | 3442 |
Value operator[](const Key& key) const {
|
| 3375 | 3443 |
return _graph.direct(key, false); |
| 3376 | 3444 |
} |
| 3377 | 3445 |
|
| 3378 | 3446 |
private: |
| 3379 | 3447 |
const GR& _graph; |
| 3380 | 3448 |
}; |
| 3381 | 3449 |
|
| 3382 | 3450 |
/// \brief Returns a \c BackwardMap class |
| 3383 | 3451 |
|
| 3384 | 3452 |
/// This function just returns a \c BackwardMap class. |
| 3385 | 3453 |
/// \relates BackwardMap |
| 3386 | 3454 |
template <typename GR> |
| 3387 | 3455 |
inline BackwardMap<GR> backwardMap(const GR& graph) {
|
| 3388 | 3456 |
return BackwardMap<GR>(graph); |
| 3389 | 3457 |
} |
| 3390 | 3458 |
|
| 3391 | 3459 |
/// \brief Map of the in-degrees of nodes in a digraph. |
| 3392 | 3460 |
/// |
| 3393 | 3461 |
/// This map returns the in-degree of a node. Once it is constructed, |
| 3394 | 3462 |
/// the degrees are stored in a standard \c NodeMap, so each query is done |
| 3395 | 3463 |
/// in constant time. On the other hand, the values are updated automatically |
| 3396 | 3464 |
/// whenever the digraph changes. |
| 3397 | 3465 |
/// |
| 3398 | 3466 |
/// \warning Besides \c addNode() and \c addArc(), a digraph structure |
| 3399 | 3467 |
/// may provide alternative ways to modify the digraph. |
| 3400 | 3468 |
/// The correct behavior of InDegMap is not guarantied if these additional |
| 3401 | 3469 |
/// features are used. For example the functions |
| 3402 | 3470 |
/// \ref ListDigraph::changeSource() "changeSource()", |
| 3403 | 3471 |
/// \ref ListDigraph::changeTarget() "changeTarget()" and |
| 3404 | 3472 |
/// \ref ListDigraph::reverseArc() "reverseArc()" |
| 3405 | 3473 |
/// of \ref ListDigraph will \e not update the degree values correctly. |
| 3406 | 3474 |
/// |
| 3407 | 3475 |
/// \sa OutDegMap |
| 3408 | 3476 |
template <typename GR> |
| 3409 | 3477 |
class InDegMap |
| 3410 | 3478 |
: protected ItemSetTraits<GR, typename GR::Arc> |
| 3411 | 3479 |
::ItemNotifier::ObserverBase {
|
| ... | ... |
@@ -443,98 +443,98 @@ |
| 443 | 443 |
}; |
| 444 | 444 |
|
| 445 | 445 |
/// @} |
| 446 | 446 |
|
| 447 | 447 |
/// \brief Constructor. |
| 448 | 448 |
/// |
| 449 | 449 |
/// \param digraph The digraph the algorithm will run on. |
| 450 | 450 |
/// \param cost The cost map used by the algorithm. |
| 451 | 451 |
MinCostArborescence(const Digraph& digraph, const CostMap& cost) |
| 452 | 452 |
: _digraph(&digraph), _cost(&cost), _pred(0), local_pred(false), |
| 453 | 453 |
_arborescence(0), local_arborescence(false), |
| 454 | 454 |
_arc_order(0), _node_order(0), _cost_arcs(0), |
| 455 | 455 |
_heap_cross_ref(0), _heap(0) {}
|
| 456 | 456 |
|
| 457 | 457 |
/// \brief Destructor. |
| 458 | 458 |
~MinCostArborescence() {
|
| 459 | 459 |
destroyStructures(); |
| 460 | 460 |
} |
| 461 | 461 |
|
| 462 | 462 |
/// \brief Sets the arborescence map. |
| 463 | 463 |
/// |
| 464 | 464 |
/// Sets the arborescence map. |
| 465 | 465 |
/// \return <tt>(*this)</tt> |
| 466 | 466 |
MinCostArborescence& arborescenceMap(ArborescenceMap& m) {
|
| 467 | 467 |
if (local_arborescence) {
|
| 468 | 468 |
delete _arborescence; |
| 469 | 469 |
} |
| 470 | 470 |
local_arborescence = false; |
| 471 | 471 |
_arborescence = &m; |
| 472 | 472 |
return *this; |
| 473 | 473 |
} |
| 474 | 474 |
|
| 475 | 475 |
/// \brief Sets the predecessor map. |
| 476 | 476 |
/// |
| 477 | 477 |
/// Sets the predecessor map. |
| 478 | 478 |
/// \return <tt>(*this)</tt> |
| 479 | 479 |
MinCostArborescence& predMap(PredMap& m) {
|
| 480 | 480 |
if (local_pred) {
|
| 481 | 481 |
delete _pred; |
| 482 | 482 |
} |
| 483 | 483 |
local_pred = false; |
| 484 | 484 |
_pred = &m; |
| 485 | 485 |
return *this; |
| 486 | 486 |
} |
| 487 | 487 |
|
| 488 | 488 |
/// \name Execution Control |
| 489 | 489 |
/// The simplest way to execute the algorithm is to use |
| 490 | 490 |
/// one of the member functions called \c run(...). \n |
| 491 |
/// If you need more control on the execution, |
|
| 492 |
/// first you must call \ref init(), then you can add several |
|
| 491 |
/// If you need better control on the execution, |
|
| 492 |
/// you have to call \ref init() first, then you can add several |
|
| 493 | 493 |
/// source nodes with \ref addSource(). |
| 494 | 494 |
/// Finally \ref start() will perform the arborescence |
| 495 | 495 |
/// computation. |
| 496 | 496 |
|
| 497 | 497 |
///@{
|
| 498 | 498 |
|
| 499 | 499 |
/// \brief Initializes the internal data structures. |
| 500 | 500 |
/// |
| 501 | 501 |
/// Initializes the internal data structures. |
| 502 | 502 |
/// |
| 503 | 503 |
void init() {
|
| 504 | 504 |
createStructures(); |
| 505 | 505 |
_heap->clear(); |
| 506 | 506 |
for (NodeIt it(*_digraph); it != INVALID; ++it) {
|
| 507 | 507 |
(*_cost_arcs)[it].arc = INVALID; |
| 508 | 508 |
(*_node_order)[it] = -3; |
| 509 | 509 |
(*_heap_cross_ref)[it] = Heap::PRE_HEAP; |
| 510 | 510 |
_pred->set(it, INVALID); |
| 511 | 511 |
} |
| 512 | 512 |
for (ArcIt it(*_digraph); it != INVALID; ++it) {
|
| 513 | 513 |
_arborescence->set(it, false); |
| 514 | 514 |
(*_arc_order)[it] = -1; |
| 515 | 515 |
} |
| 516 | 516 |
_dual_node_list.clear(); |
| 517 | 517 |
_dual_variables.clear(); |
| 518 | 518 |
} |
| 519 | 519 |
|
| 520 | 520 |
/// \brief Adds a new source node. |
| 521 | 521 |
/// |
| 522 | 522 |
/// Adds a new source node to the algorithm. |
| 523 | 523 |
void addSource(Node source) {
|
| 524 | 524 |
std::vector<Node> nodes; |
| 525 | 525 |
nodes.push_back(source); |
| 526 | 526 |
while (!nodes.empty()) {
|
| 527 | 527 |
Node node = nodes.back(); |
| 528 | 528 |
nodes.pop_back(); |
| 529 | 529 |
for (OutArcIt it(*_digraph, node); it != INVALID; ++it) {
|
| 530 | 530 |
Node target = _digraph->target(it); |
| 531 | 531 |
if ((*_node_order)[target] == -3) {
|
| 532 | 532 |
(*_node_order)[target] = -2; |
| 533 | 533 |
nodes.push_back(target); |
| 534 | 534 |
queue.push_back(target); |
| 535 | 535 |
} |
| 536 | 536 |
} |
| 537 | 537 |
} |
| 538 | 538 |
(*_node_order)[source] = -1; |
| 539 | 539 |
} |
| 540 | 540 |
| ... | ... |
@@ -7,114 +7,121 @@ |
| 7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
| 8 | 8 |
* |
| 9 | 9 |
* Permission to use, modify and distribute this software is granted |
| 10 | 10 |
* provided that this copyright notice appears in all copies. For |
| 11 | 11 |
* precise terms see the accompanying LICENSE file. |
| 12 | 12 |
* |
| 13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
| 14 | 14 |
* express or implied, and with no claim as to its suitability for any |
| 15 | 15 |
* purpose. |
| 16 | 16 |
* |
| 17 | 17 |
*/ |
| 18 | 18 |
|
| 19 | 19 |
#ifndef LEMON_PREFLOW_H |
| 20 | 20 |
#define LEMON_PREFLOW_H |
| 21 | 21 |
|
| 22 | 22 |
#include <lemon/tolerance.h> |
| 23 | 23 |
#include <lemon/elevator.h> |
| 24 | 24 |
|
| 25 | 25 |
/// \file |
| 26 | 26 |
/// \ingroup max_flow |
| 27 | 27 |
/// \brief Implementation of the preflow algorithm. |
| 28 | 28 |
|
| 29 | 29 |
namespace lemon {
|
| 30 | 30 |
|
| 31 | 31 |
/// \brief Default traits class of Preflow class. |
| 32 | 32 |
/// |
| 33 | 33 |
/// Default traits class of Preflow class. |
| 34 | 34 |
/// \tparam GR Digraph type. |
| 35 | 35 |
/// \tparam CAP Capacity map type. |
| 36 | 36 |
template <typename GR, typename CAP> |
| 37 | 37 |
struct PreflowDefaultTraits {
|
| 38 | 38 |
|
| 39 | 39 |
/// \brief The type of the digraph the algorithm runs on. |
| 40 | 40 |
typedef GR Digraph; |
| 41 | 41 |
|
| 42 | 42 |
/// \brief The type of the map that stores the arc capacities. |
| 43 | 43 |
/// |
| 44 | 44 |
/// The type of the map that stores the arc capacities. |
| 45 | 45 |
/// It must meet the \ref concepts::ReadMap "ReadMap" concept. |
| 46 | 46 |
typedef CAP CapacityMap; |
| 47 | 47 |
|
| 48 | 48 |
/// \brief The type of the flow values. |
| 49 | 49 |
typedef typename CapacityMap::Value Value; |
| 50 | 50 |
|
| 51 | 51 |
/// \brief The type of the map that stores the flow values. |
| 52 | 52 |
/// |
| 53 | 53 |
/// The type of the map that stores the flow values. |
| 54 | 54 |
/// It must meet the \ref concepts::ReadWriteMap "ReadWriteMap" concept. |
| 55 |
#ifdef DOXYGEN |
|
| 56 |
typedef GR::ArcMap<Value> FlowMap; |
|
| 57 |
#else |
|
| 55 | 58 |
typedef typename Digraph::template ArcMap<Value> FlowMap; |
| 59 |
#endif |
|
| 56 | 60 |
|
| 57 | 61 |
/// \brief Instantiates a FlowMap. |
| 58 | 62 |
/// |
| 59 | 63 |
/// This function instantiates a \ref FlowMap. |
| 60 | 64 |
/// \param digraph The digraph for which we would like to define |
| 61 | 65 |
/// the flow map. |
| 62 | 66 |
static FlowMap* createFlowMap(const Digraph& digraph) {
|
| 63 | 67 |
return new FlowMap(digraph); |
| 64 | 68 |
} |
| 65 | 69 |
|
| 66 | 70 |
/// \brief The elevator type used by Preflow algorithm. |
| 67 | 71 |
/// |
| 68 | 72 |
/// The elevator type used by Preflow algorithm. |
| 69 | 73 |
/// |
| 70 |
/// \sa Elevator |
|
| 71 |
/// \sa LinkedElevator |
|
| 72 |
|
|
| 74 |
/// \sa Elevator, LinkedElevator |
|
| 75 |
#ifdef DOXYGEN |
|
| 76 |
typedef lemon::Elevator<GR, GR::Node> Elevator; |
|
| 77 |
#else |
|
| 78 |
typedef lemon::Elevator<Digraph, typename Digraph::Node> Elevator; |
|
| 79 |
#endif |
|
| 73 | 80 |
|
| 74 | 81 |
/// \brief Instantiates an Elevator. |
| 75 | 82 |
/// |
| 76 | 83 |
/// This function instantiates an \ref Elevator. |
| 77 | 84 |
/// \param digraph The digraph for which we would like to define |
| 78 | 85 |
/// the elevator. |
| 79 | 86 |
/// \param max_level The maximum level of the elevator. |
| 80 | 87 |
static Elevator* createElevator(const Digraph& digraph, int max_level) {
|
| 81 | 88 |
return new Elevator(digraph, max_level); |
| 82 | 89 |
} |
| 83 | 90 |
|
| 84 | 91 |
/// \brief The tolerance used by the algorithm |
| 85 | 92 |
/// |
| 86 | 93 |
/// The tolerance used by the algorithm to handle inexact computation. |
| 87 | 94 |
typedef lemon::Tolerance<Value> Tolerance; |
| 88 | 95 |
|
| 89 | 96 |
}; |
| 90 | 97 |
|
| 91 | 98 |
|
| 92 | 99 |
/// \ingroup max_flow |
| 93 | 100 |
/// |
| 94 | 101 |
/// \brief %Preflow algorithm class. |
| 95 | 102 |
/// |
| 96 | 103 |
/// This class provides an implementation of Goldberg-Tarjan's \e preflow |
| 97 | 104 |
/// \e push-relabel algorithm producing a \ref max_flow |
| 98 | 105 |
/// "flow of maximum value" in a digraph. |
| 99 | 106 |
/// The preflow algorithms are the fastest known maximum |
| 100 | 107 |
/// flow algorithms. The current implementation uses a mixture of the |
| 101 | 108 |
/// \e "highest label" and the \e "bound decrease" heuristics. |
| 102 | 109 |
/// The worst case time complexity of the algorithm is \f$O(n^2\sqrt{e})\f$.
|
| 103 | 110 |
/// |
| 104 | 111 |
/// The algorithm consists of two phases. After the first phase |
| 105 | 112 |
/// the maximum flow value and the minimum cut is obtained. The |
| 106 | 113 |
/// second phase constructs a feasible maximum flow on each arc. |
| 107 | 114 |
/// |
| 108 | 115 |
/// \tparam GR The type of the digraph the algorithm runs on. |
| 109 | 116 |
/// \tparam CAP The type of the capacity map. The default map |
| 110 | 117 |
/// type is \ref concepts::Digraph::ArcMap "GR::ArcMap<int>". |
| 111 | 118 |
#ifdef DOXYGEN |
| 112 | 119 |
template <typename GR, typename CAP, typename TR> |
| 113 | 120 |
#else |
| 114 | 121 |
template <typename GR, |
| 115 | 122 |
typename CAP = typename GR::template ArcMap<int>, |
| 116 | 123 |
typename TR = PreflowDefaultTraits<GR, CAP> > |
| 117 | 124 |
#endif |
| 118 | 125 |
class Preflow {
|
| 119 | 126 |
public: |
| 120 | 127 |
|
| ... | ... |
@@ -346,98 +353,98 @@ |
| 346 | 353 |
|
| 347 | 354 |
/// \brief Sets the elevator used by algorithm. |
| 348 | 355 |
/// |
| 349 | 356 |
/// Sets the elevator used by algorithm. |
| 350 | 357 |
/// If you don't use this function before calling \ref run() or |
| 351 | 358 |
/// \ref init(), an instance will be allocated automatically. |
| 352 | 359 |
/// The destructor deallocates this automatically allocated elevator, |
| 353 | 360 |
/// of course. |
| 354 | 361 |
/// \return <tt>(*this)</tt> |
| 355 | 362 |
Preflow& elevator(Elevator& elevator) {
|
| 356 | 363 |
if (_local_level) {
|
| 357 | 364 |
delete _level; |
| 358 | 365 |
_local_level = false; |
| 359 | 366 |
} |
| 360 | 367 |
_level = &elevator; |
| 361 | 368 |
return *this; |
| 362 | 369 |
} |
| 363 | 370 |
|
| 364 | 371 |
/// \brief Returns a const reference to the elevator. |
| 365 | 372 |
/// |
| 366 | 373 |
/// Returns a const reference to the elevator. |
| 367 | 374 |
/// |
| 368 | 375 |
/// \pre Either \ref run() or \ref init() must be called before |
| 369 | 376 |
/// using this function. |
| 370 | 377 |
const Elevator& elevator() const {
|
| 371 | 378 |
return *_level; |
| 372 | 379 |
} |
| 373 | 380 |
|
| 374 | 381 |
/// \brief Sets the tolerance used by the algorithm. |
| 375 | 382 |
/// |
| 376 | 383 |
/// Sets the tolerance object used by the algorithm. |
| 377 | 384 |
/// \return <tt>(*this)</tt> |
| 378 | 385 |
Preflow& tolerance(const Tolerance& tolerance) {
|
| 379 | 386 |
_tolerance = tolerance; |
| 380 | 387 |
return *this; |
| 381 | 388 |
} |
| 382 | 389 |
|
| 383 | 390 |
/// \brief Returns a const reference to the tolerance. |
| 384 | 391 |
/// |
| 385 | 392 |
/// Returns a const reference to the tolerance object used by |
| 386 | 393 |
/// the algorithm. |
| 387 | 394 |
const Tolerance& tolerance() const {
|
| 388 | 395 |
return _tolerance; |
| 389 | 396 |
} |
| 390 | 397 |
|
| 391 | 398 |
/// \name Execution Control |
| 392 | 399 |
/// The simplest way to execute the preflow algorithm is to use |
| 393 | 400 |
/// \ref run() or \ref runMinCut().\n |
| 394 |
/// If you need more control on the initial solution or the execution, |
|
| 395 |
/// first you have to call one of the \ref init() functions, then |
|
| 401 |
/// If you need better control on the initial solution or the execution, |
|
| 402 |
/// you have to call one of the \ref init() functions first, then |
|
| 396 | 403 |
/// \ref startFirstPhase() and if you need it \ref startSecondPhase(). |
| 397 | 404 |
|
| 398 | 405 |
///@{
|
| 399 | 406 |
|
| 400 | 407 |
/// \brief Initializes the internal data structures. |
| 401 | 408 |
/// |
| 402 | 409 |
/// Initializes the internal data structures and sets the initial |
| 403 | 410 |
/// flow to zero on each arc. |
| 404 | 411 |
void init() {
|
| 405 | 412 |
createStructures(); |
| 406 | 413 |
|
| 407 | 414 |
_phase = true; |
| 408 | 415 |
for (NodeIt n(_graph); n != INVALID; ++n) {
|
| 409 | 416 |
(*_excess)[n] = 0; |
| 410 | 417 |
} |
| 411 | 418 |
|
| 412 | 419 |
for (ArcIt e(_graph); e != INVALID; ++e) {
|
| 413 | 420 |
_flow->set(e, 0); |
| 414 | 421 |
} |
| 415 | 422 |
|
| 416 | 423 |
typename Digraph::template NodeMap<bool> reached(_graph, false); |
| 417 | 424 |
|
| 418 | 425 |
_level->initStart(); |
| 419 | 426 |
_level->initAddItem(_target); |
| 420 | 427 |
|
| 421 | 428 |
std::vector<Node> queue; |
| 422 | 429 |
reached[_source] = true; |
| 423 | 430 |
|
| 424 | 431 |
queue.push_back(_target); |
| 425 | 432 |
reached[_target] = true; |
| 426 | 433 |
while (!queue.empty()) {
|
| 427 | 434 |
_level->initNewLevel(); |
| 428 | 435 |
std::vector<Node> nqueue; |
| 429 | 436 |
for (int i = 0; i < int(queue.size()); ++i) {
|
| 430 | 437 |
Node n = queue[i]; |
| 431 | 438 |
for (InArcIt e(_graph, n); e != INVALID; ++e) {
|
| 432 | 439 |
Node u = _graph.source(e); |
| 433 | 440 |
if (!reached[u] && _tolerance.positive((*_capacity)[e])) {
|
| 434 | 441 |
reached[u] = true; |
| 435 | 442 |
_level->initAddItem(u); |
| 436 | 443 |
nqueue.push_back(u); |
| 437 | 444 |
} |
| 438 | 445 |
} |
| 439 | 446 |
} |
| 440 | 447 |
queue.swap(nqueue); |
| 441 | 448 |
} |
| 442 | 449 |
_level->initFinish(); |
| 443 | 450 |
| 1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
| 2 | 2 |
* |
| 3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
| 4 | 4 |
* |
| 5 | 5 |
* Copyright (C) 2003-2009 |
| 6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
| 7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
| 8 | 8 |
* |
| 9 | 9 |
* Permission to use, modify and distribute this software is granted |
| 10 | 10 |
* provided that this copyright notice appears in all copies. For |
| 11 | 11 |
* precise terms see the accompanying LICENSE file. |
| 12 | 12 |
* |
| 13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
| 14 | 14 |
* express or implied, and with no claim as to its suitability for any |
| 15 | 15 |
* purpose. |
| 16 | 16 |
* |
| 17 | 17 |
*/ |
| 18 | 18 |
|
| 19 | 19 |
#include <deque> |
| 20 | 20 |
#include <set> |
| 21 | 21 |
|
| 22 | 22 |
#include <lemon/concept_check.h> |
| 23 | 23 |
#include <lemon/concepts/maps.h> |
| 24 | 24 |
#include <lemon/maps.h> |
| 25 |
#include <lemon/list_graph.h> |
|
| 25 | 26 |
#include <lemon/smart_graph.h> |
| 27 |
#include <lemon/adaptors.h> |
|
| 28 |
#include <lemon/dfs.h> |
|
| 26 | 29 |
|
| 27 | 30 |
#include "test_tools.h" |
| 28 | 31 |
|
| 29 | 32 |
using namespace lemon; |
| 30 | 33 |
using namespace lemon::concepts; |
| 31 | 34 |
|
| 32 | 35 |
struct A {};
|
| 33 | 36 |
inline bool operator<(A, A) { return true; }
|
| 34 | 37 |
struct B {};
|
| 35 | 38 |
|
| 36 | 39 |
class C {
|
| 37 | 40 |
int x; |
| 38 | 41 |
public: |
| 39 | 42 |
C(int _x) : x(_x) {}
|
| 40 | 43 |
}; |
| 41 | 44 |
|
| 42 | 45 |
class F {
|
| 43 | 46 |
public: |
| 44 | 47 |
typedef A argument_type; |
| 45 | 48 |
typedef B result_type; |
| 46 | 49 |
|
| 47 | 50 |
B operator()(const A&) const { return B(); }
|
| 48 | 51 |
private: |
| 49 | 52 |
F& operator=(const F&); |
| 50 | 53 |
}; |
| 51 | 54 |
|
| 52 | 55 |
int func(A) { return 3; }
|
| 53 | 56 |
|
| 54 | 57 |
int binc(int a, B) { return a+1; }
|
| 55 | 58 |
|
| 56 | 59 |
typedef ReadMap<A, double> DoubleMap; |
| 57 | 60 |
typedef ReadWriteMap<A, double> DoubleWriteMap; |
| 58 | 61 |
typedef ReferenceMap<A, double, double&, const double&> DoubleRefMap; |
| 59 | 62 |
|
| 60 | 63 |
typedef ReadMap<A, bool> BoolMap; |
| 61 | 64 |
typedef ReadWriteMap<A, bool> BoolWriteMap; |
| 62 | 65 |
typedef ReferenceMap<A, bool, bool&, const bool&> BoolRefMap; |
| 63 | 66 |
|
| 67 |
template<typename Map1, typename Map2, typename ItemIt> |
|
| 68 |
void compareMap(const Map1& map1, const Map2& map2, ItemIt it) {
|
|
| 69 |
for (; it != INVALID; ++it) |
|
| 70 |
check(map1[it] == map2[it], "The maps are not equal"); |
|
| 71 |
} |
|
| 72 |
|
|
| 64 | 73 |
int main() |
| 65 | 74 |
{
|
| 66 | 75 |
// Map concepts |
| 67 | 76 |
checkConcept<ReadMap<A,B>, ReadMap<A,B> >(); |
| 68 | 77 |
checkConcept<ReadMap<A,C>, ReadMap<A,C> >(); |
| 69 | 78 |
checkConcept<WriteMap<A,B>, WriteMap<A,B> >(); |
| 70 | 79 |
checkConcept<WriteMap<A,C>, WriteMap<A,C> >(); |
| 71 | 80 |
checkConcept<ReadWriteMap<A,B>, ReadWriteMap<A,B> >(); |
| 72 | 81 |
checkConcept<ReadWriteMap<A,C>, ReadWriteMap<A,C> >(); |
| 73 | 82 |
checkConcept<ReferenceMap<A,B,B&,const B&>, ReferenceMap<A,B,B&,const B&> >(); |
| 74 | 83 |
checkConcept<ReferenceMap<A,C,C&,const C&>, ReferenceMap<A,C,C&,const C&> >(); |
| 75 | 84 |
|
| 76 | 85 |
// NullMap |
| 77 | 86 |
{
|
| 78 | 87 |
checkConcept<ReadWriteMap<A,B>, NullMap<A,B> >(); |
| 79 | 88 |
NullMap<A,B> map1; |
| 80 | 89 |
NullMap<A,B> map2 = map1; |
| 81 | 90 |
map1 = nullMap<A,B>(); |
| 82 | 91 |
} |
| 83 | 92 |
|
| 84 | 93 |
// ConstMap |
| 85 | 94 |
{
|
| 86 | 95 |
checkConcept<ReadWriteMap<A,B>, ConstMap<A,B> >(); |
| 87 | 96 |
checkConcept<ReadWriteMap<A,C>, ConstMap<A,C> >(); |
| 88 | 97 |
ConstMap<A,B> map1; |
| 89 | 98 |
ConstMap<A,B> map2 = B(); |
| 90 | 99 |
ConstMap<A,B> map3 = map1; |
| 91 | 100 |
map1 = constMap<A>(B()); |
| 92 | 101 |
map1 = constMap<A,B>(); |
| 93 | 102 |
map1.setAll(B()); |
| 94 | 103 |
ConstMap<A,C> map4(C(1)); |
| 95 | 104 |
ConstMap<A,C> map5 = map4; |
| 96 | 105 |
map4 = constMap<A>(C(2)); |
| 97 | 106 |
map4.setAll(C(3)); |
| 98 | 107 |
|
| 99 | 108 |
checkConcept<ReadWriteMap<A,int>, ConstMap<A,int> >(); |
| 100 | 109 |
check(constMap<A>(10)[A()] == 10, "Something is wrong with ConstMap"); |
| 101 | 110 |
|
| 102 | 111 |
checkConcept<ReadWriteMap<A,int>, ConstMap<A,Const<int,10> > >(); |
| 103 | 112 |
ConstMap<A,Const<int,10> > map6; |
| 104 | 113 |
ConstMap<A,Const<int,10> > map7 = map6; |
| 105 | 114 |
map6 = constMap<A,int,10>(); |
| 106 | 115 |
map7 = constMap<A,Const<int,10> >(); |
| 107 | 116 |
check(map6[A()] == 10 && map7[A()] == 10, |
| 108 | 117 |
"Something is wrong with ConstMap"); |
| 109 | 118 |
} |
| 110 | 119 |
|
| 111 | 120 |
// IdentityMap |
| ... | ... |
@@ -284,115 +293,335 @@ |
| 284 | 293 |
check(negWriteMap(id)[1] == -1.0 && negWriteMap(id)[-10] == 10.0, |
| 285 | 294 |
"Something is wrong with NegWriteMap"); |
| 286 | 295 |
check(absMap(id)[1] == 1.0 && absMap(id)[-10] == 10.0, |
| 287 | 296 |
"Something is wrong with AbsMap"); |
| 288 | 297 |
} |
| 289 | 298 |
|
| 290 | 299 |
// Logical maps: |
| 291 | 300 |
// - TrueMap, FalseMap |
| 292 | 301 |
// - AndMap, OrMap |
| 293 | 302 |
// - NotMap, NotWriteMap |
| 294 | 303 |
// - EqualMap, LessMap |
| 295 | 304 |
{
|
| 296 | 305 |
checkConcept<BoolMap, TrueMap<A> >(); |
| 297 | 306 |
checkConcept<BoolMap, FalseMap<A> >(); |
| 298 | 307 |
checkConcept<BoolMap, AndMap<BoolMap,BoolMap> >(); |
| 299 | 308 |
checkConcept<BoolMap, OrMap<BoolMap,BoolMap> >(); |
| 300 | 309 |
checkConcept<BoolMap, NotMap<BoolMap> >(); |
| 301 | 310 |
checkConcept<BoolWriteMap, NotWriteMap<BoolWriteMap> >(); |
| 302 | 311 |
checkConcept<BoolMap, EqualMap<DoubleMap,DoubleMap> >(); |
| 303 | 312 |
checkConcept<BoolMap, LessMap<DoubleMap,DoubleMap> >(); |
| 304 | 313 |
|
| 305 | 314 |
TrueMap<int> tm; |
| 306 | 315 |
FalseMap<int> fm; |
| 307 | 316 |
RangeMap<bool> rm(2); |
| 308 | 317 |
rm[0] = true; rm[1] = false; |
| 309 | 318 |
check(andMap(tm,rm)[0] && !andMap(tm,rm)[1] && |
| 310 | 319 |
!andMap(fm,rm)[0] && !andMap(fm,rm)[1], |
| 311 | 320 |
"Something is wrong with AndMap"); |
| 312 | 321 |
check(orMap(tm,rm)[0] && orMap(tm,rm)[1] && |
| 313 | 322 |
orMap(fm,rm)[0] && !orMap(fm,rm)[1], |
| 314 | 323 |
"Something is wrong with OrMap"); |
| 315 | 324 |
check(!notMap(rm)[0] && notMap(rm)[1], |
| 316 | 325 |
"Something is wrong with NotMap"); |
| 317 | 326 |
check(!notWriteMap(rm)[0] && notWriteMap(rm)[1], |
| 318 | 327 |
"Something is wrong with NotWriteMap"); |
| 319 | 328 |
|
| 320 | 329 |
ConstMap<int, double> cm(2.0); |
| 321 | 330 |
IdentityMap<int> im; |
| 322 | 331 |
ConvertMap<IdentityMap<int>, double> id(im); |
| 323 | 332 |
check(lessMap(id,cm)[1] && !lessMap(id,cm)[2] && !lessMap(id,cm)[3], |
| 324 | 333 |
"Something is wrong with LessMap"); |
| 325 | 334 |
check(!equalMap(id,cm)[1] && equalMap(id,cm)[2] && !equalMap(id,cm)[3], |
| 326 | 335 |
"Something is wrong with EqualMap"); |
| 327 | 336 |
} |
| 328 | 337 |
|
| 329 | 338 |
// LoggerBoolMap |
| 330 | 339 |
{
|
| 331 | 340 |
typedef std::vector<int> vec; |
| 341 |
checkConcept<WriteMap<int, bool>, LoggerBoolMap<vec::iterator> >(); |
|
| 342 |
checkConcept<WriteMap<int, bool>, |
|
| 343 |
LoggerBoolMap<std::back_insert_iterator<vec> > >(); |
|
| 344 |
|
|
| 332 | 345 |
vec v1; |
| 333 | 346 |
vec v2(10); |
| 334 | 347 |
LoggerBoolMap<std::back_insert_iterator<vec> > |
| 335 | 348 |
map1(std::back_inserter(v1)); |
| 336 | 349 |
LoggerBoolMap<vec::iterator> map2(v2.begin()); |
| 337 | 350 |
map1.set(10, false); |
| 338 | 351 |
map1.set(20, true); map2.set(20, true); |
| 339 | 352 |
map1.set(30, false); map2.set(40, false); |
| 340 | 353 |
map1.set(50, true); map2.set(50, true); |
| 341 | 354 |
map1.set(60, true); map2.set(60, true); |
| 342 | 355 |
check(v1.size() == 3 && v2.size() == 10 && |
| 343 | 356 |
v1[0]==20 && v1[1]==50 && v1[2]==60 && |
| 344 | 357 |
v2[0]==20 && v2[1]==50 && v2[2]==60, |
| 345 | 358 |
"Something is wrong with LoggerBoolMap"); |
| 346 | 359 |
|
| 347 | 360 |
int i = 0; |
| 348 | 361 |
for ( LoggerBoolMap<vec::iterator>::Iterator it = map2.begin(); |
| 349 | 362 |
it != map2.end(); ++it ) |
| 350 | 363 |
check(v1[i++] == *it, "Something is wrong with LoggerBoolMap"); |
| 364 |
|
|
| 365 |
typedef ListDigraph Graph; |
|
| 366 |
DIGRAPH_TYPEDEFS(Graph); |
|
| 367 |
Graph gr; |
|
| 368 |
|
|
| 369 |
Node n0 = gr.addNode(); |
|
| 370 |
Node n1 = gr.addNode(); |
|
| 371 |
Node n2 = gr.addNode(); |
|
| 372 |
Node n3 = gr.addNode(); |
|
| 373 |
|
|
| 374 |
gr.addArc(n3, n0); |
|
| 375 |
gr.addArc(n3, n2); |
|
| 376 |
gr.addArc(n0, n2); |
|
| 377 |
gr.addArc(n2, n1); |
|
| 378 |
gr.addArc(n0, n1); |
|
| 379 |
|
|
| 380 |
{
|
|
| 381 |
std::vector<Node> v; |
|
| 382 |
dfs(gr).processedMap(loggerBoolMap(std::back_inserter(v))).run(); |
|
| 383 |
|
|
| 384 |
check(v.size()==4 && v[0]==n1 && v[1]==n2 && v[2]==n0 && v[3]==n3, |
|
| 385 |
"Something is wrong with LoggerBoolMap"); |
|
| 386 |
} |
|
| 387 |
{
|
|
| 388 |
std::vector<Node> v(countNodes(gr)); |
|
| 389 |
dfs(gr).processedMap(loggerBoolMap(v.begin())).run(); |
|
| 390 |
|
|
| 391 |
check(v.size()==4 && v[0]==n1 && v[1]==n2 && v[2]==n0 && v[3]==n3, |
|
| 392 |
"Something is wrong with LoggerBoolMap"); |
|
| 393 |
} |
|
| 394 |
} |
|
| 395 |
|
|
| 396 |
// IdMap, RangeIdMap |
|
| 397 |
{
|
|
| 398 |
typedef ListDigraph Graph; |
|
| 399 |
DIGRAPH_TYPEDEFS(Graph); |
|
| 400 |
|
|
| 401 |
checkConcept<ReadMap<Node, int>, IdMap<Graph, Node> >(); |
|
| 402 |
checkConcept<ReadMap<Arc, int>, IdMap<Graph, Arc> >(); |
|
| 403 |
checkConcept<ReadMap<Node, int>, RangeIdMap<Graph, Node> >(); |
|
| 404 |
checkConcept<ReadMap<Arc, int>, RangeIdMap<Graph, Arc> >(); |
|
| 405 |
|
|
| 406 |
Graph gr; |
|
| 407 |
IdMap<Graph, Node> nmap(gr); |
|
| 408 |
IdMap<Graph, Arc> amap(gr); |
|
| 409 |
RangeIdMap<Graph, Node> nrmap(gr); |
|
| 410 |
RangeIdMap<Graph, Arc> armap(gr); |
|
| 411 |
|
|
| 412 |
Node n0 = gr.addNode(); |
|
| 413 |
Node n1 = gr.addNode(); |
|
| 414 |
Node n2 = gr.addNode(); |
|
| 415 |
|
|
| 416 |
Arc a0 = gr.addArc(n0, n1); |
|
| 417 |
Arc a1 = gr.addArc(n0, n2); |
|
| 418 |
Arc a2 = gr.addArc(n2, n1); |
|
| 419 |
Arc a3 = gr.addArc(n2, n0); |
|
| 420 |
|
|
| 421 |
check(nmap[n0] == gr.id(n0) && nmap(gr.id(n0)) == n0, "Wrong IdMap"); |
|
| 422 |
check(nmap[n1] == gr.id(n1) && nmap(gr.id(n1)) == n1, "Wrong IdMap"); |
|
| 423 |
check(nmap[n2] == gr.id(n2) && nmap(gr.id(n2)) == n2, "Wrong IdMap"); |
|
| 424 |
|
|
| 425 |
check(amap[a0] == gr.id(a0) && amap(gr.id(a0)) == a0, "Wrong IdMap"); |
|
| 426 |
check(amap[a1] == gr.id(a1) && amap(gr.id(a1)) == a1, "Wrong IdMap"); |
|
| 427 |
check(amap[a2] == gr.id(a2) && amap(gr.id(a2)) == a2, "Wrong IdMap"); |
|
| 428 |
check(amap[a3] == gr.id(a3) && amap(gr.id(a3)) == a3, "Wrong IdMap"); |
|
| 429 |
|
|
| 430 |
check(nmap.inverse()[gr.id(n0)] == n0, "Wrong IdMap::InverseMap"); |
|
| 431 |
check(amap.inverse()[gr.id(a0)] == a0, "Wrong IdMap::InverseMap"); |
|
| 432 |
|
|
| 433 |
check(nrmap.size() == 3 && armap.size() == 4, |
|
| 434 |
"Wrong RangeIdMap::size()"); |
|
| 435 |
|
|
| 436 |
check(nrmap[n0] == 0 && nrmap(0) == n0, "Wrong RangeIdMap"); |
|
| 437 |
check(nrmap[n1] == 1 && nrmap(1) == n1, "Wrong RangeIdMap"); |
|
| 438 |
check(nrmap[n2] == 2 && nrmap(2) == n2, "Wrong RangeIdMap"); |
|
| 439 |
|
|
| 440 |
check(armap[a0] == 0 && armap(0) == a0, "Wrong RangeIdMap"); |
|
| 441 |
check(armap[a1] == 1 && armap(1) == a1, "Wrong RangeIdMap"); |
|
| 442 |
check(armap[a2] == 2 && armap(2) == a2, "Wrong RangeIdMap"); |
|
| 443 |
check(armap[a3] == 3 && armap(3) == a3, "Wrong RangeIdMap"); |
|
| 444 |
|
|
| 445 |
check(nrmap.inverse()[0] == n0, "Wrong RangeIdMap::InverseMap"); |
|
| 446 |
check(armap.inverse()[0] == a0, "Wrong RangeIdMap::InverseMap"); |
|
| 447 |
|
|
| 448 |
gr.erase(n1); |
|
| 449 |
|
|
| 450 |
if (nrmap[n0] == 1) nrmap.swap(n0, n2); |
|
| 451 |
nrmap.swap(n2, n0); |
|
| 452 |
if (armap[a1] == 1) armap.swap(a1, a3); |
|
| 453 |
armap.swap(a3, a1); |
|
| 454 |
|
|
| 455 |
check(nrmap.size() == 2 && armap.size() == 2, |
|
| 456 |
"Wrong RangeIdMap::size()"); |
|
| 457 |
|
|
| 458 |
check(nrmap[n0] == 1 && nrmap(1) == n0, "Wrong RangeIdMap"); |
|
| 459 |
check(nrmap[n2] == 0 && nrmap(0) == n2, "Wrong RangeIdMap"); |
|
| 460 |
|
|
| 461 |
check(armap[a1] == 1 && armap(1) == a1, "Wrong RangeIdMap"); |
|
| 462 |
check(armap[a3] == 0 && armap(0) == a3, "Wrong RangeIdMap"); |
|
| 463 |
|
|
| 464 |
check(nrmap.inverse()[0] == n2, "Wrong RangeIdMap::InverseMap"); |
|
| 465 |
check(armap.inverse()[0] == a3, "Wrong RangeIdMap::InverseMap"); |
|
| 466 |
} |
|
| 467 |
|
|
| 468 |
// SourceMap, TargetMap, ForwardMap, BackwardMap, InDegMap, OutDegMap |
|
| 469 |
{
|
|
| 470 |
typedef ListGraph Graph; |
|
| 471 |
GRAPH_TYPEDEFS(Graph); |
|
| 472 |
|
|
| 473 |
checkConcept<ReadMap<Arc, Node>, SourceMap<Graph> >(); |
|
| 474 |
checkConcept<ReadMap<Arc, Node>, TargetMap<Graph> >(); |
|
| 475 |
checkConcept<ReadMap<Edge, Arc>, ForwardMap<Graph> >(); |
|
| 476 |
checkConcept<ReadMap<Edge, Arc>, BackwardMap<Graph> >(); |
|
| 477 |
checkConcept<ReadMap<Node, int>, InDegMap<Graph> >(); |
|
| 478 |
checkConcept<ReadMap<Node, int>, OutDegMap<Graph> >(); |
|
| 479 |
|
|
| 480 |
Graph gr; |
|
| 481 |
Node n0 = gr.addNode(); |
|
| 482 |
Node n1 = gr.addNode(); |
|
| 483 |
Node n2 = gr.addNode(); |
|
| 484 |
|
|
| 485 |
gr.addEdge(n0,n1); |
|
| 486 |
gr.addEdge(n1,n2); |
|
| 487 |
gr.addEdge(n0,n2); |
|
| 488 |
gr.addEdge(n2,n1); |
|
| 489 |
gr.addEdge(n1,n2); |
|
| 490 |
gr.addEdge(n0,n1); |
|
| 491 |
|
|
| 492 |
for (EdgeIt e(gr); e != INVALID; ++e) {
|
|
| 493 |
check(forwardMap(gr)[e] == gr.direct(e, true), "Wrong ForwardMap"); |
|
| 494 |
check(backwardMap(gr)[e] == gr.direct(e, false), "Wrong BackwardMap"); |
|
| 495 |
} |
|
| 496 |
|
|
| 497 |
compareMap(sourceMap(orienter(gr, constMap<Edge, bool>(true))), |
|
| 498 |
targetMap(orienter(gr, constMap<Edge, bool>(false))), |
|
| 499 |
EdgeIt(gr)); |
|
| 500 |
|
|
| 501 |
typedef Orienter<Graph, const ConstMap<Edge, bool> > Digraph; |
|
| 502 |
Digraph dgr(gr, constMap<Edge, bool>(true)); |
|
| 503 |
OutDegMap<Digraph> odm(dgr); |
|
| 504 |
InDegMap<Digraph> idm(dgr); |
|
| 505 |
|
|
| 506 |
check(odm[n0] == 3 && odm[n1] == 2 && odm[n2] == 1, "Wrong OutDegMap"); |
|
| 507 |
check(idm[n0] == 0 && idm[n1] == 3 && idm[n2] == 3, "Wrong InDegMap"); |
|
| 508 |
|
|
| 509 |
gr.addEdge(n2, n0); |
|
| 510 |
|
|
| 511 |
check(odm[n0] == 3 && odm[n1] == 2 && odm[n2] == 2, "Wrong OutDegMap"); |
|
| 512 |
check(idm[n0] == 1 && idm[n1] == 3 && idm[n2] == 3, "Wrong InDegMap"); |
|
| 513 |
} |
|
| 514 |
|
|
| 515 |
// CrossRefMap |
|
| 516 |
{
|
|
| 517 |
typedef ListDigraph Graph; |
|
| 518 |
DIGRAPH_TYPEDEFS(Graph); |
|
| 519 |
|
|
| 520 |
checkConcept<ReadWriteMap<Node, int>, |
|
| 521 |
CrossRefMap<Graph, Node, int> >(); |
|
| 522 |
checkConcept<ReadWriteMap<Node, bool>, |
|
| 523 |
CrossRefMap<Graph, Node, bool> >(); |
|
| 524 |
checkConcept<ReadWriteMap<Node, double>, |
|
| 525 |
CrossRefMap<Graph, Node, double> >(); |
|
| 526 |
|
|
| 527 |
Graph gr; |
|
| 528 |
typedef CrossRefMap<Graph, Node, char> CRMap; |
|
| 529 |
CRMap map(gr); |
|
| 530 |
|
|
| 531 |
Node n0 = gr.addNode(); |
|
| 532 |
Node n1 = gr.addNode(); |
|
| 533 |
Node n2 = gr.addNode(); |
|
| 534 |
|
|
| 535 |
map.set(n0, 'A'); |
|
| 536 |
map.set(n1, 'B'); |
|
| 537 |
map.set(n2, 'C'); |
|
| 538 |
|
|
| 539 |
check(map[n0] == 'A' && map('A') == n0 && map.inverse()['A'] == n0,
|
|
| 540 |
"Wrong CrossRefMap"); |
|
| 541 |
check(map[n1] == 'B' && map('B') == n1 && map.inverse()['B'] == n1,
|
|
| 542 |
"Wrong CrossRefMap"); |
|
| 543 |
check(map[n2] == 'C' && map('C') == n2 && map.inverse()['C'] == n2,
|
|
| 544 |
"Wrong CrossRefMap"); |
|
| 545 |
check(map.count('A') == 1 && map.count('B') == 1 && map.count('C') == 1,
|
|
| 546 |
"Wrong CrossRefMap::count()"); |
|
| 547 |
|
|
| 548 |
CRMap::ValueIt it = map.beginValue(); |
|
| 549 |
check(*it++ == 'A' && *it++ == 'B' && *it++ == 'C' && |
|
| 550 |
it == map.endValue(), "Wrong value iterator"); |
|
| 551 |
|
|
| 552 |
map.set(n2, 'A'); |
|
| 553 |
|
|
| 554 |
check(map[n0] == 'A' && map[n1] == 'B' && map[n2] == 'A', |
|
| 555 |
"Wrong CrossRefMap"); |
|
| 556 |
check(map('A') == n0 && map.inverse()['A'] == n0, "Wrong CrossRefMap");
|
|
| 557 |
check(map('B') == n1 && map.inverse()['B'] == n1, "Wrong CrossRefMap");
|
|
| 558 |
check(map('C') == INVALID && map.inverse()['C'] == INVALID,
|
|
| 559 |
"Wrong CrossRefMap"); |
|
| 560 |
check(map.count('A') == 2 && map.count('B') == 1 && map.count('C') == 0,
|
|
| 561 |
"Wrong CrossRefMap::count()"); |
|
| 562 |
|
|
| 563 |
it = map.beginValue(); |
|
| 564 |
check(*it++ == 'A' && *it++ == 'A' && *it++ == 'B' && |
|
| 565 |
it == map.endValue(), "Wrong value iterator"); |
|
| 566 |
|
|
| 567 |
map.set(n0, 'C'); |
|
| 568 |
|
|
| 569 |
check(map[n0] == 'C' && map[n1] == 'B' && map[n2] == 'A', |
|
| 570 |
"Wrong CrossRefMap"); |
|
| 571 |
check(map('A') == n2 && map.inverse()['A'] == n2, "Wrong CrossRefMap");
|
|
| 572 |
check(map('B') == n1 && map.inverse()['B'] == n1, "Wrong CrossRefMap");
|
|
| 573 |
check(map('C') == n0 && map.inverse()['C'] == n0, "Wrong CrossRefMap");
|
|
| 574 |
check(map.count('A') == 1 && map.count('B') == 1 && map.count('C') == 1,
|
|
| 575 |
"Wrong CrossRefMap::count()"); |
|
| 576 |
|
|
| 577 |
it = map.beginValue(); |
|
| 578 |
check(*it++ == 'A' && *it++ == 'B' && *it++ == 'C' && |
|
| 579 |
it == map.endValue(), "Wrong value iterator"); |
|
| 351 | 580 |
} |
| 352 | 581 |
|
| 353 | 582 |
// CrossRefMap |
| 354 | 583 |
{
|
| 355 | 584 |
typedef SmartDigraph Graph; |
| 356 | 585 |
DIGRAPH_TYPEDEFS(Graph); |
| 357 | 586 |
|
| 358 | 587 |
checkConcept<ReadWriteMap<Node, int>, |
| 359 | 588 |
CrossRefMap<Graph, Node, int> >(); |
| 360 | 589 |
|
| 361 | 590 |
Graph gr; |
| 362 | 591 |
typedef CrossRefMap<Graph, Node, char> CRMap; |
| 363 | 592 |
typedef CRMap::ValueIterator ValueIt; |
| 364 | 593 |
CRMap map(gr); |
| 365 | 594 |
|
| 366 | 595 |
Node n0 = gr.addNode(); |
| 367 | 596 |
Node n1 = gr.addNode(); |
| 368 | 597 |
Node n2 = gr.addNode(); |
| 369 | 598 |
|
| 370 | 599 |
map.set(n0, 'A'); |
| 371 | 600 |
map.set(n1, 'B'); |
| 372 | 601 |
map.set(n2, 'C'); |
| 373 | 602 |
map.set(n2, 'A'); |
| 374 | 603 |
map.set(n0, 'C'); |
| 375 | 604 |
|
| 376 | 605 |
check(map[n0] == 'C' && map[n1] == 'B' && map[n2] == 'A', |
| 377 | 606 |
"Wrong CrossRefMap"); |
| 378 | 607 |
check(map('A') == n2 && map.inverse()['A'] == n2, "Wrong CrossRefMap");
|
| 379 | 608 |
check(map('B') == n1 && map.inverse()['B'] == n1, "Wrong CrossRefMap");
|
| 380 | 609 |
check(map('C') == n0 && map.inverse()['C'] == n0, "Wrong CrossRefMap");
|
| 381 | 610 |
|
| 382 | 611 |
ValueIt it = map.beginValue(); |
| 383 | 612 |
check(*it++ == 'A' && *it++ == 'B' && *it++ == 'C' && |
| 384 | 613 |
it == map.endValue(), "Wrong value iterator"); |
| 385 | 614 |
} |
| 386 | 615 |
|
| 387 | 616 |
// Iterable bool map |
| 388 | 617 |
{
|
| 389 | 618 |
typedef SmartGraph Graph; |
| 390 | 619 |
typedef SmartGraph::Node Item; |
| 391 | 620 |
|
| 392 | 621 |
typedef IterableBoolMap<SmartGraph, SmartGraph::Node> Ibm; |
| 393 | 622 |
checkConcept<ReferenceMap<Item, bool, bool&, const bool&>, Ibm>(); |
| 394 | 623 |
|
| 395 | 624 |
const int num = 10; |
| 396 | 625 |
Graph g; |
| 397 | 626 |
std::vector<Item> items; |
| 398 | 627 |
for (int i = 0; i < num; ++i) {
|
| ... | ... |
@@ -501,75 +730,75 @@ |
| 501 | 730 |
check(map1.size() == 2, "Wrong size"); |
| 502 | 731 |
|
| 503 | 732 |
int n = 0; |
| 504 | 733 |
for (Iim::ItemIt it(map1, 0); it != INVALID; ++it) {
|
| 505 | 734 |
check(map1[static_cast<Item>(it)] == 0, "Wrong value"); |
| 506 | 735 |
++n; |
| 507 | 736 |
} |
| 508 | 737 |
check(n == (num + 1) / 2, "Wrong number"); |
| 509 | 738 |
|
| 510 | 739 |
for (Iim::ItemIt it(map1, 1); it != INVALID; ++it) {
|
| 511 | 740 |
check(map1[static_cast<Item>(it)] == 1, "Wrong value"); |
| 512 | 741 |
++n; |
| 513 | 742 |
} |
| 514 | 743 |
check(n == num, "Wrong number"); |
| 515 | 744 |
|
| 516 | 745 |
} |
| 517 | 746 |
|
| 518 | 747 |
// Iterable value map |
| 519 | 748 |
{
|
| 520 | 749 |
typedef SmartGraph Graph; |
| 521 | 750 |
typedef SmartGraph::Node Item; |
| 522 | 751 |
typedef IterableValueMap<SmartGraph, SmartGraph::Node, double> Ivm; |
| 523 | 752 |
|
| 524 | 753 |
checkConcept<ReadWriteMap<Item, double>, Ivm>(); |
| 525 | 754 |
|
| 526 | 755 |
const int num = 10; |
| 527 | 756 |
Graph g; |
| 528 | 757 |
std::vector<Item> items; |
| 529 | 758 |
for (int i = 0; i < num; ++i) {
|
| 530 | 759 |
items.push_back(g.addNode()); |
| 531 | 760 |
} |
| 532 | 761 |
|
| 533 | 762 |
Ivm map1(g, 0.0); |
| 534 | 763 |
check(distance(map1.beginValue(), map1.endValue()) == 1, "Wrong size"); |
| 535 | 764 |
check(*map1.beginValue() == 0.0, "Wrong value"); |
| 536 | 765 |
|
| 537 | 766 |
for (int i = 0; i < num; ++i) {
|
| 538 | 767 |
map1.set(items[i], static_cast<double>(i)); |
| 539 | 768 |
} |
| 540 | 769 |
check(distance(map1.beginValue(), map1.endValue()) == num, "Wrong size"); |
| 541 | 770 |
|
| 542 | 771 |
for (int i = 0; i < num; ++i) {
|
| 543 | 772 |
Ivm::ItemIt it(map1, static_cast<double>(i)); |
| 544 | 773 |
check(static_cast<Item>(it) == items[i], "Wrong value"); |
| 545 | 774 |
++it; |
| 546 | 775 |
check(static_cast<Item>(it) == INVALID, "Wrong value"); |
| 547 | 776 |
} |
| 548 | 777 |
|
| 549 |
for (Ivm:: |
|
| 778 |
for (Ivm::ValueIt vit = map1.beginValue(); |
|
| 550 | 779 |
vit != map1.endValue(); ++vit) {
|
| 551 | 780 |
check(map1[static_cast<Item>(Ivm::ItemIt(map1, *vit))] == *vit, |
| 552 |
"Wrong |
|
| 781 |
"Wrong ValueIt"); |
|
| 553 | 782 |
} |
| 554 | 783 |
|
| 555 | 784 |
for (int i = 0; i < num; ++i) {
|
| 556 | 785 |
map1.set(items[i], static_cast<double>(i % 2)); |
| 557 | 786 |
} |
| 558 | 787 |
check(distance(map1.beginValue(), map1.endValue()) == 2, "Wrong size"); |
| 559 | 788 |
|
| 560 | 789 |
int n = 0; |
| 561 | 790 |
for (Ivm::ItemIt it(map1, 0.0); it != INVALID; ++it) {
|
| 562 | 791 |
check(map1[static_cast<Item>(it)] == 0.0, "Wrong value"); |
| 563 | 792 |
++n; |
| 564 | 793 |
} |
| 565 | 794 |
check(n == (num + 1) / 2, "Wrong number"); |
| 566 | 795 |
|
| 567 | 796 |
for (Ivm::ItemIt it(map1, 1.0); it != INVALID; ++it) {
|
| 568 | 797 |
check(map1[static_cast<Item>(it)] == 1.0, "Wrong value"); |
| 569 | 798 |
++n; |
| 570 | 799 |
} |
| 571 | 800 |
check(n == num, "Wrong number"); |
| 572 | 801 |
|
| 573 | 802 |
} |
| 574 | 803 |
return 0; |
| 575 | 804 |
} |
0 comments (0 inline)