gravatar
alpar (Alpar Juttner)
alpar@cs.elte.hu
Merge
0 2 0
merge default
0 files changed with 97 insertions and 6 deletions:
↑ Collapse diff ↑
Ignore white space 96 line context
1 1
dnl Process this file with autoconf to produce a configure script.
2 2

	
3 3
dnl Version information.
4
m4_define([lemon_version_major], [0])
5
m4_define([lemon_version_minor], [99])
6
m4_define([lemon_version_micro], [])
7
m4_define([lemon_version_nano], [])
8
m4_define([lemon_version_tag], [hg])
4
m4_define([lemon_version_number], [])
9 5
m4_define([lemon_hg_revision], [m4_normalize(esyscmd([hg id -i]))])
10
m4_define([lemon_version], [lemon_version_major().lemon_version_minor()ifelse(lemon_version_micro(), [], [], [.lemon_version_micro()])ifelse(lemon_version_nano(), [], [], [.lemon_version_nano()])ifelse(lemon_version_tag(), [], [], lemon_version_tag(), [hg], [[_]lemon_version_tag()[_]lemon_hg_revision()], [[_]lemon_version_tag()])])
6
m4_define([lemon_version], [ifelse(lemon_version_number(), [], [lemon_hg_revision()], [lemon_version_number()])])
11 7

	
12 8
AC_PREREQ([2.59])
13 9
AC_INIT([LEMON], [lemon_version()], [lemon-devel@lemon.cs.elte.hu], [lemon])
14 10
AC_CONFIG_AUX_DIR([build-aux])
15 11
AC_CONFIG_MACRO_DIR([m4])
16 12
AM_INIT_AUTOMAKE([-Wall -Werror foreign subdir-objects nostdinc])
17 13
AC_CONFIG_SRCDIR([lemon/list_graph.h])
18 14
AC_CONFIG_HEADERS([config.h lemon/config.h])
19 15

	
20 16
lx_cmdline_cxxflags_set=${CXXFLAGS+set}
21 17

	
22 18
dnl Checks for programs.
23 19
AC_PROG_CXX
24 20
AC_PROG_CXXCPP
25 21
AC_PROG_INSTALL
26 22
AC_DISABLE_SHARED
27 23
AC_PROG_LIBTOOL
28 24

	
29 25
AC_CHECK_PROG([doxygen_found],[doxygen],[yes],[no])
30 26
AC_CHECK_PROG([gs_found],[gs],[yes],[no])
31 27

	
32 28
if test x"$lx_cmdline_cxxflags_set" != x"set" -a "$GXX" = yes; then
33 29
  CXXFLAGS="$CXXFLAGS -Wall -W -Wall -W -Wunused -Wformat=2 -Wctor-dtor-privacy -Wnon-virtual-dtor -Wno-char-subscripts -Wwrite-strings -Wno-char-subscripts -Wreturn-type -Wcast-qual -Wcast-align -Wsign-promo -Woverloaded-virtual -Woverloaded-virtual -ansi -fno-strict-aliasing -Wold-style-cast -Wno-unknown-pragmas"
34 30
fi
35 31

	
36 32
dnl Checks for libraries.
37 33
LX_CHECK_GLPK
38 34
LX_CHECK_CPLEX
39 35
LX_CHECK_SOPLEX
40 36

	
41 37
dnl Disable/enable building the demo programs
42 38
AC_ARG_ENABLE([demo],
43 39
AS_HELP_STRING([--enable-demo], [build the demo programs])
44 40
AS_HELP_STRING([--disable-demo], [do not build the demo programs @<:@default@:>@]),
45 41
              [], [enable_demo=no])
46 42
AC_MSG_CHECKING([whether to build the demo programs])
47 43
if test x"$enable_demo" != x"no"; then
48 44
  AC_MSG_RESULT([yes])
49 45
else
50 46
  AC_MSG_RESULT([no])
51 47
fi
52 48
AM_CONDITIONAL([WANT_DEMO], [test x"$enable_demo" != x"no"])
53 49

	
54 50
dnl Disable/enable building the binary tools
55 51
AC_ARG_ENABLE([tools],
56 52
AS_HELP_STRING([--enable-tools], [build additional tools @<:@default@:>@])
57 53
AS_HELP_STRING([--disable-tools], [do not build additional tools]),
58 54
              [], [enable_tools=yes])
Ignore white space 6 line context
... ...
@@ -21,100 +21,110 @@
21 21
 * Generator of Matsumoto and Nishimura.
22 22
 *
23 23
 * See the appropriate copyright notice below.
24 24
 * 
25 25
 * Copyright (C) 1997 - 2002, Makoto Matsumoto and Takuji Nishimura,
26 26
 * All rights reserved.                          
27 27
 *
28 28
 * Redistribution and use in source and binary forms, with or without
29 29
 * modification, are permitted provided that the following conditions
30 30
 * are met:
31 31
 *
32 32
 * 1. Redistributions of source code must retain the above copyright
33 33
 *    notice, this list of conditions and the following disclaimer.
34 34
 *
35 35
 * 2. Redistributions in binary form must reproduce the above copyright
36 36
 *    notice, this list of conditions and the following disclaimer in the
37 37
 *    documentation and/or other materials provided with the distribution.
38 38
 *
39 39
 * 3. The names of its contributors may not be used to endorse or promote 
40 40
 *    products derived from this software without specific prior written 
41 41
 *    permission.
42 42
 *
43 43
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
44 44
 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
45 45
 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
46 46
 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
47 47
 * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
48 48
 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
49 49
 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
50 50
 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
51 51
 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
52 52
 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
53 53
 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
54 54
 * OF THE POSSIBILITY OF SUCH DAMAGE.
55 55
 *
56 56
 *
57 57
 * Any feedback is very welcome.
58 58
 * http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/emt.html
59 59
 * email: m-mat @ math.sci.hiroshima-u.ac.jp (remove space)
60 60
 */
61 61

	
62 62
#ifndef LEMON_RANDOM_H
63 63
#define LEMON_RANDOM_H
64 64

	
65 65
#include <algorithm>
66 66
#include <iterator>
67 67
#include <vector>
68 68
#include <limits>
69
#include <fstream>
69 70

	
70 71
#include <lemon/math.h>
71 72
#include <lemon/dim2.h>
72 73

	
74
#ifndef WIN32
75
#include <sys/time.h>
76
#include <ctime>
77
#include <sys/types.h>
78
#include <unistd.h>
79
#else
80
#include <windows.h>
81
#endif
82

	
73 83
///\ingroup misc
74 84
///\file
75 85
///\brief Mersenne Twister random number generator
76 86

	
77 87
namespace lemon {
78 88

	
79 89
  namespace _random_bits {
80 90
    
81 91
    template <typename _Word, int _bits = std::numeric_limits<_Word>::digits>
82 92
    struct RandomTraits {};
83 93

	
84 94
    template <typename _Word>
85 95
    struct RandomTraits<_Word, 32> {
86 96

	
87 97
      typedef _Word Word;
88 98
      static const int bits = 32;
89 99

	
90 100
      static const int length = 624;
91 101
      static const int shift = 397;
92 102
      
93 103
      static const Word mul = 0x6c078965u;
94 104
      static const Word arrayInit = 0x012BD6AAu;
95 105
      static const Word arrayMul1 = 0x0019660Du;
96 106
      static const Word arrayMul2 = 0x5D588B65u;
97 107

	
98 108
      static const Word mask = 0x9908B0DFu;
99 109
      static const Word loMask = (1u << 31) - 1;
100 110
      static const Word hiMask = ~loMask;
101 111

	
102 112

	
103 113
      static Word tempering(Word rnd) {
104 114
        rnd ^= (rnd >> 11);
105 115
        rnd ^= (rnd << 7) & 0x9D2C5680u;
106 116
        rnd ^= (rnd << 15) & 0xEFC60000u;
107 117
        rnd ^= (rnd >> 18);
108 118
        return rnd;
109 119
      }
110 120

	
111 121
    };
112 122

	
113 123
    template <typename _Word>
114 124
    struct RandomTraits<_Word, 64> {
115 125

	
116 126
      typedef _Word Word;
117 127
      static const int bits = 64;
118 128

	
119 129
      static const int length = 312;
120 130
      static const int shift = 156;
... ...
@@ -481,279 +491,364 @@
481 491
  /// initialization and generation phase so they produce two
482 492
  /// completly different sequences.
483 493
  ///
484 494
  /// The generator gives back random numbers of serveral types. To
485 495
  /// get a random number from a range of a floating point type you
486 496
  /// can use one form of the \c operator() or the \c real() member
487 497
  /// function. If you want to get random number from the {0, 1, ...,
488 498
  /// n-1} integer range use the \c operator[] or the \c integer()
489 499
  /// method. And to get random number from the whole range of an
490 500
  /// integer type you can use the argumentless \c integer() or \c
491 501
  /// uinteger() functions. After all you can get random bool with
492 502
  /// equal chance of true and false or given probability of true
493 503
  /// result with the \c boolean() member functions.
494 504
  ///
495 505
  ///\code
496 506
  /// // The commented code is identical to the other
497 507
  /// double a = rnd();                     // [0.0, 1.0)
498 508
  /// // double a = rnd.real();             // [0.0, 1.0)
499 509
  /// double b = rnd(100.0);                // [0.0, 100.0)
500 510
  /// // double b = rnd.real(100.0);        // [0.0, 100.0)
501 511
  /// double c = rnd(1.0, 2.0);             // [1.0, 2.0)
502 512
  /// // double c = rnd.real(1.0, 2.0);     // [1.0, 2.0)
503 513
  /// int d = rnd[100000];                  // 0..99999
504 514
  /// // int d = rnd.integer(100000);       // 0..99999
505 515
  /// int e = rnd[6] + 1;                   // 1..6
506 516
  /// // int e = rnd.integer(1, 1 + 6);     // 1..6
507 517
  /// int b = rnd.uinteger<int>();          // 0 .. 2^31 - 1
508 518
  /// int c = rnd.integer<int>();           // - 2^31 .. 2^31 - 1
509 519
  /// bool g = rnd.boolean();               // P(g = true) = 0.5
510 520
  /// bool h = rnd.boolean(0.8);            // P(h = true) = 0.8
511 521
  ///\endcode
512 522
  ///
513 523
  /// LEMON provides a global instance of the random number
514 524
  /// generator which name is \ref lemon::rnd "rnd". Usually it is a
515 525
  /// good programming convenience to use this global generator to get
516 526
  /// random numbers.
517 527
  class Random {
518 528
  private:
519 529

	
520 530
    // Architecture word
521 531
    typedef unsigned long Word;
522 532
    
523 533
    _random_bits::RandomCore<Word> core;
524 534
    _random_bits::BoolProducer<Word> bool_producer;
525 535
    
526 536

	
527 537
  public:
528 538

	
539
    ///\name Initialization
540
    ///
541
    /// @{
542

	
543
    ///\name Initialization
544
    ///
545
    /// @{
546

	
529 547
    /// \brief Default constructor
530 548
    ///
531 549
    /// Constructor with constant seeding.
532 550
    Random() { core.initState(); }
533 551

	
534 552
    /// \brief Constructor with seed
535 553
    ///
536 554
    /// Constructor with seed. The current number type will be converted
537 555
    /// to the architecture word type.
538 556
    template <typename Number>
539 557
    Random(Number seed) { 
540 558
      _random_bits::Initializer<Number, Word>::init(core, seed);
541 559
    }
542 560

	
543 561
    /// \brief Constructor with array seeding
544 562
    ///
545 563
    /// Constructor with array seeding. The given range should contain
546 564
    /// any number type and the numbers will be converted to the
547 565
    /// architecture word type.
548 566
    template <typename Iterator>
549 567
    Random(Iterator begin, Iterator end) { 
550 568
      typedef typename std::iterator_traits<Iterator>::value_type Number;
551 569
      _random_bits::Initializer<Number, Word>::init(core, begin, end);
552 570
    }
553 571

	
554 572
    /// \brief Copy constructor
555 573
    ///
556 574
    /// Copy constructor. The generated sequence will be identical to
557 575
    /// the other sequence. It can be used to save the current state
558 576
    /// of the generator and later use it to generate the same
559 577
    /// sequence.
560 578
    Random(const Random& other) {
561 579
      core.copyState(other.core);
562 580
    }
563 581

	
564 582
    /// \brief Assign operator
565 583
    ///
566 584
    /// Assign operator. The generated sequence will be identical to
567 585
    /// the other sequence. It can be used to save the current state
568 586
    /// of the generator and later use it to generate the same
569 587
    /// sequence.
570 588
    Random& operator=(const Random& other) {
571 589
      if (&other != this) {
572 590
        core.copyState(other.core);
573 591
      }
574 592
      return *this;
575 593
    }
576 594

	
577 595
    /// \brief Seeding random sequence
578 596
    ///
579 597
    /// Seeding the random sequence. The current number type will be
580 598
    /// converted to the architecture word type.
581 599
    template <typename Number>
582 600
    void seed(Number seed) { 
583 601
      _random_bits::Initializer<Number, Word>::init(core, seed);
584 602
    }
585 603

	
586 604
    /// \brief Seeding random sequence
587 605
    ///
588 606
    /// Seeding the random sequence. The given range should contain
589 607
    /// any number type and the numbers will be converted to the
590 608
    /// architecture word type.
591 609
    template <typename Iterator>
592 610
    void seed(Iterator begin, Iterator end) { 
593 611
      typedef typename std::iterator_traits<Iterator>::value_type Number;
594 612
      _random_bits::Initializer<Number, Word>::init(core, begin, end);
595 613
    }
596 614

	
615
    /// \brief Seeding from file or from process id and time
616
    ///
617
    /// By default, this function calls the \c seedFromFile() member
618
    /// function with the <tt>/dev/urandom</tt> file. If it does not success,
619
    /// it uses the \c seedFromTime().
620
    /// \return Currently always true.
621
    bool seed() {
622
#ifndef WIN32
623
      if (seedFromFile("/dev/urandom", 0)) return true;
624
#endif
625
      if (seedFromTime()) return true;
626
      return false;
627
    }
628
    
629
    /// \brief Seeding from file
630
    ///
631
    /// Seeding the random sequence from file. The linux kernel has two
632
    /// devices, <tt>/dev/random</tt> and <tt>/dev/urandom</tt> which
633
    /// could give good seed values for pseudo random generators (The
634
    /// difference between two devices is that the <tt>random</tt> may
635
    /// block the reading operation while the kernel can give good
636
    /// source of randomness, while the <tt>urandom</tt> does not
637
    /// block the input, but it could give back bytes with worse
638
    /// entropy).
639
    /// \param file The source file
640
    /// \param offset The offset, from the file read.
641
    /// \return True when the seeding successes.
642
#ifndef WIN32
643
    bool seedFromFile(const std::string& file = "/dev/urandom", int offset = 0) 
644
#else
645
    bool seedFromFile(const std::string& file = "", int offset = 0) 
646
#endif
647
    {
648
      std::ifstream rs(file.c_str());
649
      const int size = 4;
650
      Word buf[size];
651
      if (offset != 0 && !rs.seekg(offset)) return false;
652
      if (!rs.read(reinterpret_cast<char*>(buf), sizeof(buf))) return false;
653
      seed(buf, buf + size);
654
      return true;
655
    }
656

	
657
    /// \brief Seding from process id and time
658
    ///
659
    /// Seding from process id and time. This function uses the
660
    /// current process id and the current time for initialize the
661
    /// random sequence.
662
    /// \return Currently always true.
663
    bool seedFromTime() { 	
664
#ifndef WIN32
665
      timeval tv;
666
      gettimeofday(&tv, 0);
667
      seed(getpid() + tv.tv_sec + tv.tv_usec);
668
#else
669
      FILETIME time;
670
      GetSystemTimeAsFileTime(&time);
671
      seed(GetCurrentProcessId() + time.dwHighDateTime + time.dwLowDateTime);
672
#endif
673
      return true;
674
    }
675

	
676
    /// @}
677

	
678
    ///\name Uniform distributions
679
    ///
680
    /// @{
681

	
597 682
    /// \brief Returns a random real number from the range [0, 1)
598 683
    ///
599 684
    /// It returns a random real number from the range [0, 1). The
600 685
    /// default Number type is \c double.
601 686
    template <typename Number>
602 687
    Number real() {
603 688
      return _random_bits::RealConversion<Number, Word>::convert(core);
604 689
    }
605 690

	
606 691
    double real() {
607 692
      return real<double>();
608 693
    }
609 694

	
610 695
    /// \brief Returns a random real number the range [0, b)
611 696
    ///
612 697
    /// It returns a random real number from the range [0, b).
613 698
    template <typename Number>
614 699
    Number real(Number b) { 
615 700
      return real<Number>() * b; 
616 701
    }
617 702

	
618 703
    /// \brief Returns a random real number from the range [a, b)
619 704
    ///
620 705
    /// It returns a random real number from the range [a, b).
621 706
    template <typename Number>
622 707
    Number real(Number a, Number b) { 
623 708
      return real<Number>() * (b - a) + a; 
624 709
    }
625 710

	
711
    /// @}
712

	
713
    ///\name Uniform distributions
714
    ///
715
    /// @{
716

	
626 717
    /// \brief Returns a random real number from the range [0, 1)
627 718
    ///
628 719
    /// It returns a random double from the range [0, 1).
629 720
    double operator()() {
630 721
      return real<double>();
631 722
    }
632 723

	
633 724
    /// \brief Returns a random real number from the range [0, b)
634 725
    ///
635 726
    /// It returns a random real number from the range [0, b).
636 727
    template <typename Number>
637 728
    Number operator()(Number b) { 
638 729
      return real<Number>() * b; 
639 730
    }
640 731

	
641 732
    /// \brief Returns a random real number from the range [a, b)
642 733
    ///
643 734
    /// It returns a random real number from the range [a, b).
644 735
    template <typename Number>
645 736
    Number operator()(Number a, Number b) { 
646 737
      return real<Number>() * (b - a) + a; 
647 738
    }
648 739

	
649 740
    /// \brief Returns a random integer from a range
650 741
    ///
651 742
    /// It returns a random integer from the range {0, 1, ..., b - 1}.
652 743
    template <typename Number>
653 744
    Number integer(Number b) {
654 745
      return _random_bits::Mapping<Number, Word>::map(core, b);
655 746
    }
656 747

	
657 748
    /// \brief Returns a random integer from a range
658 749
    ///
659 750
    /// It returns a random integer from the range {a, a + 1, ..., b - 1}.
660 751
    template <typename Number>
661 752
    Number integer(Number a, Number b) {
662 753
      return _random_bits::Mapping<Number, Word>::map(core, b - a) + a;
663 754
    }
664 755

	
665 756
    /// \brief Returns a random integer from a range
666 757
    ///
667 758
    /// It returns a random integer from the range {0, 1, ..., b - 1}.
668 759
    template <typename Number>
669 760
    Number operator[](Number b) {
670 761
      return _random_bits::Mapping<Number, Word>::map(core, b);
671 762
    }
672 763

	
673 764
    /// \brief Returns a random non-negative integer
674 765
    ///
675 766
    /// It returns a random non-negative integer uniformly from the
676 767
    /// whole range of the current \c Number type. The default result
677 768
    /// type of this function is <tt>unsigned int</tt>.
678 769
    template <typename Number>
679 770
    Number uinteger() {
680 771
      return _random_bits::IntConversion<Number, Word>::convert(core);
681 772
    }
682 773

	
774
    /// @}
775

	
683 776
    unsigned int uinteger() {
684 777
      return uinteger<unsigned int>();
685 778
    }
686 779

	
687 780
    /// \brief Returns a random integer
688 781
    ///
689 782
    /// It returns a random integer uniformly from the whole range of
690 783
    /// the current \c Number type. The default result type of this
691 784
    /// function is \c int.
692 785
    template <typename Number>
693 786
    Number integer() {
694 787
      static const int nb = std::numeric_limits<Number>::digits + 
695 788
        (std::numeric_limits<Number>::is_signed ? 1 : 0);
696 789
      return _random_bits::IntConversion<Number, Word, nb>::convert(core);
697 790
    }
698 791

	
699 792
    int integer() {
700 793
      return integer<int>();
701 794
    }
702 795
    
703 796
    /// \brief Returns a random bool
704 797
    ///
705 798
    /// It returns a random bool. The generator holds a buffer for
706 799
    /// random bits. Every time when it become empty the generator makes
707 800
    /// a new random word and fill the buffer up.
708 801
    bool boolean() {
709 802
      return bool_producer.convert(core);
710 803
    }
711 804

	
805
    /// @}
806

	
712 807
    ///\name Non-uniform distributions
713 808
    ///
714 809
    
715 810
    ///@{
716 811
    
717 812
    /// \brief Returns a random bool
718 813
    ///
719 814
    /// It returns a random bool with given probability of true result.
720 815
    bool boolean(double p) {
721 816
      return operator()() < p;
722 817
    }
723 818

	
724 819
    /// Standard Gauss distribution
725 820

	
726 821
    /// Standard Gauss distribution.
727 822
    /// \note The Cartesian form of the Box-Muller
728 823
    /// transformation is used to generate a random normal distribution.
729 824
    /// \todo Consider using the "ziggurat" method instead.
730 825
    double gauss() 
731 826
    {
732 827
      double V1,V2,S;
733 828
      do {
734 829
	V1=2*real<double>()-1;
735 830
	V2=2*real<double>()-1;
736 831
	S=V1*V1+V2*V2;
737 832
      } while(S>=1);
738 833
      return std::sqrt(-2*std::log(S)/S)*V1;
739 834
    }
740 835
    /// Gauss distribution with given mean and standard deviation
741 836

	
742 837
    /// Gauss distribution with given mean and standard deviation.
743 838
    /// \sa gauss()
744 839
    double gauss(double mean,double std_dev)
745 840
    {
746 841
      return gauss()*std_dev+mean;
747 842
    }
748 843

	
749 844
    /// Exponential distribution with given mean
750 845

	
751 846
    /// This function generates an exponential distribution random number
752 847
    /// with mean <tt>1/lambda</tt>.
753 848
    ///
754 849
    double exponential(double lambda=1.0)
755 850
    {
756 851
      return -std::log(1.0-real<double>())/lambda;
757 852
    }
758 853

	
759 854
    /// Gamma distribution with given integer shape
0 comments (0 inline)