... | ... |
@@ -519,52 +519,48 @@ |
519 | 519 |
/// bool g = rnd.boolean(); // P(g = true) = 0.5 |
520 | 520 |
/// bool h = rnd.boolean(0.8); // P(h = true) = 0.8 |
521 | 521 |
///\endcode |
522 | 522 |
/// |
523 | 523 |
/// LEMON provides a global instance of the random number |
524 | 524 |
/// generator which name is \ref lemon::rnd "rnd". Usually it is a |
525 | 525 |
/// good programming convenience to use this global generator to get |
526 | 526 |
/// random numbers. |
527 | 527 |
class Random { |
528 | 528 |
private: |
529 | 529 |
|
530 | 530 |
// Architecture word |
531 | 531 |
typedef unsigned long Word; |
532 | 532 |
|
533 | 533 |
_random_bits::RandomCore<Word> core; |
534 | 534 |
_random_bits::BoolProducer<Word> bool_producer; |
535 | 535 |
|
536 | 536 |
|
537 | 537 |
public: |
538 | 538 |
|
539 | 539 |
///\name Initialization |
540 | 540 |
/// |
541 | 541 |
/// @{ |
542 | 542 |
|
543 |
///\name Initialization |
|
544 |
/// |
|
545 |
/// @{ |
|
546 |
|
|
547 | 543 |
/// \brief Default constructor |
548 | 544 |
/// |
549 | 545 |
/// Constructor with constant seeding. |
550 | 546 |
Random() { core.initState(); } |
551 | 547 |
|
552 | 548 |
/// \brief Constructor with seed |
553 | 549 |
/// |
554 | 550 |
/// Constructor with seed. The current number type will be converted |
555 | 551 |
/// to the architecture word type. |
556 | 552 |
template <typename Number> |
557 | 553 |
Random(Number seed) { |
558 | 554 |
_random_bits::Initializer<Number, Word>::init(core, seed); |
559 | 555 |
} |
560 | 556 |
|
561 | 557 |
/// \brief Constructor with array seeding |
562 | 558 |
/// |
563 | 559 |
/// Constructor with array seeding. The given range should contain |
564 | 560 |
/// any number type and the numbers will be converted to the |
565 | 561 |
/// architecture word type. |
566 | 562 |
template <typename Iterator> |
567 | 563 |
Random(Iterator begin, Iterator end) { |
568 | 564 |
typedef typename std::iterator_traits<Iterator>::value_type Number; |
569 | 565 |
_random_bits::Initializer<Number, Word>::init(core, begin, end); |
570 | 566 |
} |
... | ... |
@@ -687,54 +683,48 @@ |
687 | 683 |
Number real() { |
688 | 684 |
return _random_bits::RealConversion<Number, Word>::convert(core); |
689 | 685 |
} |
690 | 686 |
|
691 | 687 |
double real() { |
692 | 688 |
return real<double>(); |
693 | 689 |
} |
694 | 690 |
|
695 | 691 |
/// \brief Returns a random real number the range [0, b) |
696 | 692 |
/// |
697 | 693 |
/// It returns a random real number from the range [0, b). |
698 | 694 |
template <typename Number> |
699 | 695 |
Number real(Number b) { |
700 | 696 |
return real<Number>() * b; |
701 | 697 |
} |
702 | 698 |
|
703 | 699 |
/// \brief Returns a random real number from the range [a, b) |
704 | 700 |
/// |
705 | 701 |
/// It returns a random real number from the range [a, b). |
706 | 702 |
template <typename Number> |
707 | 703 |
Number real(Number a, Number b) { |
708 | 704 |
return real<Number>() * (b - a) + a; |
709 | 705 |
} |
710 | 706 |
|
711 |
/// @} |
|
712 |
|
|
713 |
///\name Uniform distributions |
|
714 |
/// |
|
715 |
/// @{ |
|
716 |
|
|
717 | 707 |
/// \brief Returns a random real number from the range [0, 1) |
718 | 708 |
/// |
719 | 709 |
/// It returns a random double from the range [0, 1). |
720 | 710 |
double operator()() { |
721 | 711 |
return real<double>(); |
722 | 712 |
} |
723 | 713 |
|
724 | 714 |
/// \brief Returns a random real number from the range [0, b) |
725 | 715 |
/// |
726 | 716 |
/// It returns a random real number from the range [0, b). |
727 | 717 |
template <typename Number> |
728 | 718 |
Number operator()(Number b) { |
729 | 719 |
return real<Number>() * b; |
730 | 720 |
} |
731 | 721 |
|
732 | 722 |
/// \brief Returns a random real number from the range [a, b) |
733 | 723 |
/// |
734 | 724 |
/// It returns a random real number from the range [a, b). |
735 | 725 |
template <typename Number> |
736 | 726 |
Number operator()(Number a, Number b) { |
737 | 727 |
return real<Number>() * (b - a) + a; |
738 | 728 |
} |
739 | 729 |
|
740 | 730 |
/// \brief Returns a random integer from a range |
... | ... |
@@ -750,157 +740,154 @@ |
750 | 740 |
/// It returns a random integer from the range {a, a + 1, ..., b - 1}. |
751 | 741 |
template <typename Number> |
752 | 742 |
Number integer(Number a, Number b) { |
753 | 743 |
return _random_bits::Mapping<Number, Word>::map(core, b - a) + a; |
754 | 744 |
} |
755 | 745 |
|
756 | 746 |
/// \brief Returns a random integer from a range |
757 | 747 |
/// |
758 | 748 |
/// It returns a random integer from the range {0, 1, ..., b - 1}. |
759 | 749 |
template <typename Number> |
760 | 750 |
Number operator[](Number b) { |
761 | 751 |
return _random_bits::Mapping<Number, Word>::map(core, b); |
762 | 752 |
} |
763 | 753 |
|
764 | 754 |
/// \brief Returns a random non-negative integer |
765 | 755 |
/// |
766 | 756 |
/// It returns a random non-negative integer uniformly from the |
767 | 757 |
/// whole range of the current \c Number type. The default result |
768 | 758 |
/// type of this function is <tt>unsigned int</tt>. |
769 | 759 |
template <typename Number> |
770 | 760 |
Number uinteger() { |
771 | 761 |
return _random_bits::IntConversion<Number, Word>::convert(core); |
772 | 762 |
} |
773 | 763 |
|
774 |
/// @} |
|
775 |
|
|
776 | 764 |
unsigned int uinteger() { |
777 | 765 |
return uinteger<unsigned int>(); |
778 | 766 |
} |
779 | 767 |
|
780 | 768 |
/// \brief Returns a random integer |
781 | 769 |
/// |
782 | 770 |
/// It returns a random integer uniformly from the whole range of |
783 | 771 |
/// the current \c Number type. The default result type of this |
784 | 772 |
/// function is \c int. |
785 | 773 |
template <typename Number> |
786 | 774 |
Number integer() { |
787 | 775 |
static const int nb = std::numeric_limits<Number>::digits + |
788 | 776 |
(std::numeric_limits<Number>::is_signed ? 1 : 0); |
789 | 777 |
return _random_bits::IntConversion<Number, Word, nb>::convert(core); |
790 | 778 |
} |
791 | 779 |
|
792 | 780 |
int integer() { |
793 | 781 |
return integer<int>(); |
794 | 782 |
} |
795 | 783 |
|
796 | 784 |
/// \brief Returns a random bool |
797 | 785 |
/// |
798 | 786 |
/// It returns a random bool. The generator holds a buffer for |
799 | 787 |
/// random bits. Every time when it become empty the generator makes |
800 | 788 |
/// a new random word and fill the buffer up. |
801 | 789 |
bool boolean() { |
802 | 790 |
return bool_producer.convert(core); |
803 | 791 |
} |
804 | 792 |
|
805 | 793 |
/// @} |
806 | 794 |
|
807 | 795 |
///\name Non-uniform distributions |
808 | 796 |
/// |
809 |
|
|
810 | 797 |
///@{ |
811 | 798 |
|
812 |
/// \brief Returns a random bool |
|
799 |
/// \brief Returns a random bool with given probability of true result. |
|
813 | 800 |
/// |
814 | 801 |
/// It returns a random bool with given probability of true result. |
815 | 802 |
bool boolean(double p) { |
816 | 803 |
return operator()() < p; |
817 | 804 |
} |
818 | 805 |
|
819 |
/// Standard Gauss distribution |
|
806 |
/// Standard normal (Gauss) distribution |
|
820 | 807 |
|
821 |
/// Standard Gauss distribution. |
|
808 |
/// Standard normal (Gauss) distribution. |
|
822 | 809 |
/// \note The Cartesian form of the Box-Muller |
823 | 810 |
/// transformation is used to generate a random normal distribution. |
824 | 811 |
double gauss() |
825 | 812 |
{ |
826 | 813 |
double V1,V2,S; |
827 | 814 |
do { |
828 | 815 |
V1=2*real<double>()-1; |
829 | 816 |
V2=2*real<double>()-1; |
830 | 817 |
S=V1*V1+V2*V2; |
831 | 818 |
} while(S>=1); |
832 | 819 |
return std::sqrt(-2*std::log(S)/S)*V1; |
833 | 820 |
} |
834 |
/// Gauss distribution with given mean and standard deviation |
|
821 |
/// Normal (Gauss) distribution with given mean and standard deviation |
|
835 | 822 |
|
836 |
/// Gauss distribution with given mean and standard deviation. |
|
823 |
/// Normal (Gauss) distribution with given mean and standard deviation. |
|
837 | 824 |
/// \sa gauss() |
838 | 825 |
double gauss(double mean,double std_dev) |
839 | 826 |
{ |
840 | 827 |
return gauss()*std_dev+mean; |
841 | 828 |
} |
842 | 829 |
|
843 | 830 |
/// Lognormal distribution |
844 | 831 |
|
845 | 832 |
/// Lognormal distribution. The parameters are the mean and the standard |
846 | 833 |
/// deviation of <tt>exp(X)</tt>. |
847 | 834 |
/// |
848 | 835 |
double lognormal(double n_mean,double n_std_dev) |
849 | 836 |
{ |
850 | 837 |
return std::exp(gauss(n_mean,n_std_dev)); |
851 | 838 |
} |
852 | 839 |
/// Lognormal distribution |
853 | 840 |
|
854 | 841 |
/// Lognormal distribution. The parameter is an <tt>std::pair</tt> of |
855 | 842 |
/// the mean and the standard deviation of <tt>exp(X)</tt>. |
856 | 843 |
/// |
857 | 844 |
double lognormal(const std::pair<double,double> ¶ms) |
858 | 845 |
{ |
859 | 846 |
return std::exp(gauss(params.first,params.second)); |
860 | 847 |
} |
861 | 848 |
/// Compute the lognormal parameters from mean and standard deviation |
862 | 849 |
|
863 | 850 |
/// This function computes the lognormal parameters from mean and |
864 | 851 |
/// standard deviation. The return value can direcly be passed to |
865 | 852 |
/// lognormal(). |
866 | 853 |
std::pair<double,double> lognormalParamsFromMD(double mean, |
867 |
|
|
854 |
double std_dev) |
|
868 | 855 |
{ |
869 | 856 |
double fr=std_dev/mean; |
870 | 857 |
fr*=fr; |
871 | 858 |
double lg=std::log(1+fr); |
872 | 859 |
return std::pair<double,double>(std::log(mean)-lg/2.0,std::sqrt(lg)); |
873 | 860 |
} |
874 | 861 |
/// Lognormal distribution with given mean and standard deviation |
875 |
|
|
862 |
|
|
876 | 863 |
/// Lognormal distribution with given mean and standard deviation. |
877 | 864 |
/// |
878 | 865 |
double lognormalMD(double mean,double std_dev) |
879 | 866 |
{ |
880 | 867 |
return lognormal(lognormalParamsFromMD(mean,std_dev)); |
881 | 868 |
} |
882 |
|
|
869 |
|
|
883 | 870 |
/// Exponential distribution with given mean |
884 | 871 |
|
885 | 872 |
/// This function generates an exponential distribution random number |
886 | 873 |
/// with mean <tt>1/lambda</tt>. |
887 | 874 |
/// |
888 | 875 |
double exponential(double lambda=1.0) |
889 | 876 |
{ |
890 | 877 |
return -std::log(1.0-real<double>())/lambda; |
891 | 878 |
} |
892 | 879 |
|
893 | 880 |
/// Gamma distribution with given integer shape |
894 | 881 |
|
895 | 882 |
/// This function generates a gamma distribution random number. |
896 | 883 |
/// |
897 | 884 |
///\param k shape parameter (<tt>k>0</tt> integer) |
898 | 885 |
double gamma(int k) |
899 | 886 |
{ |
900 | 887 |
double s = 0; |
901 | 888 |
for(int i=0;i<k;i++) s-=std::log(1.0-real<double>()); |
902 | 889 |
return s; |
903 | 890 |
} |
904 | 891 |
|
905 | 892 |
/// Gamma distribution with given shape and scale parameter |
906 | 893 |
|
... | ... |
@@ -962,66 +949,65 @@ |
962 | 949 |
/// parameter \c lambda. |
963 | 950 |
/// |
964 | 951 |
/// The probability mass function of this distribusion is |
965 | 952 |
/// \f[ \frac{e^{-\lambda}\lambda^k}{k!} \f] |
966 | 953 |
/// \note The algorithm is taken from the book of Donald E. Knuth titled |
967 | 954 |
/// ''Seminumerical Algorithms'' (1969). Its running time is linear in the |
968 | 955 |
/// return value. |
969 | 956 |
|
970 | 957 |
int poisson(double lambda) |
971 | 958 |
{ |
972 | 959 |
const double l = std::exp(-lambda); |
973 | 960 |
int k=0; |
974 | 961 |
double p = 1.0; |
975 | 962 |
do { |
976 | 963 |
k++; |
977 | 964 |
p*=real<double>(); |
978 | 965 |
} while (p>=l); |
979 | 966 |
return k-1; |
980 | 967 |
} |
981 | 968 |
|
982 | 969 |
///@} |
983 | 970 |
|
984 | 971 |
///\name Two dimensional distributions |
985 | 972 |
/// |
986 |
|
|
987 | 973 |
///@{ |
988 | 974 |
|
989 | 975 |
/// Uniform distribution on the full unit circle |
990 | 976 |
|
991 | 977 |
/// Uniform distribution on the full unit circle. |
992 | 978 |
/// |
993 | 979 |
dim2::Point<double> disc() |
994 | 980 |
{ |
995 | 981 |
double V1,V2; |
996 | 982 |
do { |
997 | 983 |
V1=2*real<double>()-1; |
998 | 984 |
V2=2*real<double>()-1; |
999 | 985 |
|
1000 | 986 |
} while(V1*V1+V2*V2>=1); |
1001 | 987 |
return dim2::Point<double>(V1,V2); |
1002 | 988 |
} |
1003 |
/// A kind of two dimensional Gauss distribution |
|
989 |
/// A kind of two dimensional normal (Gauss) distribution |
|
1004 | 990 |
|
1005 | 991 |
/// This function provides a turning symmetric two-dimensional distribution. |
1006 | 992 |
/// Both coordinates are of standard normal distribution, but they are not |
1007 | 993 |
/// independent. |
1008 | 994 |
/// |
1009 | 995 |
/// \note The coordinates are the two random variables provided by |
1010 | 996 |
/// the Box-Muller method. |
1011 | 997 |
dim2::Point<double> gauss2() |
1012 | 998 |
{ |
1013 | 999 |
double V1,V2,S; |
1014 | 1000 |
do { |
1015 | 1001 |
V1=2*real<double>()-1; |
1016 | 1002 |
V2=2*real<double>()-1; |
1017 | 1003 |
S=V1*V1+V2*V2; |
1018 | 1004 |
} while(S>=1); |
1019 | 1005 |
double W=std::sqrt(-2*std::log(S)/S); |
1020 | 1006 |
return dim2::Point<double>(W*V1,W*V2); |
1021 | 1007 |
} |
1022 | 1008 |
/// A kind of two dimensional exponential distribution |
1023 | 1009 |
|
1024 | 1010 |
/// This function provides a turning symmetric two-dimensional distribution. |
1025 | 1011 |
/// The x-coordinate is of conditionally exponential distribution |
1026 | 1012 |
/// with the condition that x is positive and y=0. If x is negative and |
1027 | 1013 |
/// y=0 then, -x is of exponential distribution. The same is true for the |
0 comments (0 inline)