1 |
1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*-
|
2 |
2 |
*
|
3 |
3 |
* This file is a part of LEMON, a generic C++ optimization library.
|
4 |
4 |
*
|
5 |
5 |
* Copyright (C) 2003-2008
|
6 |
6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
|
7 |
7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES).
|
8 |
8 |
*
|
9 |
9 |
* Permission to use, modify and distribute this software is granted
|
10 |
10 |
* provided that this copyright notice appears in all copies. For
|
11 |
11 |
* precise terms see the accompanying LICENSE file.
|
12 |
12 |
*
|
13 |
13 |
* This software is provided "AS IS" with no warranty of any kind,
|
14 |
14 |
* express or implied, and with no claim as to its suitability for any
|
15 |
15 |
* purpose.
|
16 |
16 |
*
|
17 |
17 |
*/
|
18 |
18 |
|
19 |
|
#ifndef LEMON_TOPOLOGY_H
|
20 |
|
#define LEMON_TOPOLOGY_H
|
|
19 |
#ifndef LEMON_CONNECTIVITY_H
|
|
20 |
#define LEMON_CONNECTIVITY_H
|
21 |
21 |
|
22 |
22 |
#include <lemon/dfs.h>
|
23 |
23 |
#include <lemon/bfs.h>
|
24 |
24 |
#include <lemon/core.h>
|
25 |
25 |
#include <lemon/maps.h>
|
26 |
26 |
#include <lemon/adaptors.h>
|
27 |
27 |
|
28 |
28 |
#include <lemon/concepts/digraph.h>
|
29 |
29 |
#include <lemon/concepts/graph.h>
|
30 |
30 |
#include <lemon/concept_check.h>
|
31 |
31 |
|
32 |
32 |
#include <stack>
|
33 |
33 |
#include <functional>
|
34 |
34 |
|
35 |
35 |
/// \ingroup connectivity
|
36 |
36 |
/// \file
|
37 |
37 |
/// \brief Connectivity algorithms
|
38 |
38 |
///
|
39 |
39 |
/// Connectivity algorithms
|
40 |
40 |
|
41 |
41 |
namespace lemon {
|
42 |
42 |
|
43 |
43 |
/// \ingroup connectivity
|
44 |
44 |
///
|
... |
... |
@@ -133,197 +133,198 @@
|
133 |
133 |
template SetPredMap<PredMap>::
|
134 |
134 |
template SetDistMap<DistMap>::
|
135 |
135 |
Create bfs(graph);
|
136 |
136 |
|
137 |
137 |
PredMap predMap;
|
138 |
138 |
bfs.predMap(predMap);
|
139 |
139 |
|
140 |
140 |
DistMap distMap;
|
141 |
141 |
bfs.distMap(distMap);
|
142 |
142 |
|
143 |
143 |
bfs.init();
|
144 |
144 |
for(typename Graph::NodeIt n(graph); n != INVALID; ++n) {
|
145 |
145 |
if(!bfs.reached(n)) {
|
146 |
146 |
bfs.addSource(n);
|
147 |
147 |
while (!bfs.emptyQueue()) {
|
148 |
148 |
compMap.set(bfs.nextNode(), compNum);
|
149 |
149 |
bfs.processNextNode();
|
150 |
150 |
}
|
151 |
151 |
++compNum;
|
152 |
152 |
}
|
153 |
153 |
}
|
154 |
154 |
return compNum;
|
155 |
155 |
}
|
156 |
156 |
|
157 |
|
namespace _topology_bits {
|
|
157 |
namespace _connectivity_bits {
|
158 |
158 |
|
159 |
159 |
template <typename Digraph, typename Iterator >
|
160 |
160 |
struct LeaveOrderVisitor : public DfsVisitor<Digraph> {
|
161 |
161 |
public:
|
162 |
162 |
typedef typename Digraph::Node Node;
|
163 |
163 |
LeaveOrderVisitor(Iterator it) : _it(it) {}
|
164 |
164 |
|
165 |
165 |
void leave(const Node& node) {
|
166 |
166 |
*(_it++) = node;
|
167 |
167 |
}
|
168 |
168 |
|
169 |
169 |
private:
|
170 |
170 |
Iterator _it;
|
171 |
171 |
};
|
172 |
172 |
|
173 |
173 |
template <typename Digraph, typename Map>
|
174 |
174 |
struct FillMapVisitor : public DfsVisitor<Digraph> {
|
175 |
175 |
public:
|
176 |
176 |
typedef typename Digraph::Node Node;
|
177 |
177 |
typedef typename Map::Value Value;
|
178 |
178 |
|
179 |
179 |
FillMapVisitor(Map& map, Value& value)
|
180 |
180 |
: _map(map), _value(value) {}
|
181 |
181 |
|
182 |
182 |
void reach(const Node& node) {
|
183 |
183 |
_map.set(node, _value);
|
184 |
184 |
}
|
185 |
185 |
private:
|
186 |
186 |
Map& _map;
|
187 |
187 |
Value& _value;
|
188 |
188 |
};
|
189 |
189 |
|
190 |
190 |
template <typename Digraph, typename ArcMap>
|
191 |
|
struct StronglyConnectedCutEdgesVisitor : public DfsVisitor<Digraph> {
|
|
191 |
struct StronglyConnectedCutArcsVisitor : public DfsVisitor<Digraph> {
|
192 |
192 |
public:
|
193 |
193 |
typedef typename Digraph::Node Node;
|
194 |
194 |
typedef typename Digraph::Arc Arc;
|
195 |
195 |
|
196 |
|
StronglyConnectedCutEdgesVisitor(const Digraph& digraph,
|
197 |
|
ArcMap& cutMap,
|
198 |
|
int& cutNum)
|
|
196 |
StronglyConnectedCutArcsVisitor(const Digraph& digraph,
|
|
197 |
ArcMap& cutMap,
|
|
198 |
int& cutNum)
|
199 |
199 |
: _digraph(digraph), _cutMap(cutMap), _cutNum(cutNum),
|
200 |
|
_compMap(digraph), _num(0) {
|
|
200 |
_compMap(digraph, -1), _num(-1) {
|
201 |
201 |
}
|
202 |
202 |
|
203 |
|
void stop(const Node&) {
|
|
203 |
void start(const Node&) {
|
204 |
204 |
++_num;
|
205 |
205 |
}
|
206 |
206 |
|
207 |
207 |
void reach(const Node& node) {
|
208 |
208 |
_compMap.set(node, _num);
|
209 |
209 |
}
|
210 |
210 |
|
211 |
211 |
void examine(const Arc& arc) {
|
212 |
212 |
if (_compMap[_digraph.source(arc)] !=
|
213 |
213 |
_compMap[_digraph.target(arc)]) {
|
214 |
214 |
_cutMap.set(arc, true);
|
215 |
215 |
++_cutNum;
|
216 |
216 |
}
|
217 |
217 |
}
|
218 |
218 |
private:
|
219 |
219 |
const Digraph& _digraph;
|
220 |
220 |
ArcMap& _cutMap;
|
221 |
221 |
int& _cutNum;
|
222 |
222 |
|
223 |
223 |
typename Digraph::template NodeMap<int> _compMap;
|
224 |
224 |
int _num;
|
225 |
225 |
};
|
226 |
226 |
|
227 |
227 |
}
|
228 |
228 |
|
229 |
229 |
|
230 |
230 |
/// \ingroup connectivity
|
231 |
231 |
///
|
232 |
232 |
/// \brief Check whether the given directed graph is strongly connected.
|
233 |
233 |
///
|
234 |
234 |
/// Check whether the given directed graph is strongly connected. The
|
235 |
235 |
/// graph is strongly connected when any two nodes of the graph are
|
236 |
236 |
/// connected with directed paths in both direction.
|
237 |
237 |
/// \return %False when the graph is not strongly connected.
|
238 |
238 |
/// \see connected
|
239 |
239 |
///
|
240 |
240 |
/// \note By definition, the empty graph is strongly connected.
|
241 |
241 |
template <typename Digraph>
|
242 |
242 |
bool stronglyConnected(const Digraph& digraph) {
|
243 |
243 |
checkConcept<concepts::Digraph, Digraph>();
|
244 |
244 |
|
245 |
245 |
typedef typename Digraph::Node Node;
|
246 |
246 |
typedef typename Digraph::NodeIt NodeIt;
|
247 |
247 |
|
248 |
248 |
typename Digraph::Node source = NodeIt(digraph);
|
249 |
249 |
if (source == INVALID) return true;
|
250 |
250 |
|
251 |
|
using namespace _topology_bits;
|
|
251 |
using namespace _connectivity_bits;
|
252 |
252 |
|
253 |
253 |
typedef DfsVisitor<Digraph> Visitor;
|
254 |
254 |
Visitor visitor;
|
255 |
255 |
|
256 |
256 |
DfsVisit<Digraph, Visitor> dfs(digraph, visitor);
|
257 |
257 |
dfs.init();
|
258 |
258 |
dfs.addSource(source);
|
259 |
259 |
dfs.start();
|
260 |
260 |
|
261 |
261 |
for (NodeIt it(digraph); it != INVALID; ++it) {
|
262 |
262 |
if (!dfs.reached(it)) {
|
263 |
263 |
return false;
|
264 |
264 |
}
|
265 |
265 |
}
|
266 |
266 |
|
267 |
267 |
typedef ReverseDigraph<const Digraph> RDigraph;
|
|
268 |
typedef typename RDigraph::NodeIt RNodeIt;
|
268 |
269 |
RDigraph rdigraph(digraph);
|
269 |
270 |
|
270 |
271 |
typedef DfsVisitor<Digraph> RVisitor;
|
271 |
272 |
RVisitor rvisitor;
|
272 |
273 |
|
273 |
274 |
DfsVisit<RDigraph, RVisitor> rdfs(rdigraph, rvisitor);
|
274 |
275 |
rdfs.init();
|
275 |
276 |
rdfs.addSource(source);
|
276 |
277 |
rdfs.start();
|
277 |
278 |
|
278 |
|
for (NodeIt it(rdigraph); it != INVALID; ++it) {
|
|
279 |
for (RNodeIt it(rdigraph); it != INVALID; ++it) {
|
279 |
280 |
if (!rdfs.reached(it)) {
|
280 |
281 |
return false;
|
281 |
282 |
}
|
282 |
283 |
}
|
283 |
284 |
|
284 |
285 |
return true;
|
285 |
286 |
}
|
286 |
287 |
|
287 |
288 |
/// \ingroup connectivity
|
288 |
289 |
///
|
289 |
290 |
/// \brief Count the strongly connected components of a directed graph
|
290 |
291 |
///
|
291 |
292 |
/// Count the strongly connected components of a directed graph.
|
292 |
293 |
/// The strongly connected components are the classes of an
|
293 |
294 |
/// equivalence relation on the nodes of the graph. Two nodes are in
|
294 |
295 |
/// the same class if they are connected with directed paths in both
|
295 |
296 |
/// direction.
|
296 |
297 |
///
|
297 |
298 |
/// \param graph The graph.
|
298 |
299 |
/// \return The number of components
|
299 |
300 |
/// \note By definition, the empty graph has zero
|
300 |
301 |
/// strongly connected components.
|
301 |
302 |
template <typename Digraph>
|
302 |
303 |
int countStronglyConnectedComponents(const Digraph& digraph) {
|
303 |
304 |
checkConcept<concepts::Digraph, Digraph>();
|
304 |
305 |
|
305 |
|
using namespace _topology_bits;
|
|
306 |
using namespace _connectivity_bits;
|
306 |
307 |
|
307 |
308 |
typedef typename Digraph::Node Node;
|
308 |
309 |
typedef typename Digraph::Arc Arc;
|
309 |
310 |
typedef typename Digraph::NodeIt NodeIt;
|
310 |
311 |
typedef typename Digraph::ArcIt ArcIt;
|
311 |
312 |
|
312 |
313 |
typedef std::vector<Node> Container;
|
313 |
314 |
typedef typename Container::iterator Iterator;
|
314 |
315 |
|
315 |
316 |
Container nodes(countNodes(digraph));
|
316 |
317 |
typedef LeaveOrderVisitor<Digraph, Iterator> Visitor;
|
317 |
318 |
Visitor visitor(nodes.begin());
|
318 |
319 |
|
319 |
320 |
DfsVisit<Digraph, Visitor> dfs(digraph, visitor);
|
320 |
321 |
dfs.init();
|
321 |
322 |
for (NodeIt it(digraph); it != INVALID; ++it) {
|
322 |
323 |
if (!dfs.reached(it)) {
|
323 |
324 |
dfs.addSource(it);
|
324 |
325 |
dfs.start();
|
325 |
326 |
}
|
326 |
327 |
}
|
327 |
328 |
|
328 |
329 |
typedef typename Container::reverse_iterator RIterator;
|
329 |
330 |
typedef ReverseDigraph<const Digraph> RDigraph;
|
... |
... |
@@ -353,49 +354,49 @@
|
353 |
354 |
/// \brief Find the strongly connected components of a directed graph
|
354 |
355 |
///
|
355 |
356 |
/// Find the strongly connected components of a directed graph. The
|
356 |
357 |
/// strongly connected components are the classes of an equivalence
|
357 |
358 |
/// relation on the nodes of the graph. Two nodes are in
|
358 |
359 |
/// relationship when there are directed paths between them in both
|
359 |
360 |
/// direction. In addition, the numbering of components will satisfy
|
360 |
361 |
/// that there is no arc going from a higher numbered component to
|
361 |
362 |
/// a lower.
|
362 |
363 |
///
|
363 |
364 |
/// \param digraph The digraph.
|
364 |
365 |
/// \retval compMap A writable node map. The values will be set from 0 to
|
365 |
366 |
/// the number of the strongly connected components minus one. Each value
|
366 |
367 |
/// of the map will be set exactly once, the values of a certain component
|
367 |
368 |
/// will be set continuously.
|
368 |
369 |
/// \return The number of components
|
369 |
370 |
///
|
370 |
371 |
template <typename Digraph, typename NodeMap>
|
371 |
372 |
int stronglyConnectedComponents(const Digraph& digraph, NodeMap& compMap) {
|
372 |
373 |
checkConcept<concepts::Digraph, Digraph>();
|
373 |
374 |
typedef typename Digraph::Node Node;
|
374 |
375 |
typedef typename Digraph::NodeIt NodeIt;
|
375 |
376 |
checkConcept<concepts::WriteMap<Node, int>, NodeMap>();
|
376 |
377 |
|
377 |
|
using namespace _topology_bits;
|
|
378 |
using namespace _connectivity_bits;
|
378 |
379 |
|
379 |
380 |
typedef std::vector<Node> Container;
|
380 |
381 |
typedef typename Container::iterator Iterator;
|
381 |
382 |
|
382 |
383 |
Container nodes(countNodes(digraph));
|
383 |
384 |
typedef LeaveOrderVisitor<Digraph, Iterator> Visitor;
|
384 |
385 |
Visitor visitor(nodes.begin());
|
385 |
386 |
|
386 |
387 |
DfsVisit<Digraph, Visitor> dfs(digraph, visitor);
|
387 |
388 |
dfs.init();
|
388 |
389 |
for (NodeIt it(digraph); it != INVALID; ++it) {
|
389 |
390 |
if (!dfs.reached(it)) {
|
390 |
391 |
dfs.addSource(it);
|
391 |
392 |
dfs.start();
|
392 |
393 |
}
|
393 |
394 |
}
|
394 |
395 |
|
395 |
396 |
typedef typename Container::reverse_iterator RIterator;
|
396 |
397 |
typedef ReverseDigraph<const Digraph> RDigraph;
|
397 |
398 |
|
398 |
399 |
RDigraph rdigraph(digraph);
|
399 |
400 |
|
400 |
401 |
int compNum = 0;
|
401 |
402 |
|
... |
... |
@@ -417,89 +418,89 @@
|
417 |
418 |
|
418 |
419 |
/// \ingroup connectivity
|
419 |
420 |
///
|
420 |
421 |
/// \brief Find the cut arcs of the strongly connected components.
|
421 |
422 |
///
|
422 |
423 |
/// Find the cut arcs of the strongly connected components.
|
423 |
424 |
/// The strongly connected components are the classes of an equivalence
|
424 |
425 |
/// relation on the nodes of the graph. Two nodes are in relationship
|
425 |
426 |
/// when there are directed paths between them in both direction.
|
426 |
427 |
/// The strongly connected components are separated by the cut arcs.
|
427 |
428 |
///
|
428 |
429 |
/// \param graph The graph.
|
429 |
430 |
/// \retval cutMap A writable node map. The values will be set true when the
|
430 |
431 |
/// arc is a cut arc.
|
431 |
432 |
///
|
432 |
433 |
/// \return The number of cut arcs
|
433 |
434 |
template <typename Digraph, typename ArcMap>
|
434 |
435 |
int stronglyConnectedCutArcs(const Digraph& graph, ArcMap& cutMap) {
|
435 |
436 |
checkConcept<concepts::Digraph, Digraph>();
|
436 |
437 |
typedef typename Digraph::Node Node;
|
437 |
438 |
typedef typename Digraph::Arc Arc;
|
438 |
439 |
typedef typename Digraph::NodeIt NodeIt;
|
439 |
440 |
checkConcept<concepts::WriteMap<Arc, bool>, ArcMap>();
|
440 |
441 |
|
441 |
|
using namespace _topology_bits;
|
|
442 |
using namespace _connectivity_bits;
|
442 |
443 |
|
443 |
444 |
typedef std::vector<Node> Container;
|
444 |
445 |
typedef typename Container::iterator Iterator;
|
445 |
446 |
|
446 |
447 |
Container nodes(countNodes(graph));
|
447 |
448 |
typedef LeaveOrderVisitor<Digraph, Iterator> Visitor;
|
448 |
449 |
Visitor visitor(nodes.begin());
|
449 |
450 |
|
450 |
451 |
DfsVisit<Digraph, Visitor> dfs(graph, visitor);
|
451 |
452 |
dfs.init();
|
452 |
453 |
for (NodeIt it(graph); it != INVALID; ++it) {
|
453 |
454 |
if (!dfs.reached(it)) {
|
454 |
455 |
dfs.addSource(it);
|
455 |
456 |
dfs.start();
|
456 |
457 |
}
|
457 |
458 |
}
|
458 |
459 |
|
459 |
460 |
typedef typename Container::reverse_iterator RIterator;
|
460 |
461 |
typedef ReverseDigraph<const Digraph> RDigraph;
|
461 |
462 |
|
462 |
463 |
RDigraph rgraph(graph);
|
463 |
464 |
|
464 |
465 |
int cutNum = 0;
|
465 |
466 |
|
466 |
|
typedef StronglyConnectedCutEdgesVisitor<RDigraph, ArcMap> RVisitor;
|
|
467 |
typedef StronglyConnectedCutArcsVisitor<RDigraph, ArcMap> RVisitor;
|
467 |
468 |
RVisitor rvisitor(rgraph, cutMap, cutNum);
|
468 |
469 |
|
469 |
470 |
DfsVisit<RDigraph, RVisitor> rdfs(rgraph, rvisitor);
|
470 |
471 |
|
471 |
472 |
rdfs.init();
|
472 |
473 |
for (RIterator it = nodes.rbegin(); it != nodes.rend(); ++it) {
|
473 |
474 |
if (!rdfs.reached(*it)) {
|
474 |
475 |
rdfs.addSource(*it);
|
475 |
476 |
rdfs.start();
|
476 |
477 |
}
|
477 |
478 |
}
|
478 |
479 |
return cutNum;
|
479 |
480 |
}
|
480 |
481 |
|
481 |
|
namespace _topology_bits {
|
|
482 |
namespace _connectivity_bits {
|
482 |
483 |
|
483 |
484 |
template <typename Digraph>
|
484 |
485 |
class CountBiNodeConnectedComponentsVisitor : public DfsVisitor<Digraph> {
|
485 |
486 |
public:
|
486 |
487 |
typedef typename Digraph::Node Node;
|
487 |
488 |
typedef typename Digraph::Arc Arc;
|
488 |
489 |
typedef typename Digraph::Edge Edge;
|
489 |
490 |
|
490 |
491 |
CountBiNodeConnectedComponentsVisitor(const Digraph& graph, int &compNum)
|
491 |
492 |
: _graph(graph), _compNum(compNum),
|
492 |
493 |
_numMap(graph), _retMap(graph), _predMap(graph), _num(0) {}
|
493 |
494 |
|
494 |
495 |
void start(const Node& node) {
|
495 |
496 |
_predMap.set(node, INVALID);
|
496 |
497 |
}
|
497 |
498 |
|
498 |
499 |
void reach(const Node& node) {
|
499 |
500 |
_numMap.set(node, _num);
|
500 |
501 |
_retMap.set(node, _num);
|
501 |
502 |
++_num;
|
502 |
503 |
}
|
503 |
504 |
|
504 |
505 |
void discover(const Arc& edge) {
|
505 |
506 |
_predMap.set(_graph.target(edge), _graph.source(edge));
|
... |
... |
@@ -709,151 +710,151 @@
|
709 |
710 |
///
|
710 |
711 |
/// \param graph The graph.
|
711 |
712 |
/// \return %True when the graph bi-node-connected.
|
712 |
713 |
template <typename Graph>
|
713 |
714 |
bool biNodeConnected(const Graph& graph) {
|
714 |
715 |
return countBiNodeConnectedComponents(graph) <= 1;
|
715 |
716 |
}
|
716 |
717 |
|
717 |
718 |
/// \ingroup connectivity
|
718 |
719 |
///
|
719 |
720 |
/// \brief Count the biconnected components.
|
720 |
721 |
///
|
721 |
722 |
/// This function finds the bi-node-connected components in an undirected
|
722 |
723 |
/// graph. The biconnected components are the classes of an equivalence
|
723 |
724 |
/// relation on the undirected edges. Two undirected edge is in relationship
|
724 |
725 |
/// when they are on same circle.
|
725 |
726 |
///
|
726 |
727 |
/// \param graph The graph.
|
727 |
728 |
/// \return The number of components.
|
728 |
729 |
template <typename Graph>
|
729 |
730 |
int countBiNodeConnectedComponents(const Graph& graph) {
|
730 |
731 |
checkConcept<concepts::Graph, Graph>();
|
731 |
732 |
typedef typename Graph::NodeIt NodeIt;
|
732 |
733 |
|
733 |
|
using namespace _topology_bits;
|
|
734 |
using namespace _connectivity_bits;
|
734 |
735 |
|
735 |
736 |
typedef CountBiNodeConnectedComponentsVisitor<Graph> Visitor;
|
736 |
737 |
|
737 |
738 |
int compNum = 0;
|
738 |
739 |
Visitor visitor(graph, compNum);
|
739 |
740 |
|
740 |
741 |
DfsVisit<Graph, Visitor> dfs(graph, visitor);
|
741 |
742 |
dfs.init();
|
742 |
743 |
|
743 |
744 |
for (NodeIt it(graph); it != INVALID; ++it) {
|
744 |
745 |
if (!dfs.reached(it)) {
|
745 |
746 |
dfs.addSource(it);
|
746 |
747 |
dfs.start();
|
747 |
748 |
}
|
748 |
749 |
}
|
749 |
750 |
return compNum;
|
750 |
751 |
}
|
751 |
752 |
|
752 |
753 |
/// \ingroup connectivity
|
753 |
754 |
///
|
754 |
755 |
/// \brief Find the bi-node-connected components.
|
755 |
756 |
///
|
756 |
757 |
/// This function finds the bi-node-connected components in an undirected
|
757 |
758 |
/// graph. The bi-node-connected components are the classes of an equivalence
|
758 |
759 |
/// relation on the undirected edges. Two undirected edge are in relationship
|
759 |
760 |
/// when they are on same circle.
|
760 |
761 |
///
|
761 |
762 |
/// \param graph The graph.
|
762 |
763 |
/// \retval compMap A writable uedge map. The values will be set from 0
|
763 |
764 |
/// to the number of the biconnected components minus one. Each values
|
764 |
765 |
/// of the map will be set exactly once, the values of a certain component
|
765 |
766 |
/// will be set continuously.
|
766 |
767 |
/// \return The number of components.
|
767 |
768 |
///
|
768 |
769 |
template <typename Graph, typename EdgeMap>
|
769 |
770 |
int biNodeConnectedComponents(const Graph& graph,
|
770 |
771 |
EdgeMap& compMap) {
|
771 |
772 |
checkConcept<concepts::Graph, Graph>();
|
772 |
773 |
typedef typename Graph::NodeIt NodeIt;
|
773 |
774 |
typedef typename Graph::Edge Edge;
|
774 |
775 |
checkConcept<concepts::WriteMap<Edge, int>, EdgeMap>();
|
775 |
776 |
|
776 |
|
using namespace _topology_bits;
|
|
777 |
using namespace _connectivity_bits;
|
777 |
778 |
|
778 |
779 |
typedef BiNodeConnectedComponentsVisitor<Graph, EdgeMap> Visitor;
|
779 |
780 |
|
780 |
781 |
int compNum = 0;
|
781 |
782 |
Visitor visitor(graph, compMap, compNum);
|
782 |
783 |
|
783 |
784 |
DfsVisit<Graph, Visitor> dfs(graph, visitor);
|
784 |
785 |
dfs.init();
|
785 |
786 |
|
786 |
787 |
for (NodeIt it(graph); it != INVALID; ++it) {
|
787 |
788 |
if (!dfs.reached(it)) {
|
788 |
789 |
dfs.addSource(it);
|
789 |
790 |
dfs.start();
|
790 |
791 |
}
|
791 |
792 |
}
|
792 |
793 |
return compNum;
|
793 |
794 |
}
|
794 |
795 |
|
795 |
796 |
/// \ingroup connectivity
|
796 |
797 |
///
|
797 |
798 |
/// \brief Find the bi-node-connected cut nodes.
|
798 |
799 |
///
|
799 |
800 |
/// This function finds the bi-node-connected cut nodes in an undirected
|
800 |
801 |
/// graph. The bi-node-connected components are the classes of an equivalence
|
801 |
802 |
/// relation on the undirected edges. Two undirected edges are in
|
802 |
803 |
/// relationship when they are on same circle. The biconnected components
|
803 |
804 |
/// are separted by nodes which are the cut nodes of the components.
|
804 |
805 |
///
|
805 |
806 |
/// \param graph The graph.
|
806 |
807 |
/// \retval cutMap A writable edge map. The values will be set true when
|
807 |
808 |
/// the node separate two or more components.
|
808 |
809 |
/// \return The number of the cut nodes.
|
809 |
810 |
template <typename Graph, typename NodeMap>
|
810 |
811 |
int biNodeConnectedCutNodes(const Graph& graph, NodeMap& cutMap) {
|
811 |
812 |
checkConcept<concepts::Graph, Graph>();
|
812 |
813 |
typedef typename Graph::Node Node;
|
813 |
814 |
typedef typename Graph::NodeIt NodeIt;
|
814 |
815 |
checkConcept<concepts::WriteMap<Node, bool>, NodeMap>();
|
815 |
816 |
|
816 |
|
using namespace _topology_bits;
|
|
817 |
using namespace _connectivity_bits;
|
817 |
818 |
|
818 |
819 |
typedef BiNodeConnectedCutNodesVisitor<Graph, NodeMap> Visitor;
|
819 |
820 |
|
820 |
821 |
int cutNum = 0;
|
821 |
822 |
Visitor visitor(graph, cutMap, cutNum);
|
822 |
823 |
|
823 |
824 |
DfsVisit<Graph, Visitor> dfs(graph, visitor);
|
824 |
825 |
dfs.init();
|
825 |
826 |
|
826 |
827 |
for (NodeIt it(graph); it != INVALID; ++it) {
|
827 |
828 |
if (!dfs.reached(it)) {
|
828 |
829 |
dfs.addSource(it);
|
829 |
830 |
dfs.start();
|
830 |
831 |
}
|
831 |
832 |
}
|
832 |
833 |
return cutNum;
|
833 |
834 |
}
|
834 |
835 |
|
835 |
|
namespace _topology_bits {
|
|
836 |
namespace _connectivity_bits {
|
836 |
837 |
|
837 |
838 |
template <typename Digraph>
|
838 |
839 |
class CountBiEdgeConnectedComponentsVisitor : public DfsVisitor<Digraph> {
|
839 |
840 |
public:
|
840 |
841 |
typedef typename Digraph::Node Node;
|
841 |
842 |
typedef typename Digraph::Arc Arc;
|
842 |
843 |
typedef typename Digraph::Edge Edge;
|
843 |
844 |
|
844 |
845 |
CountBiEdgeConnectedComponentsVisitor(const Digraph& graph, int &compNum)
|
845 |
846 |
: _graph(graph), _compNum(compNum),
|
846 |
847 |
_numMap(graph), _retMap(graph), _predMap(graph), _num(0) {}
|
847 |
848 |
|
848 |
849 |
void start(const Node& node) {
|
849 |
850 |
_predMap.set(node, INVALID);
|
850 |
851 |
}
|
851 |
852 |
|
852 |
853 |
void reach(const Node& node) {
|
853 |
854 |
_numMap.set(node, _num);
|
854 |
855 |
_retMap.set(node, _num);
|
855 |
856 |
++_num;
|
856 |
857 |
}
|
857 |
858 |
|
858 |
859 |
void leave(const Node& node) {
|
859 |
860 |
if (_numMap[node] <= _retMap[node]) {
|
... |
... |
@@ -1032,297 +1033,299 @@
|
1032 |
1033 |
///
|
1033 |
1034 |
/// \param graph The undirected graph.
|
1034 |
1035 |
/// \return The number of components.
|
1035 |
1036 |
template <typename Graph>
|
1036 |
1037 |
bool biEdgeConnected(const Graph& graph) {
|
1037 |
1038 |
return countBiEdgeConnectedComponents(graph) <= 1;
|
1038 |
1039 |
}
|
1039 |
1040 |
|
1040 |
1041 |
/// \ingroup connectivity
|
1041 |
1042 |
///
|
1042 |
1043 |
/// \brief Count the bi-edge-connected components.
|
1043 |
1044 |
///
|
1044 |
1045 |
/// This function count the bi-edge-connected components in an undirected
|
1045 |
1046 |
/// graph. The bi-edge-connected components are the classes of an equivalence
|
1046 |
1047 |
/// relation on the nodes. Two nodes are in relationship when they are
|
1047 |
1048 |
/// connected with at least two edge-disjoint paths.
|
1048 |
1049 |
///
|
1049 |
1050 |
/// \param graph The undirected graph.
|
1050 |
1051 |
/// \return The number of components.
|
1051 |
1052 |
template <typename Graph>
|
1052 |
1053 |
int countBiEdgeConnectedComponents(const Graph& graph) {
|
1053 |
1054 |
checkConcept<concepts::Graph, Graph>();
|
1054 |
1055 |
typedef typename Graph::NodeIt NodeIt;
|
1055 |
1056 |
|
1056 |
|
using namespace _topology_bits;
|
|
1057 |
using namespace _connectivity_bits;
|
1057 |
1058 |
|
1058 |
1059 |
typedef CountBiEdgeConnectedComponentsVisitor<Graph> Visitor;
|
1059 |
1060 |
|
1060 |
1061 |
int compNum = 0;
|
1061 |
1062 |
Visitor visitor(graph, compNum);
|
1062 |
1063 |
|
1063 |
1064 |
DfsVisit<Graph, Visitor> dfs(graph, visitor);
|
1064 |
1065 |
dfs.init();
|
1065 |
1066 |
|
1066 |
1067 |
for (NodeIt it(graph); it != INVALID; ++it) {
|
1067 |
1068 |
if (!dfs.reached(it)) {
|
1068 |
1069 |
dfs.addSource(it);
|
1069 |
1070 |
dfs.start();
|
1070 |
1071 |
}
|
1071 |
1072 |
}
|
1072 |
1073 |
return compNum;
|
1073 |
1074 |
}
|
1074 |
1075 |
|
1075 |
1076 |
/// \ingroup connectivity
|
1076 |
1077 |
///
|
1077 |
1078 |
/// \brief Find the bi-edge-connected components.
|
1078 |
1079 |
///
|
1079 |
1080 |
/// This function finds the bi-edge-connected components in an undirected
|
1080 |
1081 |
/// graph. The bi-edge-connected components are the classes of an equivalence
|
1081 |
1082 |
/// relation on the nodes. Two nodes are in relationship when they are
|
1082 |
1083 |
/// connected at least two edge-disjoint paths.
|
1083 |
1084 |
///
|
1084 |
1085 |
/// \param graph The graph.
|
1085 |
1086 |
/// \retval compMap A writable node map. The values will be set from 0 to
|
1086 |
1087 |
/// the number of the biconnected components minus one. Each values
|
1087 |
1088 |
/// of the map will be set exactly once, the values of a certain component
|
1088 |
1089 |
/// will be set continuously.
|
1089 |
1090 |
/// \return The number of components.
|
1090 |
1091 |
///
|
1091 |
1092 |
template <typename Graph, typename NodeMap>
|
1092 |
1093 |
int biEdgeConnectedComponents(const Graph& graph, NodeMap& compMap) {
|
1093 |
1094 |
checkConcept<concepts::Graph, Graph>();
|
1094 |
1095 |
typedef typename Graph::NodeIt NodeIt;
|
1095 |
1096 |
typedef typename Graph::Node Node;
|
1096 |
1097 |
checkConcept<concepts::WriteMap<Node, int>, NodeMap>();
|
1097 |
1098 |
|
1098 |
|
using namespace _topology_bits;
|
|
1099 |
using namespace _connectivity_bits;
|
1099 |
1100 |
|
1100 |
1101 |
typedef BiEdgeConnectedComponentsVisitor<Graph, NodeMap> Visitor;
|
1101 |
1102 |
|
1102 |
1103 |
int compNum = 0;
|
1103 |
1104 |
Visitor visitor(graph, compMap, compNum);
|
1104 |
1105 |
|
1105 |
1106 |
DfsVisit<Graph, Visitor> dfs(graph, visitor);
|
1106 |
1107 |
dfs.init();
|
1107 |
1108 |
|
1108 |
1109 |
for (NodeIt it(graph); it != INVALID; ++it) {
|
1109 |
1110 |
if (!dfs.reached(it)) {
|
1110 |
1111 |
dfs.addSource(it);
|
1111 |
1112 |
dfs.start();
|
1112 |
1113 |
}
|
1113 |
1114 |
}
|
1114 |
1115 |
return compNum;
|
1115 |
1116 |
}
|
1116 |
1117 |
|
1117 |
1118 |
/// \ingroup connectivity
|
1118 |
1119 |
///
|
1119 |
1120 |
/// \brief Find the bi-edge-connected cut edges.
|
1120 |
1121 |
///
|
1121 |
1122 |
/// This function finds the bi-edge-connected components in an undirected
|
1122 |
1123 |
/// graph. The bi-edge-connected components are the classes of an equivalence
|
1123 |
1124 |
/// relation on the nodes. Two nodes are in relationship when they are
|
1124 |
1125 |
/// connected with at least two edge-disjoint paths. The bi-edge-connected
|
1125 |
1126 |
/// components are separted by edges which are the cut edges of the
|
1126 |
1127 |
/// components.
|
1127 |
1128 |
///
|
1128 |
1129 |
/// \param graph The graph.
|
1129 |
1130 |
/// \retval cutMap A writable node map. The values will be set true when the
|
1130 |
1131 |
/// edge is a cut edge.
|
1131 |
1132 |
/// \return The number of cut edges.
|
1132 |
1133 |
template <typename Graph, typename EdgeMap>
|
1133 |
1134 |
int biEdgeConnectedCutEdges(const Graph& graph, EdgeMap& cutMap) {
|
1134 |
1135 |
checkConcept<concepts::Graph, Graph>();
|
1135 |
1136 |
typedef typename Graph::NodeIt NodeIt;
|
1136 |
1137 |
typedef typename Graph::Edge Edge;
|
1137 |
1138 |
checkConcept<concepts::WriteMap<Edge, bool>, EdgeMap>();
|
1138 |
1139 |
|
1139 |
|
using namespace _topology_bits;
|
|
1140 |
using namespace _connectivity_bits;
|
1140 |
1141 |
|
1141 |
1142 |
typedef BiEdgeConnectedCutEdgesVisitor<Graph, EdgeMap> Visitor;
|
1142 |
1143 |
|
1143 |
1144 |
int cutNum = 0;
|
1144 |
1145 |
Visitor visitor(graph, cutMap, cutNum);
|
1145 |
1146 |
|
1146 |
1147 |
DfsVisit<Graph, Visitor> dfs(graph, visitor);
|
1147 |
1148 |
dfs.init();
|
1148 |
1149 |
|
1149 |
1150 |
for (NodeIt it(graph); it != INVALID; ++it) {
|
1150 |
1151 |
if (!dfs.reached(it)) {
|
1151 |
1152 |
dfs.addSource(it);
|
1152 |
1153 |
dfs.start();
|
1153 |
1154 |
}
|
1154 |
1155 |
}
|
1155 |
1156 |
return cutNum;
|
1156 |
1157 |
}
|
1157 |
1158 |
|
1158 |
1159 |
|
1159 |
|
namespace _topology_bits {
|
|
1160 |
namespace _connectivity_bits {
|
1160 |
1161 |
|
1161 |
1162 |
template <typename Digraph, typename IntNodeMap>
|
1162 |
1163 |
class TopologicalSortVisitor : public DfsVisitor<Digraph> {
|
1163 |
1164 |
public:
|
1164 |
1165 |
typedef typename Digraph::Node Node;
|
1165 |
1166 |
typedef typename Digraph::Arc edge;
|
1166 |
1167 |
|
1167 |
1168 |
TopologicalSortVisitor(IntNodeMap& order, int num)
|
1168 |
1169 |
: _order(order), _num(num) {}
|
1169 |
1170 |
|
1170 |
1171 |
void leave(const Node& node) {
|
1171 |
1172 |
_order.set(node, --_num);
|
1172 |
1173 |
}
|
1173 |
1174 |
|
1174 |
1175 |
private:
|
1175 |
1176 |
IntNodeMap& _order;
|
1176 |
1177 |
int _num;
|
1177 |
1178 |
};
|
1178 |
1179 |
|
1179 |
1180 |
}
|
1180 |
1181 |
|
1181 |
1182 |
/// \ingroup connectivity
|
1182 |
1183 |
///
|
1183 |
1184 |
/// \brief Sort the nodes of a DAG into topolgical order.
|
1184 |
1185 |
///
|
1185 |
1186 |
/// Sort the nodes of a DAG into topolgical order.
|
1186 |
1187 |
///
|
1187 |
1188 |
/// \param graph The graph. It must be directed and acyclic.
|
1188 |
1189 |
/// \retval order A writable node map. The values will be set from 0 to
|
1189 |
1190 |
/// the number of the nodes in the graph minus one. Each values of the map
|
1190 |
1191 |
/// will be set exactly once, the values will be set descending order.
|
1191 |
1192 |
///
|
1192 |
1193 |
/// \see checkedTopologicalSort
|
1193 |
1194 |
/// \see dag
|
1194 |
1195 |
template <typename Digraph, typename NodeMap>
|
1195 |
1196 |
void topologicalSort(const Digraph& graph, NodeMap& order) {
|
1196 |
|
using namespace _topology_bits;
|
|
1197 |
using namespace _connectivity_bits;
|
1197 |
1198 |
|
1198 |
1199 |
checkConcept<concepts::Digraph, Digraph>();
|
1199 |
1200 |
checkConcept<concepts::WriteMap<typename Digraph::Node, int>, NodeMap>();
|
1200 |
1201 |
|
1201 |
1202 |
typedef typename Digraph::Node Node;
|
1202 |
1203 |
typedef typename Digraph::NodeIt NodeIt;
|
1203 |
1204 |
typedef typename Digraph::Arc Arc;
|
1204 |
1205 |
|
1205 |
1206 |
TopologicalSortVisitor<Digraph, NodeMap>
|
1206 |
1207 |
visitor(order, countNodes(graph));
|
1207 |
1208 |
|
1208 |
1209 |
DfsVisit<Digraph, TopologicalSortVisitor<Digraph, NodeMap> >
|
1209 |
1210 |
dfs(graph, visitor);
|
1210 |
1211 |
|
1211 |
1212 |
dfs.init();
|
1212 |
1213 |
for (NodeIt it(graph); it != INVALID; ++it) {
|
1213 |
1214 |
if (!dfs.reached(it)) {
|
1214 |
1215 |
dfs.addSource(it);
|
1215 |
1216 |
dfs.start();
|
1216 |
1217 |
}
|
1217 |
1218 |
}
|
1218 |
1219 |
}
|
1219 |
1220 |
|
1220 |
1221 |
/// \ingroup connectivity
|
1221 |
1222 |
///
|
1222 |
1223 |
/// \brief Sort the nodes of a DAG into topolgical order.
|
1223 |
1224 |
///
|
1224 |
1225 |
/// Sort the nodes of a DAG into topolgical order. It also checks
|
1225 |
1226 |
/// that the given graph is DAG.
|
1226 |
1227 |
///
|
1227 |
1228 |
/// \param graph The graph. It must be directed and acyclic.
|
1228 |
1229 |
/// \retval order A readable - writable node map. The values will be set
|
1229 |
1230 |
/// from 0 to the number of the nodes in the graph minus one. Each values
|
1230 |
1231 |
/// of the map will be set exactly once, the values will be set descending
|
1231 |
1232 |
/// order.
|
1232 |
1233 |
/// \return %False when the graph is not DAG.
|
1233 |
1234 |
///
|
1234 |
1235 |
/// \see topologicalSort
|
1235 |
1236 |
/// \see dag
|
1236 |
1237 |
template <typename Digraph, typename NodeMap>
|
1237 |
|
bool checkedTopologicalSort(const Digraph& graph, NodeMap& order) {
|
1238 |
|
using namespace _topology_bits;
|
|
1238 |
bool checkedTopologicalSort(const Digraph& digraph, NodeMap& order) {
|
|
1239 |
using namespace _connectivity_bits;
|
1239 |
1240 |
|
1240 |
1241 |
checkConcept<concepts::Digraph, Digraph>();
|
1241 |
1242 |
checkConcept<concepts::ReadWriteMap<typename Digraph::Node, int>,
|
1242 |
1243 |
NodeMap>();
|
1243 |
1244 |
|
1244 |
1245 |
typedef typename Digraph::Node Node;
|
1245 |
1246 |
typedef typename Digraph::NodeIt NodeIt;
|
1246 |
1247 |
typedef typename Digraph::Arc Arc;
|
1247 |
1248 |
|
1248 |
|
order = constMap<Node, int, -1>();
|
|
1249 |
for (NodeIt it(digraph); it != INVALID; ++it) {
|
|
1250 |
order.set(it, -1);
|
|
1251 |
}
|
1249 |
1252 |
|
1250 |
1253 |
TopologicalSortVisitor<Digraph, NodeMap>
|
1251 |
|
visitor(order, countNodes(graph));
|
|
1254 |
visitor(order, countNodes(digraph));
|
1252 |
1255 |
|
1253 |
1256 |
DfsVisit<Digraph, TopologicalSortVisitor<Digraph, NodeMap> >
|
1254 |
|
dfs(graph, visitor);
|
|
1257 |
dfs(digraph, visitor);
|
1255 |
1258 |
|
1256 |
1259 |
dfs.init();
|
1257 |
|
for (NodeIt it(graph); it != INVALID; ++it) {
|
|
1260 |
for (NodeIt it(digraph); it != INVALID; ++it) {
|
1258 |
1261 |
if (!dfs.reached(it)) {
|
1259 |
1262 |
dfs.addSource(it);
|
1260 |
1263 |
while (!dfs.emptyQueue()) {
|
1261 |
|
Arc edge = dfs.nextArc();
|
1262 |
|
Node target = graph.target(edge);
|
|
1264 |
Arc arc = dfs.nextArc();
|
|
1265 |
Node target = digraph.target(arc);
|
1263 |
1266 |
if (dfs.reached(target) && order[target] == -1) {
|
1264 |
1267 |
return false;
|
1265 |
1268 |
}
|
1266 |
1269 |
dfs.processNextArc();
|
1267 |
1270 |
}
|
1268 |
1271 |
}
|
1269 |
1272 |
}
|
1270 |
1273 |
return true;
|
1271 |
1274 |
}
|
1272 |
1275 |
|
1273 |
1276 |
/// \ingroup connectivity
|
1274 |
1277 |
///
|
1275 |
1278 |
/// \brief Check that the given directed graph is a DAG.
|
1276 |
1279 |
///
|
1277 |
1280 |
/// Check that the given directed graph is a DAG. The DAG is
|
1278 |
1281 |
/// an Directed Acyclic Digraph.
|
1279 |
1282 |
/// \return %False when the graph is not DAG.
|
1280 |
1283 |
/// \see acyclic
|
1281 |
1284 |
template <typename Digraph>
|
1282 |
|
bool dag(const Digraph& graph) {
|
|
1285 |
bool dag(const Digraph& digraph) {
|
1283 |
1286 |
|
1284 |
1287 |
checkConcept<concepts::Digraph, Digraph>();
|
1285 |
1288 |
|
1286 |
1289 |
typedef typename Digraph::Node Node;
|
1287 |
1290 |
typedef typename Digraph::NodeIt NodeIt;
|
1288 |
1291 |
typedef typename Digraph::Arc Arc;
|
1289 |
1292 |
|
1290 |
1293 |
typedef typename Digraph::template NodeMap<bool> ProcessedMap;
|
1291 |
1294 |
|
1292 |
1295 |
typename Dfs<Digraph>::template SetProcessedMap<ProcessedMap>::
|
1293 |
|
Create dfs(graph);
|
|
1296 |
Create dfs(digraph);
|
1294 |
1297 |
|
1295 |
|
ProcessedMap processed(graph);
|
|
1298 |
ProcessedMap processed(digraph);
|
1296 |
1299 |
dfs.processedMap(processed);
|
1297 |
1300 |
|
1298 |
1301 |
dfs.init();
|
1299 |
|
for (NodeIt it(graph); it != INVALID; ++it) {
|
|
1302 |
for (NodeIt it(digraph); it != INVALID; ++it) {
|
1300 |
1303 |
if (!dfs.reached(it)) {
|
1301 |
1304 |
dfs.addSource(it);
|
1302 |
1305 |
while (!dfs.emptyQueue()) {
|
1303 |
1306 |
Arc edge = dfs.nextArc();
|
1304 |
|
Node target = graph.target(edge);
|
|
1307 |
Node target = digraph.target(edge);
|
1305 |
1308 |
if (dfs.reached(target) && !processed[target]) {
|
1306 |
1309 |
return false;
|
1307 |
1310 |
}
|
1308 |
1311 |
dfs.processNextArc();
|
1309 |
1312 |
}
|
1310 |
1313 |
}
|
1311 |
1314 |
}
|
1312 |
1315 |
return true;
|
1313 |
1316 |
}
|
1314 |
1317 |
|
1315 |
1318 |
/// \ingroup connectivity
|
1316 |
1319 |
///
|
1317 |
1320 |
/// \brief Check that the given undirected graph is acyclic.
|
1318 |
1321 |
///
|
1319 |
1322 |
/// Check that the given undirected graph acyclic.
|
1320 |
1323 |
/// \param graph The undirected graph.
|
1321 |
1324 |
/// \return %True when there is no circle in the graph.
|
1322 |
1325 |
/// \see dag
|
1323 |
1326 |
template <typename Graph>
|
1324 |
1327 |
bool acyclic(const Graph& graph) {
|
1325 |
1328 |
checkConcept<concepts::Graph, Graph>();
|
1326 |
1329 |
typedef typename Graph::Node Node;
|
1327 |
1330 |
typedef typename Graph::NodeIt NodeIt;
|
1328 |
1331 |
typedef typename Graph::Arc Arc;
|
... |
... |
@@ -1359,49 +1362,49 @@
|
1359 |
1362 |
typedef typename Graph::Node Node;
|
1360 |
1363 |
typedef typename Graph::NodeIt NodeIt;
|
1361 |
1364 |
typedef typename Graph::Arc Arc;
|
1362 |
1365 |
Dfs<Graph> dfs(graph);
|
1363 |
1366 |
dfs.init();
|
1364 |
1367 |
dfs.addSource(NodeIt(graph));
|
1365 |
1368 |
while (!dfs.emptyQueue()) {
|
1366 |
1369 |
Arc edge = dfs.nextArc();
|
1367 |
1370 |
Node source = graph.source(edge);
|
1368 |
1371 |
Node target = graph.target(edge);
|
1369 |
1372 |
if (dfs.reached(target) &&
|
1370 |
1373 |
dfs.predArc(source) != graph.oppositeArc(edge)) {
|
1371 |
1374 |
return false;
|
1372 |
1375 |
}
|
1373 |
1376 |
dfs.processNextArc();
|
1374 |
1377 |
}
|
1375 |
1378 |
for (NodeIt it(graph); it != INVALID; ++it) {
|
1376 |
1379 |
if (!dfs.reached(it)) {
|
1377 |
1380 |
return false;
|
1378 |
1381 |
}
|
1379 |
1382 |
}
|
1380 |
1383 |
return true;
|
1381 |
1384 |
}
|
1382 |
1385 |
|
1383 |
|
namespace _topology_bits {
|
|
1386 |
namespace _connectivity_bits {
|
1384 |
1387 |
|
1385 |
1388 |
template <typename Digraph>
|
1386 |
1389 |
class BipartiteVisitor : public BfsVisitor<Digraph> {
|
1387 |
1390 |
public:
|
1388 |
1391 |
typedef typename Digraph::Arc Arc;
|
1389 |
1392 |
typedef typename Digraph::Node Node;
|
1390 |
1393 |
|
1391 |
1394 |
BipartiteVisitor(const Digraph& graph, bool& bipartite)
|
1392 |
1395 |
: _graph(graph), _part(graph), _bipartite(bipartite) {}
|
1393 |
1396 |
|
1394 |
1397 |
void start(const Node& node) {
|
1395 |
1398 |
_part[node] = true;
|
1396 |
1399 |
}
|
1397 |
1400 |
void discover(const Arc& edge) {
|
1398 |
1401 |
_part.set(_graph.target(edge), !_part[_graph.source(edge)]);
|
1399 |
1402 |
}
|
1400 |
1403 |
void examine(const Arc& edge) {
|
1401 |
1404 |
_bipartite = _bipartite &&
|
1402 |
1405 |
_part[_graph.target(edge)] != _part[_graph.source(edge)];
|
1403 |
1406 |
}
|
1404 |
1407 |
|
1405 |
1408 |
private:
|
1406 |
1409 |
|
1407 |
1410 |
const Digraph& _graph;
|
... |
... |
@@ -1428,145 +1431,145 @@
|
1428 |
1431 |
void examine(const Arc& edge) {
|
1429 |
1432 |
_bipartite = _bipartite &&
|
1430 |
1433 |
_part[_graph.target(edge)] != _part[_graph.source(edge)];
|
1431 |
1434 |
}
|
1432 |
1435 |
|
1433 |
1436 |
private:
|
1434 |
1437 |
|
1435 |
1438 |
const Digraph& _graph;
|
1436 |
1439 |
PartMap& _part;
|
1437 |
1440 |
bool& _bipartite;
|
1438 |
1441 |
};
|
1439 |
1442 |
}
|
1440 |
1443 |
|
1441 |
1444 |
/// \ingroup connectivity
|
1442 |
1445 |
///
|
1443 |
1446 |
/// \brief Check if the given undirected graph is bipartite or not
|
1444 |
1447 |
///
|
1445 |
1448 |
/// The function checks if the given undirected \c graph graph is bipartite
|
1446 |
1449 |
/// or not. The \ref Bfs algorithm is used to calculate the result.
|
1447 |
1450 |
/// \param graph The undirected graph.
|
1448 |
1451 |
/// \return %True if \c graph is bipartite, %false otherwise.
|
1449 |
1452 |
/// \sa bipartitePartitions
|
1450 |
1453 |
template<typename Graph>
|
1451 |
1454 |
inline bool bipartite(const Graph &graph){
|
1452 |
|
using namespace _topology_bits;
|
|
1455 |
using namespace _connectivity_bits;
|
1453 |
1456 |
|
1454 |
1457 |
checkConcept<concepts::Graph, Graph>();
|
1455 |
1458 |
|
1456 |
1459 |
typedef typename Graph::NodeIt NodeIt;
|
1457 |
1460 |
typedef typename Graph::ArcIt ArcIt;
|
1458 |
1461 |
|
1459 |
1462 |
bool bipartite = true;
|
1460 |
1463 |
|
1461 |
1464 |
BipartiteVisitor<Graph>
|
1462 |
1465 |
visitor(graph, bipartite);
|
1463 |
1466 |
BfsVisit<Graph, BipartiteVisitor<Graph> >
|
1464 |
1467 |
bfs(graph, visitor);
|
1465 |
1468 |
bfs.init();
|
1466 |
1469 |
for(NodeIt it(graph); it != INVALID; ++it) {
|
1467 |
1470 |
if(!bfs.reached(it)){
|
1468 |
1471 |
bfs.addSource(it);
|
1469 |
1472 |
while (!bfs.emptyQueue()) {
|
1470 |
1473 |
bfs.processNextNode();
|
1471 |
1474 |
if (!bipartite) return false;
|
1472 |
1475 |
}
|
1473 |
1476 |
}
|
1474 |
1477 |
}
|
1475 |
1478 |
return true;
|
1476 |
1479 |
}
|
1477 |
1480 |
|
1478 |
1481 |
/// \ingroup connectivity
|
1479 |
1482 |
///
|
1480 |
1483 |
/// \brief Check if the given undirected graph is bipartite or not
|
1481 |
1484 |
///
|
1482 |
1485 |
/// The function checks if the given undirected graph is bipartite
|
1483 |
1486 |
/// or not. The \ref Bfs algorithm is used to calculate the result.
|
1484 |
1487 |
/// During the execution, the \c partMap will be set as the two
|
1485 |
1488 |
/// partitions of the graph.
|
1486 |
1489 |
/// \param graph The undirected graph.
|
1487 |
1490 |
/// \retval partMap A writable bool map of nodes. It will be set as the
|
1488 |
1491 |
/// two partitions of the graph.
|
1489 |
1492 |
/// \return %True if \c graph is bipartite, %false otherwise.
|
1490 |
1493 |
template<typename Graph, typename NodeMap>
|
1491 |
1494 |
inline bool bipartitePartitions(const Graph &graph, NodeMap &partMap){
|
1492 |
|
using namespace _topology_bits;
|
|
1495 |
using namespace _connectivity_bits;
|
1493 |
1496 |
|
1494 |
1497 |
checkConcept<concepts::Graph, Graph>();
|
1495 |
1498 |
|
1496 |
1499 |
typedef typename Graph::Node Node;
|
1497 |
1500 |
typedef typename Graph::NodeIt NodeIt;
|
1498 |
1501 |
typedef typename Graph::ArcIt ArcIt;
|
1499 |
1502 |
|
1500 |
1503 |
bool bipartite = true;
|
1501 |
1504 |
|
1502 |
1505 |
BipartitePartitionsVisitor<Graph, NodeMap>
|
1503 |
1506 |
visitor(graph, partMap, bipartite);
|
1504 |
1507 |
BfsVisit<Graph, BipartitePartitionsVisitor<Graph, NodeMap> >
|
1505 |
1508 |
bfs(graph, visitor);
|
1506 |
1509 |
bfs.init();
|
1507 |
1510 |
for(NodeIt it(graph); it != INVALID; ++it) {
|
1508 |
1511 |
if(!bfs.reached(it)){
|
1509 |
1512 |
bfs.addSource(it);
|
1510 |
1513 |
while (!bfs.emptyQueue()) {
|
1511 |
1514 |
bfs.processNextNode();
|
1512 |
1515 |
if (!bipartite) return false;
|
1513 |
1516 |
}
|
1514 |
1517 |
}
|
1515 |
1518 |
}
|
1516 |
1519 |
return true;
|
1517 |
1520 |
}
|
1518 |
1521 |
|
1519 |
1522 |
/// \brief Returns true when there are not loop edges in the graph.
|
1520 |
1523 |
///
|
1521 |
1524 |
/// Returns true when there are not loop edges in the graph.
|
1522 |
1525 |
template <typename Digraph>
|
1523 |
|
bool loopFree(const Digraph& graph) {
|
1524 |
|
for (typename Digraph::ArcIt it(graph); it != INVALID; ++it) {
|
1525 |
|
if (graph.source(it) == graph.target(it)) return false;
|
|
1526 |
bool loopFree(const Digraph& digraph) {
|
|
1527 |
for (typename Digraph::ArcIt it(digraph); it != INVALID; ++it) {
|
|
1528 |
if (digraph.source(it) == digraph.target(it)) return false;
|
1526 |
1529 |
}
|
1527 |
1530 |
return true;
|
1528 |
1531 |
}
|
1529 |
1532 |
|
1530 |
1533 |
/// \brief Returns true when there are not parallel edges in the graph.
|
1531 |
1534 |
///
|
1532 |
1535 |
/// Returns true when there are not parallel edges in the graph.
|
1533 |
1536 |
template <typename Digraph>
|
1534 |
|
bool parallelFree(const Digraph& graph) {
|
1535 |
|
typename Digraph::template NodeMap<bool> reached(graph, false);
|
1536 |
|
for (typename Digraph::NodeIt n(graph); n != INVALID; ++n) {
|
1537 |
|
for (typename Digraph::OutArcIt e(graph, n); e != INVALID; ++e) {
|
1538 |
|
if (reached[graph.target(e)]) return false;
|
1539 |
|
reached.set(graph.target(e), true);
|
|
1537 |
bool parallelFree(const Digraph& digraph) {
|
|
1538 |
typename Digraph::template NodeMap<bool> reached(digraph, false);
|
|
1539 |
for (typename Digraph::NodeIt n(digraph); n != INVALID; ++n) {
|
|
1540 |
for (typename Digraph::OutArcIt a(digraph, n); a != INVALID; ++a) {
|
|
1541 |
if (reached[digraph.target(a)]) return false;
|
|
1542 |
reached.set(digraph.target(a), true);
|
1540 |
1543 |
}
|
1541 |
|
for (typename Digraph::OutArcIt e(graph, n); e != INVALID; ++e) {
|
1542 |
|
reached.set(graph.target(e), false);
|
|
1544 |
for (typename Digraph::OutArcIt a(digraph, n); a != INVALID; ++a) {
|
|
1545 |
reached.set(digraph.target(a), false);
|
1543 |
1546 |
}
|
1544 |
1547 |
}
|
1545 |
1548 |
return true;
|
1546 |
1549 |
}
|
1547 |
1550 |
|
1548 |
1551 |
/// \brief Returns true when there are not loop edges and parallel
|
1549 |
1552 |
/// edges in the graph.
|
1550 |
1553 |
///
|
1551 |
1554 |
/// Returns true when there are not loop edges and parallel edges in
|
1552 |
1555 |
/// the graph.
|
1553 |
1556 |
template <typename Digraph>
|
1554 |
|
bool simpleDigraph(const Digraph& graph) {
|
1555 |
|
typename Digraph::template NodeMap<bool> reached(graph, false);
|
1556 |
|
for (typename Digraph::NodeIt n(graph); n != INVALID; ++n) {
|
|
1557 |
bool simpleDigraph(const Digraph& digraph) {
|
|
1558 |
typename Digraph::template NodeMap<bool> reached(digraph, false);
|
|
1559 |
for (typename Digraph::NodeIt n(digraph); n != INVALID; ++n) {
|
1557 |
1560 |
reached.set(n, true);
|
1558 |
|
for (typename Digraph::OutArcIt e(graph, n); e != INVALID; ++e) {
|
1559 |
|
if (reached[graph.target(e)]) return false;
|
1560 |
|
reached.set(graph.target(e), true);
|
|
1561 |
for (typename Digraph::OutArcIt a(digraph, n); a != INVALID; ++a) {
|
|
1562 |
if (reached[digraph.target(a)]) return false;
|
|
1563 |
reached.set(digraph.target(a), true);
|
1561 |
1564 |
}
|
1562 |
|
for (typename Digraph::OutArcIt e(graph, n); e != INVALID; ++e) {
|
1563 |
|
reached.set(graph.target(e), false);
|
|
1565 |
for (typename Digraph::OutArcIt a(digraph, n); a != INVALID; ++a) {
|
|
1566 |
reached.set(digraph.target(a), false);
|
1564 |
1567 |
}
|
1565 |
1568 |
reached.set(n, false);
|
1566 |
1569 |
}
|
1567 |
1570 |
return true;
|
1568 |
1571 |
}
|
1569 |
1572 |
|
1570 |
1573 |
} //namespace lemon
|
1571 |
1574 |
|
1572 |
|
#endif //LEMON_TOPOLOGY_H
|
|
1575 |
#endif //LEMON_CONNECTIVITY_H
|