... | ... |
@@ -495,100 +495,96 @@ |
495 | 495 |
/// get a random number from a range of a floating point type you |
496 | 496 |
/// can use one form of the \c operator() or the \c real() member |
497 | 497 |
/// function. If you want to get random number from the {0, 1, ..., |
498 | 498 |
/// n-1} integer range use the \c operator[] or the \c integer() |
499 | 499 |
/// method. And to get random number from the whole range of an |
500 | 500 |
/// integer type you can use the argumentless \c integer() or \c |
501 | 501 |
/// uinteger() functions. After all you can get random bool with |
502 | 502 |
/// equal chance of true and false or given probability of true |
503 | 503 |
/// result with the \c boolean() member functions. |
504 | 504 |
/// |
505 | 505 |
///\code |
506 | 506 |
/// // The commented code is identical to the other |
507 | 507 |
/// double a = rnd(); // [0.0, 1.0) |
508 | 508 |
/// // double a = rnd.real(); // [0.0, 1.0) |
509 | 509 |
/// double b = rnd(100.0); // [0.0, 100.0) |
510 | 510 |
/// // double b = rnd.real(100.0); // [0.0, 100.0) |
511 | 511 |
/// double c = rnd(1.0, 2.0); // [1.0, 2.0) |
512 | 512 |
/// // double c = rnd.real(1.0, 2.0); // [1.0, 2.0) |
513 | 513 |
/// int d = rnd[100000]; // 0..99999 |
514 | 514 |
/// // int d = rnd.integer(100000); // 0..99999 |
515 | 515 |
/// int e = rnd[6] + 1; // 1..6 |
516 | 516 |
/// // int e = rnd.integer(1, 1 + 6); // 1..6 |
517 | 517 |
/// int b = rnd.uinteger<int>(); // 0 .. 2^31 - 1 |
518 | 518 |
/// int c = rnd.integer<int>(); // - 2^31 .. 2^31 - 1 |
519 | 519 |
/// bool g = rnd.boolean(); // P(g = true) = 0.5 |
520 | 520 |
/// bool h = rnd.boolean(0.8); // P(h = true) = 0.8 |
521 | 521 |
///\endcode |
522 | 522 |
/// |
523 | 523 |
/// LEMON provides a global instance of the random number |
524 | 524 |
/// generator which name is \ref lemon::rnd "rnd". Usually it is a |
525 | 525 |
/// good programming convenience to use this global generator to get |
526 | 526 |
/// random numbers. |
527 | 527 |
class Random { |
528 | 528 |
private: |
529 | 529 |
|
530 | 530 |
// Architecture word |
531 | 531 |
typedef unsigned long Word; |
532 | 532 |
|
533 | 533 |
_random_bits::RandomCore<Word> core; |
534 | 534 |
_random_bits::BoolProducer<Word> bool_producer; |
535 | 535 |
|
536 | 536 |
|
537 | 537 |
public: |
538 | 538 |
|
539 | 539 |
///\name Initialization |
540 | 540 |
/// |
541 | 541 |
/// @{ |
542 | 542 |
|
543 |
///\name Initialization |
|
544 |
/// |
|
545 |
/// @{ |
|
546 |
|
|
547 | 543 |
/// \brief Default constructor |
548 | 544 |
/// |
549 | 545 |
/// Constructor with constant seeding. |
550 | 546 |
Random() { core.initState(); } |
551 | 547 |
|
552 | 548 |
/// \brief Constructor with seed |
553 | 549 |
/// |
554 | 550 |
/// Constructor with seed. The current number type will be converted |
555 | 551 |
/// to the architecture word type. |
556 | 552 |
template <typename Number> |
557 | 553 |
Random(Number seed) { |
558 | 554 |
_random_bits::Initializer<Number, Word>::init(core, seed); |
559 | 555 |
} |
560 | 556 |
|
561 | 557 |
/// \brief Constructor with array seeding |
562 | 558 |
/// |
563 | 559 |
/// Constructor with array seeding. The given range should contain |
564 | 560 |
/// any number type and the numbers will be converted to the |
565 | 561 |
/// architecture word type. |
566 | 562 |
template <typename Iterator> |
567 | 563 |
Random(Iterator begin, Iterator end) { |
568 | 564 |
typedef typename std::iterator_traits<Iterator>::value_type Number; |
569 | 565 |
_random_bits::Initializer<Number, Word>::init(core, begin, end); |
570 | 566 |
} |
571 | 567 |
|
572 | 568 |
/// \brief Copy constructor |
573 | 569 |
/// |
574 | 570 |
/// Copy constructor. The generated sequence will be identical to |
575 | 571 |
/// the other sequence. It can be used to save the current state |
576 | 572 |
/// of the generator and later use it to generate the same |
577 | 573 |
/// sequence. |
578 | 574 |
Random(const Random& other) { |
579 | 575 |
core.copyState(other.core); |
580 | 576 |
} |
581 | 577 |
|
582 | 578 |
/// \brief Assign operator |
583 | 579 |
/// |
584 | 580 |
/// Assign operator. The generated sequence will be identical to |
585 | 581 |
/// the other sequence. It can be used to save the current state |
586 | 582 |
/// of the generator and later use it to generate the same |
587 | 583 |
/// sequence. |
588 | 584 |
Random& operator=(const Random& other) { |
589 | 585 |
if (&other != this) { |
590 | 586 |
core.copyState(other.core); |
591 | 587 |
} |
592 | 588 |
return *this; |
593 | 589 |
} |
594 | 590 |
|
... | ... |
@@ -663,268 +659,259 @@ |
663 | 659 |
bool seedFromTime() { |
664 | 660 |
#ifndef WIN32 |
665 | 661 |
timeval tv; |
666 | 662 |
gettimeofday(&tv, 0); |
667 | 663 |
seed(getpid() + tv.tv_sec + tv.tv_usec); |
668 | 664 |
#else |
669 | 665 |
FILETIME time; |
670 | 666 |
GetSystemTimeAsFileTime(&time); |
671 | 667 |
seed(GetCurrentProcessId() + time.dwHighDateTime + time.dwLowDateTime); |
672 | 668 |
#endif |
673 | 669 |
return true; |
674 | 670 |
} |
675 | 671 |
|
676 | 672 |
/// @} |
677 | 673 |
|
678 | 674 |
///\name Uniform distributions |
679 | 675 |
/// |
680 | 676 |
/// @{ |
681 | 677 |
|
682 | 678 |
/// \brief Returns a random real number from the range [0, 1) |
683 | 679 |
/// |
684 | 680 |
/// It returns a random real number from the range [0, 1). The |
685 | 681 |
/// default Number type is \c double. |
686 | 682 |
template <typename Number> |
687 | 683 |
Number real() { |
688 | 684 |
return _random_bits::RealConversion<Number, Word>::convert(core); |
689 | 685 |
} |
690 | 686 |
|
691 | 687 |
double real() { |
692 | 688 |
return real<double>(); |
693 | 689 |
} |
694 | 690 |
|
695 | 691 |
/// \brief Returns a random real number the range [0, b) |
696 | 692 |
/// |
697 | 693 |
/// It returns a random real number from the range [0, b). |
698 | 694 |
template <typename Number> |
699 | 695 |
Number real(Number b) { |
700 | 696 |
return real<Number>() * b; |
701 | 697 |
} |
702 | 698 |
|
703 | 699 |
/// \brief Returns a random real number from the range [a, b) |
704 | 700 |
/// |
705 | 701 |
/// It returns a random real number from the range [a, b). |
706 | 702 |
template <typename Number> |
707 | 703 |
Number real(Number a, Number b) { |
708 | 704 |
return real<Number>() * (b - a) + a; |
709 | 705 |
} |
710 | 706 |
|
711 |
/// @} |
|
712 |
|
|
713 |
///\name Uniform distributions |
|
714 |
/// |
|
715 |
/// @{ |
|
716 |
|
|
717 | 707 |
/// \brief Returns a random real number from the range [0, 1) |
718 | 708 |
/// |
719 | 709 |
/// It returns a random double from the range [0, 1). |
720 | 710 |
double operator()() { |
721 | 711 |
return real<double>(); |
722 | 712 |
} |
723 | 713 |
|
724 | 714 |
/// \brief Returns a random real number from the range [0, b) |
725 | 715 |
/// |
726 | 716 |
/// It returns a random real number from the range [0, b). |
727 | 717 |
template <typename Number> |
728 | 718 |
Number operator()(Number b) { |
729 | 719 |
return real<Number>() * b; |
730 | 720 |
} |
731 | 721 |
|
732 | 722 |
/// \brief Returns a random real number from the range [a, b) |
733 | 723 |
/// |
734 | 724 |
/// It returns a random real number from the range [a, b). |
735 | 725 |
template <typename Number> |
736 | 726 |
Number operator()(Number a, Number b) { |
737 | 727 |
return real<Number>() * (b - a) + a; |
738 | 728 |
} |
739 | 729 |
|
740 | 730 |
/// \brief Returns a random integer from a range |
741 | 731 |
/// |
742 | 732 |
/// It returns a random integer from the range {0, 1, ..., b - 1}. |
743 | 733 |
template <typename Number> |
744 | 734 |
Number integer(Number b) { |
745 | 735 |
return _random_bits::Mapping<Number, Word>::map(core, b); |
746 | 736 |
} |
747 | 737 |
|
748 | 738 |
/// \brief Returns a random integer from a range |
749 | 739 |
/// |
750 | 740 |
/// It returns a random integer from the range {a, a + 1, ..., b - 1}. |
751 | 741 |
template <typename Number> |
752 | 742 |
Number integer(Number a, Number b) { |
753 | 743 |
return _random_bits::Mapping<Number, Word>::map(core, b - a) + a; |
754 | 744 |
} |
755 | 745 |
|
756 | 746 |
/// \brief Returns a random integer from a range |
757 | 747 |
/// |
758 | 748 |
/// It returns a random integer from the range {0, 1, ..., b - 1}. |
759 | 749 |
template <typename Number> |
760 | 750 |
Number operator[](Number b) { |
761 | 751 |
return _random_bits::Mapping<Number, Word>::map(core, b); |
762 | 752 |
} |
763 | 753 |
|
764 | 754 |
/// \brief Returns a random non-negative integer |
765 | 755 |
/// |
766 | 756 |
/// It returns a random non-negative integer uniformly from the |
767 | 757 |
/// whole range of the current \c Number type. The default result |
768 | 758 |
/// type of this function is <tt>unsigned int</tt>. |
769 | 759 |
template <typename Number> |
770 | 760 |
Number uinteger() { |
771 | 761 |
return _random_bits::IntConversion<Number, Word>::convert(core); |
772 | 762 |
} |
773 | 763 |
|
774 |
/// @} |
|
775 |
|
|
776 | 764 |
unsigned int uinteger() { |
777 | 765 |
return uinteger<unsigned int>(); |
778 | 766 |
} |
779 | 767 |
|
780 | 768 |
/// \brief Returns a random integer |
781 | 769 |
/// |
782 | 770 |
/// It returns a random integer uniformly from the whole range of |
783 | 771 |
/// the current \c Number type. The default result type of this |
784 | 772 |
/// function is \c int. |
785 | 773 |
template <typename Number> |
786 | 774 |
Number integer() { |
787 | 775 |
static const int nb = std::numeric_limits<Number>::digits + |
788 | 776 |
(std::numeric_limits<Number>::is_signed ? 1 : 0); |
789 | 777 |
return _random_bits::IntConversion<Number, Word, nb>::convert(core); |
790 | 778 |
} |
791 | 779 |
|
792 | 780 |
int integer() { |
793 | 781 |
return integer<int>(); |
794 | 782 |
} |
795 | 783 |
|
796 | 784 |
/// \brief Returns a random bool |
797 | 785 |
/// |
798 | 786 |
/// It returns a random bool. The generator holds a buffer for |
799 | 787 |
/// random bits. Every time when it become empty the generator makes |
800 | 788 |
/// a new random word and fill the buffer up. |
801 | 789 |
bool boolean() { |
802 | 790 |
return bool_producer.convert(core); |
803 | 791 |
} |
804 | 792 |
|
805 | 793 |
/// @} |
806 | 794 |
|
807 | 795 |
///\name Non-uniform distributions |
808 | 796 |
/// |
809 |
|
|
810 | 797 |
///@{ |
811 | 798 |
|
812 |
/// \brief Returns a random bool |
|
799 |
/// \brief Returns a random bool with given probability of true result. |
|
813 | 800 |
/// |
814 | 801 |
/// It returns a random bool with given probability of true result. |
815 | 802 |
bool boolean(double p) { |
816 | 803 |
return operator()() < p; |
817 | 804 |
} |
818 | 805 |
|
819 |
/// Standard Gauss distribution |
|
806 |
/// Standard normal (Gauss) distribution |
|
820 | 807 |
|
821 |
/// Standard Gauss distribution. |
|
808 |
/// Standard normal (Gauss) distribution. |
|
822 | 809 |
/// \note The Cartesian form of the Box-Muller |
823 | 810 |
/// transformation is used to generate a random normal distribution. |
824 | 811 |
double gauss() |
825 | 812 |
{ |
826 | 813 |
double V1,V2,S; |
827 | 814 |
do { |
828 | 815 |
V1=2*real<double>()-1; |
829 | 816 |
V2=2*real<double>()-1; |
830 | 817 |
S=V1*V1+V2*V2; |
831 | 818 |
} while(S>=1); |
832 | 819 |
return std::sqrt(-2*std::log(S)/S)*V1; |
833 | 820 |
} |
834 |
/// Gauss distribution with given mean and standard deviation |
|
821 |
/// Normal (Gauss) distribution with given mean and standard deviation |
|
835 | 822 |
|
836 |
/// Gauss distribution with given mean and standard deviation. |
|
823 |
/// Normal (Gauss) distribution with given mean and standard deviation. |
|
837 | 824 |
/// \sa gauss() |
838 | 825 |
double gauss(double mean,double std_dev) |
839 | 826 |
{ |
840 | 827 |
return gauss()*std_dev+mean; |
841 | 828 |
} |
842 | 829 |
|
843 | 830 |
/// Lognormal distribution |
844 | 831 |
|
845 | 832 |
/// Lognormal distribution. The parameters are the mean and the standard |
846 | 833 |
/// deviation of <tt>exp(X)</tt>. |
847 | 834 |
/// |
848 | 835 |
double lognormal(double n_mean,double n_std_dev) |
849 | 836 |
{ |
850 | 837 |
return std::exp(gauss(n_mean,n_std_dev)); |
851 | 838 |
} |
852 | 839 |
/// Lognormal distribution |
853 | 840 |
|
854 | 841 |
/// Lognormal distribution. The parameter is an <tt>std::pair</tt> of |
855 | 842 |
/// the mean and the standard deviation of <tt>exp(X)</tt>. |
856 | 843 |
/// |
857 | 844 |
double lognormal(const std::pair<double,double> ¶ms) |
858 | 845 |
{ |
859 | 846 |
return std::exp(gauss(params.first,params.second)); |
860 | 847 |
} |
861 | 848 |
/// Compute the lognormal parameters from mean and standard deviation |
862 | 849 |
|
863 | 850 |
/// This function computes the lognormal parameters from mean and |
864 | 851 |
/// standard deviation. The return value can direcly be passed to |
865 | 852 |
/// lognormal(). |
866 | 853 |
std::pair<double,double> lognormalParamsFromMD(double mean, |
867 |
|
|
854 |
double std_dev) |
|
868 | 855 |
{ |
869 | 856 |
double fr=std_dev/mean; |
870 | 857 |
fr*=fr; |
871 | 858 |
double lg=std::log(1+fr); |
872 | 859 |
return std::pair<double,double>(std::log(mean)-lg/2.0,std::sqrt(lg)); |
873 | 860 |
} |
874 | 861 |
/// Lognormal distribution with given mean and standard deviation |
875 |
|
|
862 |
|
|
876 | 863 |
/// Lognormal distribution with given mean and standard deviation. |
877 | 864 |
/// |
878 | 865 |
double lognormalMD(double mean,double std_dev) |
879 | 866 |
{ |
880 | 867 |
return lognormal(lognormalParamsFromMD(mean,std_dev)); |
881 | 868 |
} |
882 |
|
|
869 |
|
|
883 | 870 |
/// Exponential distribution with given mean |
884 | 871 |
|
885 | 872 |
/// This function generates an exponential distribution random number |
886 | 873 |
/// with mean <tt>1/lambda</tt>. |
887 | 874 |
/// |
888 | 875 |
double exponential(double lambda=1.0) |
889 | 876 |
{ |
890 | 877 |
return -std::log(1.0-real<double>())/lambda; |
891 | 878 |
} |
892 | 879 |
|
893 | 880 |
/// Gamma distribution with given integer shape |
894 | 881 |
|
895 | 882 |
/// This function generates a gamma distribution random number. |
896 | 883 |
/// |
897 | 884 |
///\param k shape parameter (<tt>k>0</tt> integer) |
898 | 885 |
double gamma(int k) |
899 | 886 |
{ |
900 | 887 |
double s = 0; |
901 | 888 |
for(int i=0;i<k;i++) s-=std::log(1.0-real<double>()); |
902 | 889 |
return s; |
903 | 890 |
} |
904 | 891 |
|
905 | 892 |
/// Gamma distribution with given shape and scale parameter |
906 | 893 |
|
907 | 894 |
/// This function generates a gamma distribution random number. |
908 | 895 |
/// |
909 | 896 |
///\param k shape parameter (<tt>k>0</tt>) |
910 | 897 |
///\param theta scale parameter |
911 | 898 |
/// |
912 | 899 |
double gamma(double k,double theta=1.0) |
913 | 900 |
{ |
914 | 901 |
double xi,nu; |
915 | 902 |
const double delta = k-std::floor(k); |
916 | 903 |
const double v0=E/(E-delta); |
917 | 904 |
do { |
918 | 905 |
double V0=1.0-real<double>(); |
919 | 906 |
double V1=1.0-real<double>(); |
920 | 907 |
double V2=1.0-real<double>(); |
921 | 908 |
if(V2<=v0) |
922 | 909 |
{ |
923 | 910 |
xi=std::pow(V1,1.0/delta); |
924 | 911 |
nu=V0*std::pow(xi,delta-1.0); |
925 | 912 |
} |
926 | 913 |
else |
927 | 914 |
{ |
928 | 915 |
xi=1.0-std::log(V1); |
929 | 916 |
nu=V0*std::exp(-xi); |
930 | 917 |
} |
... | ... |
@@ -938,112 +925,111 @@ |
938 | 925 |
/// |
939 | 926 |
///\param k shape parameter (<tt>k>0</tt>) |
940 | 927 |
///\param lambda scale parameter (<tt>lambda>0</tt>) |
941 | 928 |
/// |
942 | 929 |
double weibull(double k,double lambda) |
943 | 930 |
{ |
944 | 931 |
return lambda*pow(-std::log(1.0-real<double>()),1.0/k); |
945 | 932 |
} |
946 | 933 |
|
947 | 934 |
/// Pareto distribution |
948 | 935 |
|
949 | 936 |
/// This function generates a Pareto distribution random number. |
950 | 937 |
/// |
951 | 938 |
///\param k shape parameter (<tt>k>0</tt>) |
952 | 939 |
///\param x_min location parameter (<tt>x_min>0</tt>) |
953 | 940 |
/// |
954 | 941 |
double pareto(double k,double x_min) |
955 | 942 |
{ |
956 | 943 |
return exponential(gamma(k,1.0/x_min))+x_min; |
957 | 944 |
} |
958 | 945 |
|
959 | 946 |
/// Poisson distribution |
960 | 947 |
|
961 | 948 |
/// This function generates a Poisson distribution random number with |
962 | 949 |
/// parameter \c lambda. |
963 | 950 |
/// |
964 | 951 |
/// The probability mass function of this distribusion is |
965 | 952 |
/// \f[ \frac{e^{-\lambda}\lambda^k}{k!} \f] |
966 | 953 |
/// \note The algorithm is taken from the book of Donald E. Knuth titled |
967 | 954 |
/// ''Seminumerical Algorithms'' (1969). Its running time is linear in the |
968 | 955 |
/// return value. |
969 | 956 |
|
970 | 957 |
int poisson(double lambda) |
971 | 958 |
{ |
972 | 959 |
const double l = std::exp(-lambda); |
973 | 960 |
int k=0; |
974 | 961 |
double p = 1.0; |
975 | 962 |
do { |
976 | 963 |
k++; |
977 | 964 |
p*=real<double>(); |
978 | 965 |
} while (p>=l); |
979 | 966 |
return k-1; |
980 | 967 |
} |
981 | 968 |
|
982 | 969 |
///@} |
983 | 970 |
|
984 | 971 |
///\name Two dimensional distributions |
985 | 972 |
/// |
986 |
|
|
987 | 973 |
///@{ |
988 | 974 |
|
989 | 975 |
/// Uniform distribution on the full unit circle |
990 | 976 |
|
991 | 977 |
/// Uniform distribution on the full unit circle. |
992 | 978 |
/// |
993 | 979 |
dim2::Point<double> disc() |
994 | 980 |
{ |
995 | 981 |
double V1,V2; |
996 | 982 |
do { |
997 | 983 |
V1=2*real<double>()-1; |
998 | 984 |
V2=2*real<double>()-1; |
999 | 985 |
|
1000 | 986 |
} while(V1*V1+V2*V2>=1); |
1001 | 987 |
return dim2::Point<double>(V1,V2); |
1002 | 988 |
} |
1003 |
/// A kind of two dimensional Gauss distribution |
|
989 |
/// A kind of two dimensional normal (Gauss) distribution |
|
1004 | 990 |
|
1005 | 991 |
/// This function provides a turning symmetric two-dimensional distribution. |
1006 | 992 |
/// Both coordinates are of standard normal distribution, but they are not |
1007 | 993 |
/// independent. |
1008 | 994 |
/// |
1009 | 995 |
/// \note The coordinates are the two random variables provided by |
1010 | 996 |
/// the Box-Muller method. |
1011 | 997 |
dim2::Point<double> gauss2() |
1012 | 998 |
{ |
1013 | 999 |
double V1,V2,S; |
1014 | 1000 |
do { |
1015 | 1001 |
V1=2*real<double>()-1; |
1016 | 1002 |
V2=2*real<double>()-1; |
1017 | 1003 |
S=V1*V1+V2*V2; |
1018 | 1004 |
} while(S>=1); |
1019 | 1005 |
double W=std::sqrt(-2*std::log(S)/S); |
1020 | 1006 |
return dim2::Point<double>(W*V1,W*V2); |
1021 | 1007 |
} |
1022 | 1008 |
/// A kind of two dimensional exponential distribution |
1023 | 1009 |
|
1024 | 1010 |
/// This function provides a turning symmetric two-dimensional distribution. |
1025 | 1011 |
/// The x-coordinate is of conditionally exponential distribution |
1026 | 1012 |
/// with the condition that x is positive and y=0. If x is negative and |
1027 | 1013 |
/// y=0 then, -x is of exponential distribution. The same is true for the |
1028 | 1014 |
/// y-coordinate. |
1029 | 1015 |
dim2::Point<double> exponential2() |
1030 | 1016 |
{ |
1031 | 1017 |
double V1,V2,S; |
1032 | 1018 |
do { |
1033 | 1019 |
V1=2*real<double>()-1; |
1034 | 1020 |
V2=2*real<double>()-1; |
1035 | 1021 |
S=V1*V1+V2*V2; |
1036 | 1022 |
} while(S>=1); |
1037 | 1023 |
double W=-std::log(S)/S; |
1038 | 1024 |
return dim2::Point<double>(W*V1,W*V2); |
1039 | 1025 |
} |
1040 | 1026 |
|
1041 | 1027 |
///@} |
1042 | 1028 |
}; |
1043 | 1029 |
|
1044 | 1030 |
|
1045 | 1031 |
extern Random rnd; |
1046 | 1032 |
|
1047 | 1033 |
} |
1048 | 1034 |
|
1049 | 1035 |
#endif |
0 comments (0 inline)