... | ... |
@@ -537,16 +537,12 @@ |
537 | 537 |
public: |
538 | 538 |
|
539 | 539 |
///\name Initialization |
540 | 540 |
/// |
541 | 541 |
/// @{ |
542 | 542 |
|
543 |
///\name Initialization |
|
544 |
/// |
|
545 |
/// @{ |
|
546 |
|
|
547 | 543 |
/// \brief Default constructor |
548 | 544 |
/// |
549 | 545 |
/// Constructor with constant seeding. |
550 | 546 |
Random() { core.initState(); } |
551 | 547 |
|
552 | 548 |
/// \brief Constructor with seed |
... | ... |
@@ -705,18 +701,12 @@ |
705 | 701 |
/// It returns a random real number from the range [a, b). |
706 | 702 |
template <typename Number> |
707 | 703 |
Number real(Number a, Number b) { |
708 | 704 |
return real<Number>() * (b - a) + a; |
709 | 705 |
} |
710 | 706 |
|
711 |
/// @} |
|
712 |
|
|
713 |
///\name Uniform distributions |
|
714 |
/// |
|
715 |
/// @{ |
|
716 |
|
|
717 | 707 |
/// \brief Returns a random real number from the range [0, 1) |
718 | 708 |
/// |
719 | 709 |
/// It returns a random double from the range [0, 1). |
720 | 710 |
double operator()() { |
721 | 711 |
return real<double>(); |
722 | 712 |
} |
... | ... |
@@ -768,14 +758,12 @@ |
768 | 758 |
/// type of this function is <tt>unsigned int</tt>. |
769 | 759 |
template <typename Number> |
770 | 760 |
Number uinteger() { |
771 | 761 |
return _random_bits::IntConversion<Number, Word>::convert(core); |
772 | 762 |
} |
773 | 763 |
|
774 |
/// @} |
|
775 |
|
|
776 | 764 |
unsigned int uinteger() { |
777 | 765 |
return uinteger<unsigned int>(); |
778 | 766 |
} |
779 | 767 |
|
780 | 768 |
/// \brief Returns a random integer |
781 | 769 |
/// |
... | ... |
@@ -803,40 +791,39 @@ |
803 | 791 |
} |
804 | 792 |
|
805 | 793 |
/// @} |
806 | 794 |
|
807 | 795 |
///\name Non-uniform distributions |
808 | 796 |
/// |
809 |
|
|
810 | 797 |
///@{ |
811 | 798 |
|
812 |
/// \brief Returns a random bool |
|
799 |
/// \brief Returns a random bool with given probability of true result. |
|
813 | 800 |
/// |
814 | 801 |
/// It returns a random bool with given probability of true result. |
815 | 802 |
bool boolean(double p) { |
816 | 803 |
return operator()() < p; |
817 | 804 |
} |
818 | 805 |
|
819 |
/// Standard Gauss distribution |
|
806 |
/// Standard normal (Gauss) distribution |
|
820 | 807 |
|
821 |
/// Standard Gauss distribution. |
|
808 |
/// Standard normal (Gauss) distribution. |
|
822 | 809 |
/// \note The Cartesian form of the Box-Muller |
823 | 810 |
/// transformation is used to generate a random normal distribution. |
824 | 811 |
double gauss() |
825 | 812 |
{ |
826 | 813 |
double V1,V2,S; |
827 | 814 |
do { |
828 | 815 |
V1=2*real<double>()-1; |
829 | 816 |
V2=2*real<double>()-1; |
830 | 817 |
S=V1*V1+V2*V2; |
831 | 818 |
} while(S>=1); |
832 | 819 |
return std::sqrt(-2*std::log(S)/S)*V1; |
833 | 820 |
} |
834 |
/// Gauss distribution with given mean and standard deviation |
|
821 |
/// Normal (Gauss) distribution with given mean and standard deviation |
|
835 | 822 |
|
836 |
/// Gauss distribution with given mean and standard deviation. |
|
823 |
/// Normal (Gauss) distribution with given mean and standard deviation. |
|
837 | 824 |
/// \sa gauss() |
838 | 825 |
double gauss(double mean,double std_dev) |
839 | 826 |
{ |
840 | 827 |
return gauss()*std_dev+mean; |
841 | 828 |
} |
842 | 829 |
|
... | ... |
@@ -861,28 +848,28 @@ |
861 | 848 |
/// Compute the lognormal parameters from mean and standard deviation |
862 | 849 |
|
863 | 850 |
/// This function computes the lognormal parameters from mean and |
864 | 851 |
/// standard deviation. The return value can direcly be passed to |
865 | 852 |
/// lognormal(). |
866 | 853 |
std::pair<double,double> lognormalParamsFromMD(double mean, |
867 |
|
|
854 |
double std_dev) |
|
868 | 855 |
{ |
869 | 856 |
double fr=std_dev/mean; |
870 | 857 |
fr*=fr; |
871 | 858 |
double lg=std::log(1+fr); |
872 | 859 |
return std::pair<double,double>(std::log(mean)-lg/2.0,std::sqrt(lg)); |
873 | 860 |
} |
874 | 861 |
/// Lognormal distribution with given mean and standard deviation |
875 |
|
|
862 |
|
|
876 | 863 |
/// Lognormal distribution with given mean and standard deviation. |
877 | 864 |
/// |
878 | 865 |
double lognormalMD(double mean,double std_dev) |
879 | 866 |
{ |
880 | 867 |
return lognormal(lognormalParamsFromMD(mean,std_dev)); |
881 | 868 |
} |
882 |
|
|
869 |
|
|
883 | 870 |
/// Exponential distribution with given mean |
884 | 871 |
|
885 | 872 |
/// This function generates an exponential distribution random number |
886 | 873 |
/// with mean <tt>1/lambda</tt>. |
887 | 874 |
/// |
888 | 875 |
double exponential(double lambda=1.0) |
... | ... |
@@ -980,13 +967,12 @@ |
980 | 967 |
} |
981 | 968 |
|
982 | 969 |
///@} |
983 | 970 |
|
984 | 971 |
///\name Two dimensional distributions |
985 | 972 |
/// |
986 |
|
|
987 | 973 |
///@{ |
988 | 974 |
|
989 | 975 |
/// Uniform distribution on the full unit circle |
990 | 976 |
|
991 | 977 |
/// Uniform distribution on the full unit circle. |
992 | 978 |
/// |
... | ... |
@@ -997,13 +983,13 @@ |
997 | 983 |
V1=2*real<double>()-1; |
998 | 984 |
V2=2*real<double>()-1; |
999 | 985 |
|
1000 | 986 |
} while(V1*V1+V2*V2>=1); |
1001 | 987 |
return dim2::Point<double>(V1,V2); |
1002 | 988 |
} |
1003 |
/// A kind of two dimensional Gauss distribution |
|
989 |
/// A kind of two dimensional normal (Gauss) distribution |
|
1004 | 990 |
|
1005 | 991 |
/// This function provides a turning symmetric two-dimensional distribution. |
1006 | 992 |
/// Both coordinates are of standard normal distribution, but they are not |
1007 | 993 |
/// independent. |
1008 | 994 |
/// |
1009 | 995 |
/// \note The coordinates are the two random variables provided by |
0 comments (0 inline)