0
5
0
1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 | 5 |
* Copyright (C) 2003-2010 |
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 | 19 |
#ifndef LEMON_CAPACITY_SCALING_H |
20 | 20 |
#define LEMON_CAPACITY_SCALING_H |
21 | 21 |
|
22 | 22 |
/// \ingroup min_cost_flow_algs |
23 | 23 |
/// |
24 | 24 |
/// \file |
25 | 25 |
/// \brief Capacity Scaling algorithm for finding a minimum cost flow. |
26 | 26 |
|
27 | 27 |
#include <vector> |
28 | 28 |
#include <limits> |
29 | 29 |
#include <lemon/core.h> |
30 | 30 |
#include <lemon/bin_heap.h> |
31 | 31 |
|
32 | 32 |
namespace lemon { |
33 | 33 |
|
34 | 34 |
/// \brief Default traits class of CapacityScaling algorithm. |
35 | 35 |
/// |
36 | 36 |
/// Default traits class of CapacityScaling algorithm. |
37 | 37 |
/// \tparam GR Digraph type. |
38 | 38 |
/// \tparam V The number type used for flow amounts, capacity bounds |
39 | 39 |
/// and supply values. By default it is \c int. |
40 | 40 |
/// \tparam C The number type used for costs and potentials. |
41 | 41 |
/// By default it is the same as \c V. |
42 | 42 |
template <typename GR, typename V = int, typename C = V> |
43 | 43 |
struct CapacityScalingDefaultTraits |
44 | 44 |
{ |
45 | 45 |
/// The type of the digraph |
46 | 46 |
typedef GR Digraph; |
47 | 47 |
/// The type of the flow amounts, capacity bounds and supply values |
48 | 48 |
typedef V Value; |
49 | 49 |
/// The type of the arc costs |
50 | 50 |
typedef C Cost; |
51 | 51 |
|
52 | 52 |
/// \brief The type of the heap used for internal Dijkstra computations. |
53 | 53 |
/// |
54 | 54 |
/// The type of the heap used for internal Dijkstra computations. |
55 | 55 |
/// It must conform to the \ref lemon::concepts::Heap "Heap" concept, |
56 | 56 |
/// its priority type must be \c Cost and its cross reference type |
57 | 57 |
/// must be \ref RangeMap "RangeMap<int>". |
58 | 58 |
typedef BinHeap<Cost, RangeMap<int> > Heap; |
59 | 59 |
}; |
60 | 60 |
|
61 | 61 |
/// \addtogroup min_cost_flow_algs |
62 | 62 |
/// @{ |
63 | 63 |
|
64 | 64 |
/// \brief Implementation of the Capacity Scaling algorithm for |
65 | 65 |
/// finding a \ref min_cost_flow "minimum cost flow". |
66 | 66 |
/// |
67 | 67 |
/// \ref CapacityScaling implements the capacity scaling version |
68 | 68 |
/// of the successive shortest path algorithm for finding a |
69 | 69 |
/// \ref min_cost_flow "minimum cost flow" \ref amo93networkflows, |
70 | 70 |
/// \ref edmondskarp72theoretical. It is an efficient dual |
71 | 71 |
/// solution method. |
72 | 72 |
/// |
73 | 73 |
/// Most of the parameters of the problem (except for the digraph) |
74 | 74 |
/// can be given using separate functions, and the algorithm can be |
75 | 75 |
/// executed using the \ref run() function. If some parameters are not |
76 | 76 |
/// specified, then default values will be used. |
77 | 77 |
/// |
78 | 78 |
/// \tparam GR The digraph type the algorithm runs on. |
79 | 79 |
/// \tparam V The number type used for flow amounts, capacity bounds |
80 | 80 |
/// and supply values in the algorithm. By default, it is \c int. |
81 | 81 |
/// \tparam C The number type used for costs and potentials in the |
82 | 82 |
/// algorithm. By default, it is the same as \c V. |
83 | 83 |
/// \tparam TR The traits class that defines various types used by the |
84 | 84 |
/// algorithm. By default, it is \ref CapacityScalingDefaultTraits |
85 | 85 |
/// "CapacityScalingDefaultTraits<GR, V, C>". |
86 | 86 |
/// In most cases, this parameter should not be set directly, |
87 | 87 |
/// consider to use the named template parameters instead. |
88 | 88 |
/// |
89 |
/// \warning Both |
|
89 |
/// \warning Both \c V and \c C must be signed number types. |
|
90 |
/// \warning All input data (capacities, supply values, and costs) must |
|
90 | 91 |
/// be integer. |
91 | 92 |
/// \warning This algorithm does not support negative costs for such |
92 | 93 |
/// arcs that have infinite upper bound. |
93 | 94 |
#ifdef DOXYGEN |
94 | 95 |
template <typename GR, typename V, typename C, typename TR> |
95 | 96 |
#else |
96 | 97 |
template < typename GR, typename V = int, typename C = V, |
97 | 98 |
typename TR = CapacityScalingDefaultTraits<GR, V, C> > |
98 | 99 |
#endif |
99 | 100 |
class CapacityScaling |
100 | 101 |
{ |
101 | 102 |
public: |
102 | 103 |
|
103 | 104 |
/// The type of the digraph |
104 | 105 |
typedef typename TR::Digraph Digraph; |
105 | 106 |
/// The type of the flow amounts, capacity bounds and supply values |
106 | 107 |
typedef typename TR::Value Value; |
107 | 108 |
/// The type of the arc costs |
108 | 109 |
typedef typename TR::Cost Cost; |
109 | 110 |
|
110 | 111 |
/// The type of the heap used for internal Dijkstra computations |
111 | 112 |
typedef typename TR::Heap Heap; |
112 | 113 |
|
113 | 114 |
/// The \ref CapacityScalingDefaultTraits "traits class" of the algorithm |
114 | 115 |
typedef TR Traits; |
115 | 116 |
|
116 | 117 |
public: |
117 | 118 |
|
118 | 119 |
/// \brief Problem type constants for the \c run() function. |
119 | 120 |
/// |
120 | 121 |
/// Enum type containing the problem type constants that can be |
121 | 122 |
/// returned by the \ref run() function of the algorithm. |
122 | 123 |
enum ProblemType { |
123 | 124 |
/// The problem has no feasible solution (flow). |
124 | 125 |
INFEASIBLE, |
125 | 126 |
/// The problem has optimal solution (i.e. it is feasible and |
126 | 127 |
/// bounded), and the algorithm has found optimal flow and node |
127 | 128 |
/// potentials (primal and dual solutions). |
128 | 129 |
OPTIMAL, |
129 | 130 |
/// The digraph contains an arc of negative cost and infinite |
130 | 131 |
/// upper bound. It means that the objective function is unbounded |
131 | 132 |
/// on that arc, however, note that it could actually be bounded |
132 | 133 |
/// over the feasible flows, but this algroithm cannot handle |
133 | 134 |
/// these cases. |
134 | 135 |
UNBOUNDED |
135 | 136 |
}; |
136 | 137 |
|
137 | 138 |
private: |
138 | 139 |
|
139 | 140 |
TEMPLATE_DIGRAPH_TYPEDEFS(GR); |
140 | 141 |
|
141 | 142 |
typedef std::vector<int> IntVector; |
142 | 143 |
typedef std::vector<Value> ValueVector; |
143 | 144 |
typedef std::vector<Cost> CostVector; |
144 | 145 |
typedef std::vector<char> BoolVector; |
145 | 146 |
// Note: vector<char> is used instead of vector<bool> for efficiency reasons |
146 | 147 |
|
147 | 148 |
private: |
148 | 149 |
|
149 | 150 |
// Data related to the underlying digraph |
150 | 151 |
const GR &_graph; |
151 | 152 |
int _node_num; |
152 | 153 |
int _arc_num; |
153 | 154 |
int _res_arc_num; |
154 | 155 |
int _root; |
155 | 156 |
|
156 | 157 |
// Parameters of the problem |
157 | 158 |
bool _have_lower; |
158 | 159 |
Value _sum_supply; |
159 | 160 |
|
160 | 161 |
// Data structures for storing the digraph |
161 | 162 |
IntNodeMap _node_id; |
162 | 163 |
IntArcMap _arc_idf; |
163 | 164 |
IntArcMap _arc_idb; |
164 | 165 |
IntVector _first_out; |
165 | 166 |
BoolVector _forward; |
166 | 167 |
IntVector _source; |
167 | 168 |
IntVector _target; |
168 | 169 |
IntVector _reverse; |
169 | 170 |
|
170 | 171 |
// Node and arc data |
171 | 172 |
ValueVector _lower; |
172 | 173 |
ValueVector _upper; |
173 | 174 |
CostVector _cost; |
174 | 175 |
ValueVector _supply; |
175 | 176 |
|
176 | 177 |
ValueVector _res_cap; |
177 | 178 |
CostVector _pi; |
178 | 179 |
ValueVector _excess; |
179 | 180 |
IntVector _excess_nodes; |
180 | 181 |
IntVector _deficit_nodes; |
181 | 182 |
|
182 | 183 |
Value _delta; |
183 | 184 |
int _factor; |
184 | 185 |
IntVector _pred; |
185 | 186 |
|
186 | 187 |
public: |
187 | 188 |
|
188 | 189 |
/// \brief Constant for infinite upper bounds (capacities). |
189 | 190 |
/// |
190 | 191 |
/// Constant for infinite upper bounds (capacities). |
191 | 192 |
/// It is \c std::numeric_limits<Value>::infinity() if available, |
192 | 193 |
/// \c std::numeric_limits<Value>::max() otherwise. |
193 | 194 |
const Value INF; |
194 | 195 |
|
195 | 196 |
private: |
196 | 197 |
|
197 | 198 |
// Special implementation of the Dijkstra algorithm for finding |
198 | 199 |
// shortest paths in the residual network of the digraph with |
199 | 200 |
// respect to the reduced arc costs and modifying the node |
200 | 201 |
// potentials according to the found distance labels. |
201 | 202 |
class ResidualDijkstra |
202 | 203 |
{ |
203 | 204 |
private: |
204 | 205 |
|
205 | 206 |
int _node_num; |
206 | 207 |
bool _geq; |
207 | 208 |
const IntVector &_first_out; |
208 | 209 |
const IntVector &_target; |
209 | 210 |
const CostVector &_cost; |
210 | 211 |
const ValueVector &_res_cap; |
211 | 212 |
const ValueVector &_excess; |
212 | 213 |
CostVector &_pi; |
213 | 214 |
IntVector &_pred; |
214 | 215 |
|
215 | 216 |
IntVector _proc_nodes; |
216 | 217 |
CostVector _dist; |
217 | 218 |
|
218 | 219 |
public: |
219 | 220 |
|
220 | 221 |
ResidualDijkstra(CapacityScaling& cs) : |
221 | 222 |
_node_num(cs._node_num), _geq(cs._sum_supply < 0), |
222 | 223 |
_first_out(cs._first_out), _target(cs._target), _cost(cs._cost), |
223 | 224 |
_res_cap(cs._res_cap), _excess(cs._excess), _pi(cs._pi), |
224 | 225 |
_pred(cs._pred), _dist(cs._node_num) |
225 | 226 |
{} |
226 | 227 |
|
227 | 228 |
int run(int s, Value delta = 1) { |
228 | 229 |
RangeMap<int> heap_cross_ref(_node_num, Heap::PRE_HEAP); |
229 | 230 |
Heap heap(heap_cross_ref); |
230 | 231 |
heap.push(s, 0); |
231 | 232 |
_pred[s] = -1; |
232 | 233 |
_proc_nodes.clear(); |
233 | 234 |
|
234 | 235 |
// Process nodes |
235 | 236 |
while (!heap.empty() && _excess[heap.top()] > -delta) { |
236 | 237 |
int u = heap.top(), v; |
237 | 238 |
Cost d = heap.prio() + _pi[u], dn; |
238 | 239 |
_dist[u] = heap.prio(); |
239 | 240 |
_proc_nodes.push_back(u); |
240 | 241 |
heap.pop(); |
241 | 242 |
|
242 | 243 |
// Traverse outgoing residual arcs |
243 | 244 |
int last_out = _geq ? _first_out[u+1] : _first_out[u+1] - 1; |
244 | 245 |
for (int a = _first_out[u]; a != last_out; ++a) { |
245 | 246 |
if (_res_cap[a] < delta) continue; |
246 | 247 |
v = _target[a]; |
247 | 248 |
switch (heap.state(v)) { |
248 | 249 |
case Heap::PRE_HEAP: |
249 | 250 |
heap.push(v, d + _cost[a] - _pi[v]); |
250 | 251 |
_pred[v] = a; |
251 | 252 |
break; |
252 | 253 |
case Heap::IN_HEAP: |
253 | 254 |
dn = d + _cost[a] - _pi[v]; |
254 | 255 |
if (dn < heap[v]) { |
255 | 256 |
heap.decrease(v, dn); |
256 | 257 |
_pred[v] = a; |
257 | 258 |
} |
258 | 259 |
break; |
259 | 260 |
case Heap::POST_HEAP: |
260 | 261 |
break; |
261 | 262 |
} |
262 | 263 |
} |
263 | 264 |
} |
264 | 265 |
if (heap.empty()) return -1; |
265 | 266 |
|
266 | 267 |
// Update potentials of processed nodes |
267 | 268 |
int t = heap.top(); |
268 | 269 |
Cost dt = heap.prio(); |
269 | 270 |
for (int i = 0; i < int(_proc_nodes.size()); ++i) { |
270 | 271 |
_pi[_proc_nodes[i]] += _dist[_proc_nodes[i]] - dt; |
271 | 272 |
} |
272 | 273 |
|
273 | 274 |
return t; |
274 | 275 |
} |
275 | 276 |
|
276 | 277 |
}; //class ResidualDijkstra |
277 | 278 |
|
278 | 279 |
public: |
279 | 280 |
|
280 | 281 |
/// \name Named Template Parameters |
281 | 282 |
/// @{ |
282 | 283 |
|
283 | 284 |
template <typename T> |
284 | 285 |
struct SetHeapTraits : public Traits { |
285 | 286 |
typedef T Heap; |
286 | 287 |
}; |
287 | 288 |
|
288 | 289 |
/// \brief \ref named-templ-param "Named parameter" for setting |
289 | 290 |
/// \c Heap type. |
290 | 291 |
/// |
291 | 292 |
/// \ref named-templ-param "Named parameter" for setting \c Heap |
292 | 293 |
/// type, which is used for internal Dijkstra computations. |
293 | 294 |
/// It must conform to the \ref lemon::concepts::Heap "Heap" concept, |
294 | 295 |
/// its priority type must be \c Cost and its cross reference type |
295 | 296 |
/// must be \ref RangeMap "RangeMap<int>". |
296 | 297 |
template <typename T> |
297 | 298 |
struct SetHeap |
298 | 299 |
: public CapacityScaling<GR, V, C, SetHeapTraits<T> > { |
299 | 300 |
typedef CapacityScaling<GR, V, C, SetHeapTraits<T> > Create; |
300 | 301 |
}; |
301 | 302 |
|
302 | 303 |
/// @} |
303 | 304 |
|
304 | 305 |
protected: |
305 | 306 |
|
306 | 307 |
CapacityScaling() {} |
307 | 308 |
|
308 | 309 |
public: |
309 | 310 |
|
310 | 311 |
/// \brief Constructor. |
311 | 312 |
/// |
312 | 313 |
/// The constructor of the class. |
313 | 314 |
/// |
314 | 315 |
/// \param graph The digraph the algorithm runs on. |
315 | 316 |
CapacityScaling(const GR& graph) : |
316 | 317 |
_graph(graph), _node_id(graph), _arc_idf(graph), _arc_idb(graph), |
317 | 318 |
INF(std::numeric_limits<Value>::has_infinity ? |
318 | 319 |
std::numeric_limits<Value>::infinity() : |
319 | 320 |
std::numeric_limits<Value>::max()) |
320 | 321 |
{ |
321 | 322 |
// Check the number types |
322 | 323 |
LEMON_ASSERT(std::numeric_limits<Value>::is_signed, |
323 | 324 |
"The flow type of CapacityScaling must be signed"); |
324 | 325 |
LEMON_ASSERT(std::numeric_limits<Cost>::is_signed, |
325 | 326 |
"The cost type of CapacityScaling must be signed"); |
326 | 327 |
|
327 | 328 |
// Reset data structures |
328 | 329 |
reset(); |
329 | 330 |
} |
330 | 331 |
|
331 | 332 |
/// \name Parameters |
332 | 333 |
/// The parameters of the algorithm can be specified using these |
333 | 334 |
/// functions. |
334 | 335 |
|
335 | 336 |
/// @{ |
336 | 337 |
|
337 | 338 |
/// \brief Set the lower bounds on the arcs. |
338 | 339 |
/// |
339 | 340 |
/// This function sets the lower bounds on the arcs. |
340 | 341 |
/// If it is not used before calling \ref run(), the lower bounds |
341 | 342 |
/// will be set to zero on all arcs. |
342 | 343 |
/// |
343 | 344 |
/// \param map An arc map storing the lower bounds. |
344 | 345 |
/// Its \c Value type must be convertible to the \c Value type |
345 | 346 |
/// of the algorithm. |
346 | 347 |
/// |
347 | 348 |
/// \return <tt>(*this)</tt> |
348 | 349 |
template <typename LowerMap> |
349 | 350 |
CapacityScaling& lowerMap(const LowerMap& map) { |
350 | 351 |
_have_lower = true; |
351 | 352 |
for (ArcIt a(_graph); a != INVALID; ++a) { |
352 | 353 |
_lower[_arc_idf[a]] = map[a]; |
353 | 354 |
_lower[_arc_idb[a]] = map[a]; |
354 | 355 |
} |
355 | 356 |
return *this; |
356 | 357 |
} |
357 | 358 |
|
358 | 359 |
/// \brief Set the upper bounds (capacities) on the arcs. |
359 | 360 |
/// |
360 | 361 |
/// This function sets the upper bounds (capacities) on the arcs. |
361 | 362 |
/// If it is not used before calling \ref run(), the upper bounds |
362 | 363 |
/// will be set to \ref INF on all arcs (i.e. the flow value will be |
363 | 364 |
/// unbounded from above). |
364 | 365 |
/// |
365 | 366 |
/// \param map An arc map storing the upper bounds. |
366 | 367 |
/// Its \c Value type must be convertible to the \c Value type |
367 | 368 |
/// of the algorithm. |
368 | 369 |
/// |
369 | 370 |
/// \return <tt>(*this)</tt> |
370 | 371 |
template<typename UpperMap> |
371 | 372 |
CapacityScaling& upperMap(const UpperMap& map) { |
372 | 373 |
for (ArcIt a(_graph); a != INVALID; ++a) { |
373 | 374 |
_upper[_arc_idf[a]] = map[a]; |
374 | 375 |
} |
375 | 376 |
return *this; |
376 | 377 |
} |
377 | 378 |
|
378 | 379 |
/// \brief Set the costs of the arcs. |
379 | 380 |
/// |
380 | 381 |
/// This function sets the costs of the arcs. |
381 | 382 |
/// If it is not used before calling \ref run(), the costs |
382 | 383 |
/// will be set to \c 1 on all arcs. |
383 | 384 |
/// |
384 | 385 |
/// \param map An arc map storing the costs. |
385 | 386 |
/// Its \c Value type must be convertible to the \c Cost type |
386 | 387 |
/// of the algorithm. |
387 | 388 |
/// |
388 | 389 |
/// \return <tt>(*this)</tt> |
389 | 390 |
template<typename CostMap> |
390 | 391 |
CapacityScaling& costMap(const CostMap& map) { |
391 | 392 |
for (ArcIt a(_graph); a != INVALID; ++a) { |
392 | 393 |
_cost[_arc_idf[a]] = map[a]; |
393 | 394 |
_cost[_arc_idb[a]] = -map[a]; |
394 | 395 |
} |
395 | 396 |
return *this; |
396 | 397 |
} |
397 | 398 |
|
398 | 399 |
/// \brief Set the supply values of the nodes. |
399 | 400 |
/// |
400 | 401 |
/// This function sets the supply values of the nodes. |
401 | 402 |
/// If neither this function nor \ref stSupply() is used before |
402 | 403 |
/// calling \ref run(), the supply of each node will be set to zero. |
403 | 404 |
/// |
404 | 405 |
/// \param map A node map storing the supply values. |
405 | 406 |
/// Its \c Value type must be convertible to the \c Value type |
406 | 407 |
/// of the algorithm. |
407 | 408 |
/// |
408 | 409 |
/// \return <tt>(*this)</tt> |
409 | 410 |
template<typename SupplyMap> |
410 | 411 |
CapacityScaling& supplyMap(const SupplyMap& map) { |
411 | 412 |
for (NodeIt n(_graph); n != INVALID; ++n) { |
412 | 413 |
_supply[_node_id[n]] = map[n]; |
413 | 414 |
} |
414 | 415 |
return *this; |
415 | 416 |
} |
416 | 417 |
|
417 | 418 |
/// \brief Set single source and target nodes and a supply value. |
418 | 419 |
/// |
419 | 420 |
/// This function sets a single source node and a single target node |
420 | 421 |
/// and the required flow value. |
421 | 422 |
/// If neither this function nor \ref supplyMap() is used before |
422 | 423 |
/// calling \ref run(), the supply of each node will be set to zero. |
423 | 424 |
/// |
424 | 425 |
/// Using this function has the same effect as using \ref supplyMap() |
425 | 426 |
/// with such a map in which \c k is assigned to \c s, \c -k is |
426 | 427 |
/// assigned to \c t and all other nodes have zero supply value. |
427 | 428 |
/// |
428 | 429 |
/// \param s The source node. |
429 | 430 |
/// \param t The target node. |
430 | 431 |
/// \param k The required amount of flow from node \c s to node \c t |
431 | 432 |
/// (i.e. the supply of \c s and the demand of \c t). |
432 | 433 |
/// |
433 | 434 |
/// \return <tt>(*this)</tt> |
434 | 435 |
CapacityScaling& stSupply(const Node& s, const Node& t, Value k) { |
435 | 436 |
for (int i = 0; i != _node_num; ++i) { |
436 | 437 |
_supply[i] = 0; |
437 | 438 |
} |
438 | 439 |
_supply[_node_id[s]] = k; |
439 | 440 |
_supply[_node_id[t]] = -k; |
440 | 441 |
return *this; |
441 | 442 |
} |
442 | 443 |
|
443 | 444 |
/// @} |
444 | 445 |
|
445 | 446 |
/// \name Execution control |
446 | 447 |
/// The algorithm can be executed using \ref run(). |
447 | 448 |
|
448 | 449 |
/// @{ |
449 | 450 |
|
450 | 451 |
/// \brief Run the algorithm. |
451 | 452 |
/// |
452 | 453 |
/// This function runs the algorithm. |
453 | 454 |
/// The paramters can be specified using functions \ref lowerMap(), |
454 | 455 |
/// \ref upperMap(), \ref costMap(), \ref supplyMap(), \ref stSupply(). |
455 | 456 |
/// For example, |
456 | 457 |
/// \code |
457 | 458 |
/// CapacityScaling<ListDigraph> cs(graph); |
458 | 459 |
/// cs.lowerMap(lower).upperMap(upper).costMap(cost) |
459 | 460 |
/// .supplyMap(sup).run(); |
460 | 461 |
/// \endcode |
461 | 462 |
/// |
462 | 463 |
/// This function can be called more than once. All the given parameters |
463 | 464 |
/// are kept for the next call, unless \ref resetParams() or \ref reset() |
464 | 465 |
/// is used, thus only the modified parameters have to be set again. |
465 | 466 |
/// If the underlying digraph was also modified after the construction |
466 | 467 |
/// of the class (or the last \ref reset() call), then the \ref reset() |
467 | 468 |
/// function must be called. |
468 | 469 |
/// |
469 | 470 |
/// \param factor The capacity scaling factor. It must be larger than |
470 | 471 |
/// one to use scaling. If it is less or equal to one, then scaling |
471 | 472 |
/// will be disabled. |
472 | 473 |
/// |
473 | 474 |
/// \return \c INFEASIBLE if no feasible flow exists, |
474 | 475 |
/// \n \c OPTIMAL if the problem has optimal solution |
475 | 476 |
/// (i.e. it is feasible and bounded), and the algorithm has found |
476 | 477 |
/// optimal flow and node potentials (primal and dual solutions), |
477 | 478 |
/// \n \c UNBOUNDED if the digraph contains an arc of negative cost |
478 | 479 |
/// and infinite upper bound. It means that the objective function |
479 | 480 |
/// is unbounded on that arc, however, note that it could actually be |
480 | 481 |
/// bounded over the feasible flows, but this algroithm cannot handle |
481 | 482 |
/// these cases. |
482 | 483 |
/// |
483 | 484 |
/// \see ProblemType |
484 | 485 |
/// \see resetParams(), reset() |
485 | 486 |
ProblemType run(int factor = 4) { |
486 | 487 |
_factor = factor; |
487 | 488 |
ProblemType pt = init(); |
488 | 489 |
if (pt != OPTIMAL) return pt; |
489 | 490 |
return start(); |
490 | 491 |
} |
491 | 492 |
|
492 | 493 |
/// \brief Reset all the parameters that have been given before. |
493 | 494 |
/// |
494 | 495 |
/// This function resets all the paramaters that have been given |
495 | 496 |
/// before using functions \ref lowerMap(), \ref upperMap(), |
496 | 497 |
/// \ref costMap(), \ref supplyMap(), \ref stSupply(). |
497 | 498 |
/// |
498 | 499 |
/// It is useful for multiple \ref run() calls. Basically, all the given |
499 | 500 |
/// parameters are kept for the next \ref run() call, unless |
500 | 501 |
/// \ref resetParams() or \ref reset() is used. |
501 | 502 |
/// If the underlying digraph was also modified after the construction |
502 | 503 |
/// of the class or the last \ref reset() call, then the \ref reset() |
503 | 504 |
/// function must be used, otherwise \ref resetParams() is sufficient. |
504 | 505 |
/// |
505 | 506 |
/// For example, |
506 | 507 |
/// \code |
507 | 508 |
/// CapacityScaling<ListDigraph> cs(graph); |
508 | 509 |
/// |
509 | 510 |
/// // First run |
510 | 511 |
/// cs.lowerMap(lower).upperMap(upper).costMap(cost) |
511 | 512 |
/// .supplyMap(sup).run(); |
512 | 513 |
/// |
513 | 514 |
/// // Run again with modified cost map (resetParams() is not called, |
514 | 515 |
/// // so only the cost map have to be set again) |
515 | 516 |
/// cost[e] += 100; |
516 | 517 |
/// cs.costMap(cost).run(); |
517 | 518 |
/// |
518 | 519 |
/// // Run again from scratch using resetParams() |
519 | 520 |
/// // (the lower bounds will be set to zero on all arcs) |
520 | 521 |
/// cs.resetParams(); |
521 | 522 |
/// cs.upperMap(capacity).costMap(cost) |
522 | 523 |
/// .supplyMap(sup).run(); |
523 | 524 |
/// \endcode |
524 | 525 |
/// |
525 | 526 |
/// \return <tt>(*this)</tt> |
526 | 527 |
/// |
527 | 528 |
/// \see reset(), run() |
528 | 529 |
CapacityScaling& resetParams() { |
529 | 530 |
for (int i = 0; i != _node_num; ++i) { |
530 | 531 |
_supply[i] = 0; |
531 | 532 |
} |
532 | 533 |
for (int j = 0; j != _res_arc_num; ++j) { |
533 | 534 |
_lower[j] = 0; |
534 | 535 |
_upper[j] = INF; |
535 | 536 |
_cost[j] = _forward[j] ? 1 : -1; |
536 | 537 |
} |
537 | 538 |
_have_lower = false; |
538 | 539 |
return *this; |
539 | 540 |
} |
540 | 541 |
|
541 | 542 |
/// \brief Reset the internal data structures and all the parameters |
542 | 543 |
/// that have been given before. |
543 | 544 |
/// |
544 | 545 |
/// This function resets the internal data structures and all the |
545 | 546 |
/// paramaters that have been given before using functions \ref lowerMap(), |
546 | 547 |
/// \ref upperMap(), \ref costMap(), \ref supplyMap(), \ref stSupply(). |
547 | 548 |
/// |
548 | 549 |
/// It is useful for multiple \ref run() calls. Basically, all the given |
549 | 550 |
/// parameters are kept for the next \ref run() call, unless |
550 | 551 |
/// \ref resetParams() or \ref reset() is used. |
551 | 552 |
/// If the underlying digraph was also modified after the construction |
552 | 553 |
/// of the class or the last \ref reset() call, then the \ref reset() |
553 | 554 |
/// function must be used, otherwise \ref resetParams() is sufficient. |
554 | 555 |
/// |
555 | 556 |
/// See \ref resetParams() for examples. |
556 | 557 |
/// |
557 | 558 |
/// \return <tt>(*this)</tt> |
558 | 559 |
/// |
559 | 560 |
/// \see resetParams(), run() |
560 | 561 |
CapacityScaling& reset() { |
561 | 562 |
// Resize vectors |
562 | 563 |
_node_num = countNodes(_graph); |
563 | 564 |
_arc_num = countArcs(_graph); |
564 | 565 |
_res_arc_num = 2 * (_arc_num + _node_num); |
565 | 566 |
_root = _node_num; |
566 | 567 |
++_node_num; |
567 | 568 |
|
568 | 569 |
_first_out.resize(_node_num + 1); |
569 | 570 |
_forward.resize(_res_arc_num); |
570 | 571 |
_source.resize(_res_arc_num); |
571 | 572 |
_target.resize(_res_arc_num); |
572 | 573 |
_reverse.resize(_res_arc_num); |
573 | 574 |
|
574 | 575 |
_lower.resize(_res_arc_num); |
575 | 576 |
_upper.resize(_res_arc_num); |
576 | 577 |
_cost.resize(_res_arc_num); |
577 | 578 |
_supply.resize(_node_num); |
578 | 579 |
|
579 | 580 |
_res_cap.resize(_res_arc_num); |
580 | 581 |
_pi.resize(_node_num); |
581 | 582 |
_excess.resize(_node_num); |
582 | 583 |
_pred.resize(_node_num); |
583 | 584 |
|
584 | 585 |
// Copy the graph |
585 | 586 |
int i = 0, j = 0, k = 2 * _arc_num + _node_num - 1; |
586 | 587 |
for (NodeIt n(_graph); n != INVALID; ++n, ++i) { |
587 | 588 |
_node_id[n] = i; |
588 | 589 |
} |
589 | 590 |
i = 0; |
590 | 591 |
for (NodeIt n(_graph); n != INVALID; ++n, ++i) { |
591 | 592 |
_first_out[i] = j; |
592 | 593 |
for (OutArcIt a(_graph, n); a != INVALID; ++a, ++j) { |
593 | 594 |
_arc_idf[a] = j; |
594 | 595 |
_forward[j] = true; |
595 | 596 |
_source[j] = i; |
596 | 597 |
_target[j] = _node_id[_graph.runningNode(a)]; |
597 | 598 |
} |
598 | 599 |
for (InArcIt a(_graph, n); a != INVALID; ++a, ++j) { |
599 | 600 |
_arc_idb[a] = j; |
600 | 601 |
_forward[j] = false; |
601 | 602 |
_source[j] = i; |
602 | 603 |
_target[j] = _node_id[_graph.runningNode(a)]; |
603 | 604 |
} |
604 | 605 |
_forward[j] = false; |
605 | 606 |
_source[j] = i; |
606 | 607 |
_target[j] = _root; |
607 | 608 |
_reverse[j] = k; |
608 | 609 |
_forward[k] = true; |
609 | 610 |
_source[k] = _root; |
610 | 611 |
_target[k] = i; |
611 | 612 |
_reverse[k] = j; |
612 | 613 |
++j; ++k; |
613 | 614 |
} |
614 | 615 |
_first_out[i] = j; |
615 | 616 |
_first_out[_node_num] = k; |
616 | 617 |
for (ArcIt a(_graph); a != INVALID; ++a) { |
617 | 618 |
int fi = _arc_idf[a]; |
618 | 619 |
int bi = _arc_idb[a]; |
619 | 620 |
_reverse[fi] = bi; |
620 | 621 |
_reverse[bi] = fi; |
621 | 622 |
} |
622 | 623 |
|
623 | 624 |
// Reset parameters |
624 | 625 |
resetParams(); |
625 | 626 |
return *this; |
626 | 627 |
} |
627 | 628 |
|
628 | 629 |
/// @} |
629 | 630 |
|
630 | 631 |
/// \name Query Functions |
631 | 632 |
/// The results of the algorithm can be obtained using these |
632 | 633 |
/// functions.\n |
633 | 634 |
/// The \ref run() function must be called before using them. |
634 | 635 |
|
635 | 636 |
/// @{ |
636 | 637 |
|
637 | 638 |
/// \brief Return the total cost of the found flow. |
638 | 639 |
/// |
639 | 640 |
/// This function returns the total cost of the found flow. |
640 | 641 |
/// Its complexity is O(e). |
641 | 642 |
/// |
642 | 643 |
/// \note The return type of the function can be specified as a |
643 | 644 |
/// template parameter. For example, |
644 | 645 |
/// \code |
645 | 646 |
/// cs.totalCost<double>(); |
646 | 647 |
/// \endcode |
647 | 648 |
/// It is useful if the total cost cannot be stored in the \c Cost |
648 | 649 |
/// type of the algorithm, which is the default return type of the |
649 | 650 |
/// function. |
650 | 651 |
/// |
651 | 652 |
/// \pre \ref run() must be called before using this function. |
652 | 653 |
template <typename Number> |
653 | 654 |
Number totalCost() const { |
654 | 655 |
Number c = 0; |
655 | 656 |
for (ArcIt a(_graph); a != INVALID; ++a) { |
656 | 657 |
int i = _arc_idb[a]; |
657 | 658 |
c += static_cast<Number>(_res_cap[i]) * |
658 | 659 |
(-static_cast<Number>(_cost[i])); |
659 | 660 |
} |
660 | 661 |
return c; |
661 | 662 |
} |
662 | 663 |
|
663 | 664 |
#ifndef DOXYGEN |
664 | 665 |
Cost totalCost() const { |
665 | 666 |
return totalCost<Cost>(); |
666 | 667 |
} |
667 | 668 |
#endif |
668 | 669 |
|
669 | 670 |
/// \brief Return the flow on the given arc. |
670 | 671 |
/// |
671 | 672 |
/// This function returns the flow on the given arc. |
672 | 673 |
/// |
673 | 674 |
/// \pre \ref run() must be called before using this function. |
674 | 675 |
Value flow(const Arc& a) const { |
675 | 676 |
return _res_cap[_arc_idb[a]]; |
676 | 677 |
} |
677 | 678 |
|
678 | 679 |
/// \brief Return the flow map (the primal solution). |
679 | 680 |
/// |
680 | 681 |
/// This function copies the flow value on each arc into the given |
681 | 682 |
/// map. The \c Value type of the algorithm must be convertible to |
682 | 683 |
/// the \c Value type of the map. |
683 | 684 |
/// |
684 | 685 |
/// \pre \ref run() must be called before using this function. |
685 | 686 |
template <typename FlowMap> |
686 | 687 |
void flowMap(FlowMap &map) const { |
687 | 688 |
for (ArcIt a(_graph); a != INVALID; ++a) { |
688 | 689 |
map.set(a, _res_cap[_arc_idb[a]]); |
689 | 690 |
} |
690 | 691 |
} |
691 | 692 |
|
692 | 693 |
/// \brief Return the potential (dual value) of the given node. |
693 | 694 |
/// |
694 | 695 |
/// This function returns the potential (dual value) of the |
695 | 696 |
/// given node. |
696 | 697 |
/// |
697 | 698 |
/// \pre \ref run() must be called before using this function. |
698 | 699 |
Cost potential(const Node& n) const { |
699 | 700 |
return _pi[_node_id[n]]; |
700 | 701 |
} |
701 | 702 |
|
702 | 703 |
/// \brief Return the potential map (the dual solution). |
703 | 704 |
/// |
704 | 705 |
/// This function copies the potential (dual value) of each node |
705 | 706 |
/// into the given map. |
706 | 707 |
/// The \c Cost type of the algorithm must be convertible to the |
707 | 708 |
/// \c Value type of the map. |
708 | 709 |
/// |
709 | 710 |
/// \pre \ref run() must be called before using this function. |
710 | 711 |
template <typename PotentialMap> |
711 | 712 |
void potentialMap(PotentialMap &map) const { |
712 | 713 |
for (NodeIt n(_graph); n != INVALID; ++n) { |
713 | 714 |
map.set(n, _pi[_node_id[n]]); |
714 | 715 |
} |
715 | 716 |
} |
716 | 717 |
|
717 | 718 |
/// @} |
718 | 719 |
|
719 | 720 |
private: |
720 | 721 |
|
721 | 722 |
// Initialize the algorithm |
722 | 723 |
ProblemType init() { |
723 | 724 |
if (_node_num <= 1) return INFEASIBLE; |
724 | 725 |
|
725 | 726 |
// Check the sum of supply values |
726 | 727 |
_sum_supply = 0; |
727 | 728 |
for (int i = 0; i != _root; ++i) { |
728 | 729 |
_sum_supply += _supply[i]; |
729 | 730 |
} |
730 | 731 |
if (_sum_supply > 0) return INFEASIBLE; |
731 | 732 |
|
732 | 733 |
// Initialize vectors |
733 | 734 |
for (int i = 0; i != _root; ++i) { |
734 | 735 |
_pi[i] = 0; |
735 | 736 |
_excess[i] = _supply[i]; |
736 | 737 |
} |
737 | 738 |
|
738 | 739 |
// Remove non-zero lower bounds |
739 | 740 |
const Value MAX = std::numeric_limits<Value>::max(); |
740 | 741 |
int last_out; |
741 | 742 |
if (_have_lower) { |
742 | 743 |
for (int i = 0; i != _root; ++i) { |
743 | 744 |
last_out = _first_out[i+1]; |
744 | 745 |
for (int j = _first_out[i]; j != last_out; ++j) { |
745 | 746 |
if (_forward[j]) { |
746 | 747 |
Value c = _lower[j]; |
747 | 748 |
if (c >= 0) { |
748 | 749 |
_res_cap[j] = _upper[j] < MAX ? _upper[j] - c : INF; |
749 | 750 |
} else { |
750 | 751 |
_res_cap[j] = _upper[j] < MAX + c ? _upper[j] - c : INF; |
751 | 752 |
} |
752 | 753 |
_excess[i] -= c; |
753 | 754 |
_excess[_target[j]] += c; |
754 | 755 |
} else { |
755 | 756 |
_res_cap[j] = 0; |
756 | 757 |
} |
757 | 758 |
} |
758 | 759 |
} |
759 | 760 |
} else { |
760 | 761 |
for (int j = 0; j != _res_arc_num; ++j) { |
761 | 762 |
_res_cap[j] = _forward[j] ? _upper[j] : 0; |
762 | 763 |
} |
763 | 764 |
} |
764 | 765 |
|
765 | 766 |
// Handle negative costs |
766 | 767 |
for (int i = 0; i != _root; ++i) { |
767 | 768 |
last_out = _first_out[i+1] - 1; |
768 | 769 |
for (int j = _first_out[i]; j != last_out; ++j) { |
769 | 770 |
Value rc = _res_cap[j]; |
770 | 771 |
if (_cost[j] < 0 && rc > 0) { |
771 | 772 |
if (rc >= MAX) return UNBOUNDED; |
772 | 773 |
_excess[i] -= rc; |
773 | 774 |
_excess[_target[j]] += rc; |
774 | 775 |
_res_cap[j] = 0; |
775 | 776 |
_res_cap[_reverse[j]] += rc; |
776 | 777 |
} |
777 | 778 |
} |
778 | 779 |
} |
779 | 780 |
|
780 | 781 |
// Handle GEQ supply type |
781 | 782 |
if (_sum_supply < 0) { |
782 | 783 |
_pi[_root] = 0; |
783 | 784 |
_excess[_root] = -_sum_supply; |
784 | 785 |
for (int a = _first_out[_root]; a != _res_arc_num; ++a) { |
785 | 786 |
int ra = _reverse[a]; |
786 | 787 |
_res_cap[a] = -_sum_supply + 1; |
787 | 788 |
_res_cap[ra] = 0; |
788 | 789 |
_cost[a] = 0; |
789 | 790 |
_cost[ra] = 0; |
790 | 791 |
} |
791 | 792 |
} else { |
792 | 793 |
_pi[_root] = 0; |
793 | 794 |
_excess[_root] = 0; |
794 | 795 |
for (int a = _first_out[_root]; a != _res_arc_num; ++a) { |
795 | 796 |
int ra = _reverse[a]; |
796 | 797 |
_res_cap[a] = 1; |
797 | 798 |
_res_cap[ra] = 0; |
798 | 799 |
_cost[a] = 0; |
799 | 800 |
_cost[ra] = 0; |
800 | 801 |
} |
801 | 802 |
} |
802 | 803 |
|
803 | 804 |
// Initialize delta value |
804 | 805 |
if (_factor > 1) { |
805 | 806 |
// With scaling |
806 | 807 |
Value max_sup = 0, max_dem = 0, max_cap = 0; |
807 | 808 |
for (int i = 0; i != _root; ++i) { |
808 | 809 |
Value ex = _excess[i]; |
809 | 810 |
if ( ex > max_sup) max_sup = ex; |
810 | 811 |
if (-ex > max_dem) max_dem = -ex; |
811 | 812 |
int last_out = _first_out[i+1] - 1; |
812 | 813 |
for (int j = _first_out[i]; j != last_out; ++j) { |
813 | 814 |
if (_res_cap[j] > max_cap) max_cap = _res_cap[j]; |
814 | 815 |
} |
815 | 816 |
} |
816 | 817 |
max_sup = std::min(std::min(max_sup, max_dem), max_cap); |
817 | 818 |
for (_delta = 1; 2 * _delta <= max_sup; _delta *= 2) ; |
818 | 819 |
} else { |
819 | 820 |
// Without scaling |
820 | 821 |
_delta = 1; |
821 | 822 |
} |
822 | 823 |
|
823 | 824 |
return OPTIMAL; |
824 | 825 |
} |
825 | 826 |
|
826 | 827 |
ProblemType start() { |
827 | 828 |
// Execute the algorithm |
828 | 829 |
ProblemType pt; |
829 | 830 |
if (_delta > 1) |
830 | 831 |
pt = startWithScaling(); |
831 | 832 |
else |
832 | 833 |
pt = startWithoutScaling(); |
833 | 834 |
|
834 | 835 |
// Handle non-zero lower bounds |
835 | 836 |
if (_have_lower) { |
836 | 837 |
int limit = _first_out[_root]; |
837 | 838 |
for (int j = 0; j != limit; ++j) { |
838 | 839 |
if (!_forward[j]) _res_cap[j] += _lower[j]; |
839 | 840 |
} |
840 | 841 |
} |
841 | 842 |
|
842 | 843 |
// Shift potentials if necessary |
843 | 844 |
Cost pr = _pi[_root]; |
844 | 845 |
if (_sum_supply < 0 || pr > 0) { |
845 | 846 |
for (int i = 0; i != _node_num; ++i) { |
846 | 847 |
_pi[i] -= pr; |
847 | 848 |
} |
848 | 849 |
} |
849 | 850 |
|
850 | 851 |
return pt; |
851 | 852 |
} |
852 | 853 |
|
853 | 854 |
// Execute the capacity scaling algorithm |
854 | 855 |
ProblemType startWithScaling() { |
855 | 856 |
// Perform capacity scaling phases |
856 | 857 |
int s, t; |
857 | 858 |
ResidualDijkstra _dijkstra(*this); |
858 | 859 |
while (true) { |
859 | 860 |
// Saturate all arcs not satisfying the optimality condition |
860 | 861 |
int last_out; |
861 | 862 |
for (int u = 0; u != _node_num; ++u) { |
862 | 863 |
last_out = _sum_supply < 0 ? |
863 | 864 |
_first_out[u+1] : _first_out[u+1] - 1; |
864 | 865 |
for (int a = _first_out[u]; a != last_out; ++a) { |
865 | 866 |
int v = _target[a]; |
866 | 867 |
Cost c = _cost[a] + _pi[u] - _pi[v]; |
867 | 868 |
Value rc = _res_cap[a]; |
868 | 869 |
if (c < 0 && rc >= _delta) { |
869 | 870 |
_excess[u] -= rc; |
870 | 871 |
_excess[v] += rc; |
871 | 872 |
_res_cap[a] = 0; |
872 | 873 |
_res_cap[_reverse[a]] += rc; |
873 | 874 |
} |
874 | 875 |
} |
875 | 876 |
} |
876 | 877 |
|
877 | 878 |
// Find excess nodes and deficit nodes |
878 | 879 |
_excess_nodes.clear(); |
879 | 880 |
_deficit_nodes.clear(); |
880 | 881 |
for (int u = 0; u != _node_num; ++u) { |
881 | 882 |
Value ex = _excess[u]; |
882 | 883 |
if (ex >= _delta) _excess_nodes.push_back(u); |
883 | 884 |
if (ex <= -_delta) _deficit_nodes.push_back(u); |
884 | 885 |
} |
885 | 886 |
int next_node = 0, next_def_node = 0; |
886 | 887 |
|
887 | 888 |
// Find augmenting shortest paths |
888 | 889 |
while (next_node < int(_excess_nodes.size())) { |
889 | 890 |
// Check deficit nodes |
890 | 891 |
if (_delta > 1) { |
891 | 892 |
bool delta_deficit = false; |
892 | 893 |
for ( ; next_def_node < int(_deficit_nodes.size()); |
893 | 894 |
++next_def_node ) { |
894 | 895 |
if (_excess[_deficit_nodes[next_def_node]] <= -_delta) { |
895 | 896 |
delta_deficit = true; |
896 | 897 |
break; |
897 | 898 |
} |
898 | 899 |
} |
899 | 900 |
if (!delta_deficit) break; |
900 | 901 |
} |
901 | 902 |
|
902 | 903 |
// Run Dijkstra in the residual network |
903 | 904 |
s = _excess_nodes[next_node]; |
904 | 905 |
if ((t = _dijkstra.run(s, _delta)) == -1) { |
905 | 906 |
if (_delta > 1) { |
906 | 907 |
++next_node; |
907 | 908 |
continue; |
908 | 909 |
} |
909 | 910 |
return INFEASIBLE; |
910 | 911 |
} |
911 | 912 |
|
912 | 913 |
// Augment along a shortest path from s to t |
913 | 914 |
Value d = std::min(_excess[s], -_excess[t]); |
914 | 915 |
int u = t; |
915 | 916 |
int a; |
916 | 917 |
if (d > _delta) { |
917 | 918 |
while ((a = _pred[u]) != -1) { |
918 | 919 |
if (_res_cap[a] < d) d = _res_cap[a]; |
919 | 920 |
u = _source[a]; |
920 | 921 |
} |
921 | 922 |
} |
922 | 923 |
u = t; |
923 | 924 |
while ((a = _pred[u]) != -1) { |
924 | 925 |
_res_cap[a] -= d; |
925 | 926 |
_res_cap[_reverse[a]] += d; |
926 | 927 |
u = _source[a]; |
927 | 928 |
} |
928 | 929 |
_excess[s] -= d; |
929 | 930 |
_excess[t] += d; |
930 | 931 |
|
931 | 932 |
if (_excess[s] < _delta) ++next_node; |
932 | 933 |
} |
933 | 934 |
|
934 | 935 |
if (_delta == 1) break; |
935 | 936 |
_delta = _delta <= _factor ? 1 : _delta / _factor; |
936 | 937 |
} |
937 | 938 |
|
938 | 939 |
return OPTIMAL; |
939 | 940 |
} |
940 | 941 |
|
941 | 942 |
// Execute the successive shortest path algorithm |
942 | 943 |
ProblemType startWithoutScaling() { |
943 | 944 |
// Find excess nodes |
944 | 945 |
_excess_nodes.clear(); |
945 | 946 |
for (int i = 0; i != _node_num; ++i) { |
946 | 947 |
if (_excess[i] > 0) _excess_nodes.push_back(i); |
947 | 948 |
} |
948 | 949 |
if (_excess_nodes.size() == 0) return OPTIMAL; |
949 | 950 |
int next_node = 0; |
950 | 951 |
|
951 | 952 |
// Find shortest paths |
952 | 953 |
int s, t; |
953 | 954 |
ResidualDijkstra _dijkstra(*this); |
954 | 955 |
while ( _excess[_excess_nodes[next_node]] > 0 || |
955 | 956 |
++next_node < int(_excess_nodes.size()) ) |
956 | 957 |
{ |
957 | 958 |
// Run Dijkstra in the residual network |
958 | 959 |
s = _excess_nodes[next_node]; |
959 | 960 |
if ((t = _dijkstra.run(s)) == -1) return INFEASIBLE; |
960 | 961 |
|
961 | 962 |
// Augment along a shortest path from s to t |
962 | 963 |
Value d = std::min(_excess[s], -_excess[t]); |
963 | 964 |
int u = t; |
964 | 965 |
int a; |
965 | 966 |
if (d > 1) { |
966 | 967 |
while ((a = _pred[u]) != -1) { |
967 | 968 |
if (_res_cap[a] < d) d = _res_cap[a]; |
968 | 969 |
u = _source[a]; |
969 | 970 |
} |
970 | 971 |
} |
971 | 972 |
u = t; |
972 | 973 |
while ((a = _pred[u]) != -1) { |
973 | 974 |
_res_cap[a] -= d; |
974 | 975 |
_res_cap[_reverse[a]] += d; |
975 | 976 |
u = _source[a]; |
976 | 977 |
} |
977 | 978 |
_excess[s] -= d; |
978 | 979 |
_excess[t] += d; |
979 | 980 |
} |
980 | 981 |
|
981 | 982 |
return OPTIMAL; |
982 | 983 |
} |
983 | 984 |
|
984 | 985 |
}; //class CapacityScaling |
985 | 986 |
|
986 | 987 |
///@} |
987 | 988 |
|
988 | 989 |
} //namespace lemon |
989 | 990 |
|
990 | 991 |
#endif //LEMON_CAPACITY_SCALING_H |
1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 | 5 |
* Copyright (C) 2003-2010 |
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 | 19 |
#ifndef LEMON_COST_SCALING_H |
20 | 20 |
#define LEMON_COST_SCALING_H |
21 | 21 |
|
22 | 22 |
/// \ingroup min_cost_flow_algs |
23 | 23 |
/// \file |
24 | 24 |
/// \brief Cost scaling algorithm for finding a minimum cost flow. |
25 | 25 |
|
26 | 26 |
#include <vector> |
27 | 27 |
#include <deque> |
28 | 28 |
#include <limits> |
29 | 29 |
|
30 | 30 |
#include <lemon/core.h> |
31 | 31 |
#include <lemon/maps.h> |
32 | 32 |
#include <lemon/math.h> |
33 | 33 |
#include <lemon/static_graph.h> |
34 | 34 |
#include <lemon/circulation.h> |
35 | 35 |
#include <lemon/bellman_ford.h> |
36 | 36 |
|
37 | 37 |
namespace lemon { |
38 | 38 |
|
39 | 39 |
/// \brief Default traits class of CostScaling algorithm. |
40 | 40 |
/// |
41 | 41 |
/// Default traits class of CostScaling algorithm. |
42 | 42 |
/// \tparam GR Digraph type. |
43 | 43 |
/// \tparam V The number type used for flow amounts, capacity bounds |
44 | 44 |
/// and supply values. By default it is \c int. |
45 | 45 |
/// \tparam C The number type used for costs and potentials. |
46 | 46 |
/// By default it is the same as \c V. |
47 | 47 |
#ifdef DOXYGEN |
48 | 48 |
template <typename GR, typename V = int, typename C = V> |
49 | 49 |
#else |
50 | 50 |
template < typename GR, typename V = int, typename C = V, |
51 | 51 |
bool integer = std::numeric_limits<C>::is_integer > |
52 | 52 |
#endif |
53 | 53 |
struct CostScalingDefaultTraits |
54 | 54 |
{ |
55 | 55 |
/// The type of the digraph |
56 | 56 |
typedef GR Digraph; |
57 | 57 |
/// The type of the flow amounts, capacity bounds and supply values |
58 | 58 |
typedef V Value; |
59 | 59 |
/// The type of the arc costs |
60 | 60 |
typedef C Cost; |
61 | 61 |
|
62 | 62 |
/// \brief The large cost type used for internal computations |
63 | 63 |
/// |
64 | 64 |
/// The large cost type used for internal computations. |
65 | 65 |
/// It is \c long \c long if the \c Cost type is integer, |
66 | 66 |
/// otherwise it is \c double. |
67 | 67 |
/// \c Cost must be convertible to \c LargeCost. |
68 | 68 |
typedef double LargeCost; |
69 | 69 |
}; |
70 | 70 |
|
71 | 71 |
// Default traits class for integer cost types |
72 | 72 |
template <typename GR, typename V, typename C> |
73 | 73 |
struct CostScalingDefaultTraits<GR, V, C, true> |
74 | 74 |
{ |
75 | 75 |
typedef GR Digraph; |
76 | 76 |
typedef V Value; |
77 | 77 |
typedef C Cost; |
78 | 78 |
#ifdef LEMON_HAVE_LONG_LONG |
79 | 79 |
typedef long long LargeCost; |
80 | 80 |
#else |
81 | 81 |
typedef long LargeCost; |
82 | 82 |
#endif |
83 | 83 |
}; |
84 | 84 |
|
85 | 85 |
|
86 | 86 |
/// \addtogroup min_cost_flow_algs |
87 | 87 |
/// @{ |
88 | 88 |
|
89 | 89 |
/// \brief Implementation of the Cost Scaling algorithm for |
90 | 90 |
/// finding a \ref min_cost_flow "minimum cost flow". |
91 | 91 |
/// |
92 | 92 |
/// \ref CostScaling implements a cost scaling algorithm that performs |
93 | 93 |
/// push/augment and relabel operations for finding a \ref min_cost_flow |
94 | 94 |
/// "minimum cost flow" \ref amo93networkflows, \ref goldberg90approximation, |
95 | 95 |
/// \ref goldberg97efficient, \ref bunnagel98efficient. |
96 | 96 |
/// It is a highly efficient primal-dual solution method, which |
97 | 97 |
/// can be viewed as the generalization of the \ref Preflow |
98 | 98 |
/// "preflow push-relabel" algorithm for the maximum flow problem. |
99 | 99 |
/// |
100 | 100 |
/// Most of the parameters of the problem (except for the digraph) |
101 | 101 |
/// can be given using separate functions, and the algorithm can be |
102 | 102 |
/// executed using the \ref run() function. If some parameters are not |
103 | 103 |
/// specified, then default values will be used. |
104 | 104 |
/// |
105 | 105 |
/// \tparam GR The digraph type the algorithm runs on. |
106 | 106 |
/// \tparam V The number type used for flow amounts, capacity bounds |
107 | 107 |
/// and supply values in the algorithm. By default, it is \c int. |
108 | 108 |
/// \tparam C The number type used for costs and potentials in the |
109 | 109 |
/// algorithm. By default, it is the same as \c V. |
110 | 110 |
/// \tparam TR The traits class that defines various types used by the |
111 | 111 |
/// algorithm. By default, it is \ref CostScalingDefaultTraits |
112 | 112 |
/// "CostScalingDefaultTraits<GR, V, C>". |
113 | 113 |
/// In most cases, this parameter should not be set directly, |
114 | 114 |
/// consider to use the named template parameters instead. |
115 | 115 |
/// |
116 |
/// \warning Both |
|
116 |
/// \warning Both \c V and \c C must be signed number types. |
|
117 |
/// \warning All input data (capacities, supply values, and costs) must |
|
117 | 118 |
/// be integer. |
118 | 119 |
/// \warning This algorithm does not support negative costs for such |
119 | 120 |
/// arcs that have infinite upper bound. |
120 | 121 |
/// |
121 | 122 |
/// \note %CostScaling provides three different internal methods, |
122 | 123 |
/// from which the most efficient one is used by default. |
123 | 124 |
/// For more information, see \ref Method. |
124 | 125 |
#ifdef DOXYGEN |
125 | 126 |
template <typename GR, typename V, typename C, typename TR> |
126 | 127 |
#else |
127 | 128 |
template < typename GR, typename V = int, typename C = V, |
128 | 129 |
typename TR = CostScalingDefaultTraits<GR, V, C> > |
129 | 130 |
#endif |
130 | 131 |
class CostScaling |
131 | 132 |
{ |
132 | 133 |
public: |
133 | 134 |
|
134 | 135 |
/// The type of the digraph |
135 | 136 |
typedef typename TR::Digraph Digraph; |
136 | 137 |
/// The type of the flow amounts, capacity bounds and supply values |
137 | 138 |
typedef typename TR::Value Value; |
138 | 139 |
/// The type of the arc costs |
139 | 140 |
typedef typename TR::Cost Cost; |
140 | 141 |
|
141 | 142 |
/// \brief The large cost type |
142 | 143 |
/// |
143 | 144 |
/// The large cost type used for internal computations. |
144 | 145 |
/// By default, it is \c long \c long if the \c Cost type is integer, |
145 | 146 |
/// otherwise it is \c double. |
146 | 147 |
typedef typename TR::LargeCost LargeCost; |
147 | 148 |
|
148 | 149 |
/// The \ref CostScalingDefaultTraits "traits class" of the algorithm |
149 | 150 |
typedef TR Traits; |
150 | 151 |
|
151 | 152 |
public: |
152 | 153 |
|
153 | 154 |
/// \brief Problem type constants for the \c run() function. |
154 | 155 |
/// |
155 | 156 |
/// Enum type containing the problem type constants that can be |
156 | 157 |
/// returned by the \ref run() function of the algorithm. |
157 | 158 |
enum ProblemType { |
158 | 159 |
/// The problem has no feasible solution (flow). |
159 | 160 |
INFEASIBLE, |
160 | 161 |
/// The problem has optimal solution (i.e. it is feasible and |
161 | 162 |
/// bounded), and the algorithm has found optimal flow and node |
162 | 163 |
/// potentials (primal and dual solutions). |
163 | 164 |
OPTIMAL, |
164 | 165 |
/// The digraph contains an arc of negative cost and infinite |
165 | 166 |
/// upper bound. It means that the objective function is unbounded |
166 | 167 |
/// on that arc, however, note that it could actually be bounded |
167 | 168 |
/// over the feasible flows, but this algroithm cannot handle |
168 | 169 |
/// these cases. |
169 | 170 |
UNBOUNDED |
170 | 171 |
}; |
171 | 172 |
|
172 | 173 |
/// \brief Constants for selecting the internal method. |
173 | 174 |
/// |
174 | 175 |
/// Enum type containing constants for selecting the internal method |
175 | 176 |
/// for the \ref run() function. |
176 | 177 |
/// |
177 | 178 |
/// \ref CostScaling provides three internal methods that differ mainly |
178 | 179 |
/// in their base operations, which are used in conjunction with the |
179 | 180 |
/// relabel operation. |
180 | 181 |
/// By default, the so called \ref PARTIAL_AUGMENT |
181 | 182 |
/// "Partial Augment-Relabel" method is used, which proved to be |
182 | 183 |
/// the most efficient and the most robust on various test inputs. |
183 | 184 |
/// However, the other methods can be selected using the \ref run() |
184 | 185 |
/// function with the proper parameter. |
185 | 186 |
enum Method { |
186 | 187 |
/// Local push operations are used, i.e. flow is moved only on one |
187 | 188 |
/// admissible arc at once. |
188 | 189 |
PUSH, |
189 | 190 |
/// Augment operations are used, i.e. flow is moved on admissible |
190 | 191 |
/// paths from a node with excess to a node with deficit. |
191 | 192 |
AUGMENT, |
192 | 193 |
/// Partial augment operations are used, i.e. flow is moved on |
193 | 194 |
/// admissible paths started from a node with excess, but the |
194 | 195 |
/// lengths of these paths are limited. This method can be viewed |
195 | 196 |
/// as a combined version of the previous two operations. |
196 | 197 |
PARTIAL_AUGMENT |
197 | 198 |
}; |
198 | 199 |
|
199 | 200 |
private: |
200 | 201 |
|
201 | 202 |
TEMPLATE_DIGRAPH_TYPEDEFS(GR); |
202 | 203 |
|
203 | 204 |
typedef std::vector<int> IntVector; |
204 | 205 |
typedef std::vector<Value> ValueVector; |
205 | 206 |
typedef std::vector<Cost> CostVector; |
206 | 207 |
typedef std::vector<LargeCost> LargeCostVector; |
207 | 208 |
typedef std::vector<char> BoolVector; |
208 | 209 |
// Note: vector<char> is used instead of vector<bool> for efficiency reasons |
209 | 210 |
|
210 | 211 |
private: |
211 | 212 |
|
212 | 213 |
template <typename KT, typename VT> |
213 | 214 |
class StaticVectorMap { |
214 | 215 |
public: |
215 | 216 |
typedef KT Key; |
216 | 217 |
typedef VT Value; |
217 | 218 |
|
218 | 219 |
StaticVectorMap(std::vector<Value>& v) : _v(v) {} |
219 | 220 |
|
220 | 221 |
const Value& operator[](const Key& key) const { |
221 | 222 |
return _v[StaticDigraph::id(key)]; |
222 | 223 |
} |
223 | 224 |
|
224 | 225 |
Value& operator[](const Key& key) { |
225 | 226 |
return _v[StaticDigraph::id(key)]; |
226 | 227 |
} |
227 | 228 |
|
228 | 229 |
void set(const Key& key, const Value& val) { |
229 | 230 |
_v[StaticDigraph::id(key)] = val; |
230 | 231 |
} |
231 | 232 |
|
232 | 233 |
private: |
233 | 234 |
std::vector<Value>& _v; |
234 | 235 |
}; |
235 | 236 |
|
236 | 237 |
typedef StaticVectorMap<StaticDigraph::Node, LargeCost> LargeCostNodeMap; |
237 | 238 |
typedef StaticVectorMap<StaticDigraph::Arc, LargeCost> LargeCostArcMap; |
238 | 239 |
|
239 | 240 |
private: |
240 | 241 |
|
241 | 242 |
// Data related to the underlying digraph |
242 | 243 |
const GR &_graph; |
243 | 244 |
int _node_num; |
244 | 245 |
int _arc_num; |
245 | 246 |
int _res_node_num; |
246 | 247 |
int _res_arc_num; |
247 | 248 |
int _root; |
248 | 249 |
|
249 | 250 |
// Parameters of the problem |
250 | 251 |
bool _have_lower; |
251 | 252 |
Value _sum_supply; |
252 | 253 |
int _sup_node_num; |
253 | 254 |
|
254 | 255 |
// Data structures for storing the digraph |
255 | 256 |
IntNodeMap _node_id; |
256 | 257 |
IntArcMap _arc_idf; |
257 | 258 |
IntArcMap _arc_idb; |
258 | 259 |
IntVector _first_out; |
259 | 260 |
BoolVector _forward; |
260 | 261 |
IntVector _source; |
261 | 262 |
IntVector _target; |
262 | 263 |
IntVector _reverse; |
263 | 264 |
|
264 | 265 |
// Node and arc data |
265 | 266 |
ValueVector _lower; |
266 | 267 |
ValueVector _upper; |
267 | 268 |
CostVector _scost; |
268 | 269 |
ValueVector _supply; |
269 | 270 |
|
270 | 271 |
ValueVector _res_cap; |
271 | 272 |
LargeCostVector _cost; |
272 | 273 |
LargeCostVector _pi; |
273 | 274 |
ValueVector _excess; |
274 | 275 |
IntVector _next_out; |
275 | 276 |
std::deque<int> _active_nodes; |
276 | 277 |
|
277 | 278 |
// Data for scaling |
278 | 279 |
LargeCost _epsilon; |
279 | 280 |
int _alpha; |
280 | 281 |
|
281 | 282 |
IntVector _buckets; |
282 | 283 |
IntVector _bucket_next; |
283 | 284 |
IntVector _bucket_prev; |
284 | 285 |
IntVector _rank; |
285 | 286 |
int _max_rank; |
286 | 287 |
|
287 | 288 |
// Data for a StaticDigraph structure |
288 | 289 |
typedef std::pair<int, int> IntPair; |
289 | 290 |
StaticDigraph _sgr; |
290 | 291 |
std::vector<IntPair> _arc_vec; |
291 | 292 |
std::vector<LargeCost> _cost_vec; |
292 | 293 |
LargeCostArcMap _cost_map; |
293 | 294 |
LargeCostNodeMap _pi_map; |
294 | 295 |
|
295 | 296 |
public: |
296 | 297 |
|
297 | 298 |
/// \brief Constant for infinite upper bounds (capacities). |
298 | 299 |
/// |
299 | 300 |
/// Constant for infinite upper bounds (capacities). |
300 | 301 |
/// It is \c std::numeric_limits<Value>::infinity() if available, |
301 | 302 |
/// \c std::numeric_limits<Value>::max() otherwise. |
302 | 303 |
const Value INF; |
303 | 304 |
|
304 | 305 |
public: |
305 | 306 |
|
306 | 307 |
/// \name Named Template Parameters |
307 | 308 |
/// @{ |
308 | 309 |
|
309 | 310 |
template <typename T> |
310 | 311 |
struct SetLargeCostTraits : public Traits { |
311 | 312 |
typedef T LargeCost; |
312 | 313 |
}; |
313 | 314 |
|
314 | 315 |
/// \brief \ref named-templ-param "Named parameter" for setting |
315 | 316 |
/// \c LargeCost type. |
316 | 317 |
/// |
317 | 318 |
/// \ref named-templ-param "Named parameter" for setting \c LargeCost |
318 | 319 |
/// type, which is used for internal computations in the algorithm. |
319 | 320 |
/// \c Cost must be convertible to \c LargeCost. |
320 | 321 |
template <typename T> |
321 | 322 |
struct SetLargeCost |
322 | 323 |
: public CostScaling<GR, V, C, SetLargeCostTraits<T> > { |
323 | 324 |
typedef CostScaling<GR, V, C, SetLargeCostTraits<T> > Create; |
324 | 325 |
}; |
325 | 326 |
|
326 | 327 |
/// @} |
327 | 328 |
|
328 | 329 |
protected: |
329 | 330 |
|
330 | 331 |
CostScaling() {} |
331 | 332 |
|
332 | 333 |
public: |
333 | 334 |
|
334 | 335 |
/// \brief Constructor. |
335 | 336 |
/// |
336 | 337 |
/// The constructor of the class. |
337 | 338 |
/// |
338 | 339 |
/// \param graph The digraph the algorithm runs on. |
339 | 340 |
CostScaling(const GR& graph) : |
340 | 341 |
_graph(graph), _node_id(graph), _arc_idf(graph), _arc_idb(graph), |
341 | 342 |
_cost_map(_cost_vec), _pi_map(_pi), |
342 | 343 |
INF(std::numeric_limits<Value>::has_infinity ? |
343 | 344 |
std::numeric_limits<Value>::infinity() : |
344 | 345 |
std::numeric_limits<Value>::max()) |
345 | 346 |
{ |
346 | 347 |
// Check the number types |
347 | 348 |
LEMON_ASSERT(std::numeric_limits<Value>::is_signed, |
348 | 349 |
"The flow type of CostScaling must be signed"); |
349 | 350 |
LEMON_ASSERT(std::numeric_limits<Cost>::is_signed, |
350 | 351 |
"The cost type of CostScaling must be signed"); |
351 | 352 |
|
352 | 353 |
// Reset data structures |
353 | 354 |
reset(); |
354 | 355 |
} |
355 | 356 |
|
356 | 357 |
/// \name Parameters |
357 | 358 |
/// The parameters of the algorithm can be specified using these |
358 | 359 |
/// functions. |
359 | 360 |
|
360 | 361 |
/// @{ |
361 | 362 |
|
362 | 363 |
/// \brief Set the lower bounds on the arcs. |
363 | 364 |
/// |
364 | 365 |
/// This function sets the lower bounds on the arcs. |
365 | 366 |
/// If it is not used before calling \ref run(), the lower bounds |
366 | 367 |
/// will be set to zero on all arcs. |
367 | 368 |
/// |
368 | 369 |
/// \param map An arc map storing the lower bounds. |
369 | 370 |
/// Its \c Value type must be convertible to the \c Value type |
370 | 371 |
/// of the algorithm. |
371 | 372 |
/// |
372 | 373 |
/// \return <tt>(*this)</tt> |
373 | 374 |
template <typename LowerMap> |
374 | 375 |
CostScaling& lowerMap(const LowerMap& map) { |
375 | 376 |
_have_lower = true; |
376 | 377 |
for (ArcIt a(_graph); a != INVALID; ++a) { |
377 | 378 |
_lower[_arc_idf[a]] = map[a]; |
378 | 379 |
_lower[_arc_idb[a]] = map[a]; |
379 | 380 |
} |
380 | 381 |
return *this; |
381 | 382 |
} |
382 | 383 |
|
383 | 384 |
/// \brief Set the upper bounds (capacities) on the arcs. |
384 | 385 |
/// |
385 | 386 |
/// This function sets the upper bounds (capacities) on the arcs. |
386 | 387 |
/// If it is not used before calling \ref run(), the upper bounds |
387 | 388 |
/// will be set to \ref INF on all arcs (i.e. the flow value will be |
388 | 389 |
/// unbounded from above). |
389 | 390 |
/// |
390 | 391 |
/// \param map An arc map storing the upper bounds. |
391 | 392 |
/// Its \c Value type must be convertible to the \c Value type |
392 | 393 |
/// of the algorithm. |
393 | 394 |
/// |
394 | 395 |
/// \return <tt>(*this)</tt> |
395 | 396 |
template<typename UpperMap> |
396 | 397 |
CostScaling& upperMap(const UpperMap& map) { |
397 | 398 |
for (ArcIt a(_graph); a != INVALID; ++a) { |
398 | 399 |
_upper[_arc_idf[a]] = map[a]; |
399 | 400 |
} |
400 | 401 |
return *this; |
401 | 402 |
} |
402 | 403 |
|
403 | 404 |
/// \brief Set the costs of the arcs. |
404 | 405 |
/// |
405 | 406 |
/// This function sets the costs of the arcs. |
406 | 407 |
/// If it is not used before calling \ref run(), the costs |
407 | 408 |
/// will be set to \c 1 on all arcs. |
408 | 409 |
/// |
409 | 410 |
/// \param map An arc map storing the costs. |
410 | 411 |
/// Its \c Value type must be convertible to the \c Cost type |
411 | 412 |
/// of the algorithm. |
412 | 413 |
/// |
413 | 414 |
/// \return <tt>(*this)</tt> |
414 | 415 |
template<typename CostMap> |
415 | 416 |
CostScaling& costMap(const CostMap& map) { |
416 | 417 |
for (ArcIt a(_graph); a != INVALID; ++a) { |
417 | 418 |
_scost[_arc_idf[a]] = map[a]; |
418 | 419 |
_scost[_arc_idb[a]] = -map[a]; |
419 | 420 |
} |
420 | 421 |
return *this; |
421 | 422 |
} |
422 | 423 |
|
423 | 424 |
/// \brief Set the supply values of the nodes. |
424 | 425 |
/// |
425 | 426 |
/// This function sets the supply values of the nodes. |
426 | 427 |
/// If neither this function nor \ref stSupply() is used before |
427 | 428 |
/// calling \ref run(), the supply of each node will be set to zero. |
428 | 429 |
/// |
429 | 430 |
/// \param map A node map storing the supply values. |
430 | 431 |
/// Its \c Value type must be convertible to the \c Value type |
431 | 432 |
/// of the algorithm. |
432 | 433 |
/// |
433 | 434 |
/// \return <tt>(*this)</tt> |
434 | 435 |
template<typename SupplyMap> |
435 | 436 |
CostScaling& supplyMap(const SupplyMap& map) { |
436 | 437 |
for (NodeIt n(_graph); n != INVALID; ++n) { |
437 | 438 |
_supply[_node_id[n]] = map[n]; |
438 | 439 |
} |
439 | 440 |
return *this; |
440 | 441 |
} |
441 | 442 |
|
442 | 443 |
/// \brief Set single source and target nodes and a supply value. |
443 | 444 |
/// |
444 | 445 |
/// This function sets a single source node and a single target node |
445 | 446 |
/// and the required flow value. |
446 | 447 |
/// If neither this function nor \ref supplyMap() is used before |
447 | 448 |
/// calling \ref run(), the supply of each node will be set to zero. |
448 | 449 |
/// |
449 | 450 |
/// Using this function has the same effect as using \ref supplyMap() |
450 | 451 |
/// with such a map in which \c k is assigned to \c s, \c -k is |
451 | 452 |
/// assigned to \c t and all other nodes have zero supply value. |
452 | 453 |
/// |
453 | 454 |
/// \param s The source node. |
454 | 455 |
/// \param t The target node. |
455 | 456 |
/// \param k The required amount of flow from node \c s to node \c t |
456 | 457 |
/// (i.e. the supply of \c s and the demand of \c t). |
457 | 458 |
/// |
458 | 459 |
/// \return <tt>(*this)</tt> |
459 | 460 |
CostScaling& stSupply(const Node& s, const Node& t, Value k) { |
460 | 461 |
for (int i = 0; i != _res_node_num; ++i) { |
461 | 462 |
_supply[i] = 0; |
462 | 463 |
} |
463 | 464 |
_supply[_node_id[s]] = k; |
464 | 465 |
_supply[_node_id[t]] = -k; |
465 | 466 |
return *this; |
466 | 467 |
} |
467 | 468 |
|
468 | 469 |
/// @} |
469 | 470 |
|
470 | 471 |
/// \name Execution control |
471 | 472 |
/// The algorithm can be executed using \ref run(). |
472 | 473 |
|
473 | 474 |
/// @{ |
474 | 475 |
|
475 | 476 |
/// \brief Run the algorithm. |
476 | 477 |
/// |
477 | 478 |
/// This function runs the algorithm. |
478 | 479 |
/// The paramters can be specified using functions \ref lowerMap(), |
479 | 480 |
/// \ref upperMap(), \ref costMap(), \ref supplyMap(), \ref stSupply(). |
480 | 481 |
/// For example, |
481 | 482 |
/// \code |
482 | 483 |
/// CostScaling<ListDigraph> cs(graph); |
483 | 484 |
/// cs.lowerMap(lower).upperMap(upper).costMap(cost) |
484 | 485 |
/// .supplyMap(sup).run(); |
485 | 486 |
/// \endcode |
486 | 487 |
/// |
487 | 488 |
/// This function can be called more than once. All the given parameters |
488 | 489 |
/// are kept for the next call, unless \ref resetParams() or \ref reset() |
489 | 490 |
/// is used, thus only the modified parameters have to be set again. |
490 | 491 |
/// If the underlying digraph was also modified after the construction |
491 | 492 |
/// of the class (or the last \ref reset() call), then the \ref reset() |
492 | 493 |
/// function must be called. |
493 | 494 |
/// |
494 | 495 |
/// \param method The internal method that will be used in the |
495 | 496 |
/// algorithm. For more information, see \ref Method. |
496 | 497 |
/// \param factor The cost scaling factor. It must be larger than one. |
497 | 498 |
/// |
498 | 499 |
/// \return \c INFEASIBLE if no feasible flow exists, |
499 | 500 |
/// \n \c OPTIMAL if the problem has optimal solution |
500 | 501 |
/// (i.e. it is feasible and bounded), and the algorithm has found |
501 | 502 |
/// optimal flow and node potentials (primal and dual solutions), |
502 | 503 |
/// \n \c UNBOUNDED if the digraph contains an arc of negative cost |
503 | 504 |
/// and infinite upper bound. It means that the objective function |
504 | 505 |
/// is unbounded on that arc, however, note that it could actually be |
505 | 506 |
/// bounded over the feasible flows, but this algroithm cannot handle |
506 | 507 |
/// these cases. |
507 | 508 |
/// |
508 | 509 |
/// \see ProblemType, Method |
509 | 510 |
/// \see resetParams(), reset() |
510 | 511 |
ProblemType run(Method method = PARTIAL_AUGMENT, int factor = 8) { |
511 | 512 |
_alpha = factor; |
512 | 513 |
ProblemType pt = init(); |
513 | 514 |
if (pt != OPTIMAL) return pt; |
514 | 515 |
start(method); |
515 | 516 |
return OPTIMAL; |
516 | 517 |
} |
517 | 518 |
|
518 | 519 |
/// \brief Reset all the parameters that have been given before. |
519 | 520 |
/// |
520 | 521 |
/// This function resets all the paramaters that have been given |
521 | 522 |
/// before using functions \ref lowerMap(), \ref upperMap(), |
522 | 523 |
/// \ref costMap(), \ref supplyMap(), \ref stSupply(). |
523 | 524 |
/// |
524 | 525 |
/// It is useful for multiple \ref run() calls. Basically, all the given |
525 | 526 |
/// parameters are kept for the next \ref run() call, unless |
526 | 527 |
/// \ref resetParams() or \ref reset() is used. |
527 | 528 |
/// If the underlying digraph was also modified after the construction |
528 | 529 |
/// of the class or the last \ref reset() call, then the \ref reset() |
529 | 530 |
/// function must be used, otherwise \ref resetParams() is sufficient. |
530 | 531 |
/// |
531 | 532 |
/// For example, |
532 | 533 |
/// \code |
533 | 534 |
/// CostScaling<ListDigraph> cs(graph); |
534 | 535 |
/// |
535 | 536 |
/// // First run |
536 | 537 |
/// cs.lowerMap(lower).upperMap(upper).costMap(cost) |
537 | 538 |
/// .supplyMap(sup).run(); |
538 | 539 |
/// |
539 | 540 |
/// // Run again with modified cost map (resetParams() is not called, |
540 | 541 |
/// // so only the cost map have to be set again) |
541 | 542 |
/// cost[e] += 100; |
542 | 543 |
/// cs.costMap(cost).run(); |
543 | 544 |
/// |
544 | 545 |
/// // Run again from scratch using resetParams() |
545 | 546 |
/// // (the lower bounds will be set to zero on all arcs) |
546 | 547 |
/// cs.resetParams(); |
547 | 548 |
/// cs.upperMap(capacity).costMap(cost) |
548 | 549 |
/// .supplyMap(sup).run(); |
549 | 550 |
/// \endcode |
550 | 551 |
/// |
551 | 552 |
/// \return <tt>(*this)</tt> |
552 | 553 |
/// |
553 | 554 |
/// \see reset(), run() |
554 | 555 |
CostScaling& resetParams() { |
555 | 556 |
for (int i = 0; i != _res_node_num; ++i) { |
556 | 557 |
_supply[i] = 0; |
557 | 558 |
} |
558 | 559 |
int limit = _first_out[_root]; |
559 | 560 |
for (int j = 0; j != limit; ++j) { |
560 | 561 |
_lower[j] = 0; |
561 | 562 |
_upper[j] = INF; |
562 | 563 |
_scost[j] = _forward[j] ? 1 : -1; |
563 | 564 |
} |
564 | 565 |
for (int j = limit; j != _res_arc_num; ++j) { |
565 | 566 |
_lower[j] = 0; |
566 | 567 |
_upper[j] = INF; |
567 | 568 |
_scost[j] = 0; |
568 | 569 |
_scost[_reverse[j]] = 0; |
569 | 570 |
} |
570 | 571 |
_have_lower = false; |
571 | 572 |
return *this; |
572 | 573 |
} |
573 | 574 |
|
574 | 575 |
/// \brief Reset all the parameters that have been given before. |
575 | 576 |
/// |
576 | 577 |
/// This function resets all the paramaters that have been given |
577 | 578 |
/// before using functions \ref lowerMap(), \ref upperMap(), |
578 | 579 |
/// \ref costMap(), \ref supplyMap(), \ref stSupply(). |
579 | 580 |
/// |
580 | 581 |
/// It is useful for multiple run() calls. If this function is not |
581 | 582 |
/// used, all the parameters given before are kept for the next |
582 | 583 |
/// \ref run() call. |
583 | 584 |
/// However, the underlying digraph must not be modified after this |
584 | 585 |
/// class have been constructed, since it copies and extends the graph. |
585 | 586 |
/// \return <tt>(*this)</tt> |
586 | 587 |
CostScaling& reset() { |
587 | 588 |
// Resize vectors |
588 | 589 |
_node_num = countNodes(_graph); |
589 | 590 |
_arc_num = countArcs(_graph); |
590 | 591 |
_res_node_num = _node_num + 1; |
591 | 592 |
_res_arc_num = 2 * (_arc_num + _node_num); |
592 | 593 |
_root = _node_num; |
593 | 594 |
|
594 | 595 |
_first_out.resize(_res_node_num + 1); |
595 | 596 |
_forward.resize(_res_arc_num); |
596 | 597 |
_source.resize(_res_arc_num); |
597 | 598 |
_target.resize(_res_arc_num); |
598 | 599 |
_reverse.resize(_res_arc_num); |
599 | 600 |
|
600 | 601 |
_lower.resize(_res_arc_num); |
601 | 602 |
_upper.resize(_res_arc_num); |
602 | 603 |
_scost.resize(_res_arc_num); |
603 | 604 |
_supply.resize(_res_node_num); |
604 | 605 |
|
605 | 606 |
_res_cap.resize(_res_arc_num); |
606 | 607 |
_cost.resize(_res_arc_num); |
607 | 608 |
_pi.resize(_res_node_num); |
608 | 609 |
_excess.resize(_res_node_num); |
609 | 610 |
_next_out.resize(_res_node_num); |
610 | 611 |
|
611 | 612 |
_arc_vec.reserve(_res_arc_num); |
612 | 613 |
_cost_vec.reserve(_res_arc_num); |
613 | 614 |
|
614 | 615 |
// Copy the graph |
615 | 616 |
int i = 0, j = 0, k = 2 * _arc_num + _node_num; |
616 | 617 |
for (NodeIt n(_graph); n != INVALID; ++n, ++i) { |
617 | 618 |
_node_id[n] = i; |
618 | 619 |
} |
619 | 620 |
i = 0; |
620 | 621 |
for (NodeIt n(_graph); n != INVALID; ++n, ++i) { |
621 | 622 |
_first_out[i] = j; |
622 | 623 |
for (OutArcIt a(_graph, n); a != INVALID; ++a, ++j) { |
623 | 624 |
_arc_idf[a] = j; |
624 | 625 |
_forward[j] = true; |
625 | 626 |
_source[j] = i; |
626 | 627 |
_target[j] = _node_id[_graph.runningNode(a)]; |
627 | 628 |
} |
628 | 629 |
for (InArcIt a(_graph, n); a != INVALID; ++a, ++j) { |
629 | 630 |
_arc_idb[a] = j; |
630 | 631 |
_forward[j] = false; |
631 | 632 |
_source[j] = i; |
632 | 633 |
_target[j] = _node_id[_graph.runningNode(a)]; |
633 | 634 |
} |
634 | 635 |
_forward[j] = false; |
635 | 636 |
_source[j] = i; |
636 | 637 |
_target[j] = _root; |
637 | 638 |
_reverse[j] = k; |
638 | 639 |
_forward[k] = true; |
639 | 640 |
_source[k] = _root; |
640 | 641 |
_target[k] = i; |
641 | 642 |
_reverse[k] = j; |
642 | 643 |
++j; ++k; |
643 | 644 |
} |
644 | 645 |
_first_out[i] = j; |
645 | 646 |
_first_out[_res_node_num] = k; |
646 | 647 |
for (ArcIt a(_graph); a != INVALID; ++a) { |
647 | 648 |
int fi = _arc_idf[a]; |
648 | 649 |
int bi = _arc_idb[a]; |
649 | 650 |
_reverse[fi] = bi; |
650 | 651 |
_reverse[bi] = fi; |
651 | 652 |
} |
652 | 653 |
|
653 | 654 |
// Reset parameters |
654 | 655 |
resetParams(); |
655 | 656 |
return *this; |
656 | 657 |
} |
657 | 658 |
|
658 | 659 |
/// @} |
659 | 660 |
|
660 | 661 |
/// \name Query Functions |
661 | 662 |
/// The results of the algorithm can be obtained using these |
662 | 663 |
/// functions.\n |
663 | 664 |
/// The \ref run() function must be called before using them. |
664 | 665 |
|
665 | 666 |
/// @{ |
666 | 667 |
|
667 | 668 |
/// \brief Return the total cost of the found flow. |
668 | 669 |
/// |
669 | 670 |
/// This function returns the total cost of the found flow. |
670 | 671 |
/// Its complexity is O(e). |
671 | 672 |
/// |
672 | 673 |
/// \note The return type of the function can be specified as a |
673 | 674 |
/// template parameter. For example, |
674 | 675 |
/// \code |
675 | 676 |
/// cs.totalCost<double>(); |
676 | 677 |
/// \endcode |
677 | 678 |
/// It is useful if the total cost cannot be stored in the \c Cost |
678 | 679 |
/// type of the algorithm, which is the default return type of the |
679 | 680 |
/// function. |
680 | 681 |
/// |
681 | 682 |
/// \pre \ref run() must be called before using this function. |
682 | 683 |
template <typename Number> |
683 | 684 |
Number totalCost() const { |
684 | 685 |
Number c = 0; |
685 | 686 |
for (ArcIt a(_graph); a != INVALID; ++a) { |
686 | 687 |
int i = _arc_idb[a]; |
687 | 688 |
c += static_cast<Number>(_res_cap[i]) * |
688 | 689 |
(-static_cast<Number>(_scost[i])); |
689 | 690 |
} |
690 | 691 |
return c; |
691 | 692 |
} |
692 | 693 |
|
693 | 694 |
#ifndef DOXYGEN |
694 | 695 |
Cost totalCost() const { |
695 | 696 |
return totalCost<Cost>(); |
696 | 697 |
} |
697 | 698 |
#endif |
698 | 699 |
|
699 | 700 |
/// \brief Return the flow on the given arc. |
700 | 701 |
/// |
701 | 702 |
/// This function returns the flow on the given arc. |
702 | 703 |
/// |
703 | 704 |
/// \pre \ref run() must be called before using this function. |
704 | 705 |
Value flow(const Arc& a) const { |
705 | 706 |
return _res_cap[_arc_idb[a]]; |
706 | 707 |
} |
707 | 708 |
|
708 | 709 |
/// \brief Return the flow map (the primal solution). |
709 | 710 |
/// |
710 | 711 |
/// This function copies the flow value on each arc into the given |
711 | 712 |
/// map. The \c Value type of the algorithm must be convertible to |
712 | 713 |
/// the \c Value type of the map. |
713 | 714 |
/// |
714 | 715 |
/// \pre \ref run() must be called before using this function. |
715 | 716 |
template <typename FlowMap> |
716 | 717 |
void flowMap(FlowMap &map) const { |
717 | 718 |
for (ArcIt a(_graph); a != INVALID; ++a) { |
718 | 719 |
map.set(a, _res_cap[_arc_idb[a]]); |
719 | 720 |
} |
720 | 721 |
} |
721 | 722 |
|
722 | 723 |
/// \brief Return the potential (dual value) of the given node. |
723 | 724 |
/// |
724 | 725 |
/// This function returns the potential (dual value) of the |
725 | 726 |
/// given node. |
726 | 727 |
/// |
727 | 728 |
/// \pre \ref run() must be called before using this function. |
728 | 729 |
Cost potential(const Node& n) const { |
729 | 730 |
return static_cast<Cost>(_pi[_node_id[n]]); |
730 | 731 |
} |
731 | 732 |
|
732 | 733 |
/// \brief Return the potential map (the dual solution). |
733 | 734 |
/// |
734 | 735 |
/// This function copies the potential (dual value) of each node |
735 | 736 |
/// into the given map. |
736 | 737 |
/// The \c Cost type of the algorithm must be convertible to the |
737 | 738 |
/// \c Value type of the map. |
738 | 739 |
/// |
739 | 740 |
/// \pre \ref run() must be called before using this function. |
740 | 741 |
template <typename PotentialMap> |
741 | 742 |
void potentialMap(PotentialMap &map) const { |
742 | 743 |
for (NodeIt n(_graph); n != INVALID; ++n) { |
743 | 744 |
map.set(n, static_cast<Cost>(_pi[_node_id[n]])); |
744 | 745 |
} |
745 | 746 |
} |
746 | 747 |
|
747 | 748 |
/// @} |
748 | 749 |
|
749 | 750 |
private: |
750 | 751 |
|
751 | 752 |
// Initialize the algorithm |
752 | 753 |
ProblemType init() { |
753 | 754 |
if (_res_node_num <= 1) return INFEASIBLE; |
754 | 755 |
|
755 | 756 |
// Check the sum of supply values |
756 | 757 |
_sum_supply = 0; |
757 | 758 |
for (int i = 0; i != _root; ++i) { |
758 | 759 |
_sum_supply += _supply[i]; |
759 | 760 |
} |
760 | 761 |
if (_sum_supply > 0) return INFEASIBLE; |
761 | 762 |
|
762 | 763 |
|
763 | 764 |
// Initialize vectors |
764 | 765 |
for (int i = 0; i != _res_node_num; ++i) { |
765 | 766 |
_pi[i] = 0; |
766 | 767 |
_excess[i] = _supply[i]; |
767 | 768 |
} |
768 | 769 |
|
769 | 770 |
// Remove infinite upper bounds and check negative arcs |
770 | 771 |
const Value MAX = std::numeric_limits<Value>::max(); |
771 | 772 |
int last_out; |
772 | 773 |
if (_have_lower) { |
773 | 774 |
for (int i = 0; i != _root; ++i) { |
774 | 775 |
last_out = _first_out[i+1]; |
775 | 776 |
for (int j = _first_out[i]; j != last_out; ++j) { |
776 | 777 |
if (_forward[j]) { |
777 | 778 |
Value c = _scost[j] < 0 ? _upper[j] : _lower[j]; |
778 | 779 |
if (c >= MAX) return UNBOUNDED; |
779 | 780 |
_excess[i] -= c; |
780 | 781 |
_excess[_target[j]] += c; |
781 | 782 |
} |
782 | 783 |
} |
783 | 784 |
} |
784 | 785 |
} else { |
785 | 786 |
for (int i = 0; i != _root; ++i) { |
786 | 787 |
last_out = _first_out[i+1]; |
787 | 788 |
for (int j = _first_out[i]; j != last_out; ++j) { |
788 | 789 |
if (_forward[j] && _scost[j] < 0) { |
789 | 790 |
Value c = _upper[j]; |
790 | 791 |
if (c >= MAX) return UNBOUNDED; |
791 | 792 |
_excess[i] -= c; |
792 | 793 |
_excess[_target[j]] += c; |
793 | 794 |
} |
794 | 795 |
} |
795 | 796 |
} |
796 | 797 |
} |
797 | 798 |
Value ex, max_cap = 0; |
798 | 799 |
for (int i = 0; i != _res_node_num; ++i) { |
799 | 800 |
ex = _excess[i]; |
800 | 801 |
_excess[i] = 0; |
801 | 802 |
if (ex < 0) max_cap -= ex; |
802 | 803 |
} |
803 | 804 |
for (int j = 0; j != _res_arc_num; ++j) { |
804 | 805 |
if (_upper[j] >= MAX) _upper[j] = max_cap; |
805 | 806 |
} |
806 | 807 |
|
807 | 808 |
// Initialize the large cost vector and the epsilon parameter |
808 | 809 |
_epsilon = 0; |
809 | 810 |
LargeCost lc; |
810 | 811 |
for (int i = 0; i != _root; ++i) { |
811 | 812 |
last_out = _first_out[i+1]; |
812 | 813 |
for (int j = _first_out[i]; j != last_out; ++j) { |
813 | 814 |
lc = static_cast<LargeCost>(_scost[j]) * _res_node_num * _alpha; |
814 | 815 |
_cost[j] = lc; |
815 | 816 |
if (lc > _epsilon) _epsilon = lc; |
816 | 817 |
} |
817 | 818 |
} |
818 | 819 |
_epsilon /= _alpha; |
819 | 820 |
|
820 | 821 |
// Initialize maps for Circulation and remove non-zero lower bounds |
821 | 822 |
ConstMap<Arc, Value> low(0); |
822 | 823 |
typedef typename Digraph::template ArcMap<Value> ValueArcMap; |
823 | 824 |
typedef typename Digraph::template NodeMap<Value> ValueNodeMap; |
824 | 825 |
ValueArcMap cap(_graph), flow(_graph); |
825 | 826 |
ValueNodeMap sup(_graph); |
826 | 827 |
for (NodeIt n(_graph); n != INVALID; ++n) { |
827 | 828 |
sup[n] = _supply[_node_id[n]]; |
828 | 829 |
} |
829 | 830 |
if (_have_lower) { |
830 | 831 |
for (ArcIt a(_graph); a != INVALID; ++a) { |
831 | 832 |
int j = _arc_idf[a]; |
832 | 833 |
Value c = _lower[j]; |
833 | 834 |
cap[a] = _upper[j] - c; |
834 | 835 |
sup[_graph.source(a)] -= c; |
835 | 836 |
sup[_graph.target(a)] += c; |
836 | 837 |
} |
837 | 838 |
} else { |
838 | 839 |
for (ArcIt a(_graph); a != INVALID; ++a) { |
839 | 840 |
cap[a] = _upper[_arc_idf[a]]; |
840 | 841 |
} |
841 | 842 |
} |
842 | 843 |
|
843 | 844 |
_sup_node_num = 0; |
844 | 845 |
for (NodeIt n(_graph); n != INVALID; ++n) { |
845 | 846 |
if (sup[n] > 0) ++_sup_node_num; |
846 | 847 |
} |
847 | 848 |
|
848 | 849 |
// Find a feasible flow using Circulation |
849 | 850 |
Circulation<Digraph, ConstMap<Arc, Value>, ValueArcMap, ValueNodeMap> |
850 | 851 |
circ(_graph, low, cap, sup); |
851 | 852 |
if (!circ.flowMap(flow).run()) return INFEASIBLE; |
852 | 853 |
|
853 | 854 |
// Set residual capacities and handle GEQ supply type |
854 | 855 |
if (_sum_supply < 0) { |
855 | 856 |
for (ArcIt a(_graph); a != INVALID; ++a) { |
856 | 857 |
Value fa = flow[a]; |
857 | 858 |
_res_cap[_arc_idf[a]] = cap[a] - fa; |
858 | 859 |
_res_cap[_arc_idb[a]] = fa; |
859 | 860 |
sup[_graph.source(a)] -= fa; |
860 | 861 |
sup[_graph.target(a)] += fa; |
861 | 862 |
} |
862 | 863 |
for (NodeIt n(_graph); n != INVALID; ++n) { |
863 | 864 |
_excess[_node_id[n]] = sup[n]; |
864 | 865 |
} |
865 | 866 |
for (int a = _first_out[_root]; a != _res_arc_num; ++a) { |
866 | 867 |
int u = _target[a]; |
867 | 868 |
int ra = _reverse[a]; |
868 | 869 |
_res_cap[a] = -_sum_supply + 1; |
869 | 870 |
_res_cap[ra] = -_excess[u]; |
870 | 871 |
_cost[a] = 0; |
871 | 872 |
_cost[ra] = 0; |
872 | 873 |
_excess[u] = 0; |
873 | 874 |
} |
874 | 875 |
} else { |
875 | 876 |
for (ArcIt a(_graph); a != INVALID; ++a) { |
876 | 877 |
Value fa = flow[a]; |
877 | 878 |
_res_cap[_arc_idf[a]] = cap[a] - fa; |
878 | 879 |
_res_cap[_arc_idb[a]] = fa; |
879 | 880 |
} |
880 | 881 |
for (int a = _first_out[_root]; a != _res_arc_num; ++a) { |
881 | 882 |
int ra = _reverse[a]; |
882 | 883 |
_res_cap[a] = 0; |
883 | 884 |
_res_cap[ra] = 0; |
884 | 885 |
_cost[a] = 0; |
885 | 886 |
_cost[ra] = 0; |
886 | 887 |
} |
887 | 888 |
} |
888 | 889 |
|
889 | 890 |
return OPTIMAL; |
890 | 891 |
} |
891 | 892 |
|
892 | 893 |
// Execute the algorithm and transform the results |
893 | 894 |
void start(Method method) { |
894 | 895 |
// Maximum path length for partial augment |
895 | 896 |
const int MAX_PATH_LENGTH = 4; |
896 | 897 |
|
897 | 898 |
// Initialize data structures for buckets |
898 | 899 |
_max_rank = _alpha * _res_node_num; |
899 | 900 |
_buckets.resize(_max_rank); |
900 | 901 |
_bucket_next.resize(_res_node_num + 1); |
901 | 902 |
_bucket_prev.resize(_res_node_num + 1); |
902 | 903 |
_rank.resize(_res_node_num + 1); |
903 | 904 |
|
904 | 905 |
// Execute the algorithm |
905 | 906 |
switch (method) { |
906 | 907 |
case PUSH: |
907 | 908 |
startPush(); |
908 | 909 |
break; |
909 | 910 |
case AUGMENT: |
910 | 911 |
startAugment(); |
911 | 912 |
break; |
912 | 913 |
case PARTIAL_AUGMENT: |
913 | 914 |
startAugment(MAX_PATH_LENGTH); |
914 | 915 |
break; |
915 | 916 |
} |
916 | 917 |
|
917 | 918 |
// Compute node potentials for the original costs |
918 | 919 |
_arc_vec.clear(); |
919 | 920 |
_cost_vec.clear(); |
920 | 921 |
for (int j = 0; j != _res_arc_num; ++j) { |
921 | 922 |
if (_res_cap[j] > 0) { |
922 | 923 |
_arc_vec.push_back(IntPair(_source[j], _target[j])); |
923 | 924 |
_cost_vec.push_back(_scost[j]); |
924 | 925 |
} |
925 | 926 |
} |
926 | 927 |
_sgr.build(_res_node_num, _arc_vec.begin(), _arc_vec.end()); |
927 | 928 |
|
928 | 929 |
typename BellmanFord<StaticDigraph, LargeCostArcMap> |
929 | 930 |
::template SetDistMap<LargeCostNodeMap>::Create bf(_sgr, _cost_map); |
930 | 931 |
bf.distMap(_pi_map); |
931 | 932 |
bf.init(0); |
932 | 933 |
bf.start(); |
933 | 934 |
|
934 | 935 |
// Handle non-zero lower bounds |
935 | 936 |
if (_have_lower) { |
936 | 937 |
int limit = _first_out[_root]; |
937 | 938 |
for (int j = 0; j != limit; ++j) { |
938 | 939 |
if (!_forward[j]) _res_cap[j] += _lower[j]; |
939 | 940 |
} |
940 | 941 |
} |
941 | 942 |
} |
942 | 943 |
|
943 | 944 |
// Initialize a cost scaling phase |
944 | 945 |
void initPhase() { |
945 | 946 |
// Saturate arcs not satisfying the optimality condition |
946 | 947 |
for (int u = 0; u != _res_node_num; ++u) { |
947 | 948 |
int last_out = _first_out[u+1]; |
948 | 949 |
LargeCost pi_u = _pi[u]; |
949 | 950 |
for (int a = _first_out[u]; a != last_out; ++a) { |
950 | 951 |
int v = _target[a]; |
951 | 952 |
if (_res_cap[a] > 0 && _cost[a] + pi_u - _pi[v] < 0) { |
952 | 953 |
Value delta = _res_cap[a]; |
953 | 954 |
_excess[u] -= delta; |
954 | 955 |
_excess[v] += delta; |
955 | 956 |
_res_cap[a] = 0; |
956 | 957 |
_res_cap[_reverse[a]] += delta; |
957 | 958 |
} |
958 | 959 |
} |
959 | 960 |
} |
960 | 961 |
|
961 | 962 |
// Find active nodes (i.e. nodes with positive excess) |
962 | 963 |
for (int u = 0; u != _res_node_num; ++u) { |
963 | 964 |
if (_excess[u] > 0) _active_nodes.push_back(u); |
964 | 965 |
} |
965 | 966 |
|
966 | 967 |
// Initialize the next arcs |
967 | 968 |
for (int u = 0; u != _res_node_num; ++u) { |
968 | 969 |
_next_out[u] = _first_out[u]; |
969 | 970 |
} |
970 | 971 |
} |
971 | 972 |
|
972 | 973 |
// Early termination heuristic |
973 | 974 |
bool earlyTermination() { |
974 | 975 |
const double EARLY_TERM_FACTOR = 3.0; |
975 | 976 |
|
976 | 977 |
// Build a static residual graph |
977 | 978 |
_arc_vec.clear(); |
978 | 979 |
_cost_vec.clear(); |
979 | 980 |
for (int j = 0; j != _res_arc_num; ++j) { |
980 | 981 |
if (_res_cap[j] > 0) { |
981 | 982 |
_arc_vec.push_back(IntPair(_source[j], _target[j])); |
982 | 983 |
_cost_vec.push_back(_cost[j] + 1); |
983 | 984 |
} |
984 | 985 |
} |
985 | 986 |
_sgr.build(_res_node_num, _arc_vec.begin(), _arc_vec.end()); |
986 | 987 |
|
987 | 988 |
// Run Bellman-Ford algorithm to check if the current flow is optimal |
988 | 989 |
BellmanFord<StaticDigraph, LargeCostArcMap> bf(_sgr, _cost_map); |
989 | 990 |
bf.init(0); |
990 | 991 |
bool done = false; |
991 | 992 |
int K = int(EARLY_TERM_FACTOR * std::sqrt(double(_res_node_num))); |
992 | 993 |
for (int i = 0; i < K && !done; ++i) { |
993 | 994 |
done = bf.processNextWeakRound(); |
994 | 995 |
} |
995 | 996 |
return done; |
996 | 997 |
} |
997 | 998 |
|
998 | 999 |
// Global potential update heuristic |
999 | 1000 |
void globalUpdate() { |
1000 | 1001 |
int bucket_end = _root + 1; |
1001 | 1002 |
|
1002 | 1003 |
// Initialize buckets |
1003 | 1004 |
for (int r = 0; r != _max_rank; ++r) { |
1004 | 1005 |
_buckets[r] = bucket_end; |
1005 | 1006 |
} |
1006 | 1007 |
Value total_excess = 0; |
1007 | 1008 |
for (int i = 0; i != _res_node_num; ++i) { |
1008 | 1009 |
if (_excess[i] < 0) { |
1009 | 1010 |
_rank[i] = 0; |
1010 | 1011 |
_bucket_next[i] = _buckets[0]; |
1011 | 1012 |
_bucket_prev[_buckets[0]] = i; |
1012 | 1013 |
_buckets[0] = i; |
1013 | 1014 |
} else { |
1014 | 1015 |
total_excess += _excess[i]; |
1015 | 1016 |
_rank[i] = _max_rank; |
1016 | 1017 |
} |
1017 | 1018 |
} |
1018 | 1019 |
if (total_excess == 0) return; |
1019 | 1020 |
|
1020 | 1021 |
// Search the buckets |
1021 | 1022 |
int r = 0; |
1022 | 1023 |
for ( ; r != _max_rank; ++r) { |
1023 | 1024 |
while (_buckets[r] != bucket_end) { |
1024 | 1025 |
// Remove the first node from the current bucket |
1025 | 1026 |
int u = _buckets[r]; |
1026 | 1027 |
_buckets[r] = _bucket_next[u]; |
1027 | 1028 |
|
1028 | 1029 |
// Search the incomming arcs of u |
1029 | 1030 |
LargeCost pi_u = _pi[u]; |
1030 | 1031 |
int last_out = _first_out[u+1]; |
1031 | 1032 |
for (int a = _first_out[u]; a != last_out; ++a) { |
1032 | 1033 |
int ra = _reverse[a]; |
1033 | 1034 |
if (_res_cap[ra] > 0) { |
1034 | 1035 |
int v = _source[ra]; |
1035 | 1036 |
int old_rank_v = _rank[v]; |
1036 | 1037 |
if (r < old_rank_v) { |
1037 | 1038 |
// Compute the new rank of v |
1038 | 1039 |
LargeCost nrc = (_cost[ra] + _pi[v] - pi_u) / _epsilon; |
1039 | 1040 |
int new_rank_v = old_rank_v; |
1040 | 1041 |
if (nrc < LargeCost(_max_rank)) |
1041 | 1042 |
new_rank_v = r + 1 + int(nrc); |
1042 | 1043 |
|
1043 | 1044 |
// Change the rank of v |
1044 | 1045 |
if (new_rank_v < old_rank_v) { |
1045 | 1046 |
_rank[v] = new_rank_v; |
1046 | 1047 |
_next_out[v] = _first_out[v]; |
1047 | 1048 |
|
1048 | 1049 |
// Remove v from its old bucket |
1049 | 1050 |
if (old_rank_v < _max_rank) { |
1050 | 1051 |
if (_buckets[old_rank_v] == v) { |
1051 | 1052 |
_buckets[old_rank_v] = _bucket_next[v]; |
1052 | 1053 |
} else { |
1053 | 1054 |
_bucket_next[_bucket_prev[v]] = _bucket_next[v]; |
1054 | 1055 |
_bucket_prev[_bucket_next[v]] = _bucket_prev[v]; |
1055 | 1056 |
} |
1056 | 1057 |
} |
1057 | 1058 |
|
1058 | 1059 |
// Insert v to its new bucket |
1059 | 1060 |
_bucket_next[v] = _buckets[new_rank_v]; |
1060 | 1061 |
_bucket_prev[_buckets[new_rank_v]] = v; |
1061 | 1062 |
_buckets[new_rank_v] = v; |
1062 | 1063 |
} |
1063 | 1064 |
} |
1064 | 1065 |
} |
1065 | 1066 |
} |
1066 | 1067 |
|
1067 | 1068 |
// Finish search if there are no more active nodes |
1068 | 1069 |
if (_excess[u] > 0) { |
1069 | 1070 |
total_excess -= _excess[u]; |
1070 | 1071 |
if (total_excess <= 0) break; |
1071 | 1072 |
} |
1072 | 1073 |
} |
1073 | 1074 |
if (total_excess <= 0) break; |
1074 | 1075 |
} |
1075 | 1076 |
|
1076 | 1077 |
// Relabel nodes |
1077 | 1078 |
for (int u = 0; u != _res_node_num; ++u) { |
1078 | 1079 |
int k = std::min(_rank[u], r); |
1079 | 1080 |
if (k > 0) { |
1080 | 1081 |
_pi[u] -= _epsilon * k; |
1081 | 1082 |
_next_out[u] = _first_out[u]; |
1082 | 1083 |
} |
1083 | 1084 |
} |
1084 | 1085 |
} |
1085 | 1086 |
|
1086 | 1087 |
/// Execute the algorithm performing augment and relabel operations |
1087 | 1088 |
void startAugment(int max_length = std::numeric_limits<int>::max()) { |
1088 | 1089 |
// Paramters for heuristics |
1089 | 1090 |
const int EARLY_TERM_EPSILON_LIMIT = 1000; |
1090 | 1091 |
const double GLOBAL_UPDATE_FACTOR = 3.0; |
1091 | 1092 |
|
1092 | 1093 |
const int global_update_freq = int(GLOBAL_UPDATE_FACTOR * |
1093 | 1094 |
(_res_node_num + _sup_node_num * _sup_node_num)); |
1094 | 1095 |
int next_update_limit = global_update_freq; |
1095 | 1096 |
|
1096 | 1097 |
int relabel_cnt = 0; |
1097 | 1098 |
|
1098 | 1099 |
// Perform cost scaling phases |
1099 | 1100 |
std::vector<int> path; |
1100 | 1101 |
for ( ; _epsilon >= 1; _epsilon = _epsilon < _alpha && _epsilon > 1 ? |
1101 | 1102 |
1 : _epsilon / _alpha ) |
1102 | 1103 |
{ |
1103 | 1104 |
// Early termination heuristic |
1104 | 1105 |
if (_epsilon <= EARLY_TERM_EPSILON_LIMIT) { |
1105 | 1106 |
if (earlyTermination()) break; |
1106 | 1107 |
} |
1107 | 1108 |
|
1108 | 1109 |
// Initialize current phase |
1109 | 1110 |
initPhase(); |
1110 | 1111 |
|
1111 | 1112 |
// Perform partial augment and relabel operations |
1112 | 1113 |
while (true) { |
1113 | 1114 |
// Select an active node (FIFO selection) |
1114 | 1115 |
while (_active_nodes.size() > 0 && |
1115 | 1116 |
_excess[_active_nodes.front()] <= 0) { |
1116 | 1117 |
_active_nodes.pop_front(); |
1117 | 1118 |
} |
1118 | 1119 |
if (_active_nodes.size() == 0) break; |
1119 | 1120 |
int start = _active_nodes.front(); |
1120 | 1121 |
|
1121 | 1122 |
// Find an augmenting path from the start node |
1122 | 1123 |
path.clear(); |
1123 | 1124 |
int tip = start; |
1124 | 1125 |
while (_excess[tip] >= 0 && int(path.size()) < max_length) { |
1125 | 1126 |
int u; |
1126 | 1127 |
LargeCost min_red_cost, rc, pi_tip = _pi[tip]; |
1127 | 1128 |
int last_out = _first_out[tip+1]; |
1128 | 1129 |
for (int a = _next_out[tip]; a != last_out; ++a) { |
1129 | 1130 |
u = _target[a]; |
1130 | 1131 |
if (_res_cap[a] > 0 && _cost[a] + pi_tip - _pi[u] < 0) { |
1131 | 1132 |
path.push_back(a); |
1132 | 1133 |
_next_out[tip] = a; |
1133 | 1134 |
tip = u; |
1134 | 1135 |
goto next_step; |
1135 | 1136 |
} |
1136 | 1137 |
} |
1137 | 1138 |
|
1138 | 1139 |
// Relabel tip node |
1139 | 1140 |
min_red_cost = std::numeric_limits<LargeCost>::max(); |
1140 | 1141 |
if (tip != start) { |
1141 | 1142 |
int ra = _reverse[path.back()]; |
1142 | 1143 |
min_red_cost = _cost[ra] + pi_tip - _pi[_target[ra]]; |
1143 | 1144 |
} |
1144 | 1145 |
for (int a = _first_out[tip]; a != last_out; ++a) { |
1145 | 1146 |
rc = _cost[a] + pi_tip - _pi[_target[a]]; |
1146 | 1147 |
if (_res_cap[a] > 0 && rc < min_red_cost) { |
1147 | 1148 |
min_red_cost = rc; |
1148 | 1149 |
} |
1149 | 1150 |
} |
1150 | 1151 |
_pi[tip] -= min_red_cost + _epsilon; |
1151 | 1152 |
_next_out[tip] = _first_out[tip]; |
1152 | 1153 |
++relabel_cnt; |
1153 | 1154 |
|
1154 | 1155 |
// Step back |
1155 | 1156 |
if (tip != start) { |
1156 | 1157 |
tip = _source[path.back()]; |
1157 | 1158 |
path.pop_back(); |
1158 | 1159 |
} |
1159 | 1160 |
|
1160 | 1161 |
next_step: ; |
1161 | 1162 |
} |
1162 | 1163 |
|
1163 | 1164 |
// Augment along the found path (as much flow as possible) |
1164 | 1165 |
Value delta; |
1165 | 1166 |
int pa, u, v = start; |
1166 | 1167 |
for (int i = 0; i != int(path.size()); ++i) { |
1167 | 1168 |
pa = path[i]; |
1168 | 1169 |
u = v; |
1169 | 1170 |
v = _target[pa]; |
1170 | 1171 |
delta = std::min(_res_cap[pa], _excess[u]); |
1171 | 1172 |
_res_cap[pa] -= delta; |
1172 | 1173 |
_res_cap[_reverse[pa]] += delta; |
1173 | 1174 |
_excess[u] -= delta; |
1174 | 1175 |
_excess[v] += delta; |
1175 | 1176 |
if (_excess[v] > 0 && _excess[v] <= delta) |
1176 | 1177 |
_active_nodes.push_back(v); |
1177 | 1178 |
} |
1178 | 1179 |
|
1179 | 1180 |
// Global update heuristic |
1180 | 1181 |
if (relabel_cnt >= next_update_limit) { |
1181 | 1182 |
globalUpdate(); |
1182 | 1183 |
next_update_limit += global_update_freq; |
1183 | 1184 |
} |
1184 | 1185 |
} |
1185 | 1186 |
} |
1186 | 1187 |
} |
1187 | 1188 |
|
1188 | 1189 |
/// Execute the algorithm performing push and relabel operations |
1189 | 1190 |
void startPush() { |
1190 | 1191 |
// Paramters for heuristics |
1191 | 1192 |
const int EARLY_TERM_EPSILON_LIMIT = 1000; |
1192 | 1193 |
const double GLOBAL_UPDATE_FACTOR = 2.0; |
1193 | 1194 |
|
1194 | 1195 |
const int global_update_freq = int(GLOBAL_UPDATE_FACTOR * |
1195 | 1196 |
(_res_node_num + _sup_node_num * _sup_node_num)); |
1196 | 1197 |
int next_update_limit = global_update_freq; |
1197 | 1198 |
|
1198 | 1199 |
int relabel_cnt = 0; |
1199 | 1200 |
|
1200 | 1201 |
// Perform cost scaling phases |
1201 | 1202 |
BoolVector hyper(_res_node_num, false); |
1202 | 1203 |
LargeCostVector hyper_cost(_res_node_num); |
1203 | 1204 |
for ( ; _epsilon >= 1; _epsilon = _epsilon < _alpha && _epsilon > 1 ? |
1204 | 1205 |
1 : _epsilon / _alpha ) |
1205 | 1206 |
{ |
1206 | 1207 |
// Early termination heuristic |
1207 | 1208 |
if (_epsilon <= EARLY_TERM_EPSILON_LIMIT) { |
1208 | 1209 |
if (earlyTermination()) break; |
1209 | 1210 |
} |
1210 | 1211 |
|
1211 | 1212 |
// Initialize current phase |
1212 | 1213 |
initPhase(); |
1213 | 1214 |
|
1214 | 1215 |
// Perform push and relabel operations |
1215 | 1216 |
while (_active_nodes.size() > 0) { |
1216 | 1217 |
LargeCost min_red_cost, rc, pi_n; |
1217 | 1218 |
Value delta; |
1218 | 1219 |
int n, t, a, last_out = _res_arc_num; |
1219 | 1220 |
|
1220 | 1221 |
next_node: |
1221 | 1222 |
// Select an active node (FIFO selection) |
1222 | 1223 |
n = _active_nodes.front(); |
1223 | 1224 |
last_out = _first_out[n+1]; |
1224 | 1225 |
pi_n = _pi[n]; |
1225 | 1226 |
|
1226 | 1227 |
// Perform push operations if there are admissible arcs |
1227 | 1228 |
if (_excess[n] > 0) { |
1228 | 1229 |
for (a = _next_out[n]; a != last_out; ++a) { |
1229 | 1230 |
if (_res_cap[a] > 0 && |
1230 | 1231 |
_cost[a] + pi_n - _pi[_target[a]] < 0) { |
1231 | 1232 |
delta = std::min(_res_cap[a], _excess[n]); |
1232 | 1233 |
t = _target[a]; |
1233 | 1234 |
|
1234 | 1235 |
// Push-look-ahead heuristic |
1235 | 1236 |
Value ahead = -_excess[t]; |
1236 | 1237 |
int last_out_t = _first_out[t+1]; |
1237 | 1238 |
LargeCost pi_t = _pi[t]; |
1238 | 1239 |
for (int ta = _next_out[t]; ta != last_out_t; ++ta) { |
1239 | 1240 |
if (_res_cap[ta] > 0 && |
1240 | 1241 |
_cost[ta] + pi_t - _pi[_target[ta]] < 0) |
1241 | 1242 |
ahead += _res_cap[ta]; |
1242 | 1243 |
if (ahead >= delta) break; |
1243 | 1244 |
} |
1244 | 1245 |
if (ahead < 0) ahead = 0; |
1245 | 1246 |
|
1246 | 1247 |
// Push flow along the arc |
1247 | 1248 |
if (ahead < delta && !hyper[t]) { |
1248 | 1249 |
_res_cap[a] -= ahead; |
1249 | 1250 |
_res_cap[_reverse[a]] += ahead; |
1250 | 1251 |
_excess[n] -= ahead; |
1251 | 1252 |
_excess[t] += ahead; |
1252 | 1253 |
_active_nodes.push_front(t); |
1253 | 1254 |
hyper[t] = true; |
1254 | 1255 |
hyper_cost[t] = _cost[a] + pi_n - pi_t; |
1255 | 1256 |
_next_out[n] = a; |
1256 | 1257 |
goto next_node; |
1257 | 1258 |
} else { |
1258 | 1259 |
_res_cap[a] -= delta; |
1259 | 1260 |
_res_cap[_reverse[a]] += delta; |
1260 | 1261 |
_excess[n] -= delta; |
1261 | 1262 |
_excess[t] += delta; |
1262 | 1263 |
if (_excess[t] > 0 && _excess[t] <= delta) |
1263 | 1264 |
_active_nodes.push_back(t); |
1264 | 1265 |
} |
1265 | 1266 |
|
1266 | 1267 |
if (_excess[n] == 0) { |
1267 | 1268 |
_next_out[n] = a; |
1268 | 1269 |
goto remove_nodes; |
1269 | 1270 |
} |
1270 | 1271 |
} |
1271 | 1272 |
} |
1272 | 1273 |
_next_out[n] = a; |
1273 | 1274 |
} |
1274 | 1275 |
|
1275 | 1276 |
// Relabel the node if it is still active (or hyper) |
1276 | 1277 |
if (_excess[n] > 0 || hyper[n]) { |
1277 | 1278 |
min_red_cost = hyper[n] ? -hyper_cost[n] : |
1278 | 1279 |
std::numeric_limits<LargeCost>::max(); |
1279 | 1280 |
for (int a = _first_out[n]; a != last_out; ++a) { |
1280 | 1281 |
rc = _cost[a] + pi_n - _pi[_target[a]]; |
1281 | 1282 |
if (_res_cap[a] > 0 && rc < min_red_cost) { |
1282 | 1283 |
min_red_cost = rc; |
1283 | 1284 |
} |
1284 | 1285 |
} |
1285 | 1286 |
_pi[n] -= min_red_cost + _epsilon; |
1286 | 1287 |
_next_out[n] = _first_out[n]; |
1287 | 1288 |
hyper[n] = false; |
1288 | 1289 |
++relabel_cnt; |
1289 | 1290 |
} |
1290 | 1291 |
|
1291 | 1292 |
// Remove nodes that are not active nor hyper |
1292 | 1293 |
remove_nodes: |
1293 | 1294 |
while ( _active_nodes.size() > 0 && |
1294 | 1295 |
_excess[_active_nodes.front()] <= 0 && |
1295 | 1296 |
!hyper[_active_nodes.front()] ) { |
1296 | 1297 |
_active_nodes.pop_front(); |
1297 | 1298 |
} |
1298 | 1299 |
|
1299 | 1300 |
// Global update heuristic |
1300 | 1301 |
if (relabel_cnt >= next_update_limit) { |
1301 | 1302 |
globalUpdate(); |
1302 | 1303 |
for (int u = 0; u != _res_node_num; ++u) |
1303 | 1304 |
hyper[u] = false; |
1304 | 1305 |
next_update_limit += global_update_freq; |
1305 | 1306 |
} |
1306 | 1307 |
} |
1307 | 1308 |
} |
1308 | 1309 |
} |
1309 | 1310 |
|
1310 | 1311 |
}; //class CostScaling |
1311 | 1312 |
|
1312 | 1313 |
///@} |
1313 | 1314 |
|
1314 | 1315 |
} //namespace lemon |
1315 | 1316 |
|
1316 | 1317 |
#endif //LEMON_COST_SCALING_H |
1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 | 5 |
* Copyright (C) 2003-2010 |
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 | 19 |
#ifndef LEMON_CYCLE_CANCELING_H |
20 | 20 |
#define LEMON_CYCLE_CANCELING_H |
21 | 21 |
|
22 | 22 |
/// \ingroup min_cost_flow_algs |
23 | 23 |
/// \file |
24 | 24 |
/// \brief Cycle-canceling algorithms for finding a minimum cost flow. |
25 | 25 |
|
26 | 26 |
#include <vector> |
27 | 27 |
#include <limits> |
28 | 28 |
|
29 | 29 |
#include <lemon/core.h> |
30 | 30 |
#include <lemon/maps.h> |
31 | 31 |
#include <lemon/path.h> |
32 | 32 |
#include <lemon/math.h> |
33 | 33 |
#include <lemon/static_graph.h> |
34 | 34 |
#include <lemon/adaptors.h> |
35 | 35 |
#include <lemon/circulation.h> |
36 | 36 |
#include <lemon/bellman_ford.h> |
37 | 37 |
#include <lemon/howard_mmc.h> |
38 | 38 |
|
39 | 39 |
namespace lemon { |
40 | 40 |
|
41 | 41 |
/// \addtogroup min_cost_flow_algs |
42 | 42 |
/// @{ |
43 | 43 |
|
44 | 44 |
/// \brief Implementation of cycle-canceling algorithms for |
45 | 45 |
/// finding a \ref min_cost_flow "minimum cost flow". |
46 | 46 |
/// |
47 | 47 |
/// \ref CycleCanceling implements three different cycle-canceling |
48 | 48 |
/// algorithms for finding a \ref min_cost_flow "minimum cost flow" |
49 | 49 |
/// \ref amo93networkflows, \ref klein67primal, |
50 | 50 |
/// \ref goldberg89cyclecanceling. |
51 | 51 |
/// The most efficent one (both theoretically and practically) |
52 | 52 |
/// is the \ref CANCEL_AND_TIGHTEN "Cancel and Tighten" algorithm, |
53 | 53 |
/// thus it is the default method. |
54 | 54 |
/// It is strongly polynomial, but in practice, it is typically much |
55 | 55 |
/// slower than the scaling algorithms and NetworkSimplex. |
56 | 56 |
/// |
57 | 57 |
/// Most of the parameters of the problem (except for the digraph) |
58 | 58 |
/// can be given using separate functions, and the algorithm can be |
59 | 59 |
/// executed using the \ref run() function. If some parameters are not |
60 | 60 |
/// specified, then default values will be used. |
61 | 61 |
/// |
62 | 62 |
/// \tparam GR The digraph type the algorithm runs on. |
63 | 63 |
/// \tparam V The number type used for flow amounts, capacity bounds |
64 | 64 |
/// and supply values in the algorithm. By default, it is \c int. |
65 | 65 |
/// \tparam C The number type used for costs and potentials in the |
66 | 66 |
/// algorithm. By default, it is the same as \c V. |
67 | 67 |
/// |
68 |
/// \warning Both |
|
68 |
/// \warning Both \c V and \c C must be signed number types. |
|
69 |
/// \warning All input data (capacities, supply values, and costs) must |
|
69 | 70 |
/// be integer. |
70 | 71 |
/// \warning This algorithm does not support negative costs for such |
71 | 72 |
/// arcs that have infinite upper bound. |
72 | 73 |
/// |
73 | 74 |
/// \note For more information about the three available methods, |
74 | 75 |
/// see \ref Method. |
75 | 76 |
#ifdef DOXYGEN |
76 | 77 |
template <typename GR, typename V, typename C> |
77 | 78 |
#else |
78 | 79 |
template <typename GR, typename V = int, typename C = V> |
79 | 80 |
#endif |
80 | 81 |
class CycleCanceling |
81 | 82 |
{ |
82 | 83 |
public: |
83 | 84 |
|
84 | 85 |
/// The type of the digraph |
85 | 86 |
typedef GR Digraph; |
86 | 87 |
/// The type of the flow amounts, capacity bounds and supply values |
87 | 88 |
typedef V Value; |
88 | 89 |
/// The type of the arc costs |
89 | 90 |
typedef C Cost; |
90 | 91 |
|
91 | 92 |
public: |
92 | 93 |
|
93 | 94 |
/// \brief Problem type constants for the \c run() function. |
94 | 95 |
/// |
95 | 96 |
/// Enum type containing the problem type constants that can be |
96 | 97 |
/// returned by the \ref run() function of the algorithm. |
97 | 98 |
enum ProblemType { |
98 | 99 |
/// The problem has no feasible solution (flow). |
99 | 100 |
INFEASIBLE, |
100 | 101 |
/// The problem has optimal solution (i.e. it is feasible and |
101 | 102 |
/// bounded), and the algorithm has found optimal flow and node |
102 | 103 |
/// potentials (primal and dual solutions). |
103 | 104 |
OPTIMAL, |
104 | 105 |
/// The digraph contains an arc of negative cost and infinite |
105 | 106 |
/// upper bound. It means that the objective function is unbounded |
106 | 107 |
/// on that arc, however, note that it could actually be bounded |
107 | 108 |
/// over the feasible flows, but this algroithm cannot handle |
108 | 109 |
/// these cases. |
109 | 110 |
UNBOUNDED |
110 | 111 |
}; |
111 | 112 |
|
112 | 113 |
/// \brief Constants for selecting the used method. |
113 | 114 |
/// |
114 | 115 |
/// Enum type containing constants for selecting the used method |
115 | 116 |
/// for the \ref run() function. |
116 | 117 |
/// |
117 | 118 |
/// \ref CycleCanceling provides three different cycle-canceling |
118 | 119 |
/// methods. By default, \ref CANCEL_AND_TIGHTEN "Cancel and Tighten" |
119 | 120 |
/// is used, which proved to be the most efficient and the most robust |
120 | 121 |
/// on various test inputs. |
121 | 122 |
/// However, the other methods can be selected using the \ref run() |
122 | 123 |
/// function with the proper parameter. |
123 | 124 |
enum Method { |
124 | 125 |
/// A simple cycle-canceling method, which uses the |
125 | 126 |
/// \ref BellmanFord "Bellman-Ford" algorithm with limited iteration |
126 | 127 |
/// number for detecting negative cycles in the residual network. |
127 | 128 |
SIMPLE_CYCLE_CANCELING, |
128 | 129 |
/// The "Minimum Mean Cycle-Canceling" algorithm, which is a |
129 | 130 |
/// well-known strongly polynomial method |
130 | 131 |
/// \ref goldberg89cyclecanceling. It improves along a |
131 | 132 |
/// \ref min_mean_cycle "minimum mean cycle" in each iteration. |
132 | 133 |
/// Its running time complexity is O(n<sup>2</sup>m<sup>3</sup>log(n)). |
133 | 134 |
MINIMUM_MEAN_CYCLE_CANCELING, |
134 | 135 |
/// The "Cancel And Tighten" algorithm, which can be viewed as an |
135 | 136 |
/// improved version of the previous method |
136 | 137 |
/// \ref goldberg89cyclecanceling. |
137 | 138 |
/// It is faster both in theory and in practice, its running time |
138 | 139 |
/// complexity is O(n<sup>2</sup>m<sup>2</sup>log(n)). |
139 | 140 |
CANCEL_AND_TIGHTEN |
140 | 141 |
}; |
141 | 142 |
|
142 | 143 |
private: |
143 | 144 |
|
144 | 145 |
TEMPLATE_DIGRAPH_TYPEDEFS(GR); |
145 | 146 |
|
146 | 147 |
typedef std::vector<int> IntVector; |
147 | 148 |
typedef std::vector<double> DoubleVector; |
148 | 149 |
typedef std::vector<Value> ValueVector; |
149 | 150 |
typedef std::vector<Cost> CostVector; |
150 | 151 |
typedef std::vector<char> BoolVector; |
151 | 152 |
// Note: vector<char> is used instead of vector<bool> for efficiency reasons |
152 | 153 |
|
153 | 154 |
private: |
154 | 155 |
|
155 | 156 |
template <typename KT, typename VT> |
156 | 157 |
class StaticVectorMap { |
157 | 158 |
public: |
158 | 159 |
typedef KT Key; |
159 | 160 |
typedef VT Value; |
160 | 161 |
|
161 | 162 |
StaticVectorMap(std::vector<Value>& v) : _v(v) {} |
162 | 163 |
|
163 | 164 |
const Value& operator[](const Key& key) const { |
164 | 165 |
return _v[StaticDigraph::id(key)]; |
165 | 166 |
} |
166 | 167 |
|
167 | 168 |
Value& operator[](const Key& key) { |
168 | 169 |
return _v[StaticDigraph::id(key)]; |
169 | 170 |
} |
170 | 171 |
|
171 | 172 |
void set(const Key& key, const Value& val) { |
172 | 173 |
_v[StaticDigraph::id(key)] = val; |
173 | 174 |
} |
174 | 175 |
|
175 | 176 |
private: |
176 | 177 |
std::vector<Value>& _v; |
177 | 178 |
}; |
178 | 179 |
|
179 | 180 |
typedef StaticVectorMap<StaticDigraph::Node, Cost> CostNodeMap; |
180 | 181 |
typedef StaticVectorMap<StaticDigraph::Arc, Cost> CostArcMap; |
181 | 182 |
|
182 | 183 |
private: |
183 | 184 |
|
184 | 185 |
|
185 | 186 |
// Data related to the underlying digraph |
186 | 187 |
const GR &_graph; |
187 | 188 |
int _node_num; |
188 | 189 |
int _arc_num; |
189 | 190 |
int _res_node_num; |
190 | 191 |
int _res_arc_num; |
191 | 192 |
int _root; |
192 | 193 |
|
193 | 194 |
// Parameters of the problem |
194 | 195 |
bool _have_lower; |
195 | 196 |
Value _sum_supply; |
196 | 197 |
|
197 | 198 |
// Data structures for storing the digraph |
198 | 199 |
IntNodeMap _node_id; |
199 | 200 |
IntArcMap _arc_idf; |
200 | 201 |
IntArcMap _arc_idb; |
201 | 202 |
IntVector _first_out; |
202 | 203 |
BoolVector _forward; |
203 | 204 |
IntVector _source; |
204 | 205 |
IntVector _target; |
205 | 206 |
IntVector _reverse; |
206 | 207 |
|
207 | 208 |
// Node and arc data |
208 | 209 |
ValueVector _lower; |
209 | 210 |
ValueVector _upper; |
210 | 211 |
CostVector _cost; |
211 | 212 |
ValueVector _supply; |
212 | 213 |
|
213 | 214 |
ValueVector _res_cap; |
214 | 215 |
CostVector _pi; |
215 | 216 |
|
216 | 217 |
// Data for a StaticDigraph structure |
217 | 218 |
typedef std::pair<int, int> IntPair; |
218 | 219 |
StaticDigraph _sgr; |
219 | 220 |
std::vector<IntPair> _arc_vec; |
220 | 221 |
std::vector<Cost> _cost_vec; |
221 | 222 |
IntVector _id_vec; |
222 | 223 |
CostArcMap _cost_map; |
223 | 224 |
CostNodeMap _pi_map; |
224 | 225 |
|
225 | 226 |
public: |
226 | 227 |
|
227 | 228 |
/// \brief Constant for infinite upper bounds (capacities). |
228 | 229 |
/// |
229 | 230 |
/// Constant for infinite upper bounds (capacities). |
230 | 231 |
/// It is \c std::numeric_limits<Value>::infinity() if available, |
231 | 232 |
/// \c std::numeric_limits<Value>::max() otherwise. |
232 | 233 |
const Value INF; |
233 | 234 |
|
234 | 235 |
public: |
235 | 236 |
|
236 | 237 |
/// \brief Constructor. |
237 | 238 |
/// |
238 | 239 |
/// The constructor of the class. |
239 | 240 |
/// |
240 | 241 |
/// \param graph The digraph the algorithm runs on. |
241 | 242 |
CycleCanceling(const GR& graph) : |
242 | 243 |
_graph(graph), _node_id(graph), _arc_idf(graph), _arc_idb(graph), |
243 | 244 |
_cost_map(_cost_vec), _pi_map(_pi), |
244 | 245 |
INF(std::numeric_limits<Value>::has_infinity ? |
245 | 246 |
std::numeric_limits<Value>::infinity() : |
246 | 247 |
std::numeric_limits<Value>::max()) |
247 | 248 |
{ |
248 | 249 |
// Check the number types |
249 | 250 |
LEMON_ASSERT(std::numeric_limits<Value>::is_signed, |
250 | 251 |
"The flow type of CycleCanceling must be signed"); |
251 | 252 |
LEMON_ASSERT(std::numeric_limits<Cost>::is_signed, |
252 | 253 |
"The cost type of CycleCanceling must be signed"); |
253 | 254 |
|
254 | 255 |
// Reset data structures |
255 | 256 |
reset(); |
256 | 257 |
} |
257 | 258 |
|
258 | 259 |
/// \name Parameters |
259 | 260 |
/// The parameters of the algorithm can be specified using these |
260 | 261 |
/// functions. |
261 | 262 |
|
262 | 263 |
/// @{ |
263 | 264 |
|
264 | 265 |
/// \brief Set the lower bounds on the arcs. |
265 | 266 |
/// |
266 | 267 |
/// This function sets the lower bounds on the arcs. |
267 | 268 |
/// If it is not used before calling \ref run(), the lower bounds |
268 | 269 |
/// will be set to zero on all arcs. |
269 | 270 |
/// |
270 | 271 |
/// \param map An arc map storing the lower bounds. |
271 | 272 |
/// Its \c Value type must be convertible to the \c Value type |
272 | 273 |
/// of the algorithm. |
273 | 274 |
/// |
274 | 275 |
/// \return <tt>(*this)</tt> |
275 | 276 |
template <typename LowerMap> |
276 | 277 |
CycleCanceling& lowerMap(const LowerMap& map) { |
277 | 278 |
_have_lower = true; |
278 | 279 |
for (ArcIt a(_graph); a != INVALID; ++a) { |
279 | 280 |
_lower[_arc_idf[a]] = map[a]; |
280 | 281 |
_lower[_arc_idb[a]] = map[a]; |
281 | 282 |
} |
282 | 283 |
return *this; |
283 | 284 |
} |
284 | 285 |
|
285 | 286 |
/// \brief Set the upper bounds (capacities) on the arcs. |
286 | 287 |
/// |
287 | 288 |
/// This function sets the upper bounds (capacities) on the arcs. |
288 | 289 |
/// If it is not used before calling \ref run(), the upper bounds |
289 | 290 |
/// will be set to \ref INF on all arcs (i.e. the flow value will be |
290 | 291 |
/// unbounded from above). |
291 | 292 |
/// |
292 | 293 |
/// \param map An arc map storing the upper bounds. |
293 | 294 |
/// Its \c Value type must be convertible to the \c Value type |
294 | 295 |
/// of the algorithm. |
295 | 296 |
/// |
296 | 297 |
/// \return <tt>(*this)</tt> |
297 | 298 |
template<typename UpperMap> |
298 | 299 |
CycleCanceling& upperMap(const UpperMap& map) { |
299 | 300 |
for (ArcIt a(_graph); a != INVALID; ++a) { |
300 | 301 |
_upper[_arc_idf[a]] = map[a]; |
301 | 302 |
} |
302 | 303 |
return *this; |
303 | 304 |
} |
304 | 305 |
|
305 | 306 |
/// \brief Set the costs of the arcs. |
306 | 307 |
/// |
307 | 308 |
/// This function sets the costs of the arcs. |
308 | 309 |
/// If it is not used before calling \ref run(), the costs |
309 | 310 |
/// will be set to \c 1 on all arcs. |
310 | 311 |
/// |
311 | 312 |
/// \param map An arc map storing the costs. |
312 | 313 |
/// Its \c Value type must be convertible to the \c Cost type |
313 | 314 |
/// of the algorithm. |
314 | 315 |
/// |
315 | 316 |
/// \return <tt>(*this)</tt> |
316 | 317 |
template<typename CostMap> |
317 | 318 |
CycleCanceling& costMap(const CostMap& map) { |
318 | 319 |
for (ArcIt a(_graph); a != INVALID; ++a) { |
319 | 320 |
_cost[_arc_idf[a]] = map[a]; |
320 | 321 |
_cost[_arc_idb[a]] = -map[a]; |
321 | 322 |
} |
322 | 323 |
return *this; |
323 | 324 |
} |
324 | 325 |
|
325 | 326 |
/// \brief Set the supply values of the nodes. |
326 | 327 |
/// |
327 | 328 |
/// This function sets the supply values of the nodes. |
328 | 329 |
/// If neither this function nor \ref stSupply() is used before |
329 | 330 |
/// calling \ref run(), the supply of each node will be set to zero. |
330 | 331 |
/// |
331 | 332 |
/// \param map A node map storing the supply values. |
332 | 333 |
/// Its \c Value type must be convertible to the \c Value type |
333 | 334 |
/// of the algorithm. |
334 | 335 |
/// |
335 | 336 |
/// \return <tt>(*this)</tt> |
336 | 337 |
template<typename SupplyMap> |
337 | 338 |
CycleCanceling& supplyMap(const SupplyMap& map) { |
338 | 339 |
for (NodeIt n(_graph); n != INVALID; ++n) { |
339 | 340 |
_supply[_node_id[n]] = map[n]; |
340 | 341 |
} |
341 | 342 |
return *this; |
342 | 343 |
} |
343 | 344 |
|
344 | 345 |
/// \brief Set single source and target nodes and a supply value. |
345 | 346 |
/// |
346 | 347 |
/// This function sets a single source node and a single target node |
347 | 348 |
/// and the required flow value. |
348 | 349 |
/// If neither this function nor \ref supplyMap() is used before |
349 | 350 |
/// calling \ref run(), the supply of each node will be set to zero. |
350 | 351 |
/// |
351 | 352 |
/// Using this function has the same effect as using \ref supplyMap() |
352 | 353 |
/// with such a map in which \c k is assigned to \c s, \c -k is |
353 | 354 |
/// assigned to \c t and all other nodes have zero supply value. |
354 | 355 |
/// |
355 | 356 |
/// \param s The source node. |
356 | 357 |
/// \param t The target node. |
357 | 358 |
/// \param k The required amount of flow from node \c s to node \c t |
358 | 359 |
/// (i.e. the supply of \c s and the demand of \c t). |
359 | 360 |
/// |
360 | 361 |
/// \return <tt>(*this)</tt> |
361 | 362 |
CycleCanceling& stSupply(const Node& s, const Node& t, Value k) { |
362 | 363 |
for (int i = 0; i != _res_node_num; ++i) { |
363 | 364 |
_supply[i] = 0; |
364 | 365 |
} |
365 | 366 |
_supply[_node_id[s]] = k; |
366 | 367 |
_supply[_node_id[t]] = -k; |
367 | 368 |
return *this; |
368 | 369 |
} |
369 | 370 |
|
370 | 371 |
/// @} |
371 | 372 |
|
372 | 373 |
/// \name Execution control |
373 | 374 |
/// The algorithm can be executed using \ref run(). |
374 | 375 |
|
375 | 376 |
/// @{ |
376 | 377 |
|
377 | 378 |
/// \brief Run the algorithm. |
378 | 379 |
/// |
379 | 380 |
/// This function runs the algorithm. |
380 | 381 |
/// The paramters can be specified using functions \ref lowerMap(), |
381 | 382 |
/// \ref upperMap(), \ref costMap(), \ref supplyMap(), \ref stSupply(). |
382 | 383 |
/// For example, |
383 | 384 |
/// \code |
384 | 385 |
/// CycleCanceling<ListDigraph> cc(graph); |
385 | 386 |
/// cc.lowerMap(lower).upperMap(upper).costMap(cost) |
386 | 387 |
/// .supplyMap(sup).run(); |
387 | 388 |
/// \endcode |
388 | 389 |
/// |
389 | 390 |
/// This function can be called more than once. All the given parameters |
390 | 391 |
/// are kept for the next call, unless \ref resetParams() or \ref reset() |
391 | 392 |
/// is used, thus only the modified parameters have to be set again. |
392 | 393 |
/// If the underlying digraph was also modified after the construction |
393 | 394 |
/// of the class (or the last \ref reset() call), then the \ref reset() |
394 | 395 |
/// function must be called. |
395 | 396 |
/// |
396 | 397 |
/// \param method The cycle-canceling method that will be used. |
397 | 398 |
/// For more information, see \ref Method. |
398 | 399 |
/// |
399 | 400 |
/// \return \c INFEASIBLE if no feasible flow exists, |
400 | 401 |
/// \n \c OPTIMAL if the problem has optimal solution |
401 | 402 |
/// (i.e. it is feasible and bounded), and the algorithm has found |
402 | 403 |
/// optimal flow and node potentials (primal and dual solutions), |
403 | 404 |
/// \n \c UNBOUNDED if the digraph contains an arc of negative cost |
404 | 405 |
/// and infinite upper bound. It means that the objective function |
405 | 406 |
/// is unbounded on that arc, however, note that it could actually be |
406 | 407 |
/// bounded over the feasible flows, but this algroithm cannot handle |
407 | 408 |
/// these cases. |
408 | 409 |
/// |
409 | 410 |
/// \see ProblemType, Method |
410 | 411 |
/// \see resetParams(), reset() |
411 | 412 |
ProblemType run(Method method = CANCEL_AND_TIGHTEN) { |
412 | 413 |
ProblemType pt = init(); |
413 | 414 |
if (pt != OPTIMAL) return pt; |
414 | 415 |
start(method); |
415 | 416 |
return OPTIMAL; |
416 | 417 |
} |
417 | 418 |
|
418 | 419 |
/// \brief Reset all the parameters that have been given before. |
419 | 420 |
/// |
420 | 421 |
/// This function resets all the paramaters that have been given |
421 | 422 |
/// before using functions \ref lowerMap(), \ref upperMap(), |
422 | 423 |
/// \ref costMap(), \ref supplyMap(), \ref stSupply(). |
423 | 424 |
/// |
424 | 425 |
/// It is useful for multiple \ref run() calls. Basically, all the given |
425 | 426 |
/// parameters are kept for the next \ref run() call, unless |
426 | 427 |
/// \ref resetParams() or \ref reset() is used. |
427 | 428 |
/// If the underlying digraph was also modified after the construction |
428 | 429 |
/// of the class or the last \ref reset() call, then the \ref reset() |
429 | 430 |
/// function must be used, otherwise \ref resetParams() is sufficient. |
430 | 431 |
/// |
431 | 432 |
/// For example, |
432 | 433 |
/// \code |
433 | 434 |
/// CycleCanceling<ListDigraph> cs(graph); |
434 | 435 |
/// |
435 | 436 |
/// // First run |
436 | 437 |
/// cc.lowerMap(lower).upperMap(upper).costMap(cost) |
437 | 438 |
/// .supplyMap(sup).run(); |
438 | 439 |
/// |
439 | 440 |
/// // Run again with modified cost map (resetParams() is not called, |
440 | 441 |
/// // so only the cost map have to be set again) |
441 | 442 |
/// cost[e] += 100; |
442 | 443 |
/// cc.costMap(cost).run(); |
443 | 444 |
/// |
444 | 445 |
/// // Run again from scratch using resetParams() |
445 | 446 |
/// // (the lower bounds will be set to zero on all arcs) |
446 | 447 |
/// cc.resetParams(); |
447 | 448 |
/// cc.upperMap(capacity).costMap(cost) |
448 | 449 |
/// .supplyMap(sup).run(); |
449 | 450 |
/// \endcode |
450 | 451 |
/// |
451 | 452 |
/// \return <tt>(*this)</tt> |
452 | 453 |
/// |
453 | 454 |
/// \see reset(), run() |
454 | 455 |
CycleCanceling& resetParams() { |
455 | 456 |
for (int i = 0; i != _res_node_num; ++i) { |
456 | 457 |
_supply[i] = 0; |
457 | 458 |
} |
458 | 459 |
int limit = _first_out[_root]; |
459 | 460 |
for (int j = 0; j != limit; ++j) { |
460 | 461 |
_lower[j] = 0; |
461 | 462 |
_upper[j] = INF; |
462 | 463 |
_cost[j] = _forward[j] ? 1 : -1; |
463 | 464 |
} |
464 | 465 |
for (int j = limit; j != _res_arc_num; ++j) { |
465 | 466 |
_lower[j] = 0; |
466 | 467 |
_upper[j] = INF; |
467 | 468 |
_cost[j] = 0; |
468 | 469 |
_cost[_reverse[j]] = 0; |
469 | 470 |
} |
470 | 471 |
_have_lower = false; |
471 | 472 |
return *this; |
472 | 473 |
} |
473 | 474 |
|
474 | 475 |
/// \brief Reset the internal data structures and all the parameters |
475 | 476 |
/// that have been given before. |
476 | 477 |
/// |
477 | 478 |
/// This function resets the internal data structures and all the |
478 | 479 |
/// paramaters that have been given before using functions \ref lowerMap(), |
479 | 480 |
/// \ref upperMap(), \ref costMap(), \ref supplyMap(), \ref stSupply(). |
480 | 481 |
/// |
481 | 482 |
/// It is useful for multiple \ref run() calls. Basically, all the given |
482 | 483 |
/// parameters are kept for the next \ref run() call, unless |
483 | 484 |
/// \ref resetParams() or \ref reset() is used. |
484 | 485 |
/// If the underlying digraph was also modified after the construction |
485 | 486 |
/// of the class or the last \ref reset() call, then the \ref reset() |
486 | 487 |
/// function must be used, otherwise \ref resetParams() is sufficient. |
487 | 488 |
/// |
488 | 489 |
/// See \ref resetParams() for examples. |
489 | 490 |
/// |
490 | 491 |
/// \return <tt>(*this)</tt> |
491 | 492 |
/// |
492 | 493 |
/// \see resetParams(), run() |
493 | 494 |
CycleCanceling& reset() { |
494 | 495 |
// Resize vectors |
495 | 496 |
_node_num = countNodes(_graph); |
496 | 497 |
_arc_num = countArcs(_graph); |
497 | 498 |
_res_node_num = _node_num + 1; |
498 | 499 |
_res_arc_num = 2 * (_arc_num + _node_num); |
499 | 500 |
_root = _node_num; |
500 | 501 |
|
501 | 502 |
_first_out.resize(_res_node_num + 1); |
502 | 503 |
_forward.resize(_res_arc_num); |
503 | 504 |
_source.resize(_res_arc_num); |
504 | 505 |
_target.resize(_res_arc_num); |
505 | 506 |
_reverse.resize(_res_arc_num); |
506 | 507 |
|
507 | 508 |
_lower.resize(_res_arc_num); |
508 | 509 |
_upper.resize(_res_arc_num); |
509 | 510 |
_cost.resize(_res_arc_num); |
510 | 511 |
_supply.resize(_res_node_num); |
511 | 512 |
|
512 | 513 |
_res_cap.resize(_res_arc_num); |
513 | 514 |
_pi.resize(_res_node_num); |
514 | 515 |
|
515 | 516 |
_arc_vec.reserve(_res_arc_num); |
516 | 517 |
_cost_vec.reserve(_res_arc_num); |
517 | 518 |
_id_vec.reserve(_res_arc_num); |
518 | 519 |
|
519 | 520 |
// Copy the graph |
520 | 521 |
int i = 0, j = 0, k = 2 * _arc_num + _node_num; |
521 | 522 |
for (NodeIt n(_graph); n != INVALID; ++n, ++i) { |
522 | 523 |
_node_id[n] = i; |
523 | 524 |
} |
524 | 525 |
i = 0; |
525 | 526 |
for (NodeIt n(_graph); n != INVALID; ++n, ++i) { |
526 | 527 |
_first_out[i] = j; |
527 | 528 |
for (OutArcIt a(_graph, n); a != INVALID; ++a, ++j) { |
528 | 529 |
_arc_idf[a] = j; |
529 | 530 |
_forward[j] = true; |
530 | 531 |
_source[j] = i; |
531 | 532 |
_target[j] = _node_id[_graph.runningNode(a)]; |
532 | 533 |
} |
533 | 534 |
for (InArcIt a(_graph, n); a != INVALID; ++a, ++j) { |
534 | 535 |
_arc_idb[a] = j; |
535 | 536 |
_forward[j] = false; |
536 | 537 |
_source[j] = i; |
537 | 538 |
_target[j] = _node_id[_graph.runningNode(a)]; |
538 | 539 |
} |
539 | 540 |
_forward[j] = false; |
540 | 541 |
_source[j] = i; |
541 | 542 |
_target[j] = _root; |
542 | 543 |
_reverse[j] = k; |
543 | 544 |
_forward[k] = true; |
544 | 545 |
_source[k] = _root; |
545 | 546 |
_target[k] = i; |
546 | 547 |
_reverse[k] = j; |
547 | 548 |
++j; ++k; |
548 | 549 |
} |
549 | 550 |
_first_out[i] = j; |
550 | 551 |
_first_out[_res_node_num] = k; |
551 | 552 |
for (ArcIt a(_graph); a != INVALID; ++a) { |
552 | 553 |
int fi = _arc_idf[a]; |
553 | 554 |
int bi = _arc_idb[a]; |
554 | 555 |
_reverse[fi] = bi; |
555 | 556 |
_reverse[bi] = fi; |
556 | 557 |
} |
557 | 558 |
|
558 | 559 |
// Reset parameters |
559 | 560 |
resetParams(); |
560 | 561 |
return *this; |
561 | 562 |
} |
562 | 563 |
|
563 | 564 |
/// @} |
564 | 565 |
|
565 | 566 |
/// \name Query Functions |
566 | 567 |
/// The results of the algorithm can be obtained using these |
567 | 568 |
/// functions.\n |
568 | 569 |
/// The \ref run() function must be called before using them. |
569 | 570 |
|
570 | 571 |
/// @{ |
571 | 572 |
|
572 | 573 |
/// \brief Return the total cost of the found flow. |
573 | 574 |
/// |
574 | 575 |
/// This function returns the total cost of the found flow. |
575 | 576 |
/// Its complexity is O(e). |
576 | 577 |
/// |
577 | 578 |
/// \note The return type of the function can be specified as a |
578 | 579 |
/// template parameter. For example, |
579 | 580 |
/// \code |
580 | 581 |
/// cc.totalCost<double>(); |
581 | 582 |
/// \endcode |
582 | 583 |
/// It is useful if the total cost cannot be stored in the \c Cost |
583 | 584 |
/// type of the algorithm, which is the default return type of the |
584 | 585 |
/// function. |
585 | 586 |
/// |
586 | 587 |
/// \pre \ref run() must be called before using this function. |
587 | 588 |
template <typename Number> |
588 | 589 |
Number totalCost() const { |
589 | 590 |
Number c = 0; |
590 | 591 |
for (ArcIt a(_graph); a != INVALID; ++a) { |
591 | 592 |
int i = _arc_idb[a]; |
592 | 593 |
c += static_cast<Number>(_res_cap[i]) * |
593 | 594 |
(-static_cast<Number>(_cost[i])); |
594 | 595 |
} |
595 | 596 |
return c; |
596 | 597 |
} |
597 | 598 |
|
598 | 599 |
#ifndef DOXYGEN |
599 | 600 |
Cost totalCost() const { |
600 | 601 |
return totalCost<Cost>(); |
601 | 602 |
} |
602 | 603 |
#endif |
603 | 604 |
|
604 | 605 |
/// \brief Return the flow on the given arc. |
605 | 606 |
/// |
606 | 607 |
/// This function returns the flow on the given arc. |
607 | 608 |
/// |
608 | 609 |
/// \pre \ref run() must be called before using this function. |
609 | 610 |
Value flow(const Arc& a) const { |
610 | 611 |
return _res_cap[_arc_idb[a]]; |
611 | 612 |
} |
612 | 613 |
|
613 | 614 |
/// \brief Return the flow map (the primal solution). |
614 | 615 |
/// |
615 | 616 |
/// This function copies the flow value on each arc into the given |
616 | 617 |
/// map. The \c Value type of the algorithm must be convertible to |
617 | 618 |
/// the \c Value type of the map. |
618 | 619 |
/// |
619 | 620 |
/// \pre \ref run() must be called before using this function. |
620 | 621 |
template <typename FlowMap> |
621 | 622 |
void flowMap(FlowMap &map) const { |
622 | 623 |
for (ArcIt a(_graph); a != INVALID; ++a) { |
623 | 624 |
map.set(a, _res_cap[_arc_idb[a]]); |
624 | 625 |
} |
625 | 626 |
} |
626 | 627 |
|
627 | 628 |
/// \brief Return the potential (dual value) of the given node. |
628 | 629 |
/// |
629 | 630 |
/// This function returns the potential (dual value) of the |
630 | 631 |
/// given node. |
631 | 632 |
/// |
632 | 633 |
/// \pre \ref run() must be called before using this function. |
633 | 634 |
Cost potential(const Node& n) const { |
634 | 635 |
return static_cast<Cost>(_pi[_node_id[n]]); |
635 | 636 |
} |
636 | 637 |
|
637 | 638 |
/// \brief Return the potential map (the dual solution). |
638 | 639 |
/// |
639 | 640 |
/// This function copies the potential (dual value) of each node |
640 | 641 |
/// into the given map. |
641 | 642 |
/// The \c Cost type of the algorithm must be convertible to the |
642 | 643 |
/// \c Value type of the map. |
643 | 644 |
/// |
644 | 645 |
/// \pre \ref run() must be called before using this function. |
645 | 646 |
template <typename PotentialMap> |
646 | 647 |
void potentialMap(PotentialMap &map) const { |
647 | 648 |
for (NodeIt n(_graph); n != INVALID; ++n) { |
648 | 649 |
map.set(n, static_cast<Cost>(_pi[_node_id[n]])); |
649 | 650 |
} |
650 | 651 |
} |
651 | 652 |
|
652 | 653 |
/// @} |
653 | 654 |
|
654 | 655 |
private: |
655 | 656 |
|
656 | 657 |
// Initialize the algorithm |
657 | 658 |
ProblemType init() { |
658 | 659 |
if (_res_node_num <= 1) return INFEASIBLE; |
659 | 660 |
|
660 | 661 |
// Check the sum of supply values |
661 | 662 |
_sum_supply = 0; |
662 | 663 |
for (int i = 0; i != _root; ++i) { |
663 | 664 |
_sum_supply += _supply[i]; |
664 | 665 |
} |
665 | 666 |
if (_sum_supply > 0) return INFEASIBLE; |
666 | 667 |
|
667 | 668 |
|
668 | 669 |
// Initialize vectors |
669 | 670 |
for (int i = 0; i != _res_node_num; ++i) { |
670 | 671 |
_pi[i] = 0; |
671 | 672 |
} |
672 | 673 |
ValueVector excess(_supply); |
673 | 674 |
|
674 | 675 |
// Remove infinite upper bounds and check negative arcs |
675 | 676 |
const Value MAX = std::numeric_limits<Value>::max(); |
676 | 677 |
int last_out; |
677 | 678 |
if (_have_lower) { |
678 | 679 |
for (int i = 0; i != _root; ++i) { |
679 | 680 |
last_out = _first_out[i+1]; |
680 | 681 |
for (int j = _first_out[i]; j != last_out; ++j) { |
681 | 682 |
if (_forward[j]) { |
682 | 683 |
Value c = _cost[j] < 0 ? _upper[j] : _lower[j]; |
683 | 684 |
if (c >= MAX) return UNBOUNDED; |
684 | 685 |
excess[i] -= c; |
685 | 686 |
excess[_target[j]] += c; |
686 | 687 |
} |
687 | 688 |
} |
688 | 689 |
} |
689 | 690 |
} else { |
690 | 691 |
for (int i = 0; i != _root; ++i) { |
691 | 692 |
last_out = _first_out[i+1]; |
692 | 693 |
for (int j = _first_out[i]; j != last_out; ++j) { |
693 | 694 |
if (_forward[j] && _cost[j] < 0) { |
694 | 695 |
Value c = _upper[j]; |
695 | 696 |
if (c >= MAX) return UNBOUNDED; |
696 | 697 |
excess[i] -= c; |
697 | 698 |
excess[_target[j]] += c; |
698 | 699 |
} |
699 | 700 |
} |
700 | 701 |
} |
701 | 702 |
} |
702 | 703 |
Value ex, max_cap = 0; |
703 | 704 |
for (int i = 0; i != _res_node_num; ++i) { |
704 | 705 |
ex = excess[i]; |
705 | 706 |
if (ex < 0) max_cap -= ex; |
706 | 707 |
} |
707 | 708 |
for (int j = 0; j != _res_arc_num; ++j) { |
708 | 709 |
if (_upper[j] >= MAX) _upper[j] = max_cap; |
709 | 710 |
} |
710 | 711 |
|
711 | 712 |
// Initialize maps for Circulation and remove non-zero lower bounds |
712 | 713 |
ConstMap<Arc, Value> low(0); |
713 | 714 |
typedef typename Digraph::template ArcMap<Value> ValueArcMap; |
714 | 715 |
typedef typename Digraph::template NodeMap<Value> ValueNodeMap; |
715 | 716 |
ValueArcMap cap(_graph), flow(_graph); |
716 | 717 |
ValueNodeMap sup(_graph); |
717 | 718 |
for (NodeIt n(_graph); n != INVALID; ++n) { |
718 | 719 |
sup[n] = _supply[_node_id[n]]; |
719 | 720 |
} |
720 | 721 |
if (_have_lower) { |
721 | 722 |
for (ArcIt a(_graph); a != INVALID; ++a) { |
722 | 723 |
int j = _arc_idf[a]; |
723 | 724 |
Value c = _lower[j]; |
724 | 725 |
cap[a] = _upper[j] - c; |
725 | 726 |
sup[_graph.source(a)] -= c; |
726 | 727 |
sup[_graph.target(a)] += c; |
727 | 728 |
} |
728 | 729 |
} else { |
729 | 730 |
for (ArcIt a(_graph); a != INVALID; ++a) { |
730 | 731 |
cap[a] = _upper[_arc_idf[a]]; |
731 | 732 |
} |
732 | 733 |
} |
733 | 734 |
|
734 | 735 |
// Find a feasible flow using Circulation |
735 | 736 |
Circulation<Digraph, ConstMap<Arc, Value>, ValueArcMap, ValueNodeMap> |
736 | 737 |
circ(_graph, low, cap, sup); |
737 | 738 |
if (!circ.flowMap(flow).run()) return INFEASIBLE; |
738 | 739 |
|
739 | 740 |
// Set residual capacities and handle GEQ supply type |
740 | 741 |
if (_sum_supply < 0) { |
741 | 742 |
for (ArcIt a(_graph); a != INVALID; ++a) { |
742 | 743 |
Value fa = flow[a]; |
743 | 744 |
_res_cap[_arc_idf[a]] = cap[a] - fa; |
744 | 745 |
_res_cap[_arc_idb[a]] = fa; |
745 | 746 |
sup[_graph.source(a)] -= fa; |
746 | 747 |
sup[_graph.target(a)] += fa; |
747 | 748 |
} |
748 | 749 |
for (NodeIt n(_graph); n != INVALID; ++n) { |
749 | 750 |
excess[_node_id[n]] = sup[n]; |
750 | 751 |
} |
751 | 752 |
for (int a = _first_out[_root]; a != _res_arc_num; ++a) { |
752 | 753 |
int u = _target[a]; |
753 | 754 |
int ra = _reverse[a]; |
754 | 755 |
_res_cap[a] = -_sum_supply + 1; |
755 | 756 |
_res_cap[ra] = -excess[u]; |
756 | 757 |
_cost[a] = 0; |
757 | 758 |
_cost[ra] = 0; |
758 | 759 |
} |
759 | 760 |
} else { |
760 | 761 |
for (ArcIt a(_graph); a != INVALID; ++a) { |
761 | 762 |
Value fa = flow[a]; |
762 | 763 |
_res_cap[_arc_idf[a]] = cap[a] - fa; |
763 | 764 |
_res_cap[_arc_idb[a]] = fa; |
764 | 765 |
} |
765 | 766 |
for (int a = _first_out[_root]; a != _res_arc_num; ++a) { |
766 | 767 |
int ra = _reverse[a]; |
767 | 768 |
_res_cap[a] = 1; |
768 | 769 |
_res_cap[ra] = 0; |
769 | 770 |
_cost[a] = 0; |
770 | 771 |
_cost[ra] = 0; |
771 | 772 |
} |
772 | 773 |
} |
773 | 774 |
|
774 | 775 |
return OPTIMAL; |
775 | 776 |
} |
776 | 777 |
|
777 | 778 |
// Build a StaticDigraph structure containing the current |
778 | 779 |
// residual network |
779 | 780 |
void buildResidualNetwork() { |
780 | 781 |
_arc_vec.clear(); |
781 | 782 |
_cost_vec.clear(); |
782 | 783 |
_id_vec.clear(); |
783 | 784 |
for (int j = 0; j != _res_arc_num; ++j) { |
784 | 785 |
if (_res_cap[j] > 0) { |
785 | 786 |
_arc_vec.push_back(IntPair(_source[j], _target[j])); |
786 | 787 |
_cost_vec.push_back(_cost[j]); |
787 | 788 |
_id_vec.push_back(j); |
788 | 789 |
} |
789 | 790 |
} |
790 | 791 |
_sgr.build(_res_node_num, _arc_vec.begin(), _arc_vec.end()); |
791 | 792 |
} |
792 | 793 |
|
793 | 794 |
// Execute the algorithm and transform the results |
794 | 795 |
void start(Method method) { |
795 | 796 |
// Execute the algorithm |
796 | 797 |
switch (method) { |
797 | 798 |
case SIMPLE_CYCLE_CANCELING: |
798 | 799 |
startSimpleCycleCanceling(); |
799 | 800 |
break; |
800 | 801 |
case MINIMUM_MEAN_CYCLE_CANCELING: |
801 | 802 |
startMinMeanCycleCanceling(); |
802 | 803 |
break; |
803 | 804 |
case CANCEL_AND_TIGHTEN: |
804 | 805 |
startCancelAndTighten(); |
805 | 806 |
break; |
806 | 807 |
} |
807 | 808 |
|
808 | 809 |
// Compute node potentials |
809 | 810 |
if (method != SIMPLE_CYCLE_CANCELING) { |
810 | 811 |
buildResidualNetwork(); |
811 | 812 |
typename BellmanFord<StaticDigraph, CostArcMap> |
812 | 813 |
::template SetDistMap<CostNodeMap>::Create bf(_sgr, _cost_map); |
813 | 814 |
bf.distMap(_pi_map); |
814 | 815 |
bf.init(0); |
815 | 816 |
bf.start(); |
816 | 817 |
} |
817 | 818 |
|
818 | 819 |
// Handle non-zero lower bounds |
819 | 820 |
if (_have_lower) { |
820 | 821 |
int limit = _first_out[_root]; |
821 | 822 |
for (int j = 0; j != limit; ++j) { |
822 | 823 |
if (!_forward[j]) _res_cap[j] += _lower[j]; |
823 | 824 |
} |
824 | 825 |
} |
825 | 826 |
} |
826 | 827 |
|
827 | 828 |
// Execute the "Simple Cycle Canceling" method |
828 | 829 |
void startSimpleCycleCanceling() { |
829 | 830 |
// Constants for computing the iteration limits |
830 | 831 |
const int BF_FIRST_LIMIT = 2; |
831 | 832 |
const double BF_LIMIT_FACTOR = 1.5; |
832 | 833 |
|
833 | 834 |
typedef StaticVectorMap<StaticDigraph::Arc, Value> FilterMap; |
834 | 835 |
typedef FilterArcs<StaticDigraph, FilterMap> ResDigraph; |
835 | 836 |
typedef StaticVectorMap<StaticDigraph::Node, StaticDigraph::Arc> PredMap; |
836 | 837 |
typedef typename BellmanFord<ResDigraph, CostArcMap> |
837 | 838 |
::template SetDistMap<CostNodeMap> |
838 | 839 |
::template SetPredMap<PredMap>::Create BF; |
839 | 840 |
|
840 | 841 |
// Build the residual network |
841 | 842 |
_arc_vec.clear(); |
842 | 843 |
_cost_vec.clear(); |
843 | 844 |
for (int j = 0; j != _res_arc_num; ++j) { |
844 | 845 |
_arc_vec.push_back(IntPair(_source[j], _target[j])); |
845 | 846 |
_cost_vec.push_back(_cost[j]); |
846 | 847 |
} |
847 | 848 |
_sgr.build(_res_node_num, _arc_vec.begin(), _arc_vec.end()); |
848 | 849 |
|
849 | 850 |
FilterMap filter_map(_res_cap); |
850 | 851 |
ResDigraph rgr(_sgr, filter_map); |
851 | 852 |
std::vector<int> cycle; |
852 | 853 |
std::vector<StaticDigraph::Arc> pred(_res_arc_num); |
853 | 854 |
PredMap pred_map(pred); |
854 | 855 |
BF bf(rgr, _cost_map); |
855 | 856 |
bf.distMap(_pi_map).predMap(pred_map); |
856 | 857 |
|
857 | 858 |
int length_bound = BF_FIRST_LIMIT; |
858 | 859 |
bool optimal = false; |
859 | 860 |
while (!optimal) { |
860 | 861 |
bf.init(0); |
861 | 862 |
int iter_num = 0; |
862 | 863 |
bool cycle_found = false; |
863 | 864 |
while (!cycle_found) { |
864 | 865 |
// Perform some iterations of the Bellman-Ford algorithm |
865 | 866 |
int curr_iter_num = iter_num + length_bound <= _node_num ? |
866 | 867 |
length_bound : _node_num - iter_num; |
867 | 868 |
iter_num += curr_iter_num; |
868 | 869 |
int real_iter_num = curr_iter_num; |
869 | 870 |
for (int i = 0; i < curr_iter_num; ++i) { |
870 | 871 |
if (bf.processNextWeakRound()) { |
871 | 872 |
real_iter_num = i; |
872 | 873 |
break; |
873 | 874 |
} |
874 | 875 |
} |
875 | 876 |
if (real_iter_num < curr_iter_num) { |
876 | 877 |
// Optimal flow is found |
877 | 878 |
optimal = true; |
878 | 879 |
break; |
879 | 880 |
} else { |
880 | 881 |
// Search for node disjoint negative cycles |
881 | 882 |
std::vector<int> state(_res_node_num, 0); |
882 | 883 |
int id = 0; |
883 | 884 |
for (int u = 0; u != _res_node_num; ++u) { |
884 | 885 |
if (state[u] != 0) continue; |
885 | 886 |
++id; |
886 | 887 |
int v = u; |
887 | 888 |
for (; v != -1 && state[v] == 0; v = pred[v] == INVALID ? |
888 | 889 |
-1 : rgr.id(rgr.source(pred[v]))) { |
889 | 890 |
state[v] = id; |
890 | 891 |
} |
891 | 892 |
if (v != -1 && state[v] == id) { |
892 | 893 |
// A negative cycle is found |
893 | 894 |
cycle_found = true; |
894 | 895 |
cycle.clear(); |
895 | 896 |
StaticDigraph::Arc a = pred[v]; |
896 | 897 |
Value d, delta = _res_cap[rgr.id(a)]; |
897 | 898 |
cycle.push_back(rgr.id(a)); |
898 | 899 |
while (rgr.id(rgr.source(a)) != v) { |
899 | 900 |
a = pred_map[rgr.source(a)]; |
900 | 901 |
d = _res_cap[rgr.id(a)]; |
901 | 902 |
if (d < delta) delta = d; |
902 | 903 |
cycle.push_back(rgr.id(a)); |
903 | 904 |
} |
904 | 905 |
|
905 | 906 |
// Augment along the cycle |
906 | 907 |
for (int i = 0; i < int(cycle.size()); ++i) { |
907 | 908 |
int j = cycle[i]; |
908 | 909 |
_res_cap[j] -= delta; |
909 | 910 |
_res_cap[_reverse[j]] += delta; |
910 | 911 |
} |
911 | 912 |
} |
912 | 913 |
} |
913 | 914 |
} |
914 | 915 |
|
915 | 916 |
// Increase iteration limit if no cycle is found |
916 | 917 |
if (!cycle_found) { |
917 | 918 |
length_bound = static_cast<int>(length_bound * BF_LIMIT_FACTOR); |
918 | 919 |
} |
919 | 920 |
} |
920 | 921 |
} |
921 | 922 |
} |
922 | 923 |
|
923 | 924 |
// Execute the "Minimum Mean Cycle Canceling" method |
924 | 925 |
void startMinMeanCycleCanceling() { |
925 | 926 |
typedef SimplePath<StaticDigraph> SPath; |
926 | 927 |
typedef typename SPath::ArcIt SPathArcIt; |
927 | 928 |
typedef typename HowardMmc<StaticDigraph, CostArcMap> |
928 | 929 |
::template SetPath<SPath>::Create MMC; |
929 | 930 |
|
930 | 931 |
SPath cycle; |
931 | 932 |
MMC mmc(_sgr, _cost_map); |
932 | 933 |
mmc.cycle(cycle); |
933 | 934 |
buildResidualNetwork(); |
934 | 935 |
while (mmc.findCycleMean() && mmc.cycleCost() < 0) { |
935 | 936 |
// Find the cycle |
936 | 937 |
mmc.findCycle(); |
937 | 938 |
|
938 | 939 |
// Compute delta value |
939 | 940 |
Value delta = INF; |
940 | 941 |
for (SPathArcIt a(cycle); a != INVALID; ++a) { |
941 | 942 |
Value d = _res_cap[_id_vec[_sgr.id(a)]]; |
942 | 943 |
if (d < delta) delta = d; |
943 | 944 |
} |
944 | 945 |
|
945 | 946 |
// Augment along the cycle |
946 | 947 |
for (SPathArcIt a(cycle); a != INVALID; ++a) { |
947 | 948 |
int j = _id_vec[_sgr.id(a)]; |
948 | 949 |
_res_cap[j] -= delta; |
949 | 950 |
_res_cap[_reverse[j]] += delta; |
950 | 951 |
} |
951 | 952 |
|
952 | 953 |
// Rebuild the residual network |
953 | 954 |
buildResidualNetwork(); |
954 | 955 |
} |
955 | 956 |
} |
956 | 957 |
|
957 | 958 |
// Execute the "Cancel And Tighten" method |
958 | 959 |
void startCancelAndTighten() { |
959 | 960 |
// Constants for the min mean cycle computations |
960 | 961 |
const double LIMIT_FACTOR = 1.0; |
961 | 962 |
const int MIN_LIMIT = 5; |
962 | 963 |
|
963 | 964 |
// Contruct auxiliary data vectors |
964 | 965 |
DoubleVector pi(_res_node_num, 0.0); |
965 | 966 |
IntVector level(_res_node_num); |
966 | 967 |
BoolVector reached(_res_node_num); |
967 | 968 |
BoolVector processed(_res_node_num); |
968 | 969 |
IntVector pred_node(_res_node_num); |
969 | 970 |
IntVector pred_arc(_res_node_num); |
970 | 971 |
std::vector<int> stack(_res_node_num); |
971 | 972 |
std::vector<int> proc_vector(_res_node_num); |
972 | 973 |
|
973 | 974 |
// Initialize epsilon |
974 | 975 |
double epsilon = 0; |
975 | 976 |
for (int a = 0; a != _res_arc_num; ++a) { |
976 | 977 |
if (_res_cap[a] > 0 && -_cost[a] > epsilon) |
977 | 978 |
epsilon = -_cost[a]; |
978 | 979 |
} |
979 | 980 |
|
980 | 981 |
// Start phases |
981 | 982 |
Tolerance<double> tol; |
982 | 983 |
tol.epsilon(1e-6); |
983 | 984 |
int limit = int(LIMIT_FACTOR * std::sqrt(double(_res_node_num))); |
984 | 985 |
if (limit < MIN_LIMIT) limit = MIN_LIMIT; |
985 | 986 |
int iter = limit; |
986 | 987 |
while (epsilon * _res_node_num >= 1) { |
987 | 988 |
// Find and cancel cycles in the admissible network using DFS |
988 | 989 |
for (int u = 0; u != _res_node_num; ++u) { |
989 | 990 |
reached[u] = false; |
990 | 991 |
processed[u] = false; |
991 | 992 |
} |
992 | 993 |
int stack_head = -1; |
993 | 994 |
int proc_head = -1; |
994 | 995 |
for (int start = 0; start != _res_node_num; ++start) { |
995 | 996 |
if (reached[start]) continue; |
996 | 997 |
|
997 | 998 |
// New start node |
998 | 999 |
reached[start] = true; |
999 | 1000 |
pred_arc[start] = -1; |
1000 | 1001 |
pred_node[start] = -1; |
1001 | 1002 |
|
1002 | 1003 |
// Find the first admissible outgoing arc |
1003 | 1004 |
double p = pi[start]; |
1004 | 1005 |
int a = _first_out[start]; |
1005 | 1006 |
int last_out = _first_out[start+1]; |
1006 | 1007 |
for (; a != last_out && (_res_cap[a] == 0 || |
1007 | 1008 |
!tol.negative(_cost[a] + p - pi[_target[a]])); ++a) ; |
1008 | 1009 |
if (a == last_out) { |
1009 | 1010 |
processed[start] = true; |
1010 | 1011 |
proc_vector[++proc_head] = start; |
1011 | 1012 |
continue; |
1012 | 1013 |
} |
1013 | 1014 |
stack[++stack_head] = a; |
1014 | 1015 |
|
1015 | 1016 |
while (stack_head >= 0) { |
1016 | 1017 |
int sa = stack[stack_head]; |
1017 | 1018 |
int u = _source[sa]; |
1018 | 1019 |
int v = _target[sa]; |
1019 | 1020 |
|
1020 | 1021 |
if (!reached[v]) { |
1021 | 1022 |
// A new node is reached |
1022 | 1023 |
reached[v] = true; |
1023 | 1024 |
pred_node[v] = u; |
1024 | 1025 |
pred_arc[v] = sa; |
1025 | 1026 |
p = pi[v]; |
1026 | 1027 |
a = _first_out[v]; |
1027 | 1028 |
last_out = _first_out[v+1]; |
1028 | 1029 |
for (; a != last_out && (_res_cap[a] == 0 || |
1029 | 1030 |
!tol.negative(_cost[a] + p - pi[_target[a]])); ++a) ; |
1030 | 1031 |
stack[++stack_head] = a == last_out ? -1 : a; |
1031 | 1032 |
} else { |
1032 | 1033 |
if (!processed[v]) { |
1033 | 1034 |
// A cycle is found |
1034 | 1035 |
int n, w = u; |
1035 | 1036 |
Value d, delta = _res_cap[sa]; |
1036 | 1037 |
for (n = u; n != v; n = pred_node[n]) { |
1037 | 1038 |
d = _res_cap[pred_arc[n]]; |
1038 | 1039 |
if (d <= delta) { |
1039 | 1040 |
delta = d; |
1040 | 1041 |
w = pred_node[n]; |
1041 | 1042 |
} |
1042 | 1043 |
} |
1043 | 1044 |
|
1044 | 1045 |
// Augment along the cycle |
1045 | 1046 |
_res_cap[sa] -= delta; |
1046 | 1047 |
_res_cap[_reverse[sa]] += delta; |
1047 | 1048 |
for (n = u; n != v; n = pred_node[n]) { |
1048 | 1049 |
int pa = pred_arc[n]; |
1049 | 1050 |
_res_cap[pa] -= delta; |
1050 | 1051 |
_res_cap[_reverse[pa]] += delta; |
1051 | 1052 |
} |
1052 | 1053 |
for (n = u; stack_head > 0 && n != w; n = pred_node[n]) { |
1053 | 1054 |
--stack_head; |
1054 | 1055 |
reached[n] = false; |
1055 | 1056 |
} |
1056 | 1057 |
u = w; |
1057 | 1058 |
} |
1058 | 1059 |
v = u; |
1059 | 1060 |
|
1060 | 1061 |
// Find the next admissible outgoing arc |
1061 | 1062 |
p = pi[v]; |
1062 | 1063 |
a = stack[stack_head] + 1; |
1063 | 1064 |
last_out = _first_out[v+1]; |
1064 | 1065 |
for (; a != last_out && (_res_cap[a] == 0 || |
1065 | 1066 |
!tol.negative(_cost[a] + p - pi[_target[a]])); ++a) ; |
1066 | 1067 |
stack[stack_head] = a == last_out ? -1 : a; |
1067 | 1068 |
} |
1068 | 1069 |
|
1069 | 1070 |
while (stack_head >= 0 && stack[stack_head] == -1) { |
1070 | 1071 |
processed[v] = true; |
1071 | 1072 |
proc_vector[++proc_head] = v; |
1072 | 1073 |
if (--stack_head >= 0) { |
1073 | 1074 |
// Find the next admissible outgoing arc |
1074 | 1075 |
v = _source[stack[stack_head]]; |
1075 | 1076 |
p = pi[v]; |
1076 | 1077 |
a = stack[stack_head] + 1; |
1077 | 1078 |
last_out = _first_out[v+1]; |
1078 | 1079 |
for (; a != last_out && (_res_cap[a] == 0 || |
1079 | 1080 |
!tol.negative(_cost[a] + p - pi[_target[a]])); ++a) ; |
1080 | 1081 |
stack[stack_head] = a == last_out ? -1 : a; |
1081 | 1082 |
} |
1082 | 1083 |
} |
1083 | 1084 |
} |
1084 | 1085 |
} |
1085 | 1086 |
|
1086 | 1087 |
// Tighten potentials and epsilon |
1087 | 1088 |
if (--iter > 0) { |
1088 | 1089 |
for (int u = 0; u != _res_node_num; ++u) { |
1089 | 1090 |
level[u] = 0; |
1090 | 1091 |
} |
1091 | 1092 |
for (int i = proc_head; i > 0; --i) { |
1092 | 1093 |
int u = proc_vector[i]; |
1093 | 1094 |
double p = pi[u]; |
1094 | 1095 |
int l = level[u] + 1; |
1095 | 1096 |
int last_out = _first_out[u+1]; |
1096 | 1097 |
for (int a = _first_out[u]; a != last_out; ++a) { |
1097 | 1098 |
int v = _target[a]; |
1098 | 1099 |
if (_res_cap[a] > 0 && tol.negative(_cost[a] + p - pi[v]) && |
1099 | 1100 |
l > level[v]) level[v] = l; |
1100 | 1101 |
} |
1101 | 1102 |
} |
1102 | 1103 |
|
1103 | 1104 |
// Modify potentials |
1104 | 1105 |
double q = std::numeric_limits<double>::max(); |
1105 | 1106 |
for (int u = 0; u != _res_node_num; ++u) { |
1106 | 1107 |
int lu = level[u]; |
1107 | 1108 |
double p, pu = pi[u]; |
1108 | 1109 |
int last_out = _first_out[u+1]; |
1109 | 1110 |
for (int a = _first_out[u]; a != last_out; ++a) { |
1110 | 1111 |
if (_res_cap[a] == 0) continue; |
1111 | 1112 |
int v = _target[a]; |
1112 | 1113 |
int ld = lu - level[v]; |
1113 | 1114 |
if (ld > 0) { |
1114 | 1115 |
p = (_cost[a] + pu - pi[v] + epsilon) / (ld + 1); |
1115 | 1116 |
if (p < q) q = p; |
1116 | 1117 |
} |
1117 | 1118 |
} |
1118 | 1119 |
} |
1119 | 1120 |
for (int u = 0; u != _res_node_num; ++u) { |
1120 | 1121 |
pi[u] -= q * level[u]; |
1121 | 1122 |
} |
1122 | 1123 |
|
1123 | 1124 |
// Modify epsilon |
1124 | 1125 |
epsilon = 0; |
1125 | 1126 |
for (int u = 0; u != _res_node_num; ++u) { |
1126 | 1127 |
double curr, pu = pi[u]; |
1127 | 1128 |
int last_out = _first_out[u+1]; |
1128 | 1129 |
for (int a = _first_out[u]; a != last_out; ++a) { |
1129 | 1130 |
if (_res_cap[a] == 0) continue; |
1130 | 1131 |
curr = _cost[a] + pu - pi[_target[a]]; |
1131 | 1132 |
if (-curr > epsilon) epsilon = -curr; |
1132 | 1133 |
} |
1133 | 1134 |
} |
1134 | 1135 |
} else { |
1135 | 1136 |
typedef HowardMmc<StaticDigraph, CostArcMap> MMC; |
1136 | 1137 |
typedef typename BellmanFord<StaticDigraph, CostArcMap> |
1137 | 1138 |
::template SetDistMap<CostNodeMap>::Create BF; |
1138 | 1139 |
|
1139 | 1140 |
// Set epsilon to the minimum cycle mean |
1140 | 1141 |
buildResidualNetwork(); |
1141 | 1142 |
MMC mmc(_sgr, _cost_map); |
1142 | 1143 |
mmc.findCycleMean(); |
1143 | 1144 |
epsilon = -mmc.cycleMean(); |
1144 | 1145 |
Cost cycle_cost = mmc.cycleCost(); |
1145 | 1146 |
int cycle_size = mmc.cycleSize(); |
1146 | 1147 |
|
1147 | 1148 |
// Compute feasible potentials for the current epsilon |
1148 | 1149 |
for (int i = 0; i != int(_cost_vec.size()); ++i) { |
1149 | 1150 |
_cost_vec[i] = cycle_size * _cost_vec[i] - cycle_cost; |
1150 | 1151 |
} |
1151 | 1152 |
BF bf(_sgr, _cost_map); |
1152 | 1153 |
bf.distMap(_pi_map); |
1153 | 1154 |
bf.init(0); |
1154 | 1155 |
bf.start(); |
1155 | 1156 |
for (int u = 0; u != _res_node_num; ++u) { |
1156 | 1157 |
pi[u] = static_cast<double>(_pi[u]) / cycle_size; |
1157 | 1158 |
} |
1158 | 1159 |
|
1159 | 1160 |
iter = limit; |
1160 | 1161 |
} |
1161 | 1162 |
} |
1162 | 1163 |
} |
1163 | 1164 |
|
1164 | 1165 |
}; //class CycleCanceling |
1165 | 1166 |
|
1166 | 1167 |
///@} |
1167 | 1168 |
|
1168 | 1169 |
} //namespace lemon |
1169 | 1170 |
|
1170 | 1171 |
#endif //LEMON_CYCLE_CANCELING_H |
1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 | 5 |
* Copyright (C) 2003-2009 |
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 | 19 |
#ifndef LEMON_KRUSKAL_H |
20 | 20 |
#define LEMON_KRUSKAL_H |
21 | 21 |
|
22 | 22 |
#include <algorithm> |
23 | 23 |
#include <vector> |
24 | 24 |
#include <lemon/unionfind.h> |
25 | 25 |
#include <lemon/maps.h> |
26 | 26 |
|
27 | 27 |
#include <lemon/core.h> |
28 | 28 |
#include <lemon/bits/traits.h> |
29 | 29 |
|
30 | 30 |
///\ingroup spantree |
31 | 31 |
///\file |
32 | 32 |
///\brief Kruskal's algorithm to compute a minimum cost spanning tree |
33 |
/// |
|
34 |
///Kruskal's algorithm to compute a minimum cost spanning tree. |
|
35 |
/// |
|
36 | 33 |
|
37 | 34 |
namespace lemon { |
38 | 35 |
|
39 | 36 |
namespace _kruskal_bits { |
40 | 37 |
|
41 | 38 |
// Kruskal for directed graphs. |
42 | 39 |
|
43 | 40 |
template <typename Digraph, typename In, typename Out> |
44 | 41 |
typename disable_if<lemon::UndirectedTagIndicator<Digraph>, |
45 | 42 |
typename In::value_type::second_type >::type |
46 | 43 |
kruskal(const Digraph& digraph, const In& in, Out& out,dummy<0> = 0) { |
47 | 44 |
typedef typename In::value_type::second_type Value; |
48 | 45 |
typedef typename Digraph::template NodeMap<int> IndexMap; |
49 | 46 |
typedef typename Digraph::Node Node; |
50 | 47 |
|
51 | 48 |
IndexMap index(digraph); |
52 | 49 |
UnionFind<IndexMap> uf(index); |
53 | 50 |
for (typename Digraph::NodeIt it(digraph); it != INVALID; ++it) { |
54 | 51 |
uf.insert(it); |
55 | 52 |
} |
56 | 53 |
|
57 | 54 |
Value tree_value = 0; |
58 | 55 |
for (typename In::const_iterator it = in.begin(); it != in.end(); ++it) { |
59 | 56 |
if (uf.join(digraph.target(it->first),digraph.source(it->first))) { |
60 | 57 |
out.set(it->first, true); |
61 | 58 |
tree_value += it->second; |
62 | 59 |
} |
63 | 60 |
else { |
64 | 61 |
out.set(it->first, false); |
65 | 62 |
} |
66 | 63 |
} |
67 | 64 |
return tree_value; |
68 | 65 |
} |
69 | 66 |
|
70 | 67 |
// Kruskal for undirected graphs. |
71 | 68 |
|
72 | 69 |
template <typename Graph, typename In, typename Out> |
73 | 70 |
typename enable_if<lemon::UndirectedTagIndicator<Graph>, |
74 | 71 |
typename In::value_type::second_type >::type |
75 | 72 |
kruskal(const Graph& graph, const In& in, Out& out,dummy<1> = 1) { |
76 | 73 |
typedef typename In::value_type::second_type Value; |
77 | 74 |
typedef typename Graph::template NodeMap<int> IndexMap; |
78 | 75 |
typedef typename Graph::Node Node; |
79 | 76 |
|
80 | 77 |
IndexMap index(graph); |
81 | 78 |
UnionFind<IndexMap> uf(index); |
82 | 79 |
for (typename Graph::NodeIt it(graph); it != INVALID; ++it) { |
83 | 80 |
uf.insert(it); |
84 | 81 |
} |
85 | 82 |
|
86 | 83 |
Value tree_value = 0; |
87 | 84 |
for (typename In::const_iterator it = in.begin(); it != in.end(); ++it) { |
88 | 85 |
if (uf.join(graph.u(it->first),graph.v(it->first))) { |
89 | 86 |
out.set(it->first, true); |
90 | 87 |
tree_value += it->second; |
91 | 88 |
} |
92 | 89 |
else { |
93 | 90 |
out.set(it->first, false); |
94 | 91 |
} |
95 | 92 |
} |
96 | 93 |
return tree_value; |
97 | 94 |
} |
98 | 95 |
|
99 | 96 |
|
100 | 97 |
template <typename Sequence> |
101 | 98 |
struct PairComp { |
102 | 99 |
typedef typename Sequence::value_type Value; |
103 | 100 |
bool operator()(const Value& left, const Value& right) { |
104 | 101 |
return left.second < right.second; |
105 | 102 |
} |
106 | 103 |
}; |
107 | 104 |
|
108 | 105 |
template <typename In, typename Enable = void> |
109 | 106 |
struct SequenceInputIndicator { |
110 | 107 |
static const bool value = false; |
111 | 108 |
}; |
112 | 109 |
|
113 | 110 |
template <typename In> |
114 | 111 |
struct SequenceInputIndicator<In, |
115 | 112 |
typename exists<typename In::value_type::first_type>::type> { |
116 | 113 |
static const bool value = true; |
117 | 114 |
}; |
118 | 115 |
|
119 | 116 |
template <typename In, typename Enable = void> |
120 | 117 |
struct MapInputIndicator { |
121 | 118 |
static const bool value = false; |
122 | 119 |
}; |
123 | 120 |
|
124 | 121 |
template <typename In> |
125 | 122 |
struct MapInputIndicator<In, |
126 | 123 |
typename exists<typename In::Value>::type> { |
127 | 124 |
static const bool value = true; |
128 | 125 |
}; |
129 | 126 |
|
130 | 127 |
template <typename In, typename Enable = void> |
131 | 128 |
struct SequenceOutputIndicator { |
132 | 129 |
static const bool value = false; |
133 | 130 |
}; |
134 | 131 |
|
135 | 132 |
template <typename Out> |
136 | 133 |
struct SequenceOutputIndicator<Out, |
137 | 134 |
typename exists<typename Out::value_type>::type> { |
138 | 135 |
static const bool value = true; |
139 | 136 |
}; |
140 | 137 |
|
141 | 138 |
template <typename Out, typename Enable = void> |
142 | 139 |
struct MapOutputIndicator { |
143 | 140 |
static const bool value = false; |
144 | 141 |
}; |
145 | 142 |
|
146 | 143 |
template <typename Out> |
147 | 144 |
struct MapOutputIndicator<Out, |
148 | 145 |
typename exists<typename Out::Value>::type> { |
149 | 146 |
static const bool value = true; |
150 | 147 |
}; |
151 | 148 |
|
152 | 149 |
template <typename In, typename InEnable = void> |
153 | 150 |
struct KruskalValueSelector {}; |
154 | 151 |
|
155 | 152 |
template <typename In> |
156 | 153 |
struct KruskalValueSelector<In, |
157 | 154 |
typename enable_if<SequenceInputIndicator<In>, void>::type> |
158 | 155 |
{ |
159 | 156 |
typedef typename In::value_type::second_type Value; |
160 | 157 |
}; |
161 | 158 |
|
162 | 159 |
template <typename In> |
163 | 160 |
struct KruskalValueSelector<In, |
164 | 161 |
typename enable_if<MapInputIndicator<In>, void>::type> |
165 | 162 |
{ |
166 | 163 |
typedef typename In::Value Value; |
167 | 164 |
}; |
168 | 165 |
|
169 | 166 |
template <typename Graph, typename In, typename Out, |
170 | 167 |
typename InEnable = void> |
171 | 168 |
struct KruskalInputSelector {}; |
172 | 169 |
|
173 | 170 |
template <typename Graph, typename In, typename Out, |
174 | 171 |
typename InEnable = void> |
175 | 172 |
struct KruskalOutputSelector {}; |
176 | 173 |
|
177 | 174 |
template <typename Graph, typename In, typename Out> |
178 | 175 |
struct KruskalInputSelector<Graph, In, Out, |
179 | 176 |
typename enable_if<SequenceInputIndicator<In>, void>::type > |
180 | 177 |
{ |
181 | 178 |
typedef typename In::value_type::second_type Value; |
182 | 179 |
|
183 | 180 |
static Value kruskal(const Graph& graph, const In& in, Out& out) { |
184 | 181 |
return KruskalOutputSelector<Graph, In, Out>:: |
185 | 182 |
kruskal(graph, in, out); |
186 | 183 |
} |
187 | 184 |
|
188 | 185 |
}; |
189 | 186 |
|
190 | 187 |
template <typename Graph, typename In, typename Out> |
191 | 188 |
struct KruskalInputSelector<Graph, In, Out, |
192 | 189 |
typename enable_if<MapInputIndicator<In>, void>::type > |
193 | 190 |
{ |
194 | 191 |
typedef typename In::Value Value; |
195 | 192 |
static Value kruskal(const Graph& graph, const In& in, Out& out) { |
196 | 193 |
typedef typename In::Key MapArc; |
197 | 194 |
typedef typename In::Value Value; |
198 | 195 |
typedef typename ItemSetTraits<Graph, MapArc>::ItemIt MapArcIt; |
199 | 196 |
typedef std::vector<std::pair<MapArc, Value> > Sequence; |
200 | 197 |
Sequence seq; |
201 | 198 |
|
202 | 199 |
for (MapArcIt it(graph); it != INVALID; ++it) { |
203 | 200 |
seq.push_back(std::make_pair(it, in[it])); |
204 | 201 |
} |
205 | 202 |
|
206 | 203 |
std::sort(seq.begin(), seq.end(), PairComp<Sequence>()); |
207 | 204 |
return KruskalOutputSelector<Graph, Sequence, Out>:: |
208 | 205 |
kruskal(graph, seq, out); |
209 | 206 |
} |
210 | 207 |
}; |
211 | 208 |
|
212 | 209 |
template <typename T> |
213 | 210 |
struct RemoveConst { |
214 | 211 |
typedef T type; |
215 | 212 |
}; |
216 | 213 |
|
217 | 214 |
template <typename T> |
218 | 215 |
struct RemoveConst<const T> { |
219 | 216 |
typedef T type; |
220 | 217 |
}; |
221 | 218 |
|
222 | 219 |
template <typename Graph, typename In, typename Out> |
223 | 220 |
struct KruskalOutputSelector<Graph, In, Out, |
224 | 221 |
typename enable_if<SequenceOutputIndicator<Out>, void>::type > |
225 | 222 |
{ |
226 | 223 |
typedef typename In::value_type::second_type Value; |
227 | 224 |
|
228 | 225 |
static Value kruskal(const Graph& graph, const In& in, Out& out) { |
229 | 226 |
typedef LoggerBoolMap<typename RemoveConst<Out>::type> Map; |
230 | 227 |
Map map(out); |
231 | 228 |
return _kruskal_bits::kruskal(graph, in, map); |
232 | 229 |
} |
233 | 230 |
|
234 | 231 |
}; |
235 | 232 |
|
236 | 233 |
template <typename Graph, typename In, typename Out> |
237 | 234 |
struct KruskalOutputSelector<Graph, In, Out, |
238 | 235 |
typename enable_if<MapOutputIndicator<Out>, void>::type > |
239 | 236 |
{ |
240 | 237 |
typedef typename In::value_type::second_type Value; |
241 | 238 |
|
242 | 239 |
static Value kruskal(const Graph& graph, const In& in, Out& out) { |
243 | 240 |
return _kruskal_bits::kruskal(graph, in, out); |
244 | 241 |
} |
245 | 242 |
}; |
246 | 243 |
|
247 | 244 |
} |
248 | 245 |
|
249 | 246 |
/// \ingroup spantree |
250 | 247 |
/// |
251 | 248 |
/// \brief Kruskal's algorithm for finding a minimum cost spanning tree of |
252 | 249 |
/// a graph. |
253 | 250 |
/// |
254 | 251 |
/// This function runs Kruskal's algorithm to find a minimum cost |
255 | 252 |
/// spanning tree of a graph. |
256 | 253 |
/// Due to some C++ hacking, it accepts various input and output types. |
257 | 254 |
/// |
258 | 255 |
/// \param g The graph the algorithm runs on. |
259 | 256 |
/// It can be either \ref concepts::Digraph "directed" or |
260 | 257 |
/// \ref concepts::Graph "undirected". |
261 | 258 |
/// If the graph is directed, the algorithm consider it to be |
262 | 259 |
/// undirected by disregarding the direction of the arcs. |
263 | 260 |
/// |
264 | 261 |
/// \param in This object is used to describe the arc/edge costs. |
265 | 262 |
/// It can be one of the following choices. |
266 | 263 |
/// - An STL compatible 'Forward Container' with |
267 | 264 |
/// <tt>std::pair<GR::Arc,C></tt> or |
268 | 265 |
/// <tt>std::pair<GR::Edge,C></tt> as its <tt>value_type</tt>, where |
269 | 266 |
/// \c C is the type of the costs. The pairs indicates the arcs/edges |
270 | 267 |
/// along with the assigned cost. <em>They must be in a |
271 | 268 |
/// cost-ascending order.</em> |
272 | 269 |
/// - Any readable arc/edge map. The values of the map indicate the |
273 | 270 |
/// arc/edge costs. |
274 | 271 |
/// |
275 | 272 |
/// \retval out Here we also have a choice. |
276 | 273 |
/// - It can be a writable arc/edge map with \c bool value type. After |
277 | 274 |
/// running the algorithm it will contain the found minimum cost spanning |
278 | 275 |
/// tree: the value of an arc/edge will be set to \c true if it belongs |
279 | 276 |
/// to the tree, otherwise it will be set to \c false. The value of |
280 | 277 |
/// each arc/edge will be set exactly once. |
281 | 278 |
/// - It can also be an iteraror of an STL Container with |
282 | 279 |
/// <tt>GR::Arc</tt> or <tt>GR::Edge</tt> as its |
283 | 280 |
/// <tt>value_type</tt>. The algorithm copies the elements of the |
284 | 281 |
/// found tree into this sequence. For example, if we know that the |
285 | 282 |
/// spanning tree of the graph \c g has say 53 arcs, then we can |
286 | 283 |
/// put its arcs into an STL vector \c tree with a code like this. |
287 | 284 |
///\code |
288 | 285 |
/// std::vector<Arc> tree(53); |
289 | 286 |
/// kruskal(g,cost,tree.begin()); |
290 | 287 |
///\endcode |
291 | 288 |
/// Or if we don't know in advance the size of the tree, we can |
292 | 289 |
/// write this. |
293 | 290 |
///\code |
294 | 291 |
/// std::vector<Arc> tree; |
295 | 292 |
/// kruskal(g,cost,std::back_inserter(tree)); |
296 | 293 |
///\endcode |
297 | 294 |
/// |
298 | 295 |
/// \return The total cost of the found spanning tree. |
299 | 296 |
/// |
300 | 297 |
/// \note If the input graph is not (weakly) connected, a spanning |
301 | 298 |
/// forest is calculated instead of a spanning tree. |
302 | 299 |
|
303 | 300 |
#ifdef DOXYGEN |
304 | 301 |
template <typename Graph, typename In, typename Out> |
305 | 302 |
Value kruskal(const Graph& g, const In& in, Out& out) |
306 | 303 |
#else |
307 | 304 |
template <class Graph, class In, class Out> |
308 | 305 |
inline typename _kruskal_bits::KruskalValueSelector<In>::Value |
309 | 306 |
kruskal(const Graph& graph, const In& in, Out& out) |
310 | 307 |
#endif |
311 | 308 |
{ |
312 | 309 |
return _kruskal_bits::KruskalInputSelector<Graph, In, Out>:: |
313 | 310 |
kruskal(graph, in, out); |
314 | 311 |
} |
315 | 312 |
|
316 | 313 |
|
317 | 314 |
template <class Graph, class In, class Out> |
318 | 315 |
inline typename _kruskal_bits::KruskalValueSelector<In>::Value |
319 | 316 |
kruskal(const Graph& graph, const In& in, const Out& out) |
320 | 317 |
{ |
321 | 318 |
return _kruskal_bits::KruskalInputSelector<Graph, In, const Out>:: |
322 | 319 |
kruskal(graph, in, out); |
323 | 320 |
} |
324 | 321 |
|
325 | 322 |
} //namespace lemon |
326 | 323 |
|
327 | 324 |
#endif //LEMON_KRUSKAL_H |
1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 | 5 |
* Copyright (C) 2003-2010 |
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 | 19 |
#ifndef LEMON_NETWORK_SIMPLEX_H |
20 | 20 |
#define LEMON_NETWORK_SIMPLEX_H |
21 | 21 |
|
22 | 22 |
/// \ingroup min_cost_flow_algs |
23 | 23 |
/// |
24 | 24 |
/// \file |
25 | 25 |
/// \brief Network Simplex algorithm for finding a minimum cost flow. |
26 | 26 |
|
27 | 27 |
#include <vector> |
28 | 28 |
#include <limits> |
29 | 29 |
#include <algorithm> |
30 | 30 |
|
31 | 31 |
#include <lemon/core.h> |
32 | 32 |
#include <lemon/math.h> |
33 | 33 |
|
34 | 34 |
namespace lemon { |
35 | 35 |
|
36 | 36 |
/// \addtogroup min_cost_flow_algs |
37 | 37 |
/// @{ |
38 | 38 |
|
39 | 39 |
/// \brief Implementation of the primal Network Simplex algorithm |
40 | 40 |
/// for finding a \ref min_cost_flow "minimum cost flow". |
41 | 41 |
/// |
42 | 42 |
/// \ref NetworkSimplex implements the primal Network Simplex algorithm |
43 | 43 |
/// for finding a \ref min_cost_flow "minimum cost flow" |
44 | 44 |
/// \ref amo93networkflows, \ref dantzig63linearprog, |
45 | 45 |
/// \ref kellyoneill91netsimplex. |
46 | 46 |
/// This algorithm is a highly efficient specialized version of the |
47 | 47 |
/// linear programming simplex method directly for the minimum cost |
48 | 48 |
/// flow problem. |
49 | 49 |
/// |
50 | 50 |
/// In general, %NetworkSimplex is the fastest implementation available |
51 | 51 |
/// in LEMON for this problem. |
52 | 52 |
/// Moreover, it supports both directions of the supply/demand inequality |
53 | 53 |
/// constraints. For more information, see \ref SupplyType. |
54 | 54 |
/// |
55 | 55 |
/// Most of the parameters of the problem (except for the digraph) |
56 | 56 |
/// can be given using separate functions, and the algorithm can be |
57 | 57 |
/// executed using the \ref run() function. If some parameters are not |
58 | 58 |
/// specified, then default values will be used. |
59 | 59 |
/// |
60 | 60 |
/// \tparam GR The digraph type the algorithm runs on. |
61 | 61 |
/// \tparam V The number type used for flow amounts, capacity bounds |
62 | 62 |
/// and supply values in the algorithm. By default, it is \c int. |
63 | 63 |
/// \tparam C The number type used for costs and potentials in the |
64 | 64 |
/// algorithm. By default, it is the same as \c V. |
65 | 65 |
/// |
66 |
/// \warning Both |
|
66 |
/// \warning Both \c V and \c C must be signed number types. |
|
67 |
/// \warning All input data (capacities, supply values, and costs) must |
|
67 | 68 |
/// be integer. |
68 | 69 |
/// |
69 | 70 |
/// \note %NetworkSimplex provides five different pivot rule |
70 | 71 |
/// implementations, from which the most efficient one is used |
71 | 72 |
/// by default. For more information, see \ref PivotRule. |
72 | 73 |
template <typename GR, typename V = int, typename C = V> |
73 | 74 |
class NetworkSimplex |
74 | 75 |
{ |
75 | 76 |
public: |
76 | 77 |
|
77 | 78 |
/// The type of the flow amounts, capacity bounds and supply values |
78 | 79 |
typedef V Value; |
79 | 80 |
/// The type of the arc costs |
80 | 81 |
typedef C Cost; |
81 | 82 |
|
82 | 83 |
public: |
83 | 84 |
|
84 | 85 |
/// \brief Problem type constants for the \c run() function. |
85 | 86 |
/// |
86 | 87 |
/// Enum type containing the problem type constants that can be |
87 | 88 |
/// returned by the \ref run() function of the algorithm. |
88 | 89 |
enum ProblemType { |
89 | 90 |
/// The problem has no feasible solution (flow). |
90 | 91 |
INFEASIBLE, |
91 | 92 |
/// The problem has optimal solution (i.e. it is feasible and |
92 | 93 |
/// bounded), and the algorithm has found optimal flow and node |
93 | 94 |
/// potentials (primal and dual solutions). |
94 | 95 |
OPTIMAL, |
95 | 96 |
/// The objective function of the problem is unbounded, i.e. |
96 | 97 |
/// there is a directed cycle having negative total cost and |
97 | 98 |
/// infinite upper bound. |
98 | 99 |
UNBOUNDED |
99 | 100 |
}; |
100 | 101 |
|
101 | 102 |
/// \brief Constants for selecting the type of the supply constraints. |
102 | 103 |
/// |
103 | 104 |
/// Enum type containing constants for selecting the supply type, |
104 | 105 |
/// i.e. the direction of the inequalities in the supply/demand |
105 | 106 |
/// constraints of the \ref min_cost_flow "minimum cost flow problem". |
106 | 107 |
/// |
107 | 108 |
/// The default supply type is \c GEQ, the \c LEQ type can be |
108 | 109 |
/// selected using \ref supplyType(). |
109 | 110 |
/// The equality form is a special case of both supply types. |
110 | 111 |
enum SupplyType { |
111 | 112 |
/// This option means that there are <em>"greater or equal"</em> |
112 | 113 |
/// supply/demand constraints in the definition of the problem. |
113 | 114 |
GEQ, |
114 | 115 |
/// This option means that there are <em>"less or equal"</em> |
115 | 116 |
/// supply/demand constraints in the definition of the problem. |
116 | 117 |
LEQ |
117 | 118 |
}; |
118 | 119 |
|
119 | 120 |
/// \brief Constants for selecting the pivot rule. |
120 | 121 |
/// |
121 | 122 |
/// Enum type containing constants for selecting the pivot rule for |
122 | 123 |
/// the \ref run() function. |
123 | 124 |
/// |
124 | 125 |
/// \ref NetworkSimplex provides five different pivot rule |
125 | 126 |
/// implementations that significantly affect the running time |
126 | 127 |
/// of the algorithm. |
127 | 128 |
/// By default, \ref BLOCK_SEARCH "Block Search" is used, which |
128 | 129 |
/// proved to be the most efficient and the most robust on various |
129 | 130 |
/// test inputs. |
130 | 131 |
/// However, another pivot rule can be selected using the \ref run() |
131 | 132 |
/// function with the proper parameter. |
132 | 133 |
enum PivotRule { |
133 | 134 |
|
134 | 135 |
/// The \e First \e Eligible pivot rule. |
135 | 136 |
/// The next eligible arc is selected in a wraparound fashion |
136 | 137 |
/// in every iteration. |
137 | 138 |
FIRST_ELIGIBLE, |
138 | 139 |
|
139 | 140 |
/// The \e Best \e Eligible pivot rule. |
140 | 141 |
/// The best eligible arc is selected in every iteration. |
141 | 142 |
BEST_ELIGIBLE, |
142 | 143 |
|
143 | 144 |
/// The \e Block \e Search pivot rule. |
144 | 145 |
/// A specified number of arcs are examined in every iteration |
145 | 146 |
/// in a wraparound fashion and the best eligible arc is selected |
146 | 147 |
/// from this block. |
147 | 148 |
BLOCK_SEARCH, |
148 | 149 |
|
149 | 150 |
/// The \e Candidate \e List pivot rule. |
150 | 151 |
/// In a major iteration a candidate list is built from eligible arcs |
151 | 152 |
/// in a wraparound fashion and in the following minor iterations |
152 | 153 |
/// the best eligible arc is selected from this list. |
153 | 154 |
CANDIDATE_LIST, |
154 | 155 |
|
155 | 156 |
/// The \e Altering \e Candidate \e List pivot rule. |
156 | 157 |
/// It is a modified version of the Candidate List method. |
157 | 158 |
/// It keeps only the several best eligible arcs from the former |
158 | 159 |
/// candidate list and extends this list in every iteration. |
159 | 160 |
ALTERING_LIST |
160 | 161 |
}; |
161 | 162 |
|
162 | 163 |
private: |
163 | 164 |
|
164 | 165 |
TEMPLATE_DIGRAPH_TYPEDEFS(GR); |
165 | 166 |
|
166 | 167 |
typedef std::vector<int> IntVector; |
167 | 168 |
typedef std::vector<Value> ValueVector; |
168 | 169 |
typedef std::vector<Cost> CostVector; |
169 | 170 |
typedef std::vector<signed char> CharVector; |
170 | 171 |
// Note: vector<signed char> is used instead of vector<ArcState> and |
171 | 172 |
// vector<ArcDirection> for efficiency reasons |
172 | 173 |
|
173 | 174 |
// State constants for arcs |
174 | 175 |
enum ArcState { |
175 | 176 |
STATE_UPPER = -1, |
176 | 177 |
STATE_TREE = 0, |
177 | 178 |
STATE_LOWER = 1 |
178 | 179 |
}; |
179 | 180 |
|
180 | 181 |
// Direction constants for tree arcs |
181 | 182 |
enum ArcDirection { |
182 | 183 |
DIR_DOWN = -1, |
183 | 184 |
DIR_UP = 1 |
184 | 185 |
}; |
185 | 186 |
|
186 | 187 |
private: |
187 | 188 |
|
188 | 189 |
// Data related to the underlying digraph |
189 | 190 |
const GR &_graph; |
190 | 191 |
int _node_num; |
191 | 192 |
int _arc_num; |
192 | 193 |
int _all_arc_num; |
193 | 194 |
int _search_arc_num; |
194 | 195 |
|
195 | 196 |
// Parameters of the problem |
196 | 197 |
bool _have_lower; |
197 | 198 |
SupplyType _stype; |
198 | 199 |
Value _sum_supply; |
199 | 200 |
|
200 | 201 |
// Data structures for storing the digraph |
201 | 202 |
IntNodeMap _node_id; |
202 | 203 |
IntArcMap _arc_id; |
203 | 204 |
IntVector _source; |
204 | 205 |
IntVector _target; |
205 | 206 |
bool _arc_mixing; |
206 | 207 |
|
207 | 208 |
// Node and arc data |
208 | 209 |
ValueVector _lower; |
209 | 210 |
ValueVector _upper; |
210 | 211 |
ValueVector _cap; |
211 | 212 |
CostVector _cost; |
212 | 213 |
ValueVector _supply; |
213 | 214 |
ValueVector _flow; |
214 | 215 |
CostVector _pi; |
215 | 216 |
|
216 | 217 |
// Data for storing the spanning tree structure |
217 | 218 |
IntVector _parent; |
218 | 219 |
IntVector _pred; |
219 | 220 |
IntVector _thread; |
220 | 221 |
IntVector _rev_thread; |
221 | 222 |
IntVector _succ_num; |
222 | 223 |
IntVector _last_succ; |
223 | 224 |
CharVector _pred_dir; |
224 | 225 |
CharVector _state; |
225 | 226 |
IntVector _dirty_revs; |
226 | 227 |
int _root; |
227 | 228 |
|
228 | 229 |
// Temporary data used in the current pivot iteration |
229 | 230 |
int in_arc, join, u_in, v_in, u_out, v_out; |
230 | 231 |
Value delta; |
231 | 232 |
|
232 | 233 |
const Value MAX; |
233 | 234 |
|
234 | 235 |
public: |
235 | 236 |
|
236 | 237 |
/// \brief Constant for infinite upper bounds (capacities). |
237 | 238 |
/// |
238 | 239 |
/// Constant for infinite upper bounds (capacities). |
239 | 240 |
/// It is \c std::numeric_limits<Value>::infinity() if available, |
240 | 241 |
/// \c std::numeric_limits<Value>::max() otherwise. |
241 | 242 |
const Value INF; |
242 | 243 |
|
243 | 244 |
private: |
244 | 245 |
|
245 | 246 |
// Implementation of the First Eligible pivot rule |
246 | 247 |
class FirstEligiblePivotRule |
247 | 248 |
{ |
248 | 249 |
private: |
249 | 250 |
|
250 | 251 |
// References to the NetworkSimplex class |
251 | 252 |
const IntVector &_source; |
252 | 253 |
const IntVector &_target; |
253 | 254 |
const CostVector &_cost; |
254 | 255 |
const CharVector &_state; |
255 | 256 |
const CostVector &_pi; |
256 | 257 |
int &_in_arc; |
257 | 258 |
int _search_arc_num; |
258 | 259 |
|
259 | 260 |
// Pivot rule data |
260 | 261 |
int _next_arc; |
261 | 262 |
|
262 | 263 |
public: |
263 | 264 |
|
264 | 265 |
// Constructor |
265 | 266 |
FirstEligiblePivotRule(NetworkSimplex &ns) : |
266 | 267 |
_source(ns._source), _target(ns._target), |
267 | 268 |
_cost(ns._cost), _state(ns._state), _pi(ns._pi), |
268 | 269 |
_in_arc(ns.in_arc), _search_arc_num(ns._search_arc_num), |
269 | 270 |
_next_arc(0) |
270 | 271 |
{} |
271 | 272 |
|
272 | 273 |
// Find next entering arc |
273 | 274 |
bool findEnteringArc() { |
274 | 275 |
Cost c; |
275 | 276 |
for (int e = _next_arc; e != _search_arc_num; ++e) { |
276 | 277 |
c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]); |
277 | 278 |
if (c < 0) { |
278 | 279 |
_in_arc = e; |
279 | 280 |
_next_arc = e + 1; |
280 | 281 |
return true; |
281 | 282 |
} |
282 | 283 |
} |
283 | 284 |
for (int e = 0; e != _next_arc; ++e) { |
284 | 285 |
c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]); |
285 | 286 |
if (c < 0) { |
286 | 287 |
_in_arc = e; |
287 | 288 |
_next_arc = e + 1; |
288 | 289 |
return true; |
289 | 290 |
} |
290 | 291 |
} |
291 | 292 |
return false; |
292 | 293 |
} |
293 | 294 |
|
294 | 295 |
}; //class FirstEligiblePivotRule |
295 | 296 |
|
296 | 297 |
|
297 | 298 |
// Implementation of the Best Eligible pivot rule |
298 | 299 |
class BestEligiblePivotRule |
299 | 300 |
{ |
300 | 301 |
private: |
301 | 302 |
|
302 | 303 |
// References to the NetworkSimplex class |
303 | 304 |
const IntVector &_source; |
304 | 305 |
const IntVector &_target; |
305 | 306 |
const CostVector &_cost; |
306 | 307 |
const CharVector &_state; |
307 | 308 |
const CostVector &_pi; |
308 | 309 |
int &_in_arc; |
309 | 310 |
int _search_arc_num; |
310 | 311 |
|
311 | 312 |
public: |
312 | 313 |
|
313 | 314 |
// Constructor |
314 | 315 |
BestEligiblePivotRule(NetworkSimplex &ns) : |
315 | 316 |
_source(ns._source), _target(ns._target), |
316 | 317 |
_cost(ns._cost), _state(ns._state), _pi(ns._pi), |
317 | 318 |
_in_arc(ns.in_arc), _search_arc_num(ns._search_arc_num) |
318 | 319 |
{} |
319 | 320 |
|
320 | 321 |
// Find next entering arc |
321 | 322 |
bool findEnteringArc() { |
322 | 323 |
Cost c, min = 0; |
323 | 324 |
for (int e = 0; e != _search_arc_num; ++e) { |
324 | 325 |
c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]); |
325 | 326 |
if (c < min) { |
326 | 327 |
min = c; |
327 | 328 |
_in_arc = e; |
328 | 329 |
} |
329 | 330 |
} |
330 | 331 |
return min < 0; |
331 | 332 |
} |
332 | 333 |
|
333 | 334 |
}; //class BestEligiblePivotRule |
334 | 335 |
|
335 | 336 |
|
336 | 337 |
// Implementation of the Block Search pivot rule |
337 | 338 |
class BlockSearchPivotRule |
338 | 339 |
{ |
339 | 340 |
private: |
340 | 341 |
|
341 | 342 |
// References to the NetworkSimplex class |
342 | 343 |
const IntVector &_source; |
343 | 344 |
const IntVector &_target; |
344 | 345 |
const CostVector &_cost; |
345 | 346 |
const CharVector &_state; |
346 | 347 |
const CostVector &_pi; |
347 | 348 |
int &_in_arc; |
348 | 349 |
int _search_arc_num; |
349 | 350 |
|
350 | 351 |
// Pivot rule data |
351 | 352 |
int _block_size; |
352 | 353 |
int _next_arc; |
353 | 354 |
|
354 | 355 |
public: |
355 | 356 |
|
356 | 357 |
// Constructor |
357 | 358 |
BlockSearchPivotRule(NetworkSimplex &ns) : |
358 | 359 |
_source(ns._source), _target(ns._target), |
359 | 360 |
_cost(ns._cost), _state(ns._state), _pi(ns._pi), |
360 | 361 |
_in_arc(ns.in_arc), _search_arc_num(ns._search_arc_num), |
361 | 362 |
_next_arc(0) |
362 | 363 |
{ |
363 | 364 |
// The main parameters of the pivot rule |
364 | 365 |
const double BLOCK_SIZE_FACTOR = 1.0; |
365 | 366 |
const int MIN_BLOCK_SIZE = 10; |
366 | 367 |
|
367 | 368 |
_block_size = std::max( int(BLOCK_SIZE_FACTOR * |
368 | 369 |
std::sqrt(double(_search_arc_num))), |
369 | 370 |
MIN_BLOCK_SIZE ); |
370 | 371 |
} |
371 | 372 |
|
372 | 373 |
// Find next entering arc |
373 | 374 |
bool findEnteringArc() { |
374 | 375 |
Cost c, min = 0; |
375 | 376 |
int cnt = _block_size; |
376 | 377 |
int e; |
377 | 378 |
for (e = _next_arc; e != _search_arc_num; ++e) { |
378 | 379 |
c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]); |
379 | 380 |
if (c < min) { |
380 | 381 |
min = c; |
381 | 382 |
_in_arc = e; |
382 | 383 |
} |
383 | 384 |
if (--cnt == 0) { |
384 | 385 |
if (min < 0) goto search_end; |
385 | 386 |
cnt = _block_size; |
386 | 387 |
} |
387 | 388 |
} |
388 | 389 |
for (e = 0; e != _next_arc; ++e) { |
389 | 390 |
c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]); |
390 | 391 |
if (c < min) { |
391 | 392 |
min = c; |
392 | 393 |
_in_arc = e; |
393 | 394 |
} |
394 | 395 |
if (--cnt == 0) { |
395 | 396 |
if (min < 0) goto search_end; |
396 | 397 |
cnt = _block_size; |
397 | 398 |
} |
398 | 399 |
} |
399 | 400 |
if (min >= 0) return false; |
400 | 401 |
|
401 | 402 |
search_end: |
402 | 403 |
_next_arc = e; |
403 | 404 |
return true; |
404 | 405 |
} |
405 | 406 |
|
406 | 407 |
}; //class BlockSearchPivotRule |
407 | 408 |
|
408 | 409 |
|
409 | 410 |
// Implementation of the Candidate List pivot rule |
410 | 411 |
class CandidateListPivotRule |
411 | 412 |
{ |
412 | 413 |
private: |
413 | 414 |
|
414 | 415 |
// References to the NetworkSimplex class |
415 | 416 |
const IntVector &_source; |
416 | 417 |
const IntVector &_target; |
417 | 418 |
const CostVector &_cost; |
418 | 419 |
const CharVector &_state; |
419 | 420 |
const CostVector &_pi; |
420 | 421 |
int &_in_arc; |
421 | 422 |
int _search_arc_num; |
422 | 423 |
|
423 | 424 |
// Pivot rule data |
424 | 425 |
IntVector _candidates; |
425 | 426 |
int _list_length, _minor_limit; |
426 | 427 |
int _curr_length, _minor_count; |
427 | 428 |
int _next_arc; |
428 | 429 |
|
429 | 430 |
public: |
430 | 431 |
|
431 | 432 |
/// Constructor |
432 | 433 |
CandidateListPivotRule(NetworkSimplex &ns) : |
433 | 434 |
_source(ns._source), _target(ns._target), |
434 | 435 |
_cost(ns._cost), _state(ns._state), _pi(ns._pi), |
435 | 436 |
_in_arc(ns.in_arc), _search_arc_num(ns._search_arc_num), |
436 | 437 |
_next_arc(0) |
437 | 438 |
{ |
438 | 439 |
// The main parameters of the pivot rule |
439 | 440 |
const double LIST_LENGTH_FACTOR = 0.25; |
440 | 441 |
const int MIN_LIST_LENGTH = 10; |
441 | 442 |
const double MINOR_LIMIT_FACTOR = 0.1; |
442 | 443 |
const int MIN_MINOR_LIMIT = 3; |
443 | 444 |
|
444 | 445 |
_list_length = std::max( int(LIST_LENGTH_FACTOR * |
445 | 446 |
std::sqrt(double(_search_arc_num))), |
446 | 447 |
MIN_LIST_LENGTH ); |
447 | 448 |
_minor_limit = std::max( int(MINOR_LIMIT_FACTOR * _list_length), |
448 | 449 |
MIN_MINOR_LIMIT ); |
449 | 450 |
_curr_length = _minor_count = 0; |
450 | 451 |
_candidates.resize(_list_length); |
451 | 452 |
} |
452 | 453 |
|
453 | 454 |
/// Find next entering arc |
454 | 455 |
bool findEnteringArc() { |
455 | 456 |
Cost min, c; |
456 | 457 |
int e; |
457 | 458 |
if (_curr_length > 0 && _minor_count < _minor_limit) { |
458 | 459 |
// Minor iteration: select the best eligible arc from the |
459 | 460 |
// current candidate list |
460 | 461 |
++_minor_count; |
461 | 462 |
min = 0; |
462 | 463 |
for (int i = 0; i < _curr_length; ++i) { |
463 | 464 |
e = _candidates[i]; |
464 | 465 |
c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]); |
465 | 466 |
if (c < min) { |
466 | 467 |
min = c; |
467 | 468 |
_in_arc = e; |
468 | 469 |
} |
469 | 470 |
else if (c >= 0) { |
470 | 471 |
_candidates[i--] = _candidates[--_curr_length]; |
471 | 472 |
} |
472 | 473 |
} |
473 | 474 |
if (min < 0) return true; |
474 | 475 |
} |
475 | 476 |
|
476 | 477 |
// Major iteration: build a new candidate list |
477 | 478 |
min = 0; |
478 | 479 |
_curr_length = 0; |
479 | 480 |
for (e = _next_arc; e != _search_arc_num; ++e) { |
480 | 481 |
c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]); |
481 | 482 |
if (c < 0) { |
482 | 483 |
_candidates[_curr_length++] = e; |
483 | 484 |
if (c < min) { |
484 | 485 |
min = c; |
485 | 486 |
_in_arc = e; |
486 | 487 |
} |
487 | 488 |
if (_curr_length == _list_length) goto search_end; |
488 | 489 |
} |
489 | 490 |
} |
490 | 491 |
for (e = 0; e != _next_arc; ++e) { |
491 | 492 |
c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]); |
492 | 493 |
if (c < 0) { |
493 | 494 |
_candidates[_curr_length++] = e; |
494 | 495 |
if (c < min) { |
495 | 496 |
min = c; |
496 | 497 |
_in_arc = e; |
497 | 498 |
} |
498 | 499 |
if (_curr_length == _list_length) goto search_end; |
499 | 500 |
} |
500 | 501 |
} |
501 | 502 |
if (_curr_length == 0) return false; |
502 | 503 |
|
503 | 504 |
search_end: |
504 | 505 |
_minor_count = 1; |
505 | 506 |
_next_arc = e; |
506 | 507 |
return true; |
507 | 508 |
} |
508 | 509 |
|
509 | 510 |
}; //class CandidateListPivotRule |
510 | 511 |
|
511 | 512 |
|
512 | 513 |
// Implementation of the Altering Candidate List pivot rule |
513 | 514 |
class AlteringListPivotRule |
514 | 515 |
{ |
515 | 516 |
private: |
516 | 517 |
|
517 | 518 |
// References to the NetworkSimplex class |
518 | 519 |
const IntVector &_source; |
519 | 520 |
const IntVector &_target; |
520 | 521 |
const CostVector &_cost; |
521 | 522 |
const CharVector &_state; |
522 | 523 |
const CostVector &_pi; |
523 | 524 |
int &_in_arc; |
524 | 525 |
int _search_arc_num; |
525 | 526 |
|
526 | 527 |
// Pivot rule data |
527 | 528 |
int _block_size, _head_length, _curr_length; |
528 | 529 |
int _next_arc; |
529 | 530 |
IntVector _candidates; |
530 | 531 |
CostVector _cand_cost; |
531 | 532 |
|
532 | 533 |
// Functor class to compare arcs during sort of the candidate list |
533 | 534 |
class SortFunc |
534 | 535 |
{ |
535 | 536 |
private: |
536 | 537 |
const CostVector &_map; |
537 | 538 |
public: |
538 | 539 |
SortFunc(const CostVector &map) : _map(map) {} |
539 | 540 |
bool operator()(int left, int right) { |
540 | 541 |
return _map[left] > _map[right]; |
541 | 542 |
} |
542 | 543 |
}; |
543 | 544 |
|
544 | 545 |
SortFunc _sort_func; |
545 | 546 |
|
546 | 547 |
public: |
547 | 548 |
|
548 | 549 |
// Constructor |
549 | 550 |
AlteringListPivotRule(NetworkSimplex &ns) : |
550 | 551 |
_source(ns._source), _target(ns._target), |
551 | 552 |
_cost(ns._cost), _state(ns._state), _pi(ns._pi), |
552 | 553 |
_in_arc(ns.in_arc), _search_arc_num(ns._search_arc_num), |
553 | 554 |
_next_arc(0), _cand_cost(ns._search_arc_num), _sort_func(_cand_cost) |
554 | 555 |
{ |
555 | 556 |
// The main parameters of the pivot rule |
556 | 557 |
const double BLOCK_SIZE_FACTOR = 1.0; |
557 | 558 |
const int MIN_BLOCK_SIZE = 10; |
558 | 559 |
const double HEAD_LENGTH_FACTOR = 0.1; |
559 | 560 |
const int MIN_HEAD_LENGTH = 3; |
560 | 561 |
|
561 | 562 |
_block_size = std::max( int(BLOCK_SIZE_FACTOR * |
562 | 563 |
std::sqrt(double(_search_arc_num))), |
563 | 564 |
MIN_BLOCK_SIZE ); |
564 | 565 |
_head_length = std::max( int(HEAD_LENGTH_FACTOR * _block_size), |
565 | 566 |
MIN_HEAD_LENGTH ); |
566 | 567 |
_candidates.resize(_head_length + _block_size); |
567 | 568 |
_curr_length = 0; |
568 | 569 |
} |
569 | 570 |
|
570 | 571 |
// Find next entering arc |
571 | 572 |
bool findEnteringArc() { |
572 | 573 |
// Check the current candidate list |
573 | 574 |
int e; |
574 | 575 |
Cost c; |
575 | 576 |
for (int i = 0; i != _curr_length; ++i) { |
576 | 577 |
e = _candidates[i]; |
577 | 578 |
c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]); |
578 | 579 |
if (c < 0) { |
579 | 580 |
_cand_cost[e] = c; |
580 | 581 |
} else { |
581 | 582 |
_candidates[i--] = _candidates[--_curr_length]; |
582 | 583 |
} |
583 | 584 |
} |
584 | 585 |
|
585 | 586 |
// Extend the list |
586 | 587 |
int cnt = _block_size; |
587 | 588 |
int limit = _head_length; |
588 | 589 |
|
589 | 590 |
for (e = _next_arc; e != _search_arc_num; ++e) { |
590 | 591 |
c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]); |
591 | 592 |
if (c < 0) { |
592 | 593 |
_cand_cost[e] = c; |
593 | 594 |
_candidates[_curr_length++] = e; |
594 | 595 |
} |
595 | 596 |
if (--cnt == 0) { |
596 | 597 |
if (_curr_length > limit) goto search_end; |
597 | 598 |
limit = 0; |
598 | 599 |
cnt = _block_size; |
599 | 600 |
} |
600 | 601 |
} |
601 | 602 |
for (e = 0; e != _next_arc; ++e) { |
602 | 603 |
_cand_cost[e] = _state[e] * |
603 | 604 |
(_cost[e] + _pi[_source[e]] - _pi[_target[e]]); |
604 | 605 |
if (_cand_cost[e] < 0) { |
605 | 606 |
_candidates[_curr_length++] = e; |
606 | 607 |
} |
607 | 608 |
if (--cnt == 0) { |
608 | 609 |
if (_curr_length > limit) goto search_end; |
609 | 610 |
limit = 0; |
610 | 611 |
cnt = _block_size; |
611 | 612 |
} |
612 | 613 |
} |
613 | 614 |
if (_curr_length == 0) return false; |
614 | 615 |
|
615 | 616 |
search_end: |
616 | 617 |
|
617 | 618 |
// Make heap of the candidate list (approximating a partial sort) |
618 | 619 |
make_heap( _candidates.begin(), _candidates.begin() + _curr_length, |
619 | 620 |
_sort_func ); |
620 | 621 |
|
621 | 622 |
// Pop the first element of the heap |
622 | 623 |
_in_arc = _candidates[0]; |
623 | 624 |
_next_arc = e; |
624 | 625 |
pop_heap( _candidates.begin(), _candidates.begin() + _curr_length, |
625 | 626 |
_sort_func ); |
626 | 627 |
_curr_length = std::min(_head_length, _curr_length - 1); |
627 | 628 |
return true; |
628 | 629 |
} |
629 | 630 |
|
630 | 631 |
}; //class AlteringListPivotRule |
631 | 632 |
|
632 | 633 |
public: |
633 | 634 |
|
634 | 635 |
/// \brief Constructor. |
635 | 636 |
/// |
636 | 637 |
/// The constructor of the class. |
637 | 638 |
/// |
638 | 639 |
/// \param graph The digraph the algorithm runs on. |
639 | 640 |
/// \param arc_mixing Indicate if the arcs will be stored in a |
640 | 641 |
/// mixed order in the internal data structure. |
641 | 642 |
/// In general, it leads to similar performance as using the original |
642 | 643 |
/// arc order, but it makes the algorithm more robust and in special |
643 | 644 |
/// cases, even significantly faster. Therefore, it is enabled by default. |
644 | 645 |
NetworkSimplex(const GR& graph, bool arc_mixing = true) : |
645 | 646 |
_graph(graph), _node_id(graph), _arc_id(graph), |
646 | 647 |
_arc_mixing(arc_mixing), |
647 | 648 |
MAX(std::numeric_limits<Value>::max()), |
648 | 649 |
INF(std::numeric_limits<Value>::has_infinity ? |
649 | 650 |
std::numeric_limits<Value>::infinity() : MAX) |
650 | 651 |
{ |
651 | 652 |
// Check the number types |
652 | 653 |
LEMON_ASSERT(std::numeric_limits<Value>::is_signed, |
653 | 654 |
"The flow type of NetworkSimplex must be signed"); |
654 | 655 |
LEMON_ASSERT(std::numeric_limits<Cost>::is_signed, |
655 | 656 |
"The cost type of NetworkSimplex must be signed"); |
656 | 657 |
|
657 | 658 |
// Reset data structures |
658 | 659 |
reset(); |
659 | 660 |
} |
660 | 661 |
|
661 | 662 |
/// \name Parameters |
662 | 663 |
/// The parameters of the algorithm can be specified using these |
663 | 664 |
/// functions. |
664 | 665 |
|
665 | 666 |
/// @{ |
666 | 667 |
|
667 | 668 |
/// \brief Set the lower bounds on the arcs. |
668 | 669 |
/// |
669 | 670 |
/// This function sets the lower bounds on the arcs. |
670 | 671 |
/// If it is not used before calling \ref run(), the lower bounds |
671 | 672 |
/// will be set to zero on all arcs. |
672 | 673 |
/// |
673 | 674 |
/// \param map An arc map storing the lower bounds. |
674 | 675 |
/// Its \c Value type must be convertible to the \c Value type |
675 | 676 |
/// of the algorithm. |
676 | 677 |
/// |
677 | 678 |
/// \return <tt>(*this)</tt> |
678 | 679 |
template <typename LowerMap> |
679 | 680 |
NetworkSimplex& lowerMap(const LowerMap& map) { |
680 | 681 |
_have_lower = true; |
681 | 682 |
for (ArcIt a(_graph); a != INVALID; ++a) { |
682 | 683 |
_lower[_arc_id[a]] = map[a]; |
683 | 684 |
} |
684 | 685 |
return *this; |
685 | 686 |
} |
686 | 687 |
|
687 | 688 |
/// \brief Set the upper bounds (capacities) on the arcs. |
688 | 689 |
/// |
689 | 690 |
/// This function sets the upper bounds (capacities) on the arcs. |
690 | 691 |
/// If it is not used before calling \ref run(), the upper bounds |
691 | 692 |
/// will be set to \ref INF on all arcs (i.e. the flow value will be |
692 | 693 |
/// unbounded from above). |
693 | 694 |
/// |
694 | 695 |
/// \param map An arc map storing the upper bounds. |
695 | 696 |
/// Its \c Value type must be convertible to the \c Value type |
696 | 697 |
/// of the algorithm. |
697 | 698 |
/// |
698 | 699 |
/// \return <tt>(*this)</tt> |
699 | 700 |
template<typename UpperMap> |
700 | 701 |
NetworkSimplex& upperMap(const UpperMap& map) { |
701 | 702 |
for (ArcIt a(_graph); a != INVALID; ++a) { |
702 | 703 |
_upper[_arc_id[a]] = map[a]; |
703 | 704 |
} |
704 | 705 |
return *this; |
705 | 706 |
} |
706 | 707 |
|
707 | 708 |
/// \brief Set the costs of the arcs. |
708 | 709 |
/// |
709 | 710 |
/// This function sets the costs of the arcs. |
710 | 711 |
/// If it is not used before calling \ref run(), the costs |
711 | 712 |
/// will be set to \c 1 on all arcs. |
712 | 713 |
/// |
713 | 714 |
/// \param map An arc map storing the costs. |
714 | 715 |
/// Its \c Value type must be convertible to the \c Cost type |
715 | 716 |
/// of the algorithm. |
716 | 717 |
/// |
717 | 718 |
/// \return <tt>(*this)</tt> |
718 | 719 |
template<typename CostMap> |
719 | 720 |
NetworkSimplex& costMap(const CostMap& map) { |
720 | 721 |
for (ArcIt a(_graph); a != INVALID; ++a) { |
721 | 722 |
_cost[_arc_id[a]] = map[a]; |
722 | 723 |
} |
723 | 724 |
return *this; |
724 | 725 |
} |
725 | 726 |
|
726 | 727 |
/// \brief Set the supply values of the nodes. |
727 | 728 |
/// |
728 | 729 |
/// This function sets the supply values of the nodes. |
729 | 730 |
/// If neither this function nor \ref stSupply() is used before |
730 | 731 |
/// calling \ref run(), the supply of each node will be set to zero. |
731 | 732 |
/// |
732 | 733 |
/// \param map A node map storing the supply values. |
733 | 734 |
/// Its \c Value type must be convertible to the \c Value type |
734 | 735 |
/// of the algorithm. |
735 | 736 |
/// |
736 | 737 |
/// \return <tt>(*this)</tt> |
737 | 738 |
template<typename SupplyMap> |
738 | 739 |
NetworkSimplex& supplyMap(const SupplyMap& map) { |
739 | 740 |
for (NodeIt n(_graph); n != INVALID; ++n) { |
740 | 741 |
_supply[_node_id[n]] = map[n]; |
741 | 742 |
} |
742 | 743 |
return *this; |
743 | 744 |
} |
744 | 745 |
|
745 | 746 |
/// \brief Set single source and target nodes and a supply value. |
746 | 747 |
/// |
747 | 748 |
/// This function sets a single source node and a single target node |
748 | 749 |
/// and the required flow value. |
749 | 750 |
/// If neither this function nor \ref supplyMap() is used before |
750 | 751 |
/// calling \ref run(), the supply of each node will be set to zero. |
751 | 752 |
/// |
752 | 753 |
/// Using this function has the same effect as using \ref supplyMap() |
753 | 754 |
/// with such a map in which \c k is assigned to \c s, \c -k is |
754 | 755 |
/// assigned to \c t and all other nodes have zero supply value. |
755 | 756 |
/// |
756 | 757 |
/// \param s The source node. |
757 | 758 |
/// \param t The target node. |
758 | 759 |
/// \param k The required amount of flow from node \c s to node \c t |
759 | 760 |
/// (i.e. the supply of \c s and the demand of \c t). |
760 | 761 |
/// |
761 | 762 |
/// \return <tt>(*this)</tt> |
762 | 763 |
NetworkSimplex& stSupply(const Node& s, const Node& t, Value k) { |
763 | 764 |
for (int i = 0; i != _node_num; ++i) { |
764 | 765 |
_supply[i] = 0; |
765 | 766 |
} |
766 | 767 |
_supply[_node_id[s]] = k; |
767 | 768 |
_supply[_node_id[t]] = -k; |
768 | 769 |
return *this; |
769 | 770 |
} |
770 | 771 |
|
771 | 772 |
/// \brief Set the type of the supply constraints. |
772 | 773 |
/// |
773 | 774 |
/// This function sets the type of the supply/demand constraints. |
774 | 775 |
/// If it is not used before calling \ref run(), the \ref GEQ supply |
775 | 776 |
/// type will be used. |
776 | 777 |
/// |
777 | 778 |
/// For more information, see \ref SupplyType. |
778 | 779 |
/// |
779 | 780 |
/// \return <tt>(*this)</tt> |
780 | 781 |
NetworkSimplex& supplyType(SupplyType supply_type) { |
781 | 782 |
_stype = supply_type; |
782 | 783 |
return *this; |
783 | 784 |
} |
784 | 785 |
|
785 | 786 |
/// @} |
786 | 787 |
|
787 | 788 |
/// \name Execution Control |
788 | 789 |
/// The algorithm can be executed using \ref run(). |
789 | 790 |
|
790 | 791 |
/// @{ |
791 | 792 |
|
792 | 793 |
/// \brief Run the algorithm. |
793 | 794 |
/// |
794 | 795 |
/// This function runs the algorithm. |
795 | 796 |
/// The paramters can be specified using functions \ref lowerMap(), |
796 | 797 |
/// \ref upperMap(), \ref costMap(), \ref supplyMap(), \ref stSupply(), |
797 | 798 |
/// \ref supplyType(). |
798 | 799 |
/// For example, |
799 | 800 |
/// \code |
800 | 801 |
/// NetworkSimplex<ListDigraph> ns(graph); |
801 | 802 |
/// ns.lowerMap(lower).upperMap(upper).costMap(cost) |
802 | 803 |
/// .supplyMap(sup).run(); |
803 | 804 |
/// \endcode |
804 | 805 |
/// |
805 | 806 |
/// This function can be called more than once. All the given parameters |
806 | 807 |
/// are kept for the next call, unless \ref resetParams() or \ref reset() |
807 | 808 |
/// is used, thus only the modified parameters have to be set again. |
808 | 809 |
/// If the underlying digraph was also modified after the construction |
809 | 810 |
/// of the class (or the last \ref reset() call), then the \ref reset() |
810 | 811 |
/// function must be called. |
811 | 812 |
/// |
812 | 813 |
/// \param pivot_rule The pivot rule that will be used during the |
813 | 814 |
/// algorithm. For more information, see \ref PivotRule. |
814 | 815 |
/// |
815 | 816 |
/// \return \c INFEASIBLE if no feasible flow exists, |
816 | 817 |
/// \n \c OPTIMAL if the problem has optimal solution |
817 | 818 |
/// (i.e. it is feasible and bounded), and the algorithm has found |
818 | 819 |
/// optimal flow and node potentials (primal and dual solutions), |
819 | 820 |
/// \n \c UNBOUNDED if the objective function of the problem is |
820 | 821 |
/// unbounded, i.e. there is a directed cycle having negative total |
821 | 822 |
/// cost and infinite upper bound. |
822 | 823 |
/// |
823 | 824 |
/// \see ProblemType, PivotRule |
824 | 825 |
/// \see resetParams(), reset() |
825 | 826 |
ProblemType run(PivotRule pivot_rule = BLOCK_SEARCH) { |
826 | 827 |
if (!init()) return INFEASIBLE; |
827 | 828 |
return start(pivot_rule); |
828 | 829 |
} |
829 | 830 |
|
830 | 831 |
/// \brief Reset all the parameters that have been given before. |
831 | 832 |
/// |
832 | 833 |
/// This function resets all the paramaters that have been given |
833 | 834 |
/// before using functions \ref lowerMap(), \ref upperMap(), |
834 | 835 |
/// \ref costMap(), \ref supplyMap(), \ref stSupply(), \ref supplyType(). |
835 | 836 |
/// |
836 | 837 |
/// It is useful for multiple \ref run() calls. Basically, all the given |
837 | 838 |
/// parameters are kept for the next \ref run() call, unless |
838 | 839 |
/// \ref resetParams() or \ref reset() is used. |
839 | 840 |
/// If the underlying digraph was also modified after the construction |
840 | 841 |
/// of the class or the last \ref reset() call, then the \ref reset() |
841 | 842 |
/// function must be used, otherwise \ref resetParams() is sufficient. |
842 | 843 |
/// |
843 | 844 |
/// For example, |
844 | 845 |
/// \code |
845 | 846 |
/// NetworkSimplex<ListDigraph> ns(graph); |
846 | 847 |
/// |
847 | 848 |
/// // First run |
848 | 849 |
/// ns.lowerMap(lower).upperMap(upper).costMap(cost) |
849 | 850 |
/// .supplyMap(sup).run(); |
850 | 851 |
/// |
851 | 852 |
/// // Run again with modified cost map (resetParams() is not called, |
852 | 853 |
/// // so only the cost map have to be set again) |
853 | 854 |
/// cost[e] += 100; |
854 | 855 |
/// ns.costMap(cost).run(); |
855 | 856 |
/// |
856 | 857 |
/// // Run again from scratch using resetParams() |
857 | 858 |
/// // (the lower bounds will be set to zero on all arcs) |
858 | 859 |
/// ns.resetParams(); |
859 | 860 |
/// ns.upperMap(capacity).costMap(cost) |
860 | 861 |
/// .supplyMap(sup).run(); |
861 | 862 |
/// \endcode |
862 | 863 |
/// |
863 | 864 |
/// \return <tt>(*this)</tt> |
864 | 865 |
/// |
865 | 866 |
/// \see reset(), run() |
866 | 867 |
NetworkSimplex& resetParams() { |
867 | 868 |
for (int i = 0; i != _node_num; ++i) { |
868 | 869 |
_supply[i] = 0; |
869 | 870 |
} |
870 | 871 |
for (int i = 0; i != _arc_num; ++i) { |
871 | 872 |
_lower[i] = 0; |
872 | 873 |
_upper[i] = INF; |
873 | 874 |
_cost[i] = 1; |
874 | 875 |
} |
875 | 876 |
_have_lower = false; |
876 | 877 |
_stype = GEQ; |
877 | 878 |
return *this; |
878 | 879 |
} |
879 | 880 |
|
880 | 881 |
/// \brief Reset the internal data structures and all the parameters |
881 | 882 |
/// that have been given before. |
882 | 883 |
/// |
883 | 884 |
/// This function resets the internal data structures and all the |
884 | 885 |
/// paramaters that have been given before using functions \ref lowerMap(), |
885 | 886 |
/// \ref upperMap(), \ref costMap(), \ref supplyMap(), \ref stSupply(), |
886 | 887 |
/// \ref supplyType(). |
887 | 888 |
/// |
888 | 889 |
/// It is useful for multiple \ref run() calls. Basically, all the given |
889 | 890 |
/// parameters are kept for the next \ref run() call, unless |
890 | 891 |
/// \ref resetParams() or \ref reset() is used. |
891 | 892 |
/// If the underlying digraph was also modified after the construction |
892 | 893 |
/// of the class or the last \ref reset() call, then the \ref reset() |
893 | 894 |
/// function must be used, otherwise \ref resetParams() is sufficient. |
894 | 895 |
/// |
895 | 896 |
/// See \ref resetParams() for examples. |
896 | 897 |
/// |
897 | 898 |
/// \return <tt>(*this)</tt> |
898 | 899 |
/// |
899 | 900 |
/// \see resetParams(), run() |
900 | 901 |
NetworkSimplex& reset() { |
901 | 902 |
// Resize vectors |
902 | 903 |
_node_num = countNodes(_graph); |
903 | 904 |
_arc_num = countArcs(_graph); |
904 | 905 |
int all_node_num = _node_num + 1; |
905 | 906 |
int max_arc_num = _arc_num + 2 * _node_num; |
906 | 907 |
|
907 | 908 |
_source.resize(max_arc_num); |
908 | 909 |
_target.resize(max_arc_num); |
909 | 910 |
|
910 | 911 |
_lower.resize(_arc_num); |
911 | 912 |
_upper.resize(_arc_num); |
912 | 913 |
_cap.resize(max_arc_num); |
913 | 914 |
_cost.resize(max_arc_num); |
914 | 915 |
_supply.resize(all_node_num); |
915 | 916 |
_flow.resize(max_arc_num); |
916 | 917 |
_pi.resize(all_node_num); |
917 | 918 |
|
918 | 919 |
_parent.resize(all_node_num); |
919 | 920 |
_pred.resize(all_node_num); |
920 | 921 |
_pred_dir.resize(all_node_num); |
921 | 922 |
_thread.resize(all_node_num); |
922 | 923 |
_rev_thread.resize(all_node_num); |
923 | 924 |
_succ_num.resize(all_node_num); |
924 | 925 |
_last_succ.resize(all_node_num); |
925 | 926 |
_state.resize(max_arc_num); |
926 | 927 |
|
927 | 928 |
// Copy the graph |
928 | 929 |
int i = 0; |
929 | 930 |
for (NodeIt n(_graph); n != INVALID; ++n, ++i) { |
930 | 931 |
_node_id[n] = i; |
931 | 932 |
} |
932 | 933 |
if (_arc_mixing) { |
933 | 934 |
// Store the arcs in a mixed order |
934 | 935 |
const int skip = std::max(_arc_num / _node_num, 3); |
935 | 936 |
int i = 0, j = 0; |
936 | 937 |
for (ArcIt a(_graph); a != INVALID; ++a) { |
937 | 938 |
_arc_id[a] = i; |
938 | 939 |
_source[i] = _node_id[_graph.source(a)]; |
939 | 940 |
_target[i] = _node_id[_graph.target(a)]; |
940 | 941 |
if ((i += skip) >= _arc_num) i = ++j; |
941 | 942 |
} |
942 | 943 |
} else { |
943 | 944 |
// Store the arcs in the original order |
944 | 945 |
int i = 0; |
945 | 946 |
for (ArcIt a(_graph); a != INVALID; ++a, ++i) { |
946 | 947 |
_arc_id[a] = i; |
947 | 948 |
_source[i] = _node_id[_graph.source(a)]; |
948 | 949 |
_target[i] = _node_id[_graph.target(a)]; |
949 | 950 |
} |
950 | 951 |
} |
951 | 952 |
|
952 | 953 |
// Reset parameters |
953 | 954 |
resetParams(); |
954 | 955 |
return *this; |
955 | 956 |
} |
956 | 957 |
|
957 | 958 |
/// @} |
958 | 959 |
|
959 | 960 |
/// \name Query Functions |
960 | 961 |
/// The results of the algorithm can be obtained using these |
961 | 962 |
/// functions.\n |
962 | 963 |
/// The \ref run() function must be called before using them. |
963 | 964 |
|
964 | 965 |
/// @{ |
965 | 966 |
|
966 | 967 |
/// \brief Return the total cost of the found flow. |
967 | 968 |
/// |
968 | 969 |
/// This function returns the total cost of the found flow. |
969 | 970 |
/// Its complexity is O(e). |
970 | 971 |
/// |
971 | 972 |
/// \note The return type of the function can be specified as a |
972 | 973 |
/// template parameter. For example, |
973 | 974 |
/// \code |
974 | 975 |
/// ns.totalCost<double>(); |
975 | 976 |
/// \endcode |
976 | 977 |
/// It is useful if the total cost cannot be stored in the \c Cost |
977 | 978 |
/// type of the algorithm, which is the default return type of the |
978 | 979 |
/// function. |
979 | 980 |
/// |
980 | 981 |
/// \pre \ref run() must be called before using this function. |
981 | 982 |
template <typename Number> |
982 | 983 |
Number totalCost() const { |
983 | 984 |
Number c = 0; |
984 | 985 |
for (ArcIt a(_graph); a != INVALID; ++a) { |
985 | 986 |
int i = _arc_id[a]; |
986 | 987 |
c += Number(_flow[i]) * Number(_cost[i]); |
987 | 988 |
} |
988 | 989 |
return c; |
989 | 990 |
} |
990 | 991 |
|
991 | 992 |
#ifndef DOXYGEN |
992 | 993 |
Cost totalCost() const { |
993 | 994 |
return totalCost<Cost>(); |
994 | 995 |
} |
995 | 996 |
#endif |
996 | 997 |
|
997 | 998 |
/// \brief Return the flow on the given arc. |
998 | 999 |
/// |
999 | 1000 |
/// This function returns the flow on the given arc. |
1000 | 1001 |
/// |
1001 | 1002 |
/// \pre \ref run() must be called before using this function. |
1002 | 1003 |
Value flow(const Arc& a) const { |
1003 | 1004 |
return _flow[_arc_id[a]]; |
1004 | 1005 |
} |
1005 | 1006 |
|
1006 | 1007 |
/// \brief Return the flow map (the primal solution). |
1007 | 1008 |
/// |
1008 | 1009 |
/// This function copies the flow value on each arc into the given |
1009 | 1010 |
/// map. The \c Value type of the algorithm must be convertible to |
1010 | 1011 |
/// the \c Value type of the map. |
1011 | 1012 |
/// |
1012 | 1013 |
/// \pre \ref run() must be called before using this function. |
1013 | 1014 |
template <typename FlowMap> |
1014 | 1015 |
void flowMap(FlowMap &map) const { |
1015 | 1016 |
for (ArcIt a(_graph); a != INVALID; ++a) { |
1016 | 1017 |
map.set(a, _flow[_arc_id[a]]); |
1017 | 1018 |
} |
1018 | 1019 |
} |
1019 | 1020 |
|
1020 | 1021 |
/// \brief Return the potential (dual value) of the given node. |
1021 | 1022 |
/// |
1022 | 1023 |
/// This function returns the potential (dual value) of the |
1023 | 1024 |
/// given node. |
1024 | 1025 |
/// |
1025 | 1026 |
/// \pre \ref run() must be called before using this function. |
1026 | 1027 |
Cost potential(const Node& n) const { |
1027 | 1028 |
return _pi[_node_id[n]]; |
1028 | 1029 |
} |
1029 | 1030 |
|
1030 | 1031 |
/// \brief Return the potential map (the dual solution). |
1031 | 1032 |
/// |
1032 | 1033 |
/// This function copies the potential (dual value) of each node |
1033 | 1034 |
/// into the given map. |
1034 | 1035 |
/// The \c Cost type of the algorithm must be convertible to the |
1035 | 1036 |
/// \c Value type of the map. |
1036 | 1037 |
/// |
1037 | 1038 |
/// \pre \ref run() must be called before using this function. |
1038 | 1039 |
template <typename PotentialMap> |
1039 | 1040 |
void potentialMap(PotentialMap &map) const { |
1040 | 1041 |
for (NodeIt n(_graph); n != INVALID; ++n) { |
1041 | 1042 |
map.set(n, _pi[_node_id[n]]); |
1042 | 1043 |
} |
1043 | 1044 |
} |
1044 | 1045 |
|
1045 | 1046 |
/// @} |
1046 | 1047 |
|
1047 | 1048 |
private: |
1048 | 1049 |
|
1049 | 1050 |
// Initialize internal data structures |
1050 | 1051 |
bool init() { |
1051 | 1052 |
if (_node_num == 0) return false; |
1052 | 1053 |
|
1053 | 1054 |
// Check the sum of supply values |
1054 | 1055 |
_sum_supply = 0; |
1055 | 1056 |
for (int i = 0; i != _node_num; ++i) { |
1056 | 1057 |
_sum_supply += _supply[i]; |
1057 | 1058 |
} |
1058 | 1059 |
if ( !((_stype == GEQ && _sum_supply <= 0) || |
1059 | 1060 |
(_stype == LEQ && _sum_supply >= 0)) ) return false; |
1060 | 1061 |
|
1061 | 1062 |
// Remove non-zero lower bounds |
1062 | 1063 |
if (_have_lower) { |
1063 | 1064 |
for (int i = 0; i != _arc_num; ++i) { |
1064 | 1065 |
Value c = _lower[i]; |
1065 | 1066 |
if (c >= 0) { |
1066 | 1067 |
_cap[i] = _upper[i] < MAX ? _upper[i] - c : INF; |
1067 | 1068 |
} else { |
1068 | 1069 |
_cap[i] = _upper[i] < MAX + c ? _upper[i] - c : INF; |
1069 | 1070 |
} |
1070 | 1071 |
_supply[_source[i]] -= c; |
1071 | 1072 |
_supply[_target[i]] += c; |
1072 | 1073 |
} |
1073 | 1074 |
} else { |
1074 | 1075 |
for (int i = 0; i != _arc_num; ++i) { |
1075 | 1076 |
_cap[i] = _upper[i]; |
1076 | 1077 |
} |
1077 | 1078 |
} |
1078 | 1079 |
|
1079 | 1080 |
// Initialize artifical cost |
1080 | 1081 |
Cost ART_COST; |
1081 | 1082 |
if (std::numeric_limits<Cost>::is_exact) { |
1082 | 1083 |
ART_COST = std::numeric_limits<Cost>::max() / 2 + 1; |
1083 | 1084 |
} else { |
1084 | 1085 |
ART_COST = 0; |
1085 | 1086 |
for (int i = 0; i != _arc_num; ++i) { |
1086 | 1087 |
if (_cost[i] > ART_COST) ART_COST = _cost[i]; |
1087 | 1088 |
} |
1088 | 1089 |
ART_COST = (ART_COST + 1) * _node_num; |
1089 | 1090 |
} |
1090 | 1091 |
|
1091 | 1092 |
// Initialize arc maps |
1092 | 1093 |
for (int i = 0; i != _arc_num; ++i) { |
1093 | 1094 |
_flow[i] = 0; |
1094 | 1095 |
_state[i] = STATE_LOWER; |
1095 | 1096 |
} |
1096 | 1097 |
|
1097 | 1098 |
// Set data for the artificial root node |
1098 | 1099 |
_root = _node_num; |
1099 | 1100 |
_parent[_root] = -1; |
1100 | 1101 |
_pred[_root] = -1; |
1101 | 1102 |
_thread[_root] = 0; |
1102 | 1103 |
_rev_thread[0] = _root; |
1103 | 1104 |
_succ_num[_root] = _node_num + 1; |
1104 | 1105 |
_last_succ[_root] = _root - 1; |
1105 | 1106 |
_supply[_root] = -_sum_supply; |
1106 | 1107 |
_pi[_root] = 0; |
1107 | 1108 |
|
1108 | 1109 |
// Add artificial arcs and initialize the spanning tree data structure |
1109 | 1110 |
if (_sum_supply == 0) { |
1110 | 1111 |
// EQ supply constraints |
1111 | 1112 |
_search_arc_num = _arc_num; |
1112 | 1113 |
_all_arc_num = _arc_num + _node_num; |
1113 | 1114 |
for (int u = 0, e = _arc_num; u != _node_num; ++u, ++e) { |
1114 | 1115 |
_parent[u] = _root; |
1115 | 1116 |
_pred[u] = e; |
1116 | 1117 |
_thread[u] = u + 1; |
1117 | 1118 |
_rev_thread[u + 1] = u; |
1118 | 1119 |
_succ_num[u] = 1; |
1119 | 1120 |
_last_succ[u] = u; |
1120 | 1121 |
_cap[e] = INF; |
1121 | 1122 |
_state[e] = STATE_TREE; |
1122 | 1123 |
if (_supply[u] >= 0) { |
1123 | 1124 |
_pred_dir[u] = DIR_UP; |
1124 | 1125 |
_pi[u] = 0; |
1125 | 1126 |
_source[e] = u; |
1126 | 1127 |
_target[e] = _root; |
1127 | 1128 |
_flow[e] = _supply[u]; |
1128 | 1129 |
_cost[e] = 0; |
1129 | 1130 |
} else { |
1130 | 1131 |
_pred_dir[u] = DIR_DOWN; |
1131 | 1132 |
_pi[u] = ART_COST; |
1132 | 1133 |
_source[e] = _root; |
1133 | 1134 |
_target[e] = u; |
1134 | 1135 |
_flow[e] = -_supply[u]; |
1135 | 1136 |
_cost[e] = ART_COST; |
1136 | 1137 |
} |
1137 | 1138 |
} |
1138 | 1139 |
} |
1139 | 1140 |
else if (_sum_supply > 0) { |
1140 | 1141 |
// LEQ supply constraints |
1141 | 1142 |
_search_arc_num = _arc_num + _node_num; |
1142 | 1143 |
int f = _arc_num + _node_num; |
1143 | 1144 |
for (int u = 0, e = _arc_num; u != _node_num; ++u, ++e) { |
1144 | 1145 |
_parent[u] = _root; |
1145 | 1146 |
_thread[u] = u + 1; |
1146 | 1147 |
_rev_thread[u + 1] = u; |
1147 | 1148 |
_succ_num[u] = 1; |
1148 | 1149 |
_last_succ[u] = u; |
1149 | 1150 |
if (_supply[u] >= 0) { |
1150 | 1151 |
_pred_dir[u] = DIR_UP; |
1151 | 1152 |
_pi[u] = 0; |
1152 | 1153 |
_pred[u] = e; |
1153 | 1154 |
_source[e] = u; |
1154 | 1155 |
_target[e] = _root; |
1155 | 1156 |
_cap[e] = INF; |
1156 | 1157 |
_flow[e] = _supply[u]; |
1157 | 1158 |
_cost[e] = 0; |
1158 | 1159 |
_state[e] = STATE_TREE; |
1159 | 1160 |
} else { |
1160 | 1161 |
_pred_dir[u] = DIR_DOWN; |
1161 | 1162 |
_pi[u] = ART_COST; |
1162 | 1163 |
_pred[u] = f; |
1163 | 1164 |
_source[f] = _root; |
1164 | 1165 |
_target[f] = u; |
1165 | 1166 |
_cap[f] = INF; |
1166 | 1167 |
_flow[f] = -_supply[u]; |
1167 | 1168 |
_cost[f] = ART_COST; |
1168 | 1169 |
_state[f] = STATE_TREE; |
1169 | 1170 |
_source[e] = u; |
1170 | 1171 |
_target[e] = _root; |
1171 | 1172 |
_cap[e] = INF; |
1172 | 1173 |
_flow[e] = 0; |
1173 | 1174 |
_cost[e] = 0; |
1174 | 1175 |
_state[e] = STATE_LOWER; |
1175 | 1176 |
++f; |
1176 | 1177 |
} |
1177 | 1178 |
} |
1178 | 1179 |
_all_arc_num = f; |
1179 | 1180 |
} |
1180 | 1181 |
else { |
1181 | 1182 |
// GEQ supply constraints |
1182 | 1183 |
_search_arc_num = _arc_num + _node_num; |
1183 | 1184 |
int f = _arc_num + _node_num; |
1184 | 1185 |
for (int u = 0, e = _arc_num; u != _node_num; ++u, ++e) { |
1185 | 1186 |
_parent[u] = _root; |
1186 | 1187 |
_thread[u] = u + 1; |
1187 | 1188 |
_rev_thread[u + 1] = u; |
1188 | 1189 |
_succ_num[u] = 1; |
1189 | 1190 |
_last_succ[u] = u; |
1190 | 1191 |
if (_supply[u] <= 0) { |
1191 | 1192 |
_pred_dir[u] = DIR_DOWN; |
1192 | 1193 |
_pi[u] = 0; |
1193 | 1194 |
_pred[u] = e; |
1194 | 1195 |
_source[e] = _root; |
1195 | 1196 |
_target[e] = u; |
1196 | 1197 |
_cap[e] = INF; |
1197 | 1198 |
_flow[e] = -_supply[u]; |
1198 | 1199 |
_cost[e] = 0; |
1199 | 1200 |
_state[e] = STATE_TREE; |
1200 | 1201 |
} else { |
1201 | 1202 |
_pred_dir[u] = DIR_UP; |
1202 | 1203 |
_pi[u] = -ART_COST; |
1203 | 1204 |
_pred[u] = f; |
1204 | 1205 |
_source[f] = u; |
1205 | 1206 |
_target[f] = _root; |
1206 | 1207 |
_cap[f] = INF; |
1207 | 1208 |
_flow[f] = _supply[u]; |
1208 | 1209 |
_state[f] = STATE_TREE; |
1209 | 1210 |
_cost[f] = ART_COST; |
1210 | 1211 |
_source[e] = _root; |
1211 | 1212 |
_target[e] = u; |
1212 | 1213 |
_cap[e] = INF; |
1213 | 1214 |
_flow[e] = 0; |
1214 | 1215 |
_cost[e] = 0; |
1215 | 1216 |
_state[e] = STATE_LOWER; |
1216 | 1217 |
++f; |
1217 | 1218 |
} |
1218 | 1219 |
} |
1219 | 1220 |
_all_arc_num = f; |
1220 | 1221 |
} |
1221 | 1222 |
|
1222 | 1223 |
return true; |
1223 | 1224 |
} |
1224 | 1225 |
|
1225 | 1226 |
// Find the join node |
1226 | 1227 |
void findJoinNode() { |
1227 | 1228 |
int u = _source[in_arc]; |
1228 | 1229 |
int v = _target[in_arc]; |
1229 | 1230 |
while (u != v) { |
1230 | 1231 |
if (_succ_num[u] < _succ_num[v]) { |
1231 | 1232 |
u = _parent[u]; |
1232 | 1233 |
} else { |
1233 | 1234 |
v = _parent[v]; |
1234 | 1235 |
} |
1235 | 1236 |
} |
1236 | 1237 |
join = u; |
1237 | 1238 |
} |
1238 | 1239 |
|
1239 | 1240 |
// Find the leaving arc of the cycle and returns true if the |
1240 | 1241 |
// leaving arc is not the same as the entering arc |
1241 | 1242 |
bool findLeavingArc() { |
1242 | 1243 |
// Initialize first and second nodes according to the direction |
1243 | 1244 |
// of the cycle |
1244 | 1245 |
int first, second; |
1245 | 1246 |
if (_state[in_arc] == STATE_LOWER) { |
1246 | 1247 |
first = _source[in_arc]; |
1247 | 1248 |
second = _target[in_arc]; |
1248 | 1249 |
} else { |
1249 | 1250 |
first = _target[in_arc]; |
1250 | 1251 |
second = _source[in_arc]; |
1251 | 1252 |
} |
1252 | 1253 |
delta = _cap[in_arc]; |
1253 | 1254 |
int result = 0; |
1254 | 1255 |
Value c, d; |
1255 | 1256 |
int e; |
1256 | 1257 |
|
1257 | 1258 |
// Search the cycle form the first node to the join node |
1258 | 1259 |
for (int u = first; u != join; u = _parent[u]) { |
1259 | 1260 |
e = _pred[u]; |
1260 | 1261 |
d = _flow[e]; |
1261 | 1262 |
if (_pred_dir[u] == DIR_DOWN) { |
1262 | 1263 |
c = _cap[e]; |
1263 | 1264 |
d = c >= MAX ? INF : c - d; |
1264 | 1265 |
} |
1265 | 1266 |
if (d < delta) { |
1266 | 1267 |
delta = d; |
1267 | 1268 |
u_out = u; |
1268 | 1269 |
result = 1; |
1269 | 1270 |
} |
1270 | 1271 |
} |
1271 | 1272 |
|
1272 | 1273 |
// Search the cycle form the second node to the join node |
1273 | 1274 |
for (int u = second; u != join; u = _parent[u]) { |
1274 | 1275 |
e = _pred[u]; |
1275 | 1276 |
d = _flow[e]; |
1276 | 1277 |
if (_pred_dir[u] == DIR_UP) { |
1277 | 1278 |
c = _cap[e]; |
1278 | 1279 |
d = c >= MAX ? INF : c - d; |
1279 | 1280 |
} |
1280 | 1281 |
if (d <= delta) { |
1281 | 1282 |
delta = d; |
1282 | 1283 |
u_out = u; |
1283 | 1284 |
result = 2; |
1284 | 1285 |
} |
1285 | 1286 |
} |
1286 | 1287 |
|
1287 | 1288 |
if (result == 1) { |
1288 | 1289 |
u_in = first; |
1289 | 1290 |
v_in = second; |
1290 | 1291 |
} else { |
1291 | 1292 |
u_in = second; |
1292 | 1293 |
v_in = first; |
1293 | 1294 |
} |
1294 | 1295 |
return result != 0; |
1295 | 1296 |
} |
1296 | 1297 |
|
1297 | 1298 |
// Change _flow and _state vectors |
1298 | 1299 |
void changeFlow(bool change) { |
1299 | 1300 |
// Augment along the cycle |
1300 | 1301 |
if (delta > 0) { |
1301 | 1302 |
Value val = _state[in_arc] * delta; |
1302 | 1303 |
_flow[in_arc] += val; |
1303 | 1304 |
for (int u = _source[in_arc]; u != join; u = _parent[u]) { |
1304 | 1305 |
_flow[_pred[u]] -= _pred_dir[u] * val; |
1305 | 1306 |
} |
1306 | 1307 |
for (int u = _target[in_arc]; u != join; u = _parent[u]) { |
1307 | 1308 |
_flow[_pred[u]] += _pred_dir[u] * val; |
1308 | 1309 |
} |
1309 | 1310 |
} |
1310 | 1311 |
// Update the state of the entering and leaving arcs |
1311 | 1312 |
if (change) { |
1312 | 1313 |
_state[in_arc] = STATE_TREE; |
1313 | 1314 |
_state[_pred[u_out]] = |
1314 | 1315 |
(_flow[_pred[u_out]] == 0) ? STATE_LOWER : STATE_UPPER; |
1315 | 1316 |
} else { |
1316 | 1317 |
_state[in_arc] = -_state[in_arc]; |
1317 | 1318 |
} |
1318 | 1319 |
} |
1319 | 1320 |
|
1320 | 1321 |
// Update the tree structure |
1321 | 1322 |
void updateTreeStructure() { |
1322 | 1323 |
int old_rev_thread = _rev_thread[u_out]; |
1323 | 1324 |
int old_succ_num = _succ_num[u_out]; |
1324 | 1325 |
int old_last_succ = _last_succ[u_out]; |
1325 | 1326 |
v_out = _parent[u_out]; |
1326 | 1327 |
|
1327 | 1328 |
// Check if u_in and u_out coincide |
1328 | 1329 |
if (u_in == u_out) { |
1329 | 1330 |
// Update _parent, _pred, _pred_dir |
1330 | 1331 |
_parent[u_in] = v_in; |
1331 | 1332 |
_pred[u_in] = in_arc; |
1332 | 1333 |
_pred_dir[u_in] = u_in == _source[in_arc] ? DIR_UP : DIR_DOWN; |
1333 | 1334 |
|
1334 | 1335 |
// Update _thread and _rev_thread |
1335 | 1336 |
if (_thread[v_in] != u_out) { |
1336 | 1337 |
int after = _thread[old_last_succ]; |
1337 | 1338 |
_thread[old_rev_thread] = after; |
1338 | 1339 |
_rev_thread[after] = old_rev_thread; |
1339 | 1340 |
after = _thread[v_in]; |
1340 | 1341 |
_thread[v_in] = u_out; |
1341 | 1342 |
_rev_thread[u_out] = v_in; |
1342 | 1343 |
_thread[old_last_succ] = after; |
1343 | 1344 |
_rev_thread[after] = old_last_succ; |
1344 | 1345 |
} |
1345 | 1346 |
} else { |
1346 | 1347 |
// Handle the case when old_rev_thread equals to v_in |
1347 | 1348 |
// (it also means that join and v_out coincide) |
1348 | 1349 |
int thread_continue = old_rev_thread == v_in ? |
1349 | 1350 |
_thread[old_last_succ] : _thread[v_in]; |
1350 | 1351 |
|
1351 | 1352 |
// Update _thread and _parent along the stem nodes (i.e. the nodes |
1352 | 1353 |
// between u_in and u_out, whose parent have to be changed) |
1353 | 1354 |
int stem = u_in; // the current stem node |
1354 | 1355 |
int par_stem = v_in; // the new parent of stem |
1355 | 1356 |
int next_stem; // the next stem node |
1356 | 1357 |
int last = _last_succ[u_in]; // the last successor of stem |
1357 | 1358 |
int before, after = _thread[last]; |
1358 | 1359 |
_thread[v_in] = u_in; |
1359 | 1360 |
_dirty_revs.clear(); |
1360 | 1361 |
_dirty_revs.push_back(v_in); |
1361 | 1362 |
while (stem != u_out) { |
1362 | 1363 |
// Insert the next stem node into the thread list |
1363 | 1364 |
next_stem = _parent[stem]; |
1364 | 1365 |
_thread[last] = next_stem; |
1365 | 1366 |
_dirty_revs.push_back(last); |
1366 | 1367 |
|
1367 | 1368 |
// Remove the subtree of stem from the thread list |
1368 | 1369 |
before = _rev_thread[stem]; |
1369 | 1370 |
_thread[before] = after; |
1370 | 1371 |
_rev_thread[after] = before; |
1371 | 1372 |
|
1372 | 1373 |
// Change the parent node and shift stem nodes |
1373 | 1374 |
_parent[stem] = par_stem; |
1374 | 1375 |
par_stem = stem; |
1375 | 1376 |
stem = next_stem; |
1376 | 1377 |
|
1377 | 1378 |
// Update last and after |
1378 | 1379 |
last = _last_succ[stem] == _last_succ[par_stem] ? |
1379 | 1380 |
_rev_thread[par_stem] : _last_succ[stem]; |
1380 | 1381 |
after = _thread[last]; |
1381 | 1382 |
} |
1382 | 1383 |
_parent[u_out] = par_stem; |
1383 | 1384 |
_thread[last] = thread_continue; |
1384 | 1385 |
_rev_thread[thread_continue] = last; |
1385 | 1386 |
_last_succ[u_out] = last; |
1386 | 1387 |
|
1387 | 1388 |
// Remove the subtree of u_out from the thread list except for |
1388 | 1389 |
// the case when old_rev_thread equals to v_in |
1389 | 1390 |
if (old_rev_thread != v_in) { |
1390 | 1391 |
_thread[old_rev_thread] = after; |
1391 | 1392 |
_rev_thread[after] = old_rev_thread; |
1392 | 1393 |
} |
1393 | 1394 |
|
1394 | 1395 |
// Update _rev_thread using the new _thread values |
1395 | 1396 |
for (int i = 0; i != int(_dirty_revs.size()); ++i) { |
1396 | 1397 |
int u = _dirty_revs[i]; |
1397 | 1398 |
_rev_thread[_thread[u]] = u; |
1398 | 1399 |
} |
1399 | 1400 |
|
1400 | 1401 |
// Update _pred, _pred_dir, _last_succ and _succ_num for the |
1401 | 1402 |
// stem nodes from u_out to u_in |
1402 | 1403 |
int tmp_sc = 0, tmp_ls = _last_succ[u_out]; |
1403 | 1404 |
for (int u = u_out, p = _parent[u]; u != u_in; u = p, p = _parent[u]) { |
1404 | 1405 |
_pred[u] = _pred[p]; |
1405 | 1406 |
_pred_dir[u] = -_pred_dir[p]; |
1406 | 1407 |
tmp_sc += _succ_num[u] - _succ_num[p]; |
1407 | 1408 |
_succ_num[u] = tmp_sc; |
1408 | 1409 |
_last_succ[p] = tmp_ls; |
1409 | 1410 |
} |
1410 | 1411 |
_pred[u_in] = in_arc; |
1411 | 1412 |
_pred_dir[u_in] = u_in == _source[in_arc] ? DIR_UP : DIR_DOWN; |
1412 | 1413 |
_succ_num[u_in] = old_succ_num; |
1413 | 1414 |
} |
1414 | 1415 |
|
1415 | 1416 |
// Update _last_succ from v_in towards the root |
1416 | 1417 |
int up_limit_out = _last_succ[join] == v_in ? join : -1; |
1417 | 1418 |
int last_succ_out = _last_succ[u_out]; |
1418 | 1419 |
for (int u = v_in; u != -1 && _last_succ[u] == v_in; u = _parent[u]) { |
1419 | 1420 |
_last_succ[u] = last_succ_out; |
1420 | 1421 |
} |
1421 | 1422 |
|
1422 | 1423 |
// Update _last_succ from v_out towards the root |
1423 | 1424 |
if (join != old_rev_thread && v_in != old_rev_thread) { |
1424 | 1425 |
for (int u = v_out; u != up_limit_out && _last_succ[u] == old_last_succ; |
1425 | 1426 |
u = _parent[u]) { |
1426 | 1427 |
_last_succ[u] = old_rev_thread; |
1427 | 1428 |
} |
1428 | 1429 |
} |
1429 | 1430 |
else if (last_succ_out != old_last_succ) { |
1430 | 1431 |
for (int u = v_out; u != up_limit_out && _last_succ[u] == old_last_succ; |
1431 | 1432 |
u = _parent[u]) { |
1432 | 1433 |
_last_succ[u] = last_succ_out; |
1433 | 1434 |
} |
1434 | 1435 |
} |
1435 | 1436 |
|
1436 | 1437 |
// Update _succ_num from v_in to join |
1437 | 1438 |
for (int u = v_in; u != join; u = _parent[u]) { |
1438 | 1439 |
_succ_num[u] += old_succ_num; |
1439 | 1440 |
} |
1440 | 1441 |
// Update _succ_num from v_out to join |
1441 | 1442 |
for (int u = v_out; u != join; u = _parent[u]) { |
1442 | 1443 |
_succ_num[u] -= old_succ_num; |
1443 | 1444 |
} |
1444 | 1445 |
} |
1445 | 1446 |
|
1446 | 1447 |
// Update potentials in the subtree that has been moved |
1447 | 1448 |
void updatePotential() { |
1448 | 1449 |
Cost sigma = _pi[v_in] - _pi[u_in] - |
1449 | 1450 |
_pred_dir[u_in] * _cost[in_arc]; |
1450 | 1451 |
int end = _thread[_last_succ[u_in]]; |
1451 | 1452 |
for (int u = u_in; u != end; u = _thread[u]) { |
1452 | 1453 |
_pi[u] += sigma; |
1453 | 1454 |
} |
1454 | 1455 |
} |
1455 | 1456 |
|
1456 | 1457 |
// Heuristic initial pivots |
1457 | 1458 |
bool initialPivots() { |
1458 | 1459 |
Value curr, total = 0; |
1459 | 1460 |
std::vector<Node> supply_nodes, demand_nodes; |
1460 | 1461 |
for (NodeIt u(_graph); u != INVALID; ++u) { |
1461 | 1462 |
curr = _supply[_node_id[u]]; |
1462 | 1463 |
if (curr > 0) { |
1463 | 1464 |
total += curr; |
1464 | 1465 |
supply_nodes.push_back(u); |
1465 | 1466 |
} |
1466 | 1467 |
else if (curr < 0) { |
1467 | 1468 |
demand_nodes.push_back(u); |
1468 | 1469 |
} |
1469 | 1470 |
} |
1470 | 1471 |
if (_sum_supply > 0) total -= _sum_supply; |
1471 | 1472 |
if (total <= 0) return true; |
1472 | 1473 |
|
1473 | 1474 |
IntVector arc_vector; |
1474 | 1475 |
if (_sum_supply >= 0) { |
1475 | 1476 |
if (supply_nodes.size() == 1 && demand_nodes.size() == 1) { |
1476 | 1477 |
// Perform a reverse graph search from the sink to the source |
1477 | 1478 |
typename GR::template NodeMap<bool> reached(_graph, false); |
1478 | 1479 |
Node s = supply_nodes[0], t = demand_nodes[0]; |
1479 | 1480 |
std::vector<Node> stack; |
1480 | 1481 |
reached[t] = true; |
1481 | 1482 |
stack.push_back(t); |
1482 | 1483 |
while (!stack.empty()) { |
1483 | 1484 |
Node u, v = stack.back(); |
1484 | 1485 |
stack.pop_back(); |
1485 | 1486 |
if (v == s) break; |
1486 | 1487 |
for (InArcIt a(_graph, v); a != INVALID; ++a) { |
1487 | 1488 |
if (reached[u = _graph.source(a)]) continue; |
1488 | 1489 |
int j = _arc_id[a]; |
1489 | 1490 |
if (_cap[j] >= total) { |
1490 | 1491 |
arc_vector.push_back(j); |
1491 | 1492 |
reached[u] = true; |
1492 | 1493 |
stack.push_back(u); |
1493 | 1494 |
} |
1494 | 1495 |
} |
1495 | 1496 |
} |
1496 | 1497 |
} else { |
1497 | 1498 |
// Find the min. cost incomming arc for each demand node |
1498 | 1499 |
for (int i = 0; i != int(demand_nodes.size()); ++i) { |
1499 | 1500 |
Node v = demand_nodes[i]; |
1500 | 1501 |
Cost c, min_cost = std::numeric_limits<Cost>::max(); |
1501 | 1502 |
Arc min_arc = INVALID; |
1502 | 1503 |
for (InArcIt a(_graph, v); a != INVALID; ++a) { |
1503 | 1504 |
c = _cost[_arc_id[a]]; |
1504 | 1505 |
if (c < min_cost) { |
1505 | 1506 |
min_cost = c; |
1506 | 1507 |
min_arc = a; |
1507 | 1508 |
} |
1508 | 1509 |
} |
1509 | 1510 |
if (min_arc != INVALID) { |
1510 | 1511 |
arc_vector.push_back(_arc_id[min_arc]); |
1511 | 1512 |
} |
1512 | 1513 |
} |
1513 | 1514 |
} |
1514 | 1515 |
} else { |
1515 | 1516 |
// Find the min. cost outgoing arc for each supply node |
1516 | 1517 |
for (int i = 0; i != int(supply_nodes.size()); ++i) { |
1517 | 1518 |
Node u = supply_nodes[i]; |
1518 | 1519 |
Cost c, min_cost = std::numeric_limits<Cost>::max(); |
1519 | 1520 |
Arc min_arc = INVALID; |
1520 | 1521 |
for (OutArcIt a(_graph, u); a != INVALID; ++a) { |
1521 | 1522 |
c = _cost[_arc_id[a]]; |
1522 | 1523 |
if (c < min_cost) { |
1523 | 1524 |
min_cost = c; |
1524 | 1525 |
min_arc = a; |
1525 | 1526 |
} |
1526 | 1527 |
} |
1527 | 1528 |
if (min_arc != INVALID) { |
1528 | 1529 |
arc_vector.push_back(_arc_id[min_arc]); |
1529 | 1530 |
} |
1530 | 1531 |
} |
1531 | 1532 |
} |
1532 | 1533 |
|
1533 | 1534 |
// Perform heuristic initial pivots |
1534 | 1535 |
for (int i = 0; i != int(arc_vector.size()); ++i) { |
1535 | 1536 |
in_arc = arc_vector[i]; |
1536 | 1537 |
if (_state[in_arc] * (_cost[in_arc] + _pi[_source[in_arc]] - |
1537 | 1538 |
_pi[_target[in_arc]]) >= 0) continue; |
1538 | 1539 |
findJoinNode(); |
1539 | 1540 |
bool change = findLeavingArc(); |
1540 | 1541 |
if (delta >= MAX) return false; |
1541 | 1542 |
changeFlow(change); |
1542 | 1543 |
if (change) { |
1543 | 1544 |
updateTreeStructure(); |
1544 | 1545 |
updatePotential(); |
1545 | 1546 |
} |
1546 | 1547 |
} |
1547 | 1548 |
return true; |
1548 | 1549 |
} |
1549 | 1550 |
|
1550 | 1551 |
// Execute the algorithm |
1551 | 1552 |
ProblemType start(PivotRule pivot_rule) { |
1552 | 1553 |
// Select the pivot rule implementation |
1553 | 1554 |
switch (pivot_rule) { |
1554 | 1555 |
case FIRST_ELIGIBLE: |
1555 | 1556 |
return start<FirstEligiblePivotRule>(); |
1556 | 1557 |
case BEST_ELIGIBLE: |
1557 | 1558 |
return start<BestEligiblePivotRule>(); |
1558 | 1559 |
case BLOCK_SEARCH: |
1559 | 1560 |
return start<BlockSearchPivotRule>(); |
1560 | 1561 |
case CANDIDATE_LIST: |
1561 | 1562 |
return start<CandidateListPivotRule>(); |
1562 | 1563 |
case ALTERING_LIST: |
1563 | 1564 |
return start<AlteringListPivotRule>(); |
1564 | 1565 |
} |
1565 | 1566 |
return INFEASIBLE; // avoid warning |
1566 | 1567 |
} |
1567 | 1568 |
|
1568 | 1569 |
template <typename PivotRuleImpl> |
1569 | 1570 |
ProblemType start() { |
1570 | 1571 |
PivotRuleImpl pivot(*this); |
1571 | 1572 |
|
1572 | 1573 |
// Perform heuristic initial pivots |
1573 | 1574 |
if (!initialPivots()) return UNBOUNDED; |
1574 | 1575 |
|
1575 | 1576 |
// Execute the Network Simplex algorithm |
1576 | 1577 |
while (pivot.findEnteringArc()) { |
1577 | 1578 |
findJoinNode(); |
1578 | 1579 |
bool change = findLeavingArc(); |
1579 | 1580 |
if (delta >= MAX) return UNBOUNDED; |
1580 | 1581 |
changeFlow(change); |
1581 | 1582 |
if (change) { |
1582 | 1583 |
updateTreeStructure(); |
1583 | 1584 |
updatePotential(); |
1584 | 1585 |
} |
1585 | 1586 |
} |
1586 | 1587 |
|
1587 | 1588 |
// Check feasibility |
1588 | 1589 |
for (int e = _search_arc_num; e != _all_arc_num; ++e) { |
1589 | 1590 |
if (_flow[e] != 0) return INFEASIBLE; |
1590 | 1591 |
} |
1591 | 1592 |
|
1592 | 1593 |
// Transform the solution and the supply map to the original form |
1593 | 1594 |
if (_have_lower) { |
1594 | 1595 |
for (int i = 0; i != _arc_num; ++i) { |
1595 | 1596 |
Value c = _lower[i]; |
1596 | 1597 |
if (c != 0) { |
1597 | 1598 |
_flow[i] += c; |
1598 | 1599 |
_supply[_source[i]] += c; |
1599 | 1600 |
_supply[_target[i]] -= c; |
1600 | 1601 |
} |
1601 | 1602 |
} |
1602 | 1603 |
} |
0 comments (0 inline)