!
!
!
| 1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
| 2 | 2 |
* |
| 3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
| 4 | 4 |
* |
| 5 |
* Copyright (C) 2003- |
|
| 5 |
* Copyright (C) 2003-2010 |
|
| 6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
| 7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
| 8 | 8 |
* |
| 9 | 9 |
* Permission to use, modify and distribute this software is granted |
| 10 | 10 |
* provided that this copyright notice appears in all copies. For |
| 11 | 11 |
* precise terms see the accompanying LICENSE file. |
| 12 | 12 |
* |
| 13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
| 14 | 14 |
* express or implied, and with no claim as to its suitability for any |
| 15 | 15 |
* purpose. |
| 16 | 16 |
* |
| 17 | 17 |
*/ |
| 18 | 18 |
|
| 19 | 19 |
///\ingroup demos |
| 20 | 20 |
///\file |
| 21 | 21 |
///\brief Argument parser demo |
| 22 | 22 |
/// |
| 23 | 23 |
/// This example shows how the argument parser can be used. |
| 24 | 24 |
/// |
| 25 | 25 |
/// \include arg_parser_demo.cc |
| 26 | 26 |
|
| 27 | 27 |
#include <lemon/arg_parser.h> |
| 28 | 28 |
|
| 29 | 29 |
using namespace lemon; |
| 30 | 30 |
int main(int argc, char **argv) |
| 31 | 31 |
{
|
| 32 | 32 |
// Initialize the argument parser |
| 33 | 33 |
ArgParser ap(argc, argv); |
| 34 | 34 |
int i; |
| 35 | 35 |
std::string s; |
| 36 | 36 |
double d = 1.0; |
| 37 | 37 |
bool b, nh; |
| ... | ... |
@@ -40,65 +40,65 @@ |
| 40 | 40 |
// Add a mandatory integer option with storage reference |
| 41 | 41 |
ap.refOption("n", "An integer input.", i, true);
|
| 42 | 42 |
// Add a double option with storage reference (the default value is 1.0) |
| 43 | 43 |
ap.refOption("val", "A double input.", d);
|
| 44 | 44 |
// Add a double option without storage reference (the default value is 3.14) |
| 45 | 45 |
ap.doubleOption("val2", "A double input.", 3.14);
|
| 46 | 46 |
// Set synonym for -val option |
| 47 | 47 |
ap.synonym("vals", "val");
|
| 48 | 48 |
// Add a string option |
| 49 | 49 |
ap.refOption("name", "A string input.", s);
|
| 50 | 50 |
// Add bool options |
| 51 | 51 |
ap.refOption("f", "A switch.", b)
|
| 52 | 52 |
.refOption("nohelp", "", nh)
|
| 53 | 53 |
.refOption("gra", "Choice A", g1)
|
| 54 | 54 |
.refOption("grb", "Choice B", g2)
|
| 55 | 55 |
.refOption("grc", "Choice C", g3);
|
| 56 | 56 |
// Bundle -gr* options into a group |
| 57 | 57 |
ap.optionGroup("gr", "gra")
|
| 58 | 58 |
.optionGroup("gr", "grb")
|
| 59 | 59 |
.optionGroup("gr", "grc");
|
| 60 | 60 |
// Set the group mandatory |
| 61 | 61 |
ap.mandatoryGroup("gr");
|
| 62 | 62 |
// Set the options of the group exclusive (only one option can be given) |
| 63 | 63 |
ap.onlyOneGroup("gr");
|
| 64 | 64 |
// Add non-parsed arguments (e.g. input files) |
| 65 | 65 |
ap.other("infile", "The input file.")
|
| 66 | 66 |
.other("...");
|
| 67 | 67 |
|
| 68 | 68 |
// Throw an exception when problems occurs. The default behavior is to |
| 69 | 69 |
// exit(1) on these cases, but this makes Valgrind falsely warn |
| 70 | 70 |
// about memory leaks. |
| 71 | 71 |
ap.throwOnProblems(); |
| 72 |
|
|
| 72 |
|
|
| 73 | 73 |
// Perform the parsing process |
| 74 | 74 |
// (in case of any error it terminates the program) |
| 75 | 75 |
// The try {} construct is necessary only if the ap.trowOnProblems()
|
| 76 | 76 |
// setting is in use. |
| 77 | 77 |
try {
|
| 78 | 78 |
ap.parse(); |
| 79 | 79 |
} catch (ArgParserException &) { return 1; }
|
| 80 | 80 |
|
| 81 | 81 |
// Check each option if it has been given and print its value |
| 82 | 82 |
std::cout << "Parameters of '" << ap.commandName() << "':\n"; |
| 83 | 83 |
|
| 84 | 84 |
std::cout << " Value of -n: " << i << std::endl; |
| 85 | 85 |
if(ap.given("val")) std::cout << " Value of -val: " << d << std::endl;
|
| 86 | 86 |
if(ap.given("val2")) {
|
| 87 | 87 |
d = ap["val2"]; |
| 88 | 88 |
std::cout << " Value of -val2: " << d << std::endl; |
| 89 | 89 |
} |
| 90 | 90 |
if(ap.given("name")) std::cout << " Value of -name: " << s << std::endl;
|
| 91 | 91 |
if(ap.given("f")) std::cout << " -f is given\n";
|
| 92 | 92 |
if(ap.given("nohelp")) std::cout << " Value of -nohelp: " << nh << std::endl;
|
| 93 | 93 |
if(ap.given("gra")) std::cout << " -gra is given\n";
|
| 94 | 94 |
if(ap.given("grb")) std::cout << " -grb is given\n";
|
| 95 | 95 |
if(ap.given("grc")) std::cout << " -grc is given\n";
|
| 96 | 96 |
|
| 97 | 97 |
switch(ap.files().size()) {
|
| 98 | 98 |
case 0: |
| 99 | 99 |
std::cout << " No file argument was given.\n"; |
| 100 | 100 |
break; |
| 101 | 101 |
case 1: |
| 102 | 102 |
std::cout << " 1 file argument was given. It is:\n"; |
| 103 | 103 |
break; |
| 104 | 104 |
default: |
| 1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
| 2 | 2 |
* |
| 3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
| 4 | 4 |
* |
| 5 |
* Copyright (C) 2003- |
|
| 5 |
* Copyright (C) 2003-2010 |
|
| 6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
| 7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
| 8 | 8 |
* |
| 9 | 9 |
* Permission to use, modify and distribute this software is granted |
| 10 | 10 |
* provided that this copyright notice appears in all copies. For |
| 11 | 11 |
* precise terms see the accompanying LICENSE file. |
| 12 | 12 |
* |
| 13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
| 14 | 14 |
* express or implied, and with no claim as to its suitability for any |
| 15 | 15 |
* purpose. |
| 16 | 16 |
* |
| 17 | 17 |
*/ |
| 18 | 18 |
|
| 19 | 19 |
namespace lemon {
|
| 20 | 20 |
|
| 21 | 21 |
/** |
| 22 | 22 |
@defgroup datas Data Structures |
| 23 | 23 |
This group contains the several data structures implemented in LEMON. |
| 24 | 24 |
*/ |
| 25 | 25 |
|
| 26 | 26 |
/** |
| 27 | 27 |
@defgroup graphs Graph Structures |
| 28 | 28 |
@ingroup datas |
| 29 | 29 |
\brief Graph structures implemented in LEMON. |
| 30 | 30 |
|
| 31 | 31 |
The implementation of combinatorial algorithms heavily relies on |
| 32 | 32 |
efficient graph implementations. LEMON offers data structures which are |
| 33 | 33 |
planned to be easily used in an experimental phase of implementation studies, |
| 34 | 34 |
and thereafter the program code can be made efficient by small modifications. |
| 35 | 35 |
|
| 36 | 36 |
The most efficient implementation of diverse applications require the |
| 37 | 37 |
usage of different physical graph implementations. These differences |
| 1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
| 2 | 2 |
* |
| 3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
| 4 | 4 |
* |
| 5 |
* Copyright (C) 2003- |
|
| 5 |
* Copyright (C) 2003-2010 |
|
| 6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
| 7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
| 8 | 8 |
* |
| 9 | 9 |
* Permission to use, modify and distribute this software is granted |
| 10 | 10 |
* provided that this copyright notice appears in all copies. For |
| 11 | 11 |
* precise terms see the accompanying LICENSE file. |
| 12 | 12 |
* |
| 13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
| 14 | 14 |
* express or implied, and with no claim as to its suitability for any |
| 15 | 15 |
* purpose. |
| 16 | 16 |
* |
| 17 | 17 |
*/ |
| 18 | 18 |
|
| 19 | 19 |
/** |
| 20 | 20 |
\mainpage LEMON Documentation |
| 21 | 21 |
|
| 22 | 22 |
\section intro Introduction |
| 23 | 23 |
|
| 24 | 24 |
<b>LEMON</b> stands for <i><b>L</b>ibrary for <b>E</b>fficient <b>M</b>odeling |
| 25 | 25 |
and <b>O</b>ptimization in <b>N</b>etworks</i>. |
| 26 | 26 |
It is a C++ template library providing efficient implementations of common |
| 27 | 27 |
data structures and algorithms with focus on combinatorial optimization |
| 28 |
tasks connected mainly with graphs and networks. |
|
| 28 |
tasks connected mainly with graphs and networks. |
|
| 29 | 29 |
|
| 30 | 30 |
<b> |
| 31 | 31 |
LEMON is an <a class="el" href="http://opensource.org/">open source</a> |
| 32 | 32 |
project. |
| 33 | 33 |
You are free to use it in your commercial or |
| 34 | 34 |
non-commercial applications under very permissive |
| 35 | 35 |
\ref license "license terms". |
| 36 | 36 |
</b> |
| 37 | 37 |
|
| 38 |
The project is maintained by the |
|
| 38 |
The project is maintained by the |
|
| 39 | 39 |
<a href="http://www.cs.elte.hu/egres/">Egerváry Research Group on |
| 40 | 40 |
Combinatorial Optimization</a> \ref egres |
| 41 | 41 |
at the Operations Research Department of the |
| 42 | 42 |
<a href="http://www.elte.hu/en/">Eötvös Loránd University</a>, |
| 43 | 43 |
Budapest, Hungary. |
| 44 | 44 |
LEMON is also a member of the <a href="http://www.coin-or.org/">COIN-OR</a> |
| 45 | 45 |
initiative \ref coinor. |
| 46 | 46 |
|
| 47 | 47 |
\section howtoread How to Read the Documentation |
| 48 | 48 |
|
| 49 | 49 |
If you would like to get to know the library, see |
| 50 | 50 |
<a class="el" href="http://lemon.cs.elte.hu/pub/tutorial/">LEMON Tutorial</a>. |
| 51 | 51 |
|
| 52 | 52 |
If you are interested in starting to use the library, see the <a class="el" |
| 53 | 53 |
href="http://lemon.cs.elte.hu/trac/lemon/wiki/InstallGuide/">Installation |
| 54 | 54 |
Guide</a>. |
| 55 | 55 |
|
| 56 | 56 |
If you know what you are looking for, then try to find it under the |
| 57 | 57 |
<a class="el" href="modules.html">Modules</a> section. |
| 58 | 58 |
|
| 59 | 59 |
If you are a user of the old (0.x) series of LEMON, please check out the |
| 60 | 60 |
\ref migration "Migration Guide" for the backward incompatibilities. |
| 61 | 61 |
*/ |
| 1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
| 2 | 2 |
* |
| 3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
| 4 | 4 |
* |
| 5 |
* Copyright (C) 2003- |
|
| 5 |
* Copyright (C) 2003-2010 |
|
| 6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
| 7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
| 8 | 8 |
* |
| 9 | 9 |
* Permission to use, modify and distribute this software is granted |
| 10 | 10 |
* provided that this copyright notice appears in all copies. For |
| 11 | 11 |
* precise terms see the accompanying LICENSE file. |
| 12 | 12 |
* |
| 13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
| 14 | 14 |
* express or implied, and with no claim as to its suitability for any |
| 15 | 15 |
* purpose. |
| 16 | 16 |
* |
| 17 | 17 |
*/ |
| 18 | 18 |
|
| 19 | 19 |
namespace lemon {
|
| 20 | 20 |
|
| 21 | 21 |
/** |
| 22 | 22 |
\page min_cost_flow Minimum Cost Flow Problem |
| 23 | 23 |
|
| 24 | 24 |
\section mcf_def Definition (GEQ form) |
| 25 | 25 |
|
| 26 | 26 |
The \e minimum \e cost \e flow \e problem is to find a feasible flow of |
| 27 | 27 |
minimum total cost from a set of supply nodes to a set of demand nodes |
| 28 | 28 |
in a network with capacity constraints (lower and upper bounds) |
| 29 | 29 |
and arc costs \ref amo93networkflows. |
| 30 | 30 |
|
| 31 | 31 |
Formally, let \f$G=(V,A)\f$ be a digraph, \f$lower: A\rightarrow\mathbf{R}\f$,
|
| 32 | 32 |
\f$upper: A\rightarrow\mathbf{R}\cup\{+\infty\}\f$ denote the lower and
|
| 33 | 33 |
upper bounds for the flow values on the arcs, for which |
| 34 | 34 |
\f$lower(uv) \leq upper(uv)\f$ must hold for all \f$uv\in A\f$, |
| 35 | 35 |
\f$cost: A\rightarrow\mathbf{R}\f$ denotes the cost per unit flow
|
| 36 | 36 |
on the arcs and \f$sup: V\rightarrow\mathbf{R}\f$ denotes the
|
| 37 | 37 |
signed supply values of the nodes. |
| ... | ... |
@@ -52,102 +52,102 @@ |
| 52 | 52 |
It means that the total demand must be greater or equal to the total |
| 53 | 53 |
supply and all the supplies have to be carried out from the supply nodes, |
| 54 | 54 |
but there could be demands that are not satisfied. |
| 55 | 55 |
If \f$\sum_{u\in V} sup(u)\f$ is zero, then all the supply/demand
|
| 56 | 56 |
constraints have to be satisfied with equality, i.e. all demands |
| 57 | 57 |
have to be satisfied and all supplies have to be used. |
| 58 | 58 |
|
| 59 | 59 |
|
| 60 | 60 |
\section mcf_algs Algorithms |
| 61 | 61 |
|
| 62 | 62 |
LEMON contains several algorithms for solving this problem, for more |
| 63 | 63 |
information see \ref min_cost_flow_algs "Minimum Cost Flow Algorithms". |
| 64 | 64 |
|
| 65 | 65 |
A feasible solution for this problem can be found using \ref Circulation. |
| 66 | 66 |
|
| 67 | 67 |
|
| 68 | 68 |
\section mcf_dual Dual Solution |
| 69 | 69 |
|
| 70 | 70 |
The dual solution of the minimum cost flow problem is represented by |
| 71 | 71 |
node potentials \f$\pi: V\rightarrow\mathbf{R}\f$.
|
| 72 | 72 |
An \f$f: A\rightarrow\mathbf{R}\f$ primal feasible solution is optimal
|
| 73 | 73 |
if and only if for some \f$\pi: V\rightarrow\mathbf{R}\f$ node potentials
|
| 74 | 74 |
the following \e complementary \e slackness optimality conditions hold. |
| 75 | 75 |
|
| 76 | 76 |
- For all \f$uv\in A\f$ arcs: |
| 77 | 77 |
- if \f$cost^\pi(uv)>0\f$, then \f$f(uv)=lower(uv)\f$; |
| 78 | 78 |
- if \f$lower(uv)<f(uv)<upper(uv)\f$, then \f$cost^\pi(uv)=0\f$; |
| 79 | 79 |
- if \f$cost^\pi(uv)<0\f$, then \f$f(uv)=upper(uv)\f$. |
| 80 | 80 |
- For all \f$u\in V\f$ nodes: |
| 81 | 81 |
- \f$\pi(u)\leq 0\f$; |
| 82 | 82 |
- if \f$\sum_{uv\in A} f(uv) - \sum_{vu\in A} f(vu) \neq sup(u)\f$,
|
| 83 | 83 |
then \f$\pi(u)=0\f$. |
| 84 |
|
|
| 84 |
|
|
| 85 | 85 |
Here \f$cost^\pi(uv)\f$ denotes the \e reduced \e cost of the arc |
| 86 | 86 |
\f$uv\in A\f$ with respect to the potential function \f$\pi\f$, i.e. |
| 87 | 87 |
\f[ cost^\pi(uv) = cost(uv) + \pi(u) - \pi(v).\f] |
| 88 | 88 |
|
| 89 | 89 |
All algorithms provide dual solution (node potentials), as well, |
| 90 | 90 |
if an optimal flow is found. |
| 91 | 91 |
|
| 92 | 92 |
|
| 93 | 93 |
\section mcf_eq Equality Form |
| 94 | 94 |
|
| 95 | 95 |
The above \ref mcf_def "definition" is actually more general than the |
| 96 | 96 |
usual formulation of the minimum cost flow problem, in which strict |
| 97 | 97 |
equalities are required in the supply/demand contraints. |
| 98 | 98 |
|
| 99 | 99 |
\f[ \min\sum_{uv\in A} f(uv) \cdot cost(uv) \f]
|
| 100 | 100 |
\f[ \sum_{uv\in A} f(uv) - \sum_{vu\in A} f(vu) =
|
| 101 | 101 |
sup(u) \quad \forall u\in V \f] |
| 102 | 102 |
\f[ lower(uv) \leq f(uv) \leq upper(uv) \quad \forall uv\in A \f] |
| 103 | 103 |
|
| 104 | 104 |
However if the sum of the supply values is zero, then these two problems |
| 105 | 105 |
are equivalent. |
| 106 | 106 |
The \ref min_cost_flow_algs "algorithms" in LEMON support the general |
| 107 | 107 |
form, so if you need the equality form, you have to ensure this additional |
| 108 | 108 |
contraint manually. |
| 109 | 109 |
|
| 110 | 110 |
|
| 111 | 111 |
\section mcf_leq Opposite Inequalites (LEQ Form) |
| 112 | 112 |
|
| 113 | 113 |
Another possible definition of the minimum cost flow problem is |
| 114 | 114 |
when there are <em>"less or equal"</em> (LEQ) supply/demand constraints, |
| 115 | 115 |
instead of the <em>"greater or equal"</em> (GEQ) constraints. |
| 116 | 116 |
|
| 117 | 117 |
\f[ \min\sum_{uv\in A} f(uv) \cdot cost(uv) \f]
|
| 118 | 118 |
\f[ \sum_{uv\in A} f(uv) - \sum_{vu\in A} f(vu) \leq
|
| 119 | 119 |
sup(u) \quad \forall u\in V \f] |
| 120 | 120 |
\f[ lower(uv) \leq f(uv) \leq upper(uv) \quad \forall uv\in A \f] |
| 121 | 121 |
|
| 122 |
It means that the total demand must be less or equal to the |
|
| 122 |
It means that the total demand must be less or equal to the |
|
| 123 | 123 |
total supply (i.e. \f$\sum_{u\in V} sup(u)\f$ must be zero or
|
| 124 | 124 |
positive) and all the demands have to be satisfied, but there |
| 125 | 125 |
could be supplies that are not carried out from the supply |
| 126 | 126 |
nodes. |
| 127 | 127 |
The equality form is also a special case of this form, of course. |
| 128 | 128 |
|
| 129 | 129 |
You could easily transform this case to the \ref mcf_def "GEQ form" |
| 130 | 130 |
of the problem by reversing the direction of the arcs and taking the |
| 131 | 131 |
negative of the supply values (e.g. using \ref ReverseDigraph and |
| 132 | 132 |
\ref NegMap adaptors). |
| 133 | 133 |
However \ref NetworkSimplex algorithm also supports this form directly |
| 134 | 134 |
for the sake of convenience. |
| 135 | 135 |
|
| 136 | 136 |
Note that the optimality conditions for this supply constraint type are |
| 137 | 137 |
slightly differ from the conditions that are discussed for the GEQ form, |
| 138 | 138 |
namely the potentials have to be non-negative instead of non-positive. |
| 139 | 139 |
An \f$f: A\rightarrow\mathbf{R}\f$ feasible solution of this problem
|
| 140 | 140 |
is optimal if and only if for some \f$\pi: V\rightarrow\mathbf{R}\f$
|
| 141 | 141 |
node potentials the following conditions hold. |
| 142 | 142 |
|
| 143 | 143 |
- For all \f$uv\in A\f$ arcs: |
| 144 | 144 |
- if \f$cost^\pi(uv)>0\f$, then \f$f(uv)=lower(uv)\f$; |
| 145 | 145 |
- if \f$lower(uv)<f(uv)<upper(uv)\f$, then \f$cost^\pi(uv)=0\f$; |
| 146 | 146 |
- if \f$cost^\pi(uv)<0\f$, then \f$f(uv)=upper(uv)\f$. |
| 147 | 147 |
- For all \f$u\in V\f$ nodes: |
| 148 | 148 |
- \f$\pi(u)\geq 0\f$; |
| 149 | 149 |
- if \f$\sum_{uv\in A} f(uv) - \sum_{vu\in A} f(vu) \neq sup(u)\f$,
|
| 150 | 150 |
then \f$\pi(u)=0\f$. |
| 151 | 151 |
|
| 152 | 152 |
*/ |
| 153 | 153 |
} |
| 1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
| 2 | 2 |
* |
| 3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
| 4 | 4 |
* |
| 5 |
* Copyright (C) 2003- |
|
| 5 |
* Copyright (C) 2003-2010 |
|
| 6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
| 7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
| 8 | 8 |
* |
| 9 | 9 |
* Permission to use, modify and distribute this software is granted |
| 10 | 10 |
* provided that this copyright notice appears in all copies. For |
| 11 | 11 |
* precise terms see the accompanying LICENSE file. |
| 12 | 12 |
* |
| 13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
| 14 | 14 |
* express or implied, and with no claim as to its suitability for any |
| 15 | 15 |
* purpose. |
| 16 | 16 |
* |
| 17 | 17 |
*/ |
| 18 | 18 |
|
| 19 | 19 |
#ifndef LEMON_ADAPTORS_H |
| 20 | 20 |
#define LEMON_ADAPTORS_H |
| 21 | 21 |
|
| 22 | 22 |
/// \ingroup graph_adaptors |
| 23 | 23 |
/// \file |
| 24 | 24 |
/// \brief Adaptor classes for digraphs and graphs |
| 25 | 25 |
/// |
| 26 | 26 |
/// This file contains several useful adaptors for digraphs and graphs. |
| 27 | 27 |
|
| 28 | 28 |
#include <lemon/core.h> |
| 29 | 29 |
#include <lemon/maps.h> |
| 30 | 30 |
#include <lemon/bits/variant.h> |
| 31 | 31 |
|
| 32 | 32 |
#include <lemon/bits/graph_adaptor_extender.h> |
| 33 | 33 |
#include <lemon/bits/map_extender.h> |
| 34 | 34 |
#include <lemon/tolerance.h> |
| 35 | 35 |
|
| 36 | 36 |
#include <algorithm> |
| 37 | 37 |
|
| ... | ... |
@@ -392,65 +392,65 @@ |
| 392 | 392 |
} |
| 393 | 393 |
}; |
| 394 | 394 |
|
| 395 | 395 |
/// \brief Returns a read-only ReverseDigraph adaptor |
| 396 | 396 |
/// |
| 397 | 397 |
/// This function just returns a read-only \ref ReverseDigraph adaptor. |
| 398 | 398 |
/// \ingroup graph_adaptors |
| 399 | 399 |
/// \relates ReverseDigraph |
| 400 | 400 |
template<typename DGR> |
| 401 | 401 |
ReverseDigraph<const DGR> reverseDigraph(const DGR& digraph) {
|
| 402 | 402 |
return ReverseDigraph<const DGR>(digraph); |
| 403 | 403 |
} |
| 404 | 404 |
|
| 405 | 405 |
|
| 406 | 406 |
template <typename DGR, typename NF, typename AF, bool ch = true> |
| 407 | 407 |
class SubDigraphBase : public DigraphAdaptorBase<DGR> {
|
| 408 | 408 |
typedef DigraphAdaptorBase<DGR> Parent; |
| 409 | 409 |
public: |
| 410 | 410 |
typedef DGR Digraph; |
| 411 | 411 |
typedef NF NodeFilterMap; |
| 412 | 412 |
typedef AF ArcFilterMap; |
| 413 | 413 |
|
| 414 | 414 |
typedef SubDigraphBase Adaptor; |
| 415 | 415 |
protected: |
| 416 | 416 |
NF* _node_filter; |
| 417 | 417 |
AF* _arc_filter; |
| 418 | 418 |
SubDigraphBase() |
| 419 | 419 |
: Parent(), _node_filter(0), _arc_filter(0) { }
|
| 420 | 420 |
|
| 421 | 421 |
void initialize(DGR& digraph, NF& node_filter, AF& arc_filter) {
|
| 422 | 422 |
Parent::initialize(digraph); |
| 423 | 423 |
_node_filter = &node_filter; |
| 424 |
_arc_filter = &arc_filter; |
|
| 424 |
_arc_filter = &arc_filter; |
|
| 425 | 425 |
} |
| 426 | 426 |
|
| 427 | 427 |
public: |
| 428 | 428 |
|
| 429 | 429 |
typedef typename Parent::Node Node; |
| 430 | 430 |
typedef typename Parent::Arc Arc; |
| 431 | 431 |
|
| 432 | 432 |
void first(Node& i) const {
|
| 433 | 433 |
Parent::first(i); |
| 434 | 434 |
while (i != INVALID && !(*_node_filter)[i]) Parent::next(i); |
| 435 | 435 |
} |
| 436 | 436 |
|
| 437 | 437 |
void first(Arc& i) const {
|
| 438 | 438 |
Parent::first(i); |
| 439 | 439 |
while (i != INVALID && (!(*_arc_filter)[i] |
| 440 | 440 |
|| !(*_node_filter)[Parent::source(i)] |
| 441 | 441 |
|| !(*_node_filter)[Parent::target(i)])) |
| 442 | 442 |
Parent::next(i); |
| 443 | 443 |
} |
| 444 | 444 |
|
| 445 | 445 |
void firstIn(Arc& i, const Node& n) const {
|
| 446 | 446 |
Parent::firstIn(i, n); |
| 447 | 447 |
while (i != INVALID && (!(*_arc_filter)[i] |
| 448 | 448 |
|| !(*_node_filter)[Parent::source(i)])) |
| 449 | 449 |
Parent::nextIn(i); |
| 450 | 450 |
} |
| 451 | 451 |
|
| 452 | 452 |
void firstOut(Arc& i, const Node& n) const {
|
| 453 | 453 |
Parent::firstOut(i, n); |
| 454 | 454 |
while (i != INVALID && (!(*_arc_filter)[i] |
| 455 | 455 |
|| !(*_node_filter)[Parent::target(i)])) |
| 456 | 456 |
Parent::nextOut(i); |
| ... | ... |
@@ -479,139 +479,139 @@ |
| 479 | 479 |
void nextOut(Arc& i) const {
|
| 480 | 480 |
Parent::nextOut(i); |
| 481 | 481 |
while (i != INVALID && (!(*_arc_filter)[i] |
| 482 | 482 |
|| !(*_node_filter)[Parent::target(i)])) |
| 483 | 483 |
Parent::nextOut(i); |
| 484 | 484 |
} |
| 485 | 485 |
|
| 486 | 486 |
void status(const Node& n, bool v) const { _node_filter->set(n, v); }
|
| 487 | 487 |
void status(const Arc& a, bool v) const { _arc_filter->set(a, v); }
|
| 488 | 488 |
|
| 489 | 489 |
bool status(const Node& n) const { return (*_node_filter)[n]; }
|
| 490 | 490 |
bool status(const Arc& a) const { return (*_arc_filter)[a]; }
|
| 491 | 491 |
|
| 492 | 492 |
typedef False NodeNumTag; |
| 493 | 493 |
typedef False ArcNumTag; |
| 494 | 494 |
|
| 495 | 495 |
typedef FindArcTagIndicator<DGR> FindArcTag; |
| 496 | 496 |
Arc findArc(const Node& source, const Node& target, |
| 497 | 497 |
const Arc& prev = INVALID) const {
|
| 498 | 498 |
if (!(*_node_filter)[source] || !(*_node_filter)[target]) {
|
| 499 | 499 |
return INVALID; |
| 500 | 500 |
} |
| 501 | 501 |
Arc arc = Parent::findArc(source, target, prev); |
| 502 | 502 |
while (arc != INVALID && !(*_arc_filter)[arc]) {
|
| 503 | 503 |
arc = Parent::findArc(source, target, arc); |
| 504 | 504 |
} |
| 505 | 505 |
return arc; |
| 506 | 506 |
} |
| 507 | 507 |
|
| 508 | 508 |
public: |
| 509 | 509 |
|
| 510 | 510 |
template <typename V> |
| 511 |
class NodeMap |
|
| 512 |
: public SubMapExtender<SubDigraphBase<DGR, NF, AF, ch>, |
|
| 513 |
|
|
| 511 |
class NodeMap |
|
| 512 |
: public SubMapExtender<SubDigraphBase<DGR, NF, AF, ch>, |
|
| 513 |
LEMON_SCOPE_FIX(DigraphAdaptorBase<DGR>, NodeMap<V>)> {
|
|
| 514 | 514 |
typedef SubMapExtender<SubDigraphBase<DGR, NF, AF, ch>, |
| 515 |
|
|
| 515 |
LEMON_SCOPE_FIX(DigraphAdaptorBase<DGR>, NodeMap<V>)> Parent; |
|
| 516 | 516 |
|
| 517 | 517 |
public: |
| 518 | 518 |
typedef V Value; |
| 519 | 519 |
|
| 520 | 520 |
NodeMap(const SubDigraphBase<DGR, NF, AF, ch>& adaptor) |
| 521 | 521 |
: Parent(adaptor) {}
|
| 522 | 522 |
NodeMap(const SubDigraphBase<DGR, NF, AF, ch>& adaptor, const V& value) |
| 523 | 523 |
: Parent(adaptor, value) {}
|
| 524 | 524 |
|
| 525 | 525 |
private: |
| 526 | 526 |
NodeMap& operator=(const NodeMap& cmap) {
|
| 527 | 527 |
return operator=<NodeMap>(cmap); |
| 528 | 528 |
} |
| 529 | 529 |
|
| 530 | 530 |
template <typename CMap> |
| 531 | 531 |
NodeMap& operator=(const CMap& cmap) {
|
| 532 | 532 |
Parent::operator=(cmap); |
| 533 | 533 |
return *this; |
| 534 | 534 |
} |
| 535 | 535 |
}; |
| 536 | 536 |
|
| 537 | 537 |
template <typename V> |
| 538 |
class ArcMap |
|
| 538 |
class ArcMap |
|
| 539 | 539 |
: public SubMapExtender<SubDigraphBase<DGR, NF, AF, ch>, |
| 540 |
|
|
| 540 |
LEMON_SCOPE_FIX(DigraphAdaptorBase<DGR>, ArcMap<V>)> {
|
|
| 541 | 541 |
typedef SubMapExtender<SubDigraphBase<DGR, NF, AF, ch>, |
| 542 | 542 |
LEMON_SCOPE_FIX(DigraphAdaptorBase<DGR>, ArcMap<V>)> Parent; |
| 543 | 543 |
|
| 544 | 544 |
public: |
| 545 | 545 |
typedef V Value; |
| 546 | 546 |
|
| 547 | 547 |
ArcMap(const SubDigraphBase<DGR, NF, AF, ch>& adaptor) |
| 548 | 548 |
: Parent(adaptor) {}
|
| 549 | 549 |
ArcMap(const SubDigraphBase<DGR, NF, AF, ch>& adaptor, const V& value) |
| 550 | 550 |
: Parent(adaptor, value) {}
|
| 551 | 551 |
|
| 552 | 552 |
private: |
| 553 | 553 |
ArcMap& operator=(const ArcMap& cmap) {
|
| 554 | 554 |
return operator=<ArcMap>(cmap); |
| 555 | 555 |
} |
| 556 | 556 |
|
| 557 | 557 |
template <typename CMap> |
| 558 | 558 |
ArcMap& operator=(const CMap& cmap) {
|
| 559 | 559 |
Parent::operator=(cmap); |
| 560 | 560 |
return *this; |
| 561 | 561 |
} |
| 562 | 562 |
}; |
| 563 | 563 |
|
| 564 | 564 |
}; |
| 565 | 565 |
|
| 566 | 566 |
template <typename DGR, typename NF, typename AF> |
| 567 | 567 |
class SubDigraphBase<DGR, NF, AF, false> |
| 568 | 568 |
: public DigraphAdaptorBase<DGR> {
|
| 569 | 569 |
typedef DigraphAdaptorBase<DGR> Parent; |
| 570 | 570 |
public: |
| 571 | 571 |
typedef DGR Digraph; |
| 572 | 572 |
typedef NF NodeFilterMap; |
| 573 | 573 |
typedef AF ArcFilterMap; |
| 574 | 574 |
|
| 575 | 575 |
typedef SubDigraphBase Adaptor; |
| 576 | 576 |
protected: |
| 577 | 577 |
NF* _node_filter; |
| 578 | 578 |
AF* _arc_filter; |
| 579 | 579 |
SubDigraphBase() |
| 580 | 580 |
: Parent(), _node_filter(0), _arc_filter(0) { }
|
| 581 | 581 |
|
| 582 | 582 |
void initialize(DGR& digraph, NF& node_filter, AF& arc_filter) {
|
| 583 | 583 |
Parent::initialize(digraph); |
| 584 | 584 |
_node_filter = &node_filter; |
| 585 |
_arc_filter = &arc_filter; |
|
| 585 |
_arc_filter = &arc_filter; |
|
| 586 | 586 |
} |
| 587 | 587 |
|
| 588 | 588 |
public: |
| 589 | 589 |
|
| 590 | 590 |
typedef typename Parent::Node Node; |
| 591 | 591 |
typedef typename Parent::Arc Arc; |
| 592 | 592 |
|
| 593 | 593 |
void first(Node& i) const {
|
| 594 | 594 |
Parent::first(i); |
| 595 | 595 |
while (i!=INVALID && !(*_node_filter)[i]) Parent::next(i); |
| 596 | 596 |
} |
| 597 | 597 |
|
| 598 | 598 |
void first(Arc& i) const {
|
| 599 | 599 |
Parent::first(i); |
| 600 | 600 |
while (i!=INVALID && !(*_arc_filter)[i]) Parent::next(i); |
| 601 | 601 |
} |
| 602 | 602 |
|
| 603 | 603 |
void firstIn(Arc& i, const Node& n) const {
|
| 604 | 604 |
Parent::firstIn(i, n); |
| 605 | 605 |
while (i!=INVALID && !(*_arc_filter)[i]) Parent::nextIn(i); |
| 606 | 606 |
} |
| 607 | 607 |
|
| 608 | 608 |
void firstOut(Arc& i, const Node& n) const {
|
| 609 | 609 |
Parent::firstOut(i, n); |
| 610 | 610 |
while (i!=INVALID && !(*_arc_filter)[i]) Parent::nextOut(i); |
| 611 | 611 |
} |
| 612 | 612 |
|
| 613 | 613 |
void next(Node& i) const {
|
| 614 | 614 |
Parent::next(i); |
| 615 | 615 |
while (i!=INVALID && !(*_node_filter)[i]) Parent::next(i); |
| 616 | 616 |
} |
| 617 | 617 |
void next(Arc& i) const {
|
| ... | ... |
@@ -622,92 +622,92 @@ |
| 622 | 622 |
Parent::nextIn(i); |
| 623 | 623 |
while (i!=INVALID && !(*_arc_filter)[i]) Parent::nextIn(i); |
| 624 | 624 |
} |
| 625 | 625 |
|
| 626 | 626 |
void nextOut(Arc& i) const {
|
| 627 | 627 |
Parent::nextOut(i); |
| 628 | 628 |
while (i!=INVALID && !(*_arc_filter)[i]) Parent::nextOut(i); |
| 629 | 629 |
} |
| 630 | 630 |
|
| 631 | 631 |
void status(const Node& n, bool v) const { _node_filter->set(n, v); }
|
| 632 | 632 |
void status(const Arc& a, bool v) const { _arc_filter->set(a, v); }
|
| 633 | 633 |
|
| 634 | 634 |
bool status(const Node& n) const { return (*_node_filter)[n]; }
|
| 635 | 635 |
bool status(const Arc& a) const { return (*_arc_filter)[a]; }
|
| 636 | 636 |
|
| 637 | 637 |
typedef False NodeNumTag; |
| 638 | 638 |
typedef False ArcNumTag; |
| 639 | 639 |
|
| 640 | 640 |
typedef FindArcTagIndicator<DGR> FindArcTag; |
| 641 | 641 |
Arc findArc(const Node& source, const Node& target, |
| 642 | 642 |
const Arc& prev = INVALID) const {
|
| 643 | 643 |
if (!(*_node_filter)[source] || !(*_node_filter)[target]) {
|
| 644 | 644 |
return INVALID; |
| 645 | 645 |
} |
| 646 | 646 |
Arc arc = Parent::findArc(source, target, prev); |
| 647 | 647 |
while (arc != INVALID && !(*_arc_filter)[arc]) {
|
| 648 | 648 |
arc = Parent::findArc(source, target, arc); |
| 649 | 649 |
} |
| 650 | 650 |
return arc; |
| 651 | 651 |
} |
| 652 | 652 |
|
| 653 | 653 |
template <typename V> |
| 654 |
class NodeMap |
|
| 654 |
class NodeMap |
|
| 655 | 655 |
: public SubMapExtender<SubDigraphBase<DGR, NF, AF, false>, |
| 656 | 656 |
LEMON_SCOPE_FIX(DigraphAdaptorBase<DGR>, NodeMap<V>)> {
|
| 657 |
typedef SubMapExtender<SubDigraphBase<DGR, NF, AF, false>, |
|
| 657 |
typedef SubMapExtender<SubDigraphBase<DGR, NF, AF, false>, |
|
| 658 | 658 |
LEMON_SCOPE_FIX(DigraphAdaptorBase<DGR>, NodeMap<V>)> Parent; |
| 659 | 659 |
|
| 660 | 660 |
public: |
| 661 | 661 |
typedef V Value; |
| 662 | 662 |
|
| 663 | 663 |
NodeMap(const SubDigraphBase<DGR, NF, AF, false>& adaptor) |
| 664 | 664 |
: Parent(adaptor) {}
|
| 665 | 665 |
NodeMap(const SubDigraphBase<DGR, NF, AF, false>& adaptor, const V& value) |
| 666 | 666 |
: Parent(adaptor, value) {}
|
| 667 | 667 |
|
| 668 | 668 |
private: |
| 669 | 669 |
NodeMap& operator=(const NodeMap& cmap) {
|
| 670 | 670 |
return operator=<NodeMap>(cmap); |
| 671 | 671 |
} |
| 672 | 672 |
|
| 673 | 673 |
template <typename CMap> |
| 674 | 674 |
NodeMap& operator=(const CMap& cmap) {
|
| 675 | 675 |
Parent::operator=(cmap); |
| 676 | 676 |
return *this; |
| 677 | 677 |
} |
| 678 | 678 |
}; |
| 679 | 679 |
|
| 680 | 680 |
template <typename V> |
| 681 |
class ArcMap |
|
| 681 |
class ArcMap |
|
| 682 | 682 |
: public SubMapExtender<SubDigraphBase<DGR, NF, AF, false>, |
| 683 | 683 |
LEMON_SCOPE_FIX(DigraphAdaptorBase<DGR>, ArcMap<V>)> {
|
| 684 | 684 |
typedef SubMapExtender<SubDigraphBase<DGR, NF, AF, false>, |
| 685 | 685 |
LEMON_SCOPE_FIX(DigraphAdaptorBase<DGR>, ArcMap<V>)> Parent; |
| 686 | 686 |
|
| 687 | 687 |
public: |
| 688 | 688 |
typedef V Value; |
| 689 | 689 |
|
| 690 | 690 |
ArcMap(const SubDigraphBase<DGR, NF, AF, false>& adaptor) |
| 691 | 691 |
: Parent(adaptor) {}
|
| 692 | 692 |
ArcMap(const SubDigraphBase<DGR, NF, AF, false>& adaptor, const V& value) |
| 693 | 693 |
: Parent(adaptor, value) {}
|
| 694 | 694 |
|
| 695 | 695 |
private: |
| 696 | 696 |
ArcMap& operator=(const ArcMap& cmap) {
|
| 697 | 697 |
return operator=<ArcMap>(cmap); |
| 698 | 698 |
} |
| 699 | 699 |
|
| 700 | 700 |
template <typename CMap> |
| 701 | 701 |
ArcMap& operator=(const CMap& cmap) {
|
| 702 | 702 |
Parent::operator=(cmap); |
| 703 | 703 |
return *this; |
| 704 | 704 |
} |
| 705 | 705 |
}; |
| 706 | 706 |
|
| 707 | 707 |
}; |
| 708 | 708 |
|
| 709 | 709 |
/// \ingroup graph_adaptors |
| 710 | 710 |
/// |
| 711 | 711 |
/// \brief Adaptor class for hiding nodes and arcs in a digraph |
| 712 | 712 |
/// |
| 713 | 713 |
/// SubDigraph can be used for hiding nodes and arcs in a digraph. |
| ... | ... |
@@ -992,162 +992,162 @@ |
| 992 | 992 |
|
| 993 | 993 |
typedef False NodeNumTag; |
| 994 | 994 |
typedef False ArcNumTag; |
| 995 | 995 |
typedef False EdgeNumTag; |
| 996 | 996 |
|
| 997 | 997 |
typedef FindArcTagIndicator<Graph> FindArcTag; |
| 998 | 998 |
Arc findArc(const Node& u, const Node& v, |
| 999 | 999 |
const Arc& prev = INVALID) const {
|
| 1000 | 1000 |
if (!(*_node_filter)[u] || !(*_node_filter)[v]) {
|
| 1001 | 1001 |
return INVALID; |
| 1002 | 1002 |
} |
| 1003 | 1003 |
Arc arc = Parent::findArc(u, v, prev); |
| 1004 | 1004 |
while (arc != INVALID && !(*_edge_filter)[arc]) {
|
| 1005 | 1005 |
arc = Parent::findArc(u, v, arc); |
| 1006 | 1006 |
} |
| 1007 | 1007 |
return arc; |
| 1008 | 1008 |
} |
| 1009 | 1009 |
|
| 1010 | 1010 |
typedef FindEdgeTagIndicator<Graph> FindEdgeTag; |
| 1011 | 1011 |
Edge findEdge(const Node& u, const Node& v, |
| 1012 | 1012 |
const Edge& prev = INVALID) const {
|
| 1013 | 1013 |
if (!(*_node_filter)[u] || !(*_node_filter)[v]) {
|
| 1014 | 1014 |
return INVALID; |
| 1015 | 1015 |
} |
| 1016 | 1016 |
Edge edge = Parent::findEdge(u, v, prev); |
| 1017 | 1017 |
while (edge != INVALID && !(*_edge_filter)[edge]) {
|
| 1018 | 1018 |
edge = Parent::findEdge(u, v, edge); |
| 1019 | 1019 |
} |
| 1020 | 1020 |
return edge; |
| 1021 | 1021 |
} |
| 1022 | 1022 |
|
| 1023 | 1023 |
template <typename V> |
| 1024 |
class NodeMap |
|
| 1024 |
class NodeMap |
|
| 1025 | 1025 |
: public SubMapExtender<SubGraphBase<GR, NF, EF, ch>, |
| 1026 | 1026 |
LEMON_SCOPE_FIX(GraphAdaptorBase<GR>, NodeMap<V>)> {
|
| 1027 |
typedef SubMapExtender<SubGraphBase<GR, NF, EF, ch>, |
|
| 1027 |
typedef SubMapExtender<SubGraphBase<GR, NF, EF, ch>, |
|
| 1028 | 1028 |
LEMON_SCOPE_FIX(GraphAdaptorBase<GR>, NodeMap<V>)> Parent; |
| 1029 | 1029 |
|
| 1030 | 1030 |
public: |
| 1031 | 1031 |
typedef V Value; |
| 1032 | 1032 |
|
| 1033 | 1033 |
NodeMap(const SubGraphBase<GR, NF, EF, ch>& adaptor) |
| 1034 | 1034 |
: Parent(adaptor) {}
|
| 1035 | 1035 |
NodeMap(const SubGraphBase<GR, NF, EF, ch>& adaptor, const V& value) |
| 1036 | 1036 |
: Parent(adaptor, value) {}
|
| 1037 | 1037 |
|
| 1038 | 1038 |
private: |
| 1039 | 1039 |
NodeMap& operator=(const NodeMap& cmap) {
|
| 1040 | 1040 |
return operator=<NodeMap>(cmap); |
| 1041 | 1041 |
} |
| 1042 | 1042 |
|
| 1043 | 1043 |
template <typename CMap> |
| 1044 | 1044 |
NodeMap& operator=(const CMap& cmap) {
|
| 1045 | 1045 |
Parent::operator=(cmap); |
| 1046 | 1046 |
return *this; |
| 1047 | 1047 |
} |
| 1048 | 1048 |
}; |
| 1049 | 1049 |
|
| 1050 | 1050 |
template <typename V> |
| 1051 |
class ArcMap |
|
| 1051 |
class ArcMap |
|
| 1052 | 1052 |
: public SubMapExtender<SubGraphBase<GR, NF, EF, ch>, |
| 1053 | 1053 |
LEMON_SCOPE_FIX(GraphAdaptorBase<GR>, ArcMap<V>)> {
|
| 1054 |
typedef SubMapExtender<SubGraphBase<GR, NF, EF, ch>, |
|
| 1054 |
typedef SubMapExtender<SubGraphBase<GR, NF, EF, ch>, |
|
| 1055 | 1055 |
LEMON_SCOPE_FIX(GraphAdaptorBase<GR>, ArcMap<V>)> Parent; |
| 1056 | 1056 |
|
| 1057 | 1057 |
public: |
| 1058 | 1058 |
typedef V Value; |
| 1059 | 1059 |
|
| 1060 | 1060 |
ArcMap(const SubGraphBase<GR, NF, EF, ch>& adaptor) |
| 1061 | 1061 |
: Parent(adaptor) {}
|
| 1062 | 1062 |
ArcMap(const SubGraphBase<GR, NF, EF, ch>& adaptor, const V& value) |
| 1063 | 1063 |
: Parent(adaptor, value) {}
|
| 1064 | 1064 |
|
| 1065 | 1065 |
private: |
| 1066 | 1066 |
ArcMap& operator=(const ArcMap& cmap) {
|
| 1067 | 1067 |
return operator=<ArcMap>(cmap); |
| 1068 | 1068 |
} |
| 1069 | 1069 |
|
| 1070 | 1070 |
template <typename CMap> |
| 1071 | 1071 |
ArcMap& operator=(const CMap& cmap) {
|
| 1072 | 1072 |
Parent::operator=(cmap); |
| 1073 | 1073 |
return *this; |
| 1074 | 1074 |
} |
| 1075 | 1075 |
}; |
| 1076 | 1076 |
|
| 1077 | 1077 |
template <typename V> |
| 1078 |
class EdgeMap |
|
| 1078 |
class EdgeMap |
|
| 1079 | 1079 |
: public SubMapExtender<SubGraphBase<GR, NF, EF, ch>, |
| 1080 | 1080 |
LEMON_SCOPE_FIX(GraphAdaptorBase<GR>, EdgeMap<V>)> {
|
| 1081 |
typedef SubMapExtender<SubGraphBase<GR, NF, EF, ch>, |
|
| 1081 |
typedef SubMapExtender<SubGraphBase<GR, NF, EF, ch>, |
|
| 1082 | 1082 |
LEMON_SCOPE_FIX(GraphAdaptorBase<GR>, EdgeMap<V>)> Parent; |
| 1083 | 1083 |
|
| 1084 | 1084 |
public: |
| 1085 | 1085 |
typedef V Value; |
| 1086 | 1086 |
|
| 1087 | 1087 |
EdgeMap(const SubGraphBase<GR, NF, EF, ch>& adaptor) |
| 1088 | 1088 |
: Parent(adaptor) {}
|
| 1089 | 1089 |
|
| 1090 | 1090 |
EdgeMap(const SubGraphBase<GR, NF, EF, ch>& adaptor, const V& value) |
| 1091 | 1091 |
: Parent(adaptor, value) {}
|
| 1092 | 1092 |
|
| 1093 | 1093 |
private: |
| 1094 | 1094 |
EdgeMap& operator=(const EdgeMap& cmap) {
|
| 1095 | 1095 |
return operator=<EdgeMap>(cmap); |
| 1096 | 1096 |
} |
| 1097 | 1097 |
|
| 1098 | 1098 |
template <typename CMap> |
| 1099 | 1099 |
EdgeMap& operator=(const CMap& cmap) {
|
| 1100 | 1100 |
Parent::operator=(cmap); |
| 1101 | 1101 |
return *this; |
| 1102 | 1102 |
} |
| 1103 | 1103 |
}; |
| 1104 | 1104 |
|
| 1105 | 1105 |
}; |
| 1106 | 1106 |
|
| 1107 | 1107 |
template <typename GR, typename NF, typename EF> |
| 1108 | 1108 |
class SubGraphBase<GR, NF, EF, false> |
| 1109 | 1109 |
: public GraphAdaptorBase<GR> {
|
| 1110 | 1110 |
typedef GraphAdaptorBase<GR> Parent; |
| 1111 | 1111 |
public: |
| 1112 | 1112 |
typedef GR Graph; |
| 1113 | 1113 |
typedef NF NodeFilterMap; |
| 1114 | 1114 |
typedef EF EdgeFilterMap; |
| 1115 | 1115 |
|
| 1116 | 1116 |
typedef SubGraphBase Adaptor; |
| 1117 | 1117 |
protected: |
| 1118 | 1118 |
NF* _node_filter; |
| 1119 | 1119 |
EF* _edge_filter; |
| 1120 |
SubGraphBase() |
|
| 1121 |
: Parent(), _node_filter(0), _edge_filter(0) { }
|
|
| 1120 |
SubGraphBase() |
|
| 1121 |
: Parent(), _node_filter(0), _edge_filter(0) { }
|
|
| 1122 | 1122 |
|
| 1123 | 1123 |
void initialize(GR& graph, NF& node_filter, EF& edge_filter) {
|
| 1124 | 1124 |
Parent::initialize(graph); |
| 1125 | 1125 |
_node_filter = &node_filter; |
| 1126 | 1126 |
_edge_filter = &edge_filter; |
| 1127 | 1127 |
} |
| 1128 | 1128 |
|
| 1129 | 1129 |
public: |
| 1130 | 1130 |
|
| 1131 | 1131 |
typedef typename Parent::Node Node; |
| 1132 | 1132 |
typedef typename Parent::Arc Arc; |
| 1133 | 1133 |
typedef typename Parent::Edge Edge; |
| 1134 | 1134 |
|
| 1135 | 1135 |
void first(Node& i) const {
|
| 1136 | 1136 |
Parent::first(i); |
| 1137 | 1137 |
while (i!=INVALID && !(*_node_filter)[i]) Parent::next(i); |
| 1138 | 1138 |
} |
| 1139 | 1139 |
|
| 1140 | 1140 |
void first(Arc& i) const {
|
| 1141 | 1141 |
Parent::first(i); |
| 1142 | 1142 |
while (i!=INVALID && !(*_edge_filter)[i]) Parent::next(i); |
| 1143 | 1143 |
} |
| 1144 | 1144 |
|
| 1145 | 1145 |
void first(Edge& i) const {
|
| 1146 | 1146 |
Parent::first(i); |
| 1147 | 1147 |
while (i!=INVALID && !(*_edge_filter)[i]) Parent::next(i); |
| 1148 | 1148 |
} |
| 1149 | 1149 |
|
| 1150 | 1150 |
void firstIn(Arc& i, const Node& n) const {
|
| 1151 | 1151 |
Parent::firstIn(i, n); |
| 1152 | 1152 |
while (i!=INVALID && !(*_edge_filter)[i]) Parent::nextIn(i); |
| 1153 | 1153 |
} |
| ... | ... |
@@ -1190,123 +1190,123 @@ |
| 1190 | 1190 |
|
| 1191 | 1191 |
void status(const Node& n, bool v) const { _node_filter->set(n, v); }
|
| 1192 | 1192 |
void status(const Edge& e, bool v) const { _edge_filter->set(e, v); }
|
| 1193 | 1193 |
|
| 1194 | 1194 |
bool status(const Node& n) const { return (*_node_filter)[n]; }
|
| 1195 | 1195 |
bool status(const Edge& e) const { return (*_edge_filter)[e]; }
|
| 1196 | 1196 |
|
| 1197 | 1197 |
typedef False NodeNumTag; |
| 1198 | 1198 |
typedef False ArcNumTag; |
| 1199 | 1199 |
typedef False EdgeNumTag; |
| 1200 | 1200 |
|
| 1201 | 1201 |
typedef FindArcTagIndicator<Graph> FindArcTag; |
| 1202 | 1202 |
Arc findArc(const Node& u, const Node& v, |
| 1203 | 1203 |
const Arc& prev = INVALID) const {
|
| 1204 | 1204 |
Arc arc = Parent::findArc(u, v, prev); |
| 1205 | 1205 |
while (arc != INVALID && !(*_edge_filter)[arc]) {
|
| 1206 | 1206 |
arc = Parent::findArc(u, v, arc); |
| 1207 | 1207 |
} |
| 1208 | 1208 |
return arc; |
| 1209 | 1209 |
} |
| 1210 | 1210 |
|
| 1211 | 1211 |
typedef FindEdgeTagIndicator<Graph> FindEdgeTag; |
| 1212 | 1212 |
Edge findEdge(const Node& u, const Node& v, |
| 1213 | 1213 |
const Edge& prev = INVALID) const {
|
| 1214 | 1214 |
Edge edge = Parent::findEdge(u, v, prev); |
| 1215 | 1215 |
while (edge != INVALID && !(*_edge_filter)[edge]) {
|
| 1216 | 1216 |
edge = Parent::findEdge(u, v, edge); |
| 1217 | 1217 |
} |
| 1218 | 1218 |
return edge; |
| 1219 | 1219 |
} |
| 1220 | 1220 |
|
| 1221 | 1221 |
template <typename V> |
| 1222 |
class NodeMap |
|
| 1222 |
class NodeMap |
|
| 1223 | 1223 |
: public SubMapExtender<SubGraphBase<GR, NF, EF, false>, |
| 1224 | 1224 |
LEMON_SCOPE_FIX(GraphAdaptorBase<GR>, NodeMap<V>)> {
|
| 1225 |
typedef SubMapExtender<SubGraphBase<GR, NF, EF, false>, |
|
| 1225 |
typedef SubMapExtender<SubGraphBase<GR, NF, EF, false>, |
|
| 1226 | 1226 |
LEMON_SCOPE_FIX(GraphAdaptorBase<GR>, NodeMap<V>)> Parent; |
| 1227 | 1227 |
|
| 1228 | 1228 |
public: |
| 1229 | 1229 |
typedef V Value; |
| 1230 | 1230 |
|
| 1231 | 1231 |
NodeMap(const SubGraphBase<GR, NF, EF, false>& adaptor) |
| 1232 | 1232 |
: Parent(adaptor) {}
|
| 1233 | 1233 |
NodeMap(const SubGraphBase<GR, NF, EF, false>& adaptor, const V& value) |
| 1234 | 1234 |
: Parent(adaptor, value) {}
|
| 1235 | 1235 |
|
| 1236 | 1236 |
private: |
| 1237 | 1237 |
NodeMap& operator=(const NodeMap& cmap) {
|
| 1238 | 1238 |
return operator=<NodeMap>(cmap); |
| 1239 | 1239 |
} |
| 1240 | 1240 |
|
| 1241 | 1241 |
template <typename CMap> |
| 1242 | 1242 |
NodeMap& operator=(const CMap& cmap) {
|
| 1243 | 1243 |
Parent::operator=(cmap); |
| 1244 | 1244 |
return *this; |
| 1245 | 1245 |
} |
| 1246 | 1246 |
}; |
| 1247 | 1247 |
|
| 1248 | 1248 |
template <typename V> |
| 1249 |
class ArcMap |
|
| 1249 |
class ArcMap |
|
| 1250 | 1250 |
: public SubMapExtender<SubGraphBase<GR, NF, EF, false>, |
| 1251 | 1251 |
LEMON_SCOPE_FIX(GraphAdaptorBase<GR>, ArcMap<V>)> {
|
| 1252 |
typedef SubMapExtender<SubGraphBase<GR, NF, EF, false>, |
|
| 1252 |
typedef SubMapExtender<SubGraphBase<GR, NF, EF, false>, |
|
| 1253 | 1253 |
LEMON_SCOPE_FIX(GraphAdaptorBase<GR>, ArcMap<V>)> Parent; |
| 1254 | 1254 |
|
| 1255 | 1255 |
public: |
| 1256 | 1256 |
typedef V Value; |
| 1257 | 1257 |
|
| 1258 | 1258 |
ArcMap(const SubGraphBase<GR, NF, EF, false>& adaptor) |
| 1259 | 1259 |
: Parent(adaptor) {}
|
| 1260 | 1260 |
ArcMap(const SubGraphBase<GR, NF, EF, false>& adaptor, const V& value) |
| 1261 | 1261 |
: Parent(adaptor, value) {}
|
| 1262 | 1262 |
|
| 1263 | 1263 |
private: |
| 1264 | 1264 |
ArcMap& operator=(const ArcMap& cmap) {
|
| 1265 | 1265 |
return operator=<ArcMap>(cmap); |
| 1266 | 1266 |
} |
| 1267 | 1267 |
|
| 1268 | 1268 |
template <typename CMap> |
| 1269 | 1269 |
ArcMap& operator=(const CMap& cmap) {
|
| 1270 | 1270 |
Parent::operator=(cmap); |
| 1271 | 1271 |
return *this; |
| 1272 | 1272 |
} |
| 1273 | 1273 |
}; |
| 1274 | 1274 |
|
| 1275 | 1275 |
template <typename V> |
| 1276 |
class EdgeMap |
|
| 1276 |
class EdgeMap |
|
| 1277 | 1277 |
: public SubMapExtender<SubGraphBase<GR, NF, EF, false>, |
| 1278 | 1278 |
LEMON_SCOPE_FIX(GraphAdaptorBase<GR>, EdgeMap<V>)> {
|
| 1279 |
typedef SubMapExtender<SubGraphBase<GR, NF, EF, false>, |
|
| 1280 |
LEMON_SCOPE_FIX(GraphAdaptorBase<GR>, EdgeMap<V>)> Parent; |
|
| 1279 |
typedef SubMapExtender<SubGraphBase<GR, NF, EF, false>, |
|
| 1280 |
LEMON_SCOPE_FIX(GraphAdaptorBase<GR>, EdgeMap<V>)> Parent; |
|
| 1281 | 1281 |
|
| 1282 | 1282 |
public: |
| 1283 | 1283 |
typedef V Value; |
| 1284 | 1284 |
|
| 1285 | 1285 |
EdgeMap(const SubGraphBase<GR, NF, EF, false>& adaptor) |
| 1286 | 1286 |
: Parent(adaptor) {}
|
| 1287 | 1287 |
|
| 1288 | 1288 |
EdgeMap(const SubGraphBase<GR, NF, EF, false>& adaptor, const V& value) |
| 1289 | 1289 |
: Parent(adaptor, value) {}
|
| 1290 | 1290 |
|
| 1291 | 1291 |
private: |
| 1292 | 1292 |
EdgeMap& operator=(const EdgeMap& cmap) {
|
| 1293 | 1293 |
return operator=<EdgeMap>(cmap); |
| 1294 | 1294 |
} |
| 1295 | 1295 |
|
| 1296 | 1296 |
template <typename CMap> |
| 1297 | 1297 |
EdgeMap& operator=(const CMap& cmap) {
|
| 1298 | 1298 |
Parent::operator=(cmap); |
| 1299 | 1299 |
return *this; |
| 1300 | 1300 |
} |
| 1301 | 1301 |
}; |
| 1302 | 1302 |
|
| 1303 | 1303 |
}; |
| 1304 | 1304 |
|
| 1305 | 1305 |
/// \ingroup graph_adaptors |
| 1306 | 1306 |
/// |
| 1307 | 1307 |
/// \brief Adaptor class for hiding nodes and edges in an undirected |
| 1308 | 1308 |
/// graph. |
| 1309 | 1309 |
/// |
| 1310 | 1310 |
/// SubGraph can be used for hiding nodes and edges in a graph. |
| 1311 | 1311 |
/// A \c bool node map and a \c bool edge map must be specified, which |
| 1312 | 1312 |
/// define the filters for nodes and edges. |
| ... | ... |
@@ -1475,128 +1475,128 @@ |
| 1475 | 1475 |
/// depending on the \c GR template parameter. |
| 1476 | 1476 |
/// |
| 1477 | 1477 |
/// The adapted (di)graph can also be modified through this adaptor |
| 1478 | 1478 |
/// by adding or removing nodes or arcs/edges, unless the \c GR template |
| 1479 | 1479 |
/// parameter is set to be \c const. |
| 1480 | 1480 |
/// |
| 1481 | 1481 |
/// This class provides only linear time item counting. |
| 1482 | 1482 |
/// |
| 1483 | 1483 |
/// \tparam GR The type of the adapted digraph or graph. |
| 1484 | 1484 |
/// It must conform to the \ref concepts::Digraph "Digraph" concept |
| 1485 | 1485 |
/// or the \ref concepts::Graph "Graph" concept. |
| 1486 | 1486 |
/// It can also be specified to be \c const. |
| 1487 | 1487 |
/// \tparam NF The type of the node filter map. |
| 1488 | 1488 |
/// It must be a \c bool (or convertible) node map of the |
| 1489 | 1489 |
/// adapted (di)graph. The default type is |
| 1490 | 1490 |
/// \ref concepts::Graph::NodeMap "GR::NodeMap<bool>". |
| 1491 | 1491 |
/// |
| 1492 | 1492 |
/// \note The \c Node and <tt>Arc/Edge</tt> types of this adaptor and the |
| 1493 | 1493 |
/// adapted (di)graph are convertible to each other. |
| 1494 | 1494 |
#ifdef DOXYGEN |
| 1495 | 1495 |
template<typename GR, typename NF> |
| 1496 | 1496 |
class FilterNodes {
|
| 1497 | 1497 |
#else |
| 1498 | 1498 |
template<typename GR, |
| 1499 | 1499 |
typename NF = typename GR::template NodeMap<bool>, |
| 1500 | 1500 |
typename Enable = void> |
| 1501 | 1501 |
class FilterNodes : |
| 1502 | 1502 |
public DigraphAdaptorExtender< |
| 1503 | 1503 |
SubDigraphBase<GR, NF, ConstMap<typename GR::Arc, Const<bool, true> >, |
| 1504 | 1504 |
true> > {
|
| 1505 | 1505 |
#endif |
| 1506 | 1506 |
typedef DigraphAdaptorExtender< |
| 1507 |
SubDigraphBase<GR, NF, ConstMap<typename GR::Arc, Const<bool, true> >, |
|
| 1507 |
SubDigraphBase<GR, NF, ConstMap<typename GR::Arc, Const<bool, true> >, |
|
| 1508 | 1508 |
true> > Parent; |
| 1509 | 1509 |
|
| 1510 | 1510 |
public: |
| 1511 | 1511 |
|
| 1512 | 1512 |
typedef GR Digraph; |
| 1513 | 1513 |
typedef NF NodeFilterMap; |
| 1514 | 1514 |
|
| 1515 | 1515 |
typedef typename Parent::Node Node; |
| 1516 | 1516 |
|
| 1517 | 1517 |
protected: |
| 1518 | 1518 |
ConstMap<typename Digraph::Arc, Const<bool, true> > const_true_map; |
| 1519 | 1519 |
|
| 1520 | 1520 |
FilterNodes() : const_true_map() {}
|
| 1521 | 1521 |
|
| 1522 | 1522 |
public: |
| 1523 | 1523 |
|
| 1524 | 1524 |
/// \brief Constructor |
| 1525 | 1525 |
/// |
| 1526 | 1526 |
/// Creates a subgraph for the given digraph or graph with the |
| 1527 | 1527 |
/// given node filter map. |
| 1528 |
FilterNodes(GR& graph, NF& node_filter) |
|
| 1528 |
FilterNodes(GR& graph, NF& node_filter) |
|
| 1529 | 1529 |
: Parent(), const_true_map() |
| 1530 | 1530 |
{
|
| 1531 | 1531 |
Parent::initialize(graph, node_filter, const_true_map); |
| 1532 | 1532 |
} |
| 1533 | 1533 |
|
| 1534 | 1534 |
/// \brief Sets the status of the given node |
| 1535 | 1535 |
/// |
| 1536 | 1536 |
/// This function sets the status of the given node. |
| 1537 | 1537 |
/// It is done by simply setting the assigned value of \c n |
| 1538 | 1538 |
/// to \c v in the node filter map. |
| 1539 | 1539 |
void status(const Node& n, bool v) const { Parent::status(n, v); }
|
| 1540 | 1540 |
|
| 1541 | 1541 |
/// \brief Returns the status of the given node |
| 1542 | 1542 |
/// |
| 1543 | 1543 |
/// This function returns the status of the given node. |
| 1544 | 1544 |
/// It is \c true if the given node is enabled (i.e. not hidden). |
| 1545 | 1545 |
bool status(const Node& n) const { return Parent::status(n); }
|
| 1546 | 1546 |
|
| 1547 | 1547 |
/// \brief Disables the given node |
| 1548 | 1548 |
/// |
| 1549 | 1549 |
/// This function disables the given node, so the iteration |
| 1550 | 1550 |
/// jumps over it. |
| 1551 | 1551 |
/// It is the same as \ref status() "status(n, false)". |
| 1552 | 1552 |
void disable(const Node& n) const { Parent::status(n, false); }
|
| 1553 | 1553 |
|
| 1554 | 1554 |
/// \brief Enables the given node |
| 1555 | 1555 |
/// |
| 1556 | 1556 |
/// This function enables the given node. |
| 1557 | 1557 |
/// It is the same as \ref status() "status(n, true)". |
| 1558 | 1558 |
void enable(const Node& n) const { Parent::status(n, true); }
|
| 1559 | 1559 |
|
| 1560 | 1560 |
}; |
| 1561 | 1561 |
|
| 1562 | 1562 |
template<typename GR, typename NF> |
| 1563 | 1563 |
class FilterNodes<GR, NF, |
| 1564 | 1564 |
typename enable_if<UndirectedTagIndicator<GR> >::type> : |
| 1565 | 1565 |
public GraphAdaptorExtender< |
| 1566 |
SubGraphBase<GR, NF, ConstMap<typename GR::Edge, Const<bool, true> >, |
|
| 1566 |
SubGraphBase<GR, NF, ConstMap<typename GR::Edge, Const<bool, true> >, |
|
| 1567 | 1567 |
true> > {
|
| 1568 | 1568 |
|
| 1569 | 1569 |
typedef GraphAdaptorExtender< |
| 1570 |
SubGraphBase<GR, NF, ConstMap<typename GR::Edge, Const<bool, true> >, |
|
| 1570 |
SubGraphBase<GR, NF, ConstMap<typename GR::Edge, Const<bool, true> >, |
|
| 1571 | 1571 |
true> > Parent; |
| 1572 | 1572 |
|
| 1573 | 1573 |
public: |
| 1574 | 1574 |
|
| 1575 | 1575 |
typedef GR Graph; |
| 1576 | 1576 |
typedef NF NodeFilterMap; |
| 1577 | 1577 |
|
| 1578 | 1578 |
typedef typename Parent::Node Node; |
| 1579 | 1579 |
|
| 1580 | 1580 |
protected: |
| 1581 | 1581 |
ConstMap<typename GR::Edge, Const<bool, true> > const_true_map; |
| 1582 | 1582 |
|
| 1583 | 1583 |
FilterNodes() : const_true_map() {}
|
| 1584 | 1584 |
|
| 1585 | 1585 |
public: |
| 1586 | 1586 |
|
| 1587 | 1587 |
FilterNodes(GR& graph, NodeFilterMap& node_filter) : |
| 1588 | 1588 |
Parent(), const_true_map() {
|
| 1589 | 1589 |
Parent::initialize(graph, node_filter, const_true_map); |
| 1590 | 1590 |
} |
| 1591 | 1591 |
|
| 1592 | 1592 |
void status(const Node& n, bool v) const { Parent::status(n, v); }
|
| 1593 | 1593 |
bool status(const Node& n) const { return Parent::status(n); }
|
| 1594 | 1594 |
void disable(const Node& n) const { Parent::status(n, false); }
|
| 1595 | 1595 |
void enable(const Node& n) const { Parent::status(n, true); }
|
| 1596 | 1596 |
|
| 1597 | 1597 |
}; |
| 1598 | 1598 |
|
| 1599 | 1599 |
|
| 1600 | 1600 |
/// \brief Returns a read-only FilterNodes adaptor |
| 1601 | 1601 |
/// |
| 1602 | 1602 |
/// This function just returns a read-only \ref FilterNodes adaptor. |
| ... | ... |
@@ -1624,65 +1624,65 @@ |
| 1624 | 1624 |
/// subdigraph. This adaptor conforms to the \ref concepts::Digraph |
| 1625 | 1625 |
/// "Digraph" concept. |
| 1626 | 1626 |
/// |
| 1627 | 1627 |
/// The adapted digraph can also be modified through this adaptor |
| 1628 | 1628 |
/// by adding or removing nodes or arcs, unless the \c GR template |
| 1629 | 1629 |
/// parameter is set to be \c const. |
| 1630 | 1630 |
/// |
| 1631 | 1631 |
/// This class provides only linear time counting for nodes and arcs. |
| 1632 | 1632 |
/// |
| 1633 | 1633 |
/// \tparam DGR The type of the adapted digraph. |
| 1634 | 1634 |
/// It must conform to the \ref concepts::Digraph "Digraph" concept. |
| 1635 | 1635 |
/// It can also be specified to be \c const. |
| 1636 | 1636 |
/// \tparam AF The type of the arc filter map. |
| 1637 | 1637 |
/// It must be a \c bool (or convertible) arc map of the |
| 1638 | 1638 |
/// adapted digraph. The default type is |
| 1639 | 1639 |
/// \ref concepts::Digraph::ArcMap "DGR::ArcMap<bool>". |
| 1640 | 1640 |
/// |
| 1641 | 1641 |
/// \note The \c Node and \c Arc types of this adaptor and the adapted |
| 1642 | 1642 |
/// digraph are convertible to each other. |
| 1643 | 1643 |
#ifdef DOXYGEN |
| 1644 | 1644 |
template<typename DGR, |
| 1645 | 1645 |
typename AF> |
| 1646 | 1646 |
class FilterArcs {
|
| 1647 | 1647 |
#else |
| 1648 | 1648 |
template<typename DGR, |
| 1649 | 1649 |
typename AF = typename DGR::template ArcMap<bool> > |
| 1650 | 1650 |
class FilterArcs : |
| 1651 | 1651 |
public DigraphAdaptorExtender< |
| 1652 | 1652 |
SubDigraphBase<DGR, ConstMap<typename DGR::Node, Const<bool, true> >, |
| 1653 | 1653 |
AF, false> > {
|
| 1654 | 1654 |
#endif |
| 1655 | 1655 |
typedef DigraphAdaptorExtender< |
| 1656 |
SubDigraphBase<DGR, ConstMap<typename DGR::Node, Const<bool, true> >, |
|
| 1656 |
SubDigraphBase<DGR, ConstMap<typename DGR::Node, Const<bool, true> >, |
|
| 1657 | 1657 |
AF, false> > Parent; |
| 1658 | 1658 |
|
| 1659 | 1659 |
public: |
| 1660 | 1660 |
|
| 1661 | 1661 |
/// The type of the adapted digraph. |
| 1662 | 1662 |
typedef DGR Digraph; |
| 1663 | 1663 |
/// The type of the arc filter map. |
| 1664 | 1664 |
typedef AF ArcFilterMap; |
| 1665 | 1665 |
|
| 1666 | 1666 |
typedef typename Parent::Arc Arc; |
| 1667 | 1667 |
|
| 1668 | 1668 |
protected: |
| 1669 | 1669 |
ConstMap<typename DGR::Node, Const<bool, true> > const_true_map; |
| 1670 | 1670 |
|
| 1671 | 1671 |
FilterArcs() : const_true_map() {}
|
| 1672 | 1672 |
|
| 1673 | 1673 |
public: |
| 1674 | 1674 |
|
| 1675 | 1675 |
/// \brief Constructor |
| 1676 | 1676 |
/// |
| 1677 | 1677 |
/// Creates a subdigraph for the given digraph with the given arc |
| 1678 | 1678 |
/// filter map. |
| 1679 | 1679 |
FilterArcs(DGR& digraph, ArcFilterMap& arc_filter) |
| 1680 | 1680 |
: Parent(), const_true_map() {
|
| 1681 | 1681 |
Parent::initialize(digraph, const_true_map, arc_filter); |
| 1682 | 1682 |
} |
| 1683 | 1683 |
|
| 1684 | 1684 |
/// \brief Sets the status of the given arc |
| 1685 | 1685 |
/// |
| 1686 | 1686 |
/// This function sets the status of the given arc. |
| 1687 | 1687 |
/// It is done by simply setting the assigned value of \c a |
| 1688 | 1688 |
/// to \c v in the arc filter map. |
| ... | ... |
@@ -1732,94 +1732,94 @@ |
| 1732 | 1732 |
/// |
| 1733 | 1733 |
/// FilterEdges adaptor can be used for hiding edges in a graph. |
| 1734 | 1734 |
/// A \c bool edge map must be specified, which defines the filter for |
| 1735 | 1735 |
/// the edges. Only the edges with \c true filter value are shown in the |
| 1736 | 1736 |
/// subgraph. This adaptor conforms to the \ref concepts::Graph |
| 1737 | 1737 |
/// "Graph" concept. |
| 1738 | 1738 |
/// |
| 1739 | 1739 |
/// The adapted graph can also be modified through this adaptor |
| 1740 | 1740 |
/// by adding or removing nodes or edges, unless the \c GR template |
| 1741 | 1741 |
/// parameter is set to be \c const. |
| 1742 | 1742 |
/// |
| 1743 | 1743 |
/// This class provides only linear time counting for nodes, edges and arcs. |
| 1744 | 1744 |
/// |
| 1745 | 1745 |
/// \tparam GR The type of the adapted graph. |
| 1746 | 1746 |
/// It must conform to the \ref concepts::Graph "Graph" concept. |
| 1747 | 1747 |
/// It can also be specified to be \c const. |
| 1748 | 1748 |
/// \tparam EF The type of the edge filter map. |
| 1749 | 1749 |
/// It must be a \c bool (or convertible) edge map of the |
| 1750 | 1750 |
/// adapted graph. The default type is |
| 1751 | 1751 |
/// \ref concepts::Graph::EdgeMap "GR::EdgeMap<bool>". |
| 1752 | 1752 |
/// |
| 1753 | 1753 |
/// \note The \c Node, \c Edge and \c Arc types of this adaptor and the |
| 1754 | 1754 |
/// adapted graph are convertible to each other. |
| 1755 | 1755 |
#ifdef DOXYGEN |
| 1756 | 1756 |
template<typename GR, |
| 1757 | 1757 |
typename EF> |
| 1758 | 1758 |
class FilterEdges {
|
| 1759 | 1759 |
#else |
| 1760 | 1760 |
template<typename GR, |
| 1761 | 1761 |
typename EF = typename GR::template EdgeMap<bool> > |
| 1762 | 1762 |
class FilterEdges : |
| 1763 | 1763 |
public GraphAdaptorExtender< |
| 1764 |
SubGraphBase<GR, ConstMap<typename GR::Node, Const<bool, true> >, |
|
| 1764 |
SubGraphBase<GR, ConstMap<typename GR::Node, Const<bool, true> >, |
|
| 1765 | 1765 |
EF, false> > {
|
| 1766 | 1766 |
#endif |
| 1767 | 1767 |
typedef GraphAdaptorExtender< |
| 1768 |
SubGraphBase<GR, ConstMap<typename GR::Node, Const<bool, true > >, |
|
| 1768 |
SubGraphBase<GR, ConstMap<typename GR::Node, Const<bool, true > >, |
|
| 1769 | 1769 |
EF, false> > Parent; |
| 1770 | 1770 |
|
| 1771 | 1771 |
public: |
| 1772 | 1772 |
|
| 1773 | 1773 |
/// The type of the adapted graph. |
| 1774 | 1774 |
typedef GR Graph; |
| 1775 | 1775 |
/// The type of the edge filter map. |
| 1776 | 1776 |
typedef EF EdgeFilterMap; |
| 1777 | 1777 |
|
| 1778 | 1778 |
typedef typename Parent::Edge Edge; |
| 1779 | 1779 |
|
| 1780 | 1780 |
protected: |
| 1781 | 1781 |
ConstMap<typename GR::Node, Const<bool, true> > const_true_map; |
| 1782 | 1782 |
|
| 1783 | 1783 |
FilterEdges() : const_true_map(true) {
|
| 1784 | 1784 |
Parent::setNodeFilterMap(const_true_map); |
| 1785 | 1785 |
} |
| 1786 | 1786 |
|
| 1787 | 1787 |
public: |
| 1788 | 1788 |
|
| 1789 | 1789 |
/// \brief Constructor |
| 1790 | 1790 |
/// |
| 1791 | 1791 |
/// Creates a subgraph for the given graph with the given edge |
| 1792 | 1792 |
/// filter map. |
| 1793 |
FilterEdges(GR& graph, EF& edge_filter) |
|
| 1793 |
FilterEdges(GR& graph, EF& edge_filter) |
|
| 1794 | 1794 |
: Parent(), const_true_map() {
|
| 1795 | 1795 |
Parent::initialize(graph, const_true_map, edge_filter); |
| 1796 | 1796 |
} |
| 1797 | 1797 |
|
| 1798 | 1798 |
/// \brief Sets the status of the given edge |
| 1799 | 1799 |
/// |
| 1800 | 1800 |
/// This function sets the status of the given edge. |
| 1801 | 1801 |
/// It is done by simply setting the assigned value of \c e |
| 1802 | 1802 |
/// to \c v in the edge filter map. |
| 1803 | 1803 |
void status(const Edge& e, bool v) const { Parent::status(e, v); }
|
| 1804 | 1804 |
|
| 1805 | 1805 |
/// \brief Returns the status of the given edge |
| 1806 | 1806 |
/// |
| 1807 | 1807 |
/// This function returns the status of the given edge. |
| 1808 | 1808 |
/// It is \c true if the given edge is enabled (i.e. not hidden). |
| 1809 | 1809 |
bool status(const Edge& e) const { return Parent::status(e); }
|
| 1810 | 1810 |
|
| 1811 | 1811 |
/// \brief Disables the given edge |
| 1812 | 1812 |
/// |
| 1813 | 1813 |
/// This function disables the given edge in the subgraph, |
| 1814 | 1814 |
/// so the iteration jumps over it. |
| 1815 | 1815 |
/// It is the same as \ref status() "status(e, false)". |
| 1816 | 1816 |
void disable(const Edge& e) const { Parent::status(e, false); }
|
| 1817 | 1817 |
|
| 1818 | 1818 |
/// \brief Enables the given edge |
| 1819 | 1819 |
/// |
| 1820 | 1820 |
/// This function enables the given edge in the subgraph. |
| 1821 | 1821 |
/// It is the same as \ref status() "status(e, true)". |
| 1822 | 1822 |
void enable(const Edge& e) const { Parent::status(e, true); }
|
| 1823 | 1823 |
|
| 1824 | 1824 |
}; |
| 1825 | 1825 |
|
| ... | ... |
@@ -1829,65 +1829,65 @@ |
| 1829 | 1829 |
/// \ingroup graph_adaptors |
| 1830 | 1830 |
/// \relates FilterEdges |
| 1831 | 1831 |
template<typename GR, typename EF> |
| 1832 | 1832 |
FilterEdges<const GR, EF> |
| 1833 | 1833 |
filterEdges(const GR& graph, EF& edge_filter) {
|
| 1834 | 1834 |
return FilterEdges<const GR, EF>(graph, edge_filter); |
| 1835 | 1835 |
} |
| 1836 | 1836 |
|
| 1837 | 1837 |
template<typename GR, typename EF> |
| 1838 | 1838 |
FilterEdges<const GR, const EF> |
| 1839 | 1839 |
filterEdges(const GR& graph, const EF& edge_filter) {
|
| 1840 | 1840 |
return FilterEdges<const GR, const EF>(graph, edge_filter); |
| 1841 | 1841 |
} |
| 1842 | 1842 |
|
| 1843 | 1843 |
|
| 1844 | 1844 |
template <typename DGR> |
| 1845 | 1845 |
class UndirectorBase {
|
| 1846 | 1846 |
public: |
| 1847 | 1847 |
typedef DGR Digraph; |
| 1848 | 1848 |
typedef UndirectorBase Adaptor; |
| 1849 | 1849 |
|
| 1850 | 1850 |
typedef True UndirectedTag; |
| 1851 | 1851 |
|
| 1852 | 1852 |
typedef typename Digraph::Arc Edge; |
| 1853 | 1853 |
typedef typename Digraph::Node Node; |
| 1854 | 1854 |
|
| 1855 | 1855 |
class Arc {
|
| 1856 | 1856 |
friend class UndirectorBase; |
| 1857 | 1857 |
protected: |
| 1858 | 1858 |
Edge _edge; |
| 1859 | 1859 |
bool _forward; |
| 1860 | 1860 |
|
| 1861 |
Arc(const Edge& edge, bool forward) |
|
| 1861 |
Arc(const Edge& edge, bool forward) |
|
| 1862 | 1862 |
: _edge(edge), _forward(forward) {}
|
| 1863 | 1863 |
|
| 1864 | 1864 |
public: |
| 1865 | 1865 |
Arc() {}
|
| 1866 | 1866 |
|
| 1867 | 1867 |
Arc(Invalid) : _edge(INVALID), _forward(true) {}
|
| 1868 | 1868 |
|
| 1869 | 1869 |
operator const Edge&() const { return _edge; }
|
| 1870 | 1870 |
|
| 1871 | 1871 |
bool operator==(const Arc &other) const {
|
| 1872 | 1872 |
return _forward == other._forward && _edge == other._edge; |
| 1873 | 1873 |
} |
| 1874 | 1874 |
bool operator!=(const Arc &other) const {
|
| 1875 | 1875 |
return _forward != other._forward || _edge != other._edge; |
| 1876 | 1876 |
} |
| 1877 | 1877 |
bool operator<(const Arc &other) const {
|
| 1878 | 1878 |
return _forward < other._forward || |
| 1879 | 1879 |
(_forward == other._forward && _edge < other._edge); |
| 1880 | 1880 |
} |
| 1881 | 1881 |
}; |
| 1882 | 1882 |
|
| 1883 | 1883 |
void first(Node& n) const {
|
| 1884 | 1884 |
_digraph->first(n); |
| 1885 | 1885 |
} |
| 1886 | 1886 |
|
| 1887 | 1887 |
void next(Node& n) const {
|
| 1888 | 1888 |
_digraph->next(n); |
| 1889 | 1889 |
} |
| 1890 | 1890 |
|
| 1891 | 1891 |
void first(Arc& a) const {
|
| 1892 | 1892 |
_digraph->first(a._edge); |
| 1893 | 1893 |
a._forward = true; |
| ... | ... |
@@ -2069,65 +2069,65 @@ |
| 2069 | 2069 |
Edge arc = _digraph->findArc(t, s, p); |
| 2070 | 2070 |
if (arc != INVALID) return arc; |
| 2071 | 2071 |
} |
| 2072 | 2072 |
} else {
|
| 2073 | 2073 |
return _digraph->findArc(s, t, p); |
| 2074 | 2074 |
} |
| 2075 | 2075 |
return INVALID; |
| 2076 | 2076 |
} |
| 2077 | 2077 |
|
| 2078 | 2078 |
private: |
| 2079 | 2079 |
|
| 2080 | 2080 |
template <typename V> |
| 2081 | 2081 |
class ArcMapBase {
|
| 2082 | 2082 |
private: |
| 2083 | 2083 |
|
| 2084 | 2084 |
typedef typename DGR::template ArcMap<V> MapImpl; |
| 2085 | 2085 |
|
| 2086 | 2086 |
public: |
| 2087 | 2087 |
|
| 2088 | 2088 |
typedef typename MapTraits<MapImpl>::ReferenceMapTag ReferenceMapTag; |
| 2089 | 2089 |
|
| 2090 | 2090 |
typedef V Value; |
| 2091 | 2091 |
typedef Arc Key; |
| 2092 | 2092 |
typedef typename MapTraits<MapImpl>::ConstReturnValue ConstReturnValue; |
| 2093 | 2093 |
typedef typename MapTraits<MapImpl>::ReturnValue ReturnValue; |
| 2094 | 2094 |
typedef typename MapTraits<MapImpl>::ConstReturnValue ConstReference; |
| 2095 | 2095 |
typedef typename MapTraits<MapImpl>::ReturnValue Reference; |
| 2096 | 2096 |
|
| 2097 | 2097 |
ArcMapBase(const UndirectorBase<DGR>& adaptor) : |
| 2098 | 2098 |
_forward(*adaptor._digraph), _backward(*adaptor._digraph) {}
|
| 2099 | 2099 |
|
| 2100 | 2100 |
ArcMapBase(const UndirectorBase<DGR>& adaptor, const V& value) |
| 2101 |
: _forward(*adaptor._digraph, value), |
|
| 2101 |
: _forward(*adaptor._digraph, value), |
|
| 2102 | 2102 |
_backward(*adaptor._digraph, value) {}
|
| 2103 | 2103 |
|
| 2104 | 2104 |
void set(const Arc& a, const V& value) {
|
| 2105 | 2105 |
if (direction(a)) {
|
| 2106 | 2106 |
_forward.set(a, value); |
| 2107 | 2107 |
} else {
|
| 2108 | 2108 |
_backward.set(a, value); |
| 2109 | 2109 |
} |
| 2110 | 2110 |
} |
| 2111 | 2111 |
|
| 2112 | 2112 |
ConstReturnValue operator[](const Arc& a) const {
|
| 2113 | 2113 |
if (direction(a)) {
|
| 2114 | 2114 |
return _forward[a]; |
| 2115 | 2115 |
} else {
|
| 2116 | 2116 |
return _backward[a]; |
| 2117 | 2117 |
} |
| 2118 | 2118 |
} |
| 2119 | 2119 |
|
| 2120 | 2120 |
ReturnValue operator[](const Arc& a) {
|
| 2121 | 2121 |
if (direction(a)) {
|
| 2122 | 2122 |
return _forward[a]; |
| 2123 | 2123 |
} else {
|
| 2124 | 2124 |
return _backward[a]; |
| 2125 | 2125 |
} |
| 2126 | 2126 |
} |
| 2127 | 2127 |
|
| 2128 | 2128 |
protected: |
| 2129 | 2129 |
|
| 2130 | 2130 |
MapImpl _forward, _backward; |
| 2131 | 2131 |
|
| 2132 | 2132 |
}; |
| 2133 | 2133 |
|
| ... | ... |
@@ -2187,65 +2187,65 @@ |
| 2187 | 2187 |
|
| 2188 | 2188 |
template <typename V> |
| 2189 | 2189 |
class EdgeMap : public Digraph::template ArcMap<V> {
|
| 2190 | 2190 |
typedef typename Digraph::template ArcMap<V> Parent; |
| 2191 | 2191 |
|
| 2192 | 2192 |
public: |
| 2193 | 2193 |
typedef V Value; |
| 2194 | 2194 |
|
| 2195 | 2195 |
explicit EdgeMap(const UndirectorBase<DGR>& adaptor) |
| 2196 | 2196 |
: Parent(*adaptor._digraph) {}
|
| 2197 | 2197 |
|
| 2198 | 2198 |
EdgeMap(const UndirectorBase<DGR>& adaptor, const V& value) |
| 2199 | 2199 |
: Parent(*adaptor._digraph, value) {}
|
| 2200 | 2200 |
|
| 2201 | 2201 |
private: |
| 2202 | 2202 |
EdgeMap& operator=(const EdgeMap& cmap) {
|
| 2203 | 2203 |
return operator=<EdgeMap>(cmap); |
| 2204 | 2204 |
} |
| 2205 | 2205 |
|
| 2206 | 2206 |
template <typename CMap> |
| 2207 | 2207 |
EdgeMap& operator=(const CMap& cmap) {
|
| 2208 | 2208 |
Parent::operator=(cmap); |
| 2209 | 2209 |
return *this; |
| 2210 | 2210 |
} |
| 2211 | 2211 |
|
| 2212 | 2212 |
}; |
| 2213 | 2213 |
|
| 2214 | 2214 |
typedef typename ItemSetTraits<DGR, Node>::ItemNotifier NodeNotifier; |
| 2215 | 2215 |
NodeNotifier& notifier(Node) const { return _digraph->notifier(Node()); }
|
| 2216 | 2216 |
|
| 2217 | 2217 |
typedef typename ItemSetTraits<DGR, Edge>::ItemNotifier EdgeNotifier; |
| 2218 | 2218 |
EdgeNotifier& notifier(Edge) const { return _digraph->notifier(Edge()); }
|
| 2219 |
|
|
| 2219 |
|
|
| 2220 | 2220 |
typedef EdgeNotifier ArcNotifier; |
| 2221 | 2221 |
ArcNotifier& notifier(Arc) const { return _digraph->notifier(Edge()); }
|
| 2222 | 2222 |
|
| 2223 | 2223 |
protected: |
| 2224 | 2224 |
|
| 2225 | 2225 |
UndirectorBase() : _digraph(0) {}
|
| 2226 | 2226 |
|
| 2227 | 2227 |
DGR* _digraph; |
| 2228 | 2228 |
|
| 2229 | 2229 |
void initialize(DGR& digraph) {
|
| 2230 | 2230 |
_digraph = &digraph; |
| 2231 | 2231 |
} |
| 2232 | 2232 |
|
| 2233 | 2233 |
}; |
| 2234 | 2234 |
|
| 2235 | 2235 |
/// \ingroup graph_adaptors |
| 2236 | 2236 |
/// |
| 2237 | 2237 |
/// \brief Adaptor class for viewing a digraph as an undirected graph. |
| 2238 | 2238 |
/// |
| 2239 | 2239 |
/// Undirector adaptor can be used for viewing a digraph as an undirected |
| 2240 | 2240 |
/// graph. All arcs of the underlying digraph are showed in the |
| 2241 | 2241 |
/// adaptor as an edge (and also as a pair of arcs, of course). |
| 2242 | 2242 |
/// This adaptor conforms to the \ref concepts::Graph "Graph" concept. |
| 2243 | 2243 |
/// |
| 2244 | 2244 |
/// The adapted digraph can also be modified through this adaptor |
| 2245 | 2245 |
/// by adding or removing nodes or edges, unless the \c GR template |
| 2246 | 2246 |
/// parameter is set to be \c const. |
| 2247 | 2247 |
/// |
| 2248 | 2248 |
/// This class provides item counting in the same time as the adapted |
| 2249 | 2249 |
/// digraph structure. |
| 2250 | 2250 |
/// |
| 2251 | 2251 |
/// \tparam DGR The type of the adapted digraph. |
| ... | ... |
@@ -2699,122 +2699,122 @@ |
| 2699 | 2699 |
/// |
| 2700 | 2700 |
/// This class provides only linear time counting for nodes and arcs. |
| 2701 | 2701 |
/// |
| 2702 | 2702 |
/// \tparam DGR The type of the adapted digraph. |
| 2703 | 2703 |
/// It must conform to the \ref concepts::Digraph "Digraph" concept. |
| 2704 | 2704 |
/// It is implicitly \c const. |
| 2705 | 2705 |
/// \tparam CM The type of the capacity map. |
| 2706 | 2706 |
/// It must be an arc map of some numerical type, which defines |
| 2707 | 2707 |
/// the capacities in the flow problem. It is implicitly \c const. |
| 2708 | 2708 |
/// The default type is |
| 2709 | 2709 |
/// \ref concepts::Digraph::ArcMap "GR::ArcMap<int>". |
| 2710 | 2710 |
/// \tparam FM The type of the flow map. |
| 2711 | 2711 |
/// It must be an arc map of some numerical type, which defines |
| 2712 | 2712 |
/// the flow values in the flow problem. The default type is \c CM. |
| 2713 | 2713 |
/// \tparam TL The tolerance type for handling inexact computation. |
| 2714 | 2714 |
/// The default tolerance type depends on the value type of the |
| 2715 | 2715 |
/// capacity map. |
| 2716 | 2716 |
/// |
| 2717 | 2717 |
/// \note This adaptor is implemented using Undirector and FilterArcs |
| 2718 | 2718 |
/// adaptors. |
| 2719 | 2719 |
/// |
| 2720 | 2720 |
/// \note The \c Node type of this adaptor and the adapted digraph are |
| 2721 | 2721 |
/// convertible to each other, moreover the \c Arc type of the adaptor |
| 2722 | 2722 |
/// is convertible to the \c Arc type of the adapted digraph. |
| 2723 | 2723 |
#ifdef DOXYGEN |
| 2724 | 2724 |
template<typename DGR, typename CM, typename FM, typename TL> |
| 2725 | 2725 |
class ResidualDigraph |
| 2726 | 2726 |
#else |
| 2727 | 2727 |
template<typename DGR, |
| 2728 | 2728 |
typename CM = typename DGR::template ArcMap<int>, |
| 2729 | 2729 |
typename FM = CM, |
| 2730 | 2730 |
typename TL = Tolerance<typename CM::Value> > |
| 2731 |
class ResidualDigraph |
|
| 2731 |
class ResidualDigraph |
|
| 2732 | 2732 |
: public SubDigraph< |
| 2733 | 2733 |
Undirector<const DGR>, |
| 2734 | 2734 |
ConstMap<typename DGR::Node, Const<bool, true> >, |
| 2735 | 2735 |
typename Undirector<const DGR>::template CombinedArcMap< |
| 2736 | 2736 |
_adaptor_bits::ResForwardFilter<const DGR, CM, FM, TL>, |
| 2737 | 2737 |
_adaptor_bits::ResBackwardFilter<const DGR, CM, FM, TL> > > |
| 2738 | 2738 |
#endif |
| 2739 | 2739 |
{
|
| 2740 | 2740 |
public: |
| 2741 | 2741 |
|
| 2742 | 2742 |
/// The type of the underlying digraph. |
| 2743 | 2743 |
typedef DGR Digraph; |
| 2744 | 2744 |
/// The type of the capacity map. |
| 2745 | 2745 |
typedef CM CapacityMap; |
| 2746 | 2746 |
/// The type of the flow map. |
| 2747 | 2747 |
typedef FM FlowMap; |
| 2748 | 2748 |
/// The tolerance type. |
| 2749 | 2749 |
typedef TL Tolerance; |
| 2750 | 2750 |
|
| 2751 | 2751 |
typedef typename CapacityMap::Value Value; |
| 2752 | 2752 |
typedef ResidualDigraph Adaptor; |
| 2753 | 2753 |
|
| 2754 | 2754 |
protected: |
| 2755 | 2755 |
|
| 2756 | 2756 |
typedef Undirector<const Digraph> Undirected; |
| 2757 | 2757 |
|
| 2758 | 2758 |
typedef ConstMap<typename DGR::Node, Const<bool, true> > NodeFilter; |
| 2759 | 2759 |
|
| 2760 | 2760 |
typedef _adaptor_bits::ResForwardFilter<const DGR, CM, |
| 2761 | 2761 |
FM, TL> ForwardFilter; |
| 2762 | 2762 |
|
| 2763 | 2763 |
typedef _adaptor_bits::ResBackwardFilter<const DGR, CM, |
| 2764 | 2764 |
FM, TL> BackwardFilter; |
| 2765 | 2765 |
|
| 2766 | 2766 |
typedef typename Undirected:: |
| 2767 | 2767 |
template CombinedArcMap<ForwardFilter, BackwardFilter> ArcFilter; |
| 2768 | 2768 |
|
| 2769 | 2769 |
typedef SubDigraph<Undirected, NodeFilter, ArcFilter> Parent; |
| 2770 | 2770 |
|
| 2771 | 2771 |
const CapacityMap* _capacity; |
| 2772 | 2772 |
FlowMap* _flow; |
| 2773 | 2773 |
|
| 2774 | 2774 |
Undirected _graph; |
| 2775 | 2775 |
NodeFilter _node_filter; |
| 2776 | 2776 |
ForwardFilter _forward_filter; |
| 2777 | 2777 |
BackwardFilter _backward_filter; |
| 2778 | 2778 |
ArcFilter _arc_filter; |
| 2779 | 2779 |
|
| 2780 | 2780 |
public: |
| 2781 | 2781 |
|
| 2782 | 2782 |
/// \brief Constructor |
| 2783 | 2783 |
/// |
| 2784 | 2784 |
/// Constructor of the residual digraph adaptor. The parameters are the |
| 2785 | 2785 |
/// digraph, the capacity map, the flow map, and a tolerance object. |
| 2786 | 2786 |
ResidualDigraph(const DGR& digraph, const CM& capacity, |
| 2787 | 2787 |
FM& flow, const TL& tolerance = Tolerance()) |
| 2788 |
: Parent(), _capacity(&capacity), _flow(&flow), |
|
| 2788 |
: Parent(), _capacity(&capacity), _flow(&flow), |
|
| 2789 | 2789 |
_graph(digraph), _node_filter(), |
| 2790 | 2790 |
_forward_filter(capacity, flow, tolerance), |
| 2791 | 2791 |
_backward_filter(capacity, flow, tolerance), |
| 2792 | 2792 |
_arc_filter(_forward_filter, _backward_filter) |
| 2793 | 2793 |
{
|
| 2794 | 2794 |
Parent::initialize(_graph, _node_filter, _arc_filter); |
| 2795 | 2795 |
} |
| 2796 | 2796 |
|
| 2797 | 2797 |
typedef typename Parent::Arc Arc; |
| 2798 | 2798 |
|
| 2799 | 2799 |
/// \brief Returns the residual capacity of the given arc. |
| 2800 | 2800 |
/// |
| 2801 | 2801 |
/// Returns the residual capacity of the given arc. |
| 2802 | 2802 |
Value residualCapacity(const Arc& a) const {
|
| 2803 | 2803 |
if (Undirected::direction(a)) {
|
| 2804 | 2804 |
return (*_capacity)[a] - (*_flow)[a]; |
| 2805 | 2805 |
} else {
|
| 2806 | 2806 |
return (*_flow)[a]; |
| 2807 | 2807 |
} |
| 2808 | 2808 |
} |
| 2809 | 2809 |
|
| 2810 | 2810 |
/// \brief Augments on the given arc in the residual digraph. |
| 2811 | 2811 |
/// |
| 2812 | 2812 |
/// Augments on the given arc in the residual digraph. It increases |
| 2813 | 2813 |
/// or decreases the flow value on the original arc according to the |
| 2814 | 2814 |
/// direction of the residual arc. |
| 2815 | 2815 |
void augment(const Arc& a, const Value& v) const {
|
| 2816 | 2816 |
if (Undirected::direction(a)) {
|
| 2817 | 2817 |
_flow->set(a, (*_flow)[a] + v); |
| 2818 | 2818 |
} else {
|
| 2819 | 2819 |
_flow->set(a, (*_flow)[a] - v); |
| 2820 | 2820 |
} |
| ... | ... |
@@ -2838,65 +2838,65 @@ |
| 2838 | 2838 |
|
| 2839 | 2839 |
/// \brief Returns the forward oriented residual arc. |
| 2840 | 2840 |
/// |
| 2841 | 2841 |
/// Returns the forward oriented residual arc related to the given |
| 2842 | 2842 |
/// arc of the underlying digraph. |
| 2843 | 2843 |
static Arc forward(const typename Digraph::Arc& a) {
|
| 2844 | 2844 |
return Undirected::direct(a, true); |
| 2845 | 2845 |
} |
| 2846 | 2846 |
|
| 2847 | 2847 |
/// \brief Returns the backward oriented residual arc. |
| 2848 | 2848 |
/// |
| 2849 | 2849 |
/// Returns the backward oriented residual arc related to the given |
| 2850 | 2850 |
/// arc of the underlying digraph. |
| 2851 | 2851 |
static Arc backward(const typename Digraph::Arc& a) {
|
| 2852 | 2852 |
return Undirected::direct(a, false); |
| 2853 | 2853 |
} |
| 2854 | 2854 |
|
| 2855 | 2855 |
/// \brief Residual capacity map. |
| 2856 | 2856 |
/// |
| 2857 | 2857 |
/// This map adaptor class can be used for obtaining the residual |
| 2858 | 2858 |
/// capacities as an arc map of the residual digraph. |
| 2859 | 2859 |
/// Its value type is inherited from the capacity map. |
| 2860 | 2860 |
class ResidualCapacity {
|
| 2861 | 2861 |
protected: |
| 2862 | 2862 |
const Adaptor* _adaptor; |
| 2863 | 2863 |
public: |
| 2864 | 2864 |
/// The key type of the map |
| 2865 | 2865 |
typedef Arc Key; |
| 2866 | 2866 |
/// The value type of the map |
| 2867 | 2867 |
typedef typename CapacityMap::Value Value; |
| 2868 | 2868 |
|
| 2869 | 2869 |
/// Constructor |
| 2870 |
ResidualCapacity(const ResidualDigraph<DGR, CM, FM, TL>& adaptor) |
|
| 2870 |
ResidualCapacity(const ResidualDigraph<DGR, CM, FM, TL>& adaptor) |
|
| 2871 | 2871 |
: _adaptor(&adaptor) {}
|
| 2872 | 2872 |
|
| 2873 | 2873 |
/// Returns the value associated with the given residual arc |
| 2874 | 2874 |
Value operator[](const Arc& a) const {
|
| 2875 | 2875 |
return _adaptor->residualCapacity(a); |
| 2876 | 2876 |
} |
| 2877 | 2877 |
|
| 2878 | 2878 |
}; |
| 2879 | 2879 |
|
| 2880 | 2880 |
/// \brief Returns a residual capacity map |
| 2881 | 2881 |
/// |
| 2882 | 2882 |
/// This function just returns a residual capacity map. |
| 2883 | 2883 |
ResidualCapacity residualCapacity() const {
|
| 2884 | 2884 |
return ResidualCapacity(*this); |
| 2885 | 2885 |
} |
| 2886 | 2886 |
|
| 2887 | 2887 |
}; |
| 2888 | 2888 |
|
| 2889 | 2889 |
/// \brief Returns a (read-only) Residual adaptor |
| 2890 | 2890 |
/// |
| 2891 | 2891 |
/// This function just returns a (read-only) \ref ResidualDigraph adaptor. |
| 2892 | 2892 |
/// \ingroup graph_adaptors |
| 2893 | 2893 |
/// \relates ResidualDigraph |
| 2894 | 2894 |
template<typename DGR, typename CM, typename FM> |
| 2895 | 2895 |
ResidualDigraph<DGR, CM, FM> |
| 2896 | 2896 |
residualDigraph(const DGR& digraph, const CM& capacity_map, FM& flow_map) {
|
| 2897 | 2897 |
return ResidualDigraph<DGR, CM, FM> (digraph, capacity_map, flow_map); |
| 2898 | 2898 |
} |
| 2899 | 2899 |
|
| 2900 | 2900 |
|
| 2901 | 2901 |
template <typename DGR> |
| 2902 | 2902 |
class SplitNodesBase {
|
| ... | ... |
@@ -3418,65 +3418,65 @@ |
| 3418 | 3418 |
} |
| 3419 | 3419 |
|
| 3420 | 3420 |
/// \brief Returns the out-node created from the given original node. |
| 3421 | 3421 |
/// |
| 3422 | 3422 |
/// Returns the out-node created from the given original node. |
| 3423 | 3423 |
static Node outNode(const DigraphNode& n) {
|
| 3424 | 3424 |
return Parent::outNode(n); |
| 3425 | 3425 |
} |
| 3426 | 3426 |
|
| 3427 | 3427 |
/// \brief Returns the bind arc that corresponds to the given |
| 3428 | 3428 |
/// original node. |
| 3429 | 3429 |
/// |
| 3430 | 3430 |
/// Returns the bind arc in the adaptor that corresponds to the given |
| 3431 | 3431 |
/// original node, i.e. the arc connecting the in-node and out-node |
| 3432 | 3432 |
/// of \c n. |
| 3433 | 3433 |
static Arc arc(const DigraphNode& n) {
|
| 3434 | 3434 |
return Parent::arc(n); |
| 3435 | 3435 |
} |
| 3436 | 3436 |
|
| 3437 | 3437 |
/// \brief Returns the arc that corresponds to the given original arc. |
| 3438 | 3438 |
/// |
| 3439 | 3439 |
/// Returns the arc in the adaptor that corresponds to the given |
| 3440 | 3440 |
/// original arc. |
| 3441 | 3441 |
static Arc arc(const DigraphArc& a) {
|
| 3442 | 3442 |
return Parent::arc(a); |
| 3443 | 3443 |
} |
| 3444 | 3444 |
|
| 3445 | 3445 |
/// \brief Node map combined from two original node maps |
| 3446 | 3446 |
/// |
| 3447 | 3447 |
/// This map adaptor class adapts two node maps of the original digraph |
| 3448 | 3448 |
/// to get a node map of the split digraph. |
| 3449 | 3449 |
/// Its value type is inherited from the first node map type (\c IN). |
| 3450 |
/// \tparam IN The type of the node map for the in-nodes. |
|
| 3450 |
/// \tparam IN The type of the node map for the in-nodes. |
|
| 3451 | 3451 |
/// \tparam OUT The type of the node map for the out-nodes. |
| 3452 | 3452 |
template <typename IN, typename OUT> |
| 3453 | 3453 |
class CombinedNodeMap {
|
| 3454 | 3454 |
public: |
| 3455 | 3455 |
|
| 3456 | 3456 |
/// The key type of the map |
| 3457 | 3457 |
typedef Node Key; |
| 3458 | 3458 |
/// The value type of the map |
| 3459 | 3459 |
typedef typename IN::Value Value; |
| 3460 | 3460 |
|
| 3461 | 3461 |
typedef typename MapTraits<IN>::ReferenceMapTag ReferenceMapTag; |
| 3462 | 3462 |
typedef typename MapTraits<IN>::ReturnValue ReturnValue; |
| 3463 | 3463 |
typedef typename MapTraits<IN>::ConstReturnValue ConstReturnValue; |
| 3464 | 3464 |
typedef typename MapTraits<IN>::ReturnValue Reference; |
| 3465 | 3465 |
typedef typename MapTraits<IN>::ConstReturnValue ConstReference; |
| 3466 | 3466 |
|
| 3467 | 3467 |
/// Constructor |
| 3468 | 3468 |
CombinedNodeMap(IN& in_map, OUT& out_map) |
| 3469 | 3469 |
: _in_map(in_map), _out_map(out_map) {}
|
| 3470 | 3470 |
|
| 3471 | 3471 |
/// Returns the value associated with the given key. |
| 3472 | 3472 |
Value operator[](const Key& key) const {
|
| 3473 | 3473 |
if (SplitNodesBase<const DGR>::inNode(key)) {
|
| 3474 | 3474 |
return _in_map[key]; |
| 3475 | 3475 |
} else {
|
| 3476 | 3476 |
return _out_map[key]; |
| 3477 | 3477 |
} |
| 3478 | 3478 |
} |
| 3479 | 3479 |
|
| 3480 | 3480 |
/// Returns a reference to the value associated with the given key. |
| 3481 | 3481 |
Value& operator[](const Key& key) {
|
| 3482 | 3482 |
if (SplitNodesBase<const DGR>::inNode(key)) {
|
| 1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
| 2 | 2 |
* |
| 3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
| 4 | 4 |
* |
| 5 |
* Copyright (C) 2003- |
|
| 5 |
* Copyright (C) 2003-2010 |
|
| 6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
| 7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
| 8 | 8 |
* |
| 9 | 9 |
* Permission to use, modify and distribute this software is granted |
| 10 | 10 |
* provided that this copyright notice appears in all copies. For |
| 11 | 11 |
* precise terms see the accompanying LICENSE file. |
| 12 | 12 |
* |
| 13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
| 14 | 14 |
* express or implied, and with no claim as to its suitability for any |
| 15 | 15 |
* purpose. |
| 16 | 16 |
* |
| 17 | 17 |
*/ |
| 18 | 18 |
|
| 19 | 19 |
#include <lemon/arg_parser.h> |
| 20 | 20 |
|
| 21 | 21 |
namespace lemon {
|
| 22 | 22 |
|
| 23 | 23 |
void ArgParser::_terminate(ArgParserException::Reason reason) const |
| 24 | 24 |
{
|
| 25 | 25 |
if(_exit_on_problems) |
| 26 | 26 |
exit(1); |
| 27 | 27 |
else throw(ArgParserException(reason)); |
| 28 | 28 |
} |
| 29 |
|
|
| 30 |
|
|
| 29 |
|
|
| 30 |
|
|
| 31 | 31 |
void ArgParser::_showHelp(void *p) |
| 32 | 32 |
{
|
| 33 | 33 |
(static_cast<ArgParser*>(p))->showHelp(); |
| 34 | 34 |
(static_cast<ArgParser*>(p))->_terminate(ArgParserException::HELP); |
| 35 | 35 |
} |
| 36 | 36 |
|
| 37 | 37 |
ArgParser::ArgParser(int argc, const char * const *argv) |
| 38 | 38 |
:_argc(argc), _argv(argv), _command_name(argv[0]), |
| 39 | 39 |
_exit_on_problems(true) {
|
| 40 | 40 |
funcOption("-help","Print a short help message",_showHelp,this);
|
| 41 | 41 |
synonym("help","-help");
|
| 42 | 42 |
synonym("h","-help");
|
| 43 | 43 |
} |
| 44 | 44 |
|
| 45 | 45 |
ArgParser::~ArgParser() |
| 46 | 46 |
{
|
| 47 | 47 |
for(Opts::iterator i=_opts.begin();i!=_opts.end();++i) |
| 48 | 48 |
if(i->second.self_delete) |
| 49 | 49 |
switch(i->second.type) {
|
| 50 | 50 |
case BOOL: |
| 51 | 51 |
delete i->second.bool_p; |
| 52 | 52 |
break; |
| 53 | 53 |
case STRING: |
| 54 | 54 |
delete i->second.string_p; |
| 55 | 55 |
break; |
| 56 | 56 |
case DOUBLE: |
| 57 | 57 |
delete i->second.double_p; |
| 58 | 58 |
break; |
| 59 | 59 |
case INTEGER: |
| 60 | 60 |
delete i->second.int_p; |
| 61 | 61 |
break; |
| 62 | 62 |
case UNKNOWN: |
| 1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
| 2 | 2 |
* |
| 3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
| 4 | 4 |
* |
| 5 |
* Copyright (C) 2003- |
|
| 5 |
* Copyright (C) 2003-2010 |
|
| 6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
| 7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
| 8 | 8 |
* |
| 9 | 9 |
* Permission to use, modify and distribute this software is granted |
| 10 | 10 |
* provided that this copyright notice appears in all copies. For |
| 11 | 11 |
* precise terms see the accompanying LICENSE file. |
| 12 | 12 |
* |
| 13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
| 14 | 14 |
* express or implied, and with no claim as to its suitability for any |
| 15 | 15 |
* purpose. |
| 16 | 16 |
* |
| 17 | 17 |
*/ |
| 18 | 18 |
|
| 19 | 19 |
#ifndef LEMON_ARG_PARSER_H |
| 20 | 20 |
#define LEMON_ARG_PARSER_H |
| 21 | 21 |
|
| 22 | 22 |
#include <vector> |
| 23 | 23 |
#include <map> |
| 24 | 24 |
#include <list> |
| 25 | 25 |
#include <string> |
| 26 | 26 |
#include <iostream> |
| 27 | 27 |
#include <sstream> |
| 28 | 28 |
#include <algorithm> |
| 29 | 29 |
#include <lemon/assert.h> |
| 30 | 30 |
|
| 31 | 31 |
///\ingroup misc |
| 32 | 32 |
///\file |
| 33 | 33 |
///\brief A tool to parse command line arguments. |
| 34 | 34 |
|
| 35 | 35 |
namespace lemon {
|
| 36 | 36 |
|
| 37 | 37 |
///Exception used by ArgParser |
| 38 | 38 |
class ArgParserException : public Exception {
|
| 39 | 39 |
public: |
| 40 | 40 |
enum Reason {
|
| 41 | 41 |
HELP, /// <tt>--help</tt> option was given |
| 42 | 42 |
UNKNOWN_OPT, /// Unknown option was given |
| 43 | 43 |
INVALID_OPT /// Invalid combination of options |
| 44 | 44 |
}; |
| 45 |
|
|
| 45 |
|
|
| 46 | 46 |
private: |
| 47 | 47 |
Reason _reason; |
| 48 |
|
|
| 48 |
|
|
| 49 | 49 |
public: |
| 50 | 50 |
///Constructor |
| 51 | 51 |
ArgParserException(Reason r) throw() : _reason(r) {}
|
| 52 | 52 |
///Virtual destructor |
| 53 | 53 |
virtual ~ArgParserException() throw() {}
|
| 54 | 54 |
///A short description of the exception |
| 55 | 55 |
virtual const char* what() const throw() {
|
| 56 | 56 |
switch(_reason) |
| 57 | 57 |
{
|
| 58 | 58 |
case HELP: |
| 59 | 59 |
return "lemon::ArgParseException: ask for help"; |
| 60 | 60 |
break; |
| 61 | 61 |
case UNKNOWN_OPT: |
| 62 | 62 |
return "lemon::ArgParseException: unknown option"; |
| 63 | 63 |
break; |
| 64 | 64 |
case INVALID_OPT: |
| 65 | 65 |
return "lemon::ArgParseException: invalid combination of options"; |
| 66 | 66 |
break; |
| 67 | 67 |
} |
| 68 | 68 |
return ""; |
| 69 | 69 |
} |
| 70 | 70 |
///Return the reason for the failure |
| 71 | 71 |
Reason reason() const {return _reason; }
|
| 72 | 72 |
}; |
| 73 | 73 |
|
| 74 | 74 |
|
| 75 | 75 |
///Command line arguments parser |
| 76 | 76 |
|
| 77 | 77 |
///\ingroup misc |
| 78 | 78 |
///Command line arguments parser. |
| 79 | 79 |
/// |
| 80 | 80 |
///For a complete example see the \ref arg_parser_demo.cc demo file. |
| ... | ... |
@@ -112,79 +112,79 @@ |
| 112 | 112 |
ParData() : mandatory(false), type(UNKNOWN), set(false), ingroup(false), |
| 113 | 113 |
has_syn(false), syn(false), self_delete(false) {}
|
| 114 | 114 |
}; |
| 115 | 115 |
|
| 116 | 116 |
typedef std::map<std::string,ParData> Opts; |
| 117 | 117 |
Opts _opts; |
| 118 | 118 |
|
| 119 | 119 |
class GroupData |
| 120 | 120 |
{
|
| 121 | 121 |
public: |
| 122 | 122 |
typedef std::list<std::string> Opts; |
| 123 | 123 |
Opts opts; |
| 124 | 124 |
bool only_one; |
| 125 | 125 |
bool mandatory; |
| 126 | 126 |
GroupData() :only_one(false), mandatory(false) {}
|
| 127 | 127 |
}; |
| 128 | 128 |
|
| 129 | 129 |
typedef std::map<std::string,GroupData> Groups; |
| 130 | 130 |
Groups _groups; |
| 131 | 131 |
|
| 132 | 132 |
struct OtherArg |
| 133 | 133 |
{
|
| 134 | 134 |
std::string name; |
| 135 | 135 |
std::string help; |
| 136 | 136 |
OtherArg(std::string n, std::string h) :name(n), help(h) {}
|
| 137 | 137 |
|
| 138 | 138 |
}; |
| 139 | 139 |
|
| 140 | 140 |
std::vector<OtherArg> _others_help; |
| 141 | 141 |
std::vector<std::string> _file_args; |
| 142 | 142 |
std::string _command_name; |
| 143 | 143 |
|
| 144 |
|
|
| 144 |
|
|
| 145 | 145 |
private: |
| 146 | 146 |
//Bind a function to an option. |
| 147 | 147 |
|
| 148 | 148 |
//\param name The name of the option. The leading '-' must be omitted. |
| 149 | 149 |
//\param help A help string. |
| 150 | 150 |
//\retval func The function to be called when the option is given. It |
| 151 | 151 |
// must be of type "void f(void *)" |
| 152 | 152 |
//\param data Data to be passed to \c func |
| 153 | 153 |
ArgParser &funcOption(const std::string &name, |
| 154 | 154 |
const std::string &help, |
| 155 | 155 |
void (*func)(void *),void *data); |
| 156 | 156 |
|
| 157 | 157 |
bool _exit_on_problems; |
| 158 |
|
|
| 158 |
|
|
| 159 | 159 |
void _terminate(ArgParserException::Reason reason) const; |
| 160 | 160 |
|
| 161 | 161 |
public: |
| 162 | 162 |
|
| 163 | 163 |
///Constructor |
| 164 | 164 |
ArgParser(int argc, const char * const *argv); |
| 165 | 165 |
|
| 166 | 166 |
~ArgParser(); |
| 167 | 167 |
|
| 168 | 168 |
///\name Options |
| 169 | 169 |
/// |
| 170 | 170 |
|
| 171 | 171 |
///@{
|
| 172 | 172 |
|
| 173 | 173 |
///Add a new integer type option |
| 174 | 174 |
|
| 175 | 175 |
///Add a new integer type option. |
| 176 | 176 |
///\param name The name of the option. The leading '-' must be omitted. |
| 177 | 177 |
///\param help A help string. |
| 178 | 178 |
///\param value A default value for the option. |
| 179 | 179 |
///\param obl Indicate if the option is mandatory. |
| 180 | 180 |
ArgParser &intOption(const std::string &name, |
| 181 | 181 |
const std::string &help, |
| 182 | 182 |
int value=0, bool obl=false); |
| 183 | 183 |
|
| 184 | 184 |
///Add a new floating point type option |
| 185 | 185 |
|
| 186 | 186 |
///Add a new floating point type option. |
| 187 | 187 |
///\param name The name of the option. The leading '-' must be omitted. |
| 188 | 188 |
///\param help A help string. |
| 189 | 189 |
///\param value A default value for the option. |
| 190 | 190 |
///\param obl Indicate if the option is mandatory. |
| ... | ... |
@@ -394,40 +394,40 @@ |
| 394 | 394 |
return i->second.type==ArgParser::DOUBLE ? |
| 395 | 395 |
*(i->second.double_p) : *(i->second.int_p); |
| 396 | 396 |
} |
| 397 | 397 |
///\e |
| 398 | 398 |
operator int() |
| 399 | 399 |
{
|
| 400 | 400 |
Opts::const_iterator i = _parser._opts.find(_name); |
| 401 | 401 |
LEMON_ASSERT(i!=_parser._opts.end(), |
| 402 | 402 |
std::string()+"Unkown option: '"+_name+"'"); |
| 403 | 403 |
LEMON_ASSERT(i->second.type==ArgParser::INTEGER, |
| 404 | 404 |
std::string()+"'"+_name+"' is an integer option"); |
| 405 | 405 |
return *(i->second.int_p); |
| 406 | 406 |
} |
| 407 | 407 |
|
| 408 | 408 |
}; |
| 409 | 409 |
|
| 410 | 410 |
///Give back the value of an option |
| 411 | 411 |
|
| 412 | 412 |
///Give back the value of an option. |
| 413 | 413 |
///\sa RefType |
| 414 | 414 |
RefType operator[](const std::string &n) const |
| 415 | 415 |
{
|
| 416 | 416 |
return RefType(*this, n); |
| 417 | 417 |
} |
| 418 | 418 |
|
| 419 | 419 |
///Give back the non-option type arguments. |
| 420 | 420 |
|
| 421 | 421 |
///Give back a reference to a vector consisting of the program arguments |
| 422 | 422 |
///not starting with a '-' character. |
| 423 | 423 |
const std::vector<std::string> &files() const { return _file_args; }
|
| 424 | 424 |
|
| 425 | 425 |
///Throw instead of exit in case of problems |
| 426 |
void throwOnProblems() |
|
| 426 |
void throwOnProblems() |
|
| 427 | 427 |
{
|
| 428 | 428 |
_exit_on_problems=false; |
| 429 | 429 |
} |
| 430 | 430 |
}; |
| 431 | 431 |
} |
| 432 | 432 |
|
| 433 | 433 |
#endif // LEMON_ARG_PARSER_H |
| 1 |
/* -*- C++ -*- |
|
| 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
|
| 2 | 2 |
* |
| 3 |
* This file is a part of LEMON, a generic C++ optimization library |
|
| 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
|
| 4 | 4 |
* |
| 5 |
* Copyright (C) 2003- |
|
| 5 |
* Copyright (C) 2003-2010 |
|
| 6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
| 7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
| 8 | 8 |
* |
| 9 | 9 |
* Permission to use, modify and distribute this software is granted |
| 10 | 10 |
* provided that this copyright notice appears in all copies. For |
| 11 | 11 |
* precise terms see the accompanying LICENSE file. |
| 12 | 12 |
* |
| 13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
| 14 | 14 |
* express or implied, and with no claim as to its suitability for any |
| 15 | 15 |
* purpose. |
| 16 | 16 |
* |
| 17 | 17 |
*/ |
| 18 | 18 |
|
| 19 | 19 |
#ifndef LEMON_BELLMAN_FORD_H |
| 20 | 20 |
#define LEMON_BELLMAN_FORD_H |
| 21 | 21 |
|
| 22 | 22 |
/// \ingroup shortest_path |
| 23 | 23 |
/// \file |
| 24 | 24 |
/// \brief Bellman-Ford algorithm. |
| 25 | 25 |
|
| 26 | 26 |
#include <lemon/list_graph.h> |
| 27 | 27 |
#include <lemon/bits/path_dump.h> |
| 28 | 28 |
#include <lemon/core.h> |
| 29 | 29 |
#include <lemon/error.h> |
| 30 | 30 |
#include <lemon/maps.h> |
| 31 | 31 |
#include <lemon/tolerance.h> |
| 32 | 32 |
#include <lemon/path.h> |
| 33 | 33 |
|
| 34 | 34 |
#include <limits> |
| 35 | 35 |
|
| 36 | 36 |
namespace lemon {
|
| 37 | 37 |
|
| 38 | 38 |
/// \brief Default operation traits for the BellmanFord algorithm class. |
| 39 |
/// |
|
| 39 |
/// |
|
| 40 | 40 |
/// This operation traits class defines all computational operations |
| 41 | 41 |
/// and constants that are used in the Bellman-Ford algorithm. |
| 42 | 42 |
/// The default implementation is based on the \c numeric_limits class. |
| 43 | 43 |
/// If the numeric type does not have infinity value, then the maximum |
| 44 | 44 |
/// value is used as extremal infinity value. |
| 45 | 45 |
/// |
| 46 | 46 |
/// \see BellmanFordToleranceOperationTraits |
| 47 | 47 |
template < |
| 48 |
typename V, |
|
| 48 |
typename V, |
|
| 49 | 49 |
bool has_inf = std::numeric_limits<V>::has_infinity> |
| 50 | 50 |
struct BellmanFordDefaultOperationTraits {
|
| 51 | 51 |
/// \brief Value type for the algorithm. |
| 52 | 52 |
typedef V Value; |
| 53 | 53 |
/// \brief Gives back the zero value of the type. |
| 54 | 54 |
static Value zero() {
|
| 55 | 55 |
return static_cast<Value>(0); |
| 56 | 56 |
} |
| 57 | 57 |
/// \brief Gives back the positive infinity value of the type. |
| 58 | 58 |
static Value infinity() {
|
| 59 | 59 |
return std::numeric_limits<Value>::infinity(); |
| 60 | 60 |
} |
| 61 | 61 |
/// \brief Gives back the sum of the given two elements. |
| 62 | 62 |
static Value plus(const Value& left, const Value& right) {
|
| 63 | 63 |
return left + right; |
| 64 | 64 |
} |
| 65 | 65 |
/// \brief Gives back \c true only if the first value is less than |
| 66 | 66 |
/// the second. |
| 67 | 67 |
static bool less(const Value& left, const Value& right) {
|
| 68 | 68 |
return left < right; |
| 69 | 69 |
} |
| 70 | 70 |
}; |
| 71 | 71 |
|
| 72 | 72 |
template <typename V> |
| 73 | 73 |
struct BellmanFordDefaultOperationTraits<V, false> {
|
| 74 | 74 |
typedef V Value; |
| 75 | 75 |
static Value zero() {
|
| 76 | 76 |
return static_cast<Value>(0); |
| 77 | 77 |
} |
| 78 | 78 |
static Value infinity() {
|
| 79 | 79 |
return std::numeric_limits<Value>::max(); |
| 80 | 80 |
} |
| 81 | 81 |
static Value plus(const Value& left, const Value& right) {
|
| 82 | 82 |
if (left == infinity() || right == infinity()) return infinity(); |
| 83 | 83 |
return left + right; |
| 84 | 84 |
} |
| 85 | 85 |
static bool less(const Value& left, const Value& right) {
|
| 86 | 86 |
return left < right; |
| 87 | 87 |
} |
| 88 | 88 |
}; |
| 89 |
|
|
| 89 |
|
|
| 90 | 90 |
/// \brief Operation traits for the BellmanFord algorithm class |
| 91 | 91 |
/// using tolerance. |
| 92 | 92 |
/// |
| 93 | 93 |
/// This operation traits class defines all computational operations |
| 94 | 94 |
/// and constants that are used in the Bellman-Ford algorithm. |
| 95 | 95 |
/// The only difference between this implementation and |
| 96 | 96 |
/// \ref BellmanFordDefaultOperationTraits is that this class uses |
| 97 | 97 |
/// the \ref Tolerance "tolerance technique" in its \ref less() |
| 98 | 98 |
/// function. |
| 99 | 99 |
/// |
| 100 | 100 |
/// \tparam V The value type. |
| 101 | 101 |
/// \tparam eps The epsilon value for the \ref less() function. |
| 102 | 102 |
/// By default, it is the epsilon value used by \ref Tolerance |
| 103 | 103 |
/// "Tolerance<V>". |
| 104 | 104 |
/// |
| 105 | 105 |
/// \see BellmanFordDefaultOperationTraits |
| 106 | 106 |
#ifdef DOXYGEN |
| 107 | 107 |
template <typename V, V eps> |
| 108 | 108 |
#else |
| 109 | 109 |
template < |
| 110 | 110 |
typename V, |
| 111 | 111 |
V eps = Tolerance<V>::def_epsilon> |
| 112 | 112 |
#endif |
| 113 | 113 |
struct BellmanFordToleranceOperationTraits {
|
| 114 | 114 |
/// \brief Value type for the algorithm. |
| 115 | 115 |
typedef V Value; |
| 116 | 116 |
/// \brief Gives back the zero value of the type. |
| 117 | 117 |
static Value zero() {
|
| 118 | 118 |
return static_cast<Value>(0); |
| 119 | 119 |
} |
| 120 | 120 |
/// \brief Gives back the positive infinity value of the type. |
| 121 | 121 |
static Value infinity() {
|
| 122 | 122 |
return std::numeric_limits<Value>::infinity(); |
| 123 | 123 |
} |
| 124 | 124 |
/// \brief Gives back the sum of the given two elements. |
| 125 | 125 |
static Value plus(const Value& left, const Value& right) {
|
| 126 | 126 |
return left + right; |
| 127 | 127 |
} |
| 128 | 128 |
/// \brief Gives back \c true only if the first value is less than |
| 129 | 129 |
/// the second. |
| 130 | 130 |
static bool less(const Value& left, const Value& right) {
|
| 131 | 131 |
return left + eps < right; |
| 132 | 132 |
} |
| 133 | 133 |
}; |
| 134 | 134 |
|
| 135 | 135 |
/// \brief Default traits class of BellmanFord class. |
| 136 | 136 |
/// |
| 137 | 137 |
/// Default traits class of BellmanFord class. |
| 138 | 138 |
/// \param GR The type of the digraph. |
| 139 | 139 |
/// \param LEN The type of the length map. |
| 140 | 140 |
template<typename GR, typename LEN> |
| 141 | 141 |
struct BellmanFordDefaultTraits {
|
| 142 |
/// The type of the digraph the algorithm runs on. |
|
| 142 |
/// The type of the digraph the algorithm runs on. |
|
| 143 | 143 |
typedef GR Digraph; |
| 144 | 144 |
|
| 145 | 145 |
/// \brief The type of the map that stores the arc lengths. |
| 146 | 146 |
/// |
| 147 | 147 |
/// The type of the map that stores the arc lengths. |
| 148 | 148 |
/// It must conform to the \ref concepts::ReadMap "ReadMap" concept. |
| 149 | 149 |
typedef LEN LengthMap; |
| 150 | 150 |
|
| 151 | 151 |
/// The type of the arc lengths. |
| 152 | 152 |
typedef typename LEN::Value Value; |
| 153 | 153 |
|
| 154 | 154 |
/// \brief Operation traits for Bellman-Ford algorithm. |
| 155 | 155 |
/// |
| 156 | 156 |
/// It defines the used operations and the infinity value for the |
| 157 | 157 |
/// given \c Value type. |
| 158 | 158 |
/// \see BellmanFordDefaultOperationTraits, |
| 159 | 159 |
/// BellmanFordToleranceOperationTraits |
| 160 | 160 |
typedef BellmanFordDefaultOperationTraits<Value> OperationTraits; |
| 161 |
|
|
| 162 |
/// \brief The type of the map that stores the last arcs of the |
|
| 161 |
|
|
| 162 |
/// \brief The type of the map that stores the last arcs of the |
|
| 163 | 163 |
/// shortest paths. |
| 164 |
/// |
|
| 164 |
/// |
|
| 165 | 165 |
/// The type of the map that stores the last |
| 166 | 166 |
/// arcs of the shortest paths. |
| 167 | 167 |
/// It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
| 168 | 168 |
typedef typename GR::template NodeMap<typename GR::Arc> PredMap; |
| 169 | 169 |
|
| 170 | 170 |
/// \brief Instantiates a \c PredMap. |
| 171 |
/// |
|
| 172 |
/// This function instantiates a \ref PredMap. |
|
| 171 |
/// |
|
| 172 |
/// This function instantiates a \ref PredMap. |
|
| 173 | 173 |
/// \param g is the digraph to which we would like to define the |
| 174 | 174 |
/// \ref PredMap. |
| 175 | 175 |
static PredMap *createPredMap(const GR& g) {
|
| 176 | 176 |
return new PredMap(g); |
| 177 | 177 |
} |
| 178 | 178 |
|
| 179 | 179 |
/// \brief The type of the map that stores the distances of the nodes. |
| 180 | 180 |
/// |
| 181 | 181 |
/// The type of the map that stores the distances of the nodes. |
| 182 | 182 |
/// It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
| 183 | 183 |
typedef typename GR::template NodeMap<typename LEN::Value> DistMap; |
| 184 | 184 |
|
| 185 | 185 |
/// \brief Instantiates a \c DistMap. |
| 186 | 186 |
/// |
| 187 |
/// This function instantiates a \ref DistMap. |
|
| 188 |
/// \param g is the digraph to which we would like to define the |
|
| 187 |
/// This function instantiates a \ref DistMap. |
|
| 188 |
/// \param g is the digraph to which we would like to define the |
|
| 189 | 189 |
/// \ref DistMap. |
| 190 | 190 |
static DistMap *createDistMap(const GR& g) {
|
| 191 | 191 |
return new DistMap(g); |
| 192 | 192 |
} |
| 193 | 193 |
|
| 194 | 194 |
}; |
| 195 |
|
|
| 195 |
|
|
| 196 | 196 |
/// \brief %BellmanFord algorithm class. |
| 197 | 197 |
/// |
| 198 | 198 |
/// \ingroup shortest_path |
| 199 |
/// This class provides an efficient implementation of the Bellman-Ford |
|
| 199 |
/// This class provides an efficient implementation of the Bellman-Ford |
|
| 200 | 200 |
/// algorithm. The maximum time complexity of the algorithm is |
| 201 | 201 |
/// <tt>O(ne)</tt>. |
| 202 | 202 |
/// |
| 203 | 203 |
/// The Bellman-Ford algorithm solves the single-source shortest path |
| 204 | 204 |
/// problem when the arcs can have negative lengths, but the digraph |
| 205 | 205 |
/// should not contain directed cycles with negative total length. |
| 206 | 206 |
/// If all arc costs are non-negative, consider to use the Dijkstra |
| 207 | 207 |
/// algorithm instead, since it is more efficient. |
| 208 | 208 |
/// |
| 209 | 209 |
/// The arc lengths are passed to the algorithm using a |
| 210 |
/// \ref concepts::ReadMap "ReadMap", so it is easy to change it to any |
|
| 210 |
/// \ref concepts::ReadMap "ReadMap", so it is easy to change it to any |
|
| 211 | 211 |
/// kind of length. The type of the length values is determined by the |
| 212 | 212 |
/// \ref concepts::ReadMap::Value "Value" type of the length map. |
| 213 | 213 |
/// |
| 214 | 214 |
/// There is also a \ref bellmanFord() "function-type interface" for the |
| 215 | 215 |
/// Bellman-Ford algorithm, which is convenient in the simplier cases and |
| 216 | 216 |
/// it can be used easier. |
| 217 | 217 |
/// |
| 218 | 218 |
/// \tparam GR The type of the digraph the algorithm runs on. |
| 219 | 219 |
/// The default type is \ref ListDigraph. |
| 220 | 220 |
/// \tparam LEN A \ref concepts::ReadMap "readable" arc map that specifies |
| 221 | 221 |
/// the lengths of the arcs. The default map type is |
| 222 | 222 |
/// \ref concepts::Digraph::ArcMap "GR::ArcMap<int>". |
| 223 | 223 |
/// \tparam TR The traits class that defines various types used by the |
| 224 | 224 |
/// algorithm. By default, it is \ref BellmanFordDefaultTraits |
| 225 | 225 |
/// "BellmanFordDefaultTraits<GR, LEN>". |
| 226 | 226 |
/// In most cases, this parameter should not be set directly, |
| 227 | 227 |
/// consider to use the named template parameters instead. |
| 228 | 228 |
#ifdef DOXYGEN |
| 229 | 229 |
template <typename GR, typename LEN, typename TR> |
| 230 | 230 |
#else |
| 231 | 231 |
template <typename GR=ListDigraph, |
| 232 | 232 |
typename LEN=typename GR::template ArcMap<int>, |
| 233 | 233 |
typename TR=BellmanFordDefaultTraits<GR,LEN> > |
| 234 | 234 |
#endif |
| 235 | 235 |
class BellmanFord {
|
| 236 | 236 |
public: |
| 237 | 237 |
|
| 238 | 238 |
///The type of the underlying digraph. |
| 239 | 239 |
typedef typename TR::Digraph Digraph; |
| 240 |
|
|
| 240 |
|
|
| 241 | 241 |
/// \brief The type of the arc lengths. |
| 242 | 242 |
typedef typename TR::LengthMap::Value Value; |
| 243 | 243 |
/// \brief The type of the map that stores the arc lengths. |
| 244 | 244 |
typedef typename TR::LengthMap LengthMap; |
| 245 | 245 |
/// \brief The type of the map that stores the last |
| 246 | 246 |
/// arcs of the shortest paths. |
| 247 | 247 |
typedef typename TR::PredMap PredMap; |
| 248 | 248 |
/// \brief The type of the map that stores the distances of the nodes. |
| 249 | 249 |
typedef typename TR::DistMap DistMap; |
| 250 | 250 |
/// The type of the paths. |
| 251 | 251 |
typedef PredMapPath<Digraph, PredMap> Path; |
| 252 | 252 |
///\brief The \ref BellmanFordDefaultOperationTraits |
| 253 | 253 |
/// "operation traits class" of the algorithm. |
| 254 | 254 |
typedef typename TR::OperationTraits OperationTraits; |
| 255 | 255 |
|
| 256 | 256 |
///The \ref BellmanFordDefaultTraits "traits class" of the algorithm. |
| 257 | 257 |
typedef TR Traits; |
| 258 | 258 |
|
| 259 | 259 |
private: |
| 260 | 260 |
|
| 261 | 261 |
typedef typename Digraph::Node Node; |
| 262 | 262 |
typedef typename Digraph::NodeIt NodeIt; |
| 263 | 263 |
typedef typename Digraph::Arc Arc; |
| 264 | 264 |
typedef typename Digraph::OutArcIt OutArcIt; |
| 265 | 265 |
|
| 266 | 266 |
// Pointer to the underlying digraph. |
| 267 | 267 |
const Digraph *_gr; |
| 268 | 268 |
// Pointer to the length map |
| 269 | 269 |
const LengthMap *_length; |
| 270 | 270 |
// Pointer to the map of predecessors arcs. |
| 271 | 271 |
PredMap *_pred; |
| 272 | 272 |
// Indicates if _pred is locally allocated (true) or not. |
| 273 | 273 |
bool _local_pred; |
| 274 | 274 |
// Pointer to the map of distances. |
| 275 | 275 |
DistMap *_dist; |
| 276 | 276 |
// Indicates if _dist is locally allocated (true) or not. |
| 277 | 277 |
bool _local_dist; |
| 278 | 278 |
|
| 279 | 279 |
typedef typename Digraph::template NodeMap<bool> MaskMap; |
| 280 | 280 |
MaskMap *_mask; |
| 281 | 281 |
|
| 282 | 282 |
std::vector<Node> _process; |
| 283 | 283 |
|
| 284 | 284 |
// Creates the maps if necessary. |
| 285 | 285 |
void create_maps() {
|
| 286 | 286 |
if(!_pred) {
|
| 287 |
_local_pred = true; |
|
| 288 |
_pred = Traits::createPredMap(*_gr); |
|
| 287 |
_local_pred = true; |
|
| 288 |
_pred = Traits::createPredMap(*_gr); |
|
| 289 | 289 |
} |
| 290 | 290 |
if(!_dist) {
|
| 291 |
_local_dist = true; |
|
| 292 |
_dist = Traits::createDistMap(*_gr); |
|
| 291 |
_local_dist = true; |
|
| 292 |
_dist = Traits::createDistMap(*_gr); |
|
| 293 | 293 |
} |
| 294 | 294 |
if(!_mask) {
|
| 295 | 295 |
_mask = new MaskMap(*_gr); |
| 296 | 296 |
} |
| 297 | 297 |
} |
| 298 |
|
|
| 298 |
|
|
| 299 | 299 |
public : |
| 300 |
|
|
| 300 |
|
|
| 301 | 301 |
typedef BellmanFord Create; |
| 302 | 302 |
|
| 303 | 303 |
/// \name Named Template Parameters |
| 304 | 304 |
|
| 305 | 305 |
///@{
|
| 306 | 306 |
|
| 307 | 307 |
template <class T> |
| 308 | 308 |
struct SetPredMapTraits : public Traits {
|
| 309 | 309 |
typedef T PredMap; |
| 310 | 310 |
static PredMap *createPredMap(const Digraph&) {
|
| 311 | 311 |
LEMON_ASSERT(false, "PredMap is not initialized"); |
| 312 | 312 |
return 0; // ignore warnings |
| 313 | 313 |
} |
| 314 | 314 |
}; |
| 315 | 315 |
|
| 316 | 316 |
/// \brief \ref named-templ-param "Named parameter" for setting |
| 317 | 317 |
/// \c PredMap type. |
| 318 | 318 |
/// |
| 319 | 319 |
/// \ref named-templ-param "Named parameter" for setting |
| 320 | 320 |
/// \c PredMap type. |
| 321 | 321 |
/// It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
| 322 | 322 |
template <class T> |
| 323 |
struct SetPredMap |
|
| 323 |
struct SetPredMap |
|
| 324 | 324 |
: public BellmanFord< Digraph, LengthMap, SetPredMapTraits<T> > {
|
| 325 | 325 |
typedef BellmanFord< Digraph, LengthMap, SetPredMapTraits<T> > Create; |
| 326 | 326 |
}; |
| 327 |
|
|
| 327 |
|
|
| 328 | 328 |
template <class T> |
| 329 | 329 |
struct SetDistMapTraits : public Traits {
|
| 330 | 330 |
typedef T DistMap; |
| 331 | 331 |
static DistMap *createDistMap(const Digraph&) {
|
| 332 | 332 |
LEMON_ASSERT(false, "DistMap is not initialized"); |
| 333 | 333 |
return 0; // ignore warnings |
| 334 | 334 |
} |
| 335 | 335 |
}; |
| 336 | 336 |
|
| 337 | 337 |
/// \brief \ref named-templ-param "Named parameter" for setting |
| 338 | 338 |
/// \c DistMap type. |
| 339 | 339 |
/// |
| 340 | 340 |
/// \ref named-templ-param "Named parameter" for setting |
| 341 | 341 |
/// \c DistMap type. |
| 342 | 342 |
/// It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
| 343 | 343 |
template <class T> |
| 344 |
struct SetDistMap |
|
| 344 |
struct SetDistMap |
|
| 345 | 345 |
: public BellmanFord< Digraph, LengthMap, SetDistMapTraits<T> > {
|
| 346 | 346 |
typedef BellmanFord< Digraph, LengthMap, SetDistMapTraits<T> > Create; |
| 347 | 347 |
}; |
| 348 | 348 |
|
| 349 | 349 |
template <class T> |
| 350 | 350 |
struct SetOperationTraitsTraits : public Traits {
|
| 351 | 351 |
typedef T OperationTraits; |
| 352 | 352 |
}; |
| 353 |
|
|
| 354 |
/// \brief \ref named-templ-param "Named parameter" for setting |
|
| 353 |
|
|
| 354 |
/// \brief \ref named-templ-param "Named parameter" for setting |
|
| 355 | 355 |
/// \c OperationTraits type. |
| 356 | 356 |
/// |
| 357 | 357 |
/// \ref named-templ-param "Named parameter" for setting |
| 358 | 358 |
/// \c OperationTraits type. |
| 359 | 359 |
/// For more information, see \ref BellmanFordDefaultOperationTraits. |
| 360 | 360 |
template <class T> |
| 361 | 361 |
struct SetOperationTraits |
| 362 | 362 |
: public BellmanFord< Digraph, LengthMap, SetOperationTraitsTraits<T> > {
|
| 363 | 363 |
typedef BellmanFord< Digraph, LengthMap, SetOperationTraitsTraits<T> > |
| 364 | 364 |
Create; |
| 365 | 365 |
}; |
| 366 |
|
|
| 366 |
|
|
| 367 | 367 |
///@} |
| 368 | 368 |
|
| 369 | 369 |
protected: |
| 370 |
|
|
| 370 |
|
|
| 371 | 371 |
BellmanFord() {}
|
| 372 | 372 |
|
| 373 |
public: |
|
| 374 |
|
|
| 373 |
public: |
|
| 374 |
|
|
| 375 | 375 |
/// \brief Constructor. |
| 376 | 376 |
/// |
| 377 | 377 |
/// Constructor. |
| 378 | 378 |
/// \param g The digraph the algorithm runs on. |
| 379 | 379 |
/// \param length The length map used by the algorithm. |
| 380 | 380 |
BellmanFord(const Digraph& g, const LengthMap& length) : |
| 381 | 381 |
_gr(&g), _length(&length), |
| 382 | 382 |
_pred(0), _local_pred(false), |
| 383 | 383 |
_dist(0), _local_dist(false), _mask(0) {}
|
| 384 |
|
|
| 384 |
|
|
| 385 | 385 |
///Destructor. |
| 386 | 386 |
~BellmanFord() {
|
| 387 | 387 |
if(_local_pred) delete _pred; |
| 388 | 388 |
if(_local_dist) delete _dist; |
| 389 | 389 |
if(_mask) delete _mask; |
| 390 | 390 |
} |
| 391 | 391 |
|
| 392 | 392 |
/// \brief Sets the length map. |
| 393 | 393 |
/// |
| 394 | 394 |
/// Sets the length map. |
| 395 | 395 |
/// \return <tt>(*this)</tt> |
| 396 | 396 |
BellmanFord &lengthMap(const LengthMap &map) {
|
| 397 | 397 |
_length = ↦ |
| 398 | 398 |
return *this; |
| 399 | 399 |
} |
| 400 | 400 |
|
| 401 | 401 |
/// \brief Sets the map that stores the predecessor arcs. |
| 402 | 402 |
/// |
| 403 | 403 |
/// Sets the map that stores the predecessor arcs. |
| 404 | 404 |
/// If you don't use this function before calling \ref run() |
| 405 | 405 |
/// or \ref init(), an instance will be allocated automatically. |
| 406 | 406 |
/// The destructor deallocates this automatically allocated map, |
| 407 | 407 |
/// of course. |
| 408 | 408 |
/// \return <tt>(*this)</tt> |
| 409 | 409 |
BellmanFord &predMap(PredMap &map) {
|
| 410 | 410 |
if(_local_pred) {
|
| 411 |
delete _pred; |
|
| 412 |
_local_pred=false; |
|
| 411 |
delete _pred; |
|
| 412 |
_local_pred=false; |
|
| 413 | 413 |
} |
| 414 | 414 |
_pred = ↦ |
| 415 | 415 |
return *this; |
| 416 | 416 |
} |
| 417 | 417 |
|
| 418 | 418 |
/// \brief Sets the map that stores the distances of the nodes. |
| 419 | 419 |
/// |
| 420 | 420 |
/// Sets the map that stores the distances of the nodes calculated |
| 421 | 421 |
/// by the algorithm. |
| 422 | 422 |
/// If you don't use this function before calling \ref run() |
| 423 | 423 |
/// or \ref init(), an instance will be allocated automatically. |
| 424 | 424 |
/// The destructor deallocates this automatically allocated map, |
| 425 | 425 |
/// of course. |
| 426 | 426 |
/// \return <tt>(*this)</tt> |
| 427 | 427 |
BellmanFord &distMap(DistMap &map) {
|
| 428 | 428 |
if(_local_dist) {
|
| 429 |
delete _dist; |
|
| 430 |
_local_dist=false; |
|
| 429 |
delete _dist; |
|
| 430 |
_local_dist=false; |
|
| 431 | 431 |
} |
| 432 | 432 |
_dist = ↦ |
| 433 | 433 |
return *this; |
| 434 | 434 |
} |
| 435 | 435 |
|
| 436 | 436 |
/// \name Execution Control |
| 437 | 437 |
/// The simplest way to execute the Bellman-Ford algorithm is to use |
| 438 | 438 |
/// one of the member functions called \ref run().\n |
| 439 | 439 |
/// If you need better control on the execution, you have to call |
| 440 | 440 |
/// \ref init() first, then you can add several source nodes |
| 441 | 441 |
/// with \ref addSource(). Finally the actual path computation can be |
| 442 | 442 |
/// performed with \ref start(), \ref checkedStart() or |
| 443 | 443 |
/// \ref limitedStart(). |
| 444 | 444 |
|
| 445 | 445 |
///@{
|
| 446 | 446 |
|
| 447 | 447 |
/// \brief Initializes the internal data structures. |
| 448 |
/// |
|
| 448 |
/// |
|
| 449 | 449 |
/// Initializes the internal data structures. The optional parameter |
| 450 | 450 |
/// is the initial distance of each node. |
| 451 | 451 |
void init(const Value value = OperationTraits::infinity()) {
|
| 452 | 452 |
create_maps(); |
| 453 | 453 |
for (NodeIt it(*_gr); it != INVALID; ++it) {
|
| 454 |
_pred->set(it, INVALID); |
|
| 455 |
_dist->set(it, value); |
|
| 454 |
_pred->set(it, INVALID); |
|
| 455 |
_dist->set(it, value); |
|
| 456 | 456 |
} |
| 457 | 457 |
_process.clear(); |
| 458 | 458 |
if (OperationTraits::less(value, OperationTraits::infinity())) {
|
| 459 |
for (NodeIt it(*_gr); it != INVALID; ++it) {
|
|
| 460 |
_process.push_back(it); |
|
| 461 |
_mask->set(it, true); |
|
| 462 |
} |
|
| 459 |
for (NodeIt it(*_gr); it != INVALID; ++it) {
|
|
| 460 |
_process.push_back(it); |
|
| 461 |
_mask->set(it, true); |
|
| 462 |
} |
|
| 463 | 463 |
} else {
|
| 464 |
for (NodeIt it(*_gr); it != INVALID; ++it) {
|
|
| 465 |
_mask->set(it, false); |
|
| 466 |
|
|
| 464 |
for (NodeIt it(*_gr); it != INVALID; ++it) {
|
|
| 465 |
_mask->set(it, false); |
|
| 466 |
} |
|
| 467 | 467 |
} |
| 468 | 468 |
} |
| 469 |
|
|
| 469 |
|
|
| 470 | 470 |
/// \brief Adds a new source node. |
| 471 | 471 |
/// |
| 472 | 472 |
/// This function adds a new source node. The optional second parameter |
| 473 | 473 |
/// is the initial distance of the node. |
| 474 | 474 |
void addSource(Node source, Value dst = OperationTraits::zero()) {
|
| 475 | 475 |
_dist->set(source, dst); |
| 476 | 476 |
if (!(*_mask)[source]) {
|
| 477 |
_process.push_back(source); |
|
| 478 |
_mask->set(source, true); |
|
| 477 |
_process.push_back(source); |
|
| 478 |
_mask->set(source, true); |
|
| 479 | 479 |
} |
| 480 | 480 |
} |
| 481 | 481 |
|
| 482 | 482 |
/// \brief Executes one round from the Bellman-Ford algorithm. |
| 483 | 483 |
/// |
| 484 | 484 |
/// If the algoritm calculated the distances in the previous round |
| 485 | 485 |
/// exactly for the paths of at most \c k arcs, then this function |
| 486 | 486 |
/// will calculate the distances exactly for the paths of at most |
| 487 | 487 |
/// <tt>k+1</tt> arcs. Performing \c k iterations using this function |
| 488 | 488 |
/// calculates the shortest path distances exactly for the paths |
| 489 | 489 |
/// consisting of at most \c k arcs. |
| 490 | 490 |
/// |
| 491 | 491 |
/// \warning The paths with limited arc number cannot be retrieved |
| 492 | 492 |
/// easily with \ref path() or \ref predArc() functions. If you also |
| 493 | 493 |
/// need the shortest paths and not only the distances, you should |
| 494 | 494 |
/// store the \ref predMap() "predecessor map" after each iteration |
| 495 | 495 |
/// and build the path manually. |
| 496 | 496 |
/// |
| 497 | 497 |
/// \return \c true when the algorithm have not found more shorter |
| 498 | 498 |
/// paths. |
| 499 | 499 |
/// |
| 500 | 500 |
/// \see ActiveIt |
| 501 | 501 |
bool processNextRound() {
|
| 502 | 502 |
for (int i = 0; i < int(_process.size()); ++i) {
|
| 503 |
|
|
| 503 |
_mask->set(_process[i], false); |
|
| 504 | 504 |
} |
| 505 | 505 |
std::vector<Node> nextProcess; |
| 506 | 506 |
std::vector<Value> values(_process.size()); |
| 507 | 507 |
for (int i = 0; i < int(_process.size()); ++i) {
|
| 508 |
|
|
| 508 |
values[i] = (*_dist)[_process[i]]; |
|
| 509 | 509 |
} |
| 510 | 510 |
for (int i = 0; i < int(_process.size()); ++i) {
|
| 511 |
for (OutArcIt it(*_gr, _process[i]); it != INVALID; ++it) {
|
|
| 512 |
Node target = _gr->target(it); |
|
| 513 |
Value relaxed = OperationTraits::plus(values[i], (*_length)[it]); |
|
| 514 |
if (OperationTraits::less(relaxed, (*_dist)[target])) {
|
|
| 515 |
_pred->set(target, it); |
|
| 516 |
_dist->set(target, relaxed); |
|
| 517 |
if (!(*_mask)[target]) {
|
|
| 518 |
_mask->set(target, true); |
|
| 519 |
nextProcess.push_back(target); |
|
| 520 |
} |
|
| 521 |
} |
|
| 522 |
} |
|
| 511 |
for (OutArcIt it(*_gr, _process[i]); it != INVALID; ++it) {
|
|
| 512 |
Node target = _gr->target(it); |
|
| 513 |
Value relaxed = OperationTraits::plus(values[i], (*_length)[it]); |
|
| 514 |
if (OperationTraits::less(relaxed, (*_dist)[target])) {
|
|
| 515 |
_pred->set(target, it); |
|
| 516 |
_dist->set(target, relaxed); |
|
| 517 |
if (!(*_mask)[target]) {
|
|
| 518 |
_mask->set(target, true); |
|
| 519 |
nextProcess.push_back(target); |
|
| 520 |
} |
|
| 521 |
} |
|
| 522 |
} |
|
| 523 | 523 |
} |
| 524 | 524 |
_process.swap(nextProcess); |
| 525 | 525 |
return _process.empty(); |
| 526 | 526 |
} |
| 527 | 527 |
|
| 528 | 528 |
/// \brief Executes one weak round from the Bellman-Ford algorithm. |
| 529 | 529 |
/// |
| 530 | 530 |
/// If the algorithm calculated the distances in the previous round |
| 531 | 531 |
/// at least for the paths of at most \c k arcs, then this function |
| 532 | 532 |
/// will calculate the distances at least for the paths of at most |
| 533 | 533 |
/// <tt>k+1</tt> arcs. |
| 534 | 534 |
/// This function does not make it possible to calculate the shortest |
| 535 | 535 |
/// path distances exactly for paths consisting of at most \c k arcs, |
| 536 | 536 |
/// this is why it is called weak round. |
| 537 | 537 |
/// |
| 538 | 538 |
/// \return \c true when the algorithm have not found more shorter |
| 539 | 539 |
/// paths. |
| 540 | 540 |
/// |
| 541 | 541 |
/// \see ActiveIt |
| 542 | 542 |
bool processNextWeakRound() {
|
| 543 | 543 |
for (int i = 0; i < int(_process.size()); ++i) {
|
| 544 |
|
|
| 544 |
_mask->set(_process[i], false); |
|
| 545 | 545 |
} |
| 546 | 546 |
std::vector<Node> nextProcess; |
| 547 | 547 |
for (int i = 0; i < int(_process.size()); ++i) {
|
| 548 |
for (OutArcIt it(*_gr, _process[i]); it != INVALID; ++it) {
|
|
| 549 |
Node target = _gr->target(it); |
|
| 550 |
Value relaxed = |
|
| 551 |
OperationTraits::plus((*_dist)[_process[i]], (*_length)[it]); |
|
| 552 |
if (OperationTraits::less(relaxed, (*_dist)[target])) {
|
|
| 553 |
_pred->set(target, it); |
|
| 554 |
_dist->set(target, relaxed); |
|
| 555 |
if (!(*_mask)[target]) {
|
|
| 556 |
_mask->set(target, true); |
|
| 557 |
nextProcess.push_back(target); |
|
| 558 |
} |
|
| 559 |
} |
|
| 560 |
|
|
| 548 |
for (OutArcIt it(*_gr, _process[i]); it != INVALID; ++it) {
|
|
| 549 |
Node target = _gr->target(it); |
|
| 550 |
Value relaxed = |
|
| 551 |
OperationTraits::plus((*_dist)[_process[i]], (*_length)[it]); |
|
| 552 |
if (OperationTraits::less(relaxed, (*_dist)[target])) {
|
|
| 553 |
_pred->set(target, it); |
|
| 554 |
_dist->set(target, relaxed); |
|
| 555 |
if (!(*_mask)[target]) {
|
|
| 556 |
_mask->set(target, true); |
|
| 557 |
nextProcess.push_back(target); |
|
| 558 |
} |
|
| 559 |
} |
|
| 560 |
} |
|
| 561 | 561 |
} |
| 562 | 562 |
_process.swap(nextProcess); |
| 563 | 563 |
return _process.empty(); |
| 564 | 564 |
} |
| 565 | 565 |
|
| 566 | 566 |
/// \brief Executes the algorithm. |
| 567 | 567 |
/// |
| 568 | 568 |
/// Executes the algorithm. |
| 569 | 569 |
/// |
| 570 | 570 |
/// This method runs the Bellman-Ford algorithm from the root node(s) |
| 571 | 571 |
/// in order to compute the shortest path to each node. |
| 572 | 572 |
/// |
| 573 | 573 |
/// The algorithm computes |
| 574 | 574 |
/// - the shortest path tree (forest), |
| 575 | 575 |
/// - the distance of each node from the root(s). |
| 576 | 576 |
/// |
| 577 | 577 |
/// \pre init() must be called and at least one root node should be |
| 578 | 578 |
/// added with addSource() before using this function. |
| 579 | 579 |
void start() {
|
| 580 | 580 |
int num = countNodes(*_gr) - 1; |
| 581 | 581 |
for (int i = 0; i < num; ++i) {
|
| 582 |
|
|
| 582 |
if (processNextWeakRound()) break; |
|
| 583 | 583 |
} |
| 584 | 584 |
} |
| 585 | 585 |
|
| 586 | 586 |
/// \brief Executes the algorithm and checks the negative cycles. |
| 587 | 587 |
/// |
| 588 | 588 |
/// Executes the algorithm and checks the negative cycles. |
| 589 | 589 |
/// |
| 590 | 590 |
/// This method runs the Bellman-Ford algorithm from the root node(s) |
| 591 | 591 |
/// in order to compute the shortest path to each node and also checks |
| 592 | 592 |
/// if the digraph contains cycles with negative total length. |
| 593 | 593 |
/// |
| 594 |
/// The algorithm computes |
|
| 594 |
/// The algorithm computes |
|
| 595 | 595 |
/// - the shortest path tree (forest), |
| 596 | 596 |
/// - the distance of each node from the root(s). |
| 597 |
/// |
|
| 597 |
/// |
|
| 598 | 598 |
/// \return \c false if there is a negative cycle in the digraph. |
| 599 | 599 |
/// |
| 600 | 600 |
/// \pre init() must be called and at least one root node should be |
| 601 |
/// added with addSource() before using this function. |
|
| 601 |
/// added with addSource() before using this function. |
|
| 602 | 602 |
bool checkedStart() {
|
| 603 | 603 |
int num = countNodes(*_gr); |
| 604 | 604 |
for (int i = 0; i < num; ++i) {
|
| 605 |
|
|
| 605 |
if (processNextWeakRound()) return true; |
|
| 606 | 606 |
} |
| 607 | 607 |
return _process.empty(); |
| 608 | 608 |
} |
| 609 | 609 |
|
| 610 | 610 |
/// \brief Executes the algorithm with arc number limit. |
| 611 | 611 |
/// |
| 612 | 612 |
/// Executes the algorithm with arc number limit. |
| 613 | 613 |
/// |
| 614 | 614 |
/// This method runs the Bellman-Ford algorithm from the root node(s) |
| 615 | 615 |
/// in order to compute the shortest path distance for each node |
| 616 | 616 |
/// using only the paths consisting of at most \c num arcs. |
| 617 | 617 |
/// |
| 618 | 618 |
/// The algorithm computes |
| 619 | 619 |
/// - the limited distance of each node from the root(s), |
| 620 | 620 |
/// - the predecessor arc for each node. |
| 621 | 621 |
/// |
| 622 | 622 |
/// \warning The paths with limited arc number cannot be retrieved |
| 623 | 623 |
/// easily with \ref path() or \ref predArc() functions. If you also |
| 624 | 624 |
/// need the shortest paths and not only the distances, you should |
| 625 | 625 |
/// store the \ref predMap() "predecessor map" after each iteration |
| 626 | 626 |
/// and build the path manually. |
| 627 | 627 |
/// |
| 628 | 628 |
/// \pre init() must be called and at least one root node should be |
| 629 |
/// added with addSource() before using this function. |
|
| 629 |
/// added with addSource() before using this function. |
|
| 630 | 630 |
void limitedStart(int num) {
|
| 631 | 631 |
for (int i = 0; i < num; ++i) {
|
| 632 |
|
|
| 632 |
if (processNextRound()) break; |
|
| 633 | 633 |
} |
| 634 | 634 |
} |
| 635 |
|
|
| 635 |
|
|
| 636 | 636 |
/// \brief Runs the algorithm from the given root node. |
| 637 |
/// |
|
| 637 |
/// |
|
| 638 | 638 |
/// This method runs the Bellman-Ford algorithm from the given root |
| 639 | 639 |
/// node \c s in order to compute the shortest path to each node. |
| 640 | 640 |
/// |
| 641 | 641 |
/// The algorithm computes |
| 642 | 642 |
/// - the shortest path tree (forest), |
| 643 | 643 |
/// - the distance of each node from the root(s). |
| 644 | 644 |
/// |
| 645 | 645 |
/// \note bf.run(s) is just a shortcut of the following code. |
| 646 | 646 |
/// \code |
| 647 | 647 |
/// bf.init(); |
| 648 | 648 |
/// bf.addSource(s); |
| 649 | 649 |
/// bf.start(); |
| 650 | 650 |
/// \endcode |
| 651 | 651 |
void run(Node s) {
|
| 652 | 652 |
init(); |
| 653 | 653 |
addSource(s); |
| 654 | 654 |
start(); |
| 655 | 655 |
} |
| 656 |
|
|
| 656 |
|
|
| 657 | 657 |
/// \brief Runs the algorithm from the given root node with arc |
| 658 | 658 |
/// number limit. |
| 659 |
/// |
|
| 659 |
/// |
|
| 660 | 660 |
/// This method runs the Bellman-Ford algorithm from the given root |
| 661 | 661 |
/// node \c s in order to compute the shortest path distance for each |
| 662 | 662 |
/// node using only the paths consisting of at most \c num arcs. |
| 663 | 663 |
/// |
| 664 | 664 |
/// The algorithm computes |
| 665 | 665 |
/// - the limited distance of each node from the root(s), |
| 666 | 666 |
/// - the predecessor arc for each node. |
| 667 | 667 |
/// |
| 668 | 668 |
/// \warning The paths with limited arc number cannot be retrieved |
| 669 | 669 |
/// easily with \ref path() or \ref predArc() functions. If you also |
| 670 | 670 |
/// need the shortest paths and not only the distances, you should |
| 671 | 671 |
/// store the \ref predMap() "predecessor map" after each iteration |
| 672 | 672 |
/// and build the path manually. |
| 673 | 673 |
/// |
| 674 | 674 |
/// \note bf.run(s, num) is just a shortcut of the following code. |
| 675 | 675 |
/// \code |
| 676 | 676 |
/// bf.init(); |
| 677 | 677 |
/// bf.addSource(s); |
| 678 | 678 |
/// bf.limitedStart(num); |
| 679 | 679 |
/// \endcode |
| 680 | 680 |
void run(Node s, int num) {
|
| 681 | 681 |
init(); |
| 682 | 682 |
addSource(s); |
| 683 | 683 |
limitedStart(num); |
| 684 | 684 |
} |
| 685 |
|
|
| 685 |
|
|
| 686 | 686 |
///@} |
| 687 | 687 |
|
| 688 | 688 |
/// \brief LEMON iterator for getting the active nodes. |
| 689 | 689 |
/// |
| 690 | 690 |
/// This class provides a common style LEMON iterator that traverses |
| 691 | 691 |
/// the active nodes of the Bellman-Ford algorithm after the last |
| 692 | 692 |
/// phase. These nodes should be checked in the next phase to |
| 693 | 693 |
/// find augmenting arcs outgoing from them. |
| 694 | 694 |
class ActiveIt {
|
| 695 | 695 |
public: |
| 696 | 696 |
|
| 697 | 697 |
/// \brief Constructor. |
| 698 | 698 |
/// |
| 699 | 699 |
/// Constructor for getting the active nodes of the given BellmanFord |
| 700 |
/// instance. |
|
| 700 |
/// instance. |
|
| 701 | 701 |
ActiveIt(const BellmanFord& algorithm) : _algorithm(&algorithm) |
| 702 | 702 |
{
|
| 703 | 703 |
_index = _algorithm->_process.size() - 1; |
| 704 | 704 |
} |
| 705 | 705 |
|
| 706 | 706 |
/// \brief Invalid constructor. |
| 707 | 707 |
/// |
| 708 | 708 |
/// Invalid constructor. |
| 709 | 709 |
ActiveIt(Invalid) : _algorithm(0), _index(-1) {}
|
| 710 | 710 |
|
| 711 | 711 |
/// \brief Conversion to \c Node. |
| 712 | 712 |
/// |
| 713 | 713 |
/// Conversion to \c Node. |
| 714 |
operator Node() const {
|
|
| 714 |
operator Node() const {
|
|
| 715 | 715 |
return _index >= 0 ? _algorithm->_process[_index] : INVALID; |
| 716 | 716 |
} |
| 717 | 717 |
|
| 718 | 718 |
/// \brief Increment operator. |
| 719 | 719 |
/// |
| 720 | 720 |
/// Increment operator. |
| 721 | 721 |
ActiveIt& operator++() {
|
| 722 | 722 |
--_index; |
| 723 |
return *this; |
|
| 723 |
return *this; |
|
| 724 | 724 |
} |
| 725 | 725 |
|
| 726 |
bool operator==(const ActiveIt& it) const {
|
|
| 727 |
return static_cast<Node>(*this) == static_cast<Node>(it); |
|
| 726 |
bool operator==(const ActiveIt& it) const {
|
|
| 727 |
return static_cast<Node>(*this) == static_cast<Node>(it); |
|
| 728 | 728 |
} |
| 729 |
bool operator!=(const ActiveIt& it) const {
|
|
| 730 |
return static_cast<Node>(*this) != static_cast<Node>(it); |
|
| 729 |
bool operator!=(const ActiveIt& it) const {
|
|
| 730 |
return static_cast<Node>(*this) != static_cast<Node>(it); |
|
| 731 | 731 |
} |
| 732 |
bool operator<(const ActiveIt& it) const {
|
|
| 733 |
return static_cast<Node>(*this) < static_cast<Node>(it); |
|
| 732 |
bool operator<(const ActiveIt& it) const {
|
|
| 733 |
return static_cast<Node>(*this) < static_cast<Node>(it); |
|
| 734 | 734 |
} |
| 735 |
|
|
| 735 |
|
|
| 736 | 736 |
private: |
| 737 | 737 |
const BellmanFord* _algorithm; |
| 738 | 738 |
int _index; |
| 739 | 739 |
}; |
| 740 |
|
|
| 740 |
|
|
| 741 | 741 |
/// \name Query Functions |
| 742 | 742 |
/// The result of the Bellman-Ford algorithm can be obtained using these |
| 743 | 743 |
/// functions.\n |
| 744 | 744 |
/// Either \ref run() or \ref init() should be called before using them. |
| 745 |
|
|
| 745 |
|
|
| 746 | 746 |
///@{
|
| 747 | 747 |
|
| 748 | 748 |
/// \brief The shortest path to the given node. |
| 749 |
/// |
|
| 749 |
/// |
|
| 750 | 750 |
/// Gives back the shortest path to the given node from the root(s). |
| 751 | 751 |
/// |
| 752 | 752 |
/// \warning \c t should be reached from the root(s). |
| 753 | 753 |
/// |
| 754 | 754 |
/// \pre Either \ref run() or \ref init() must be called before |
| 755 | 755 |
/// using this function. |
| 756 | 756 |
Path path(Node t) const |
| 757 | 757 |
{
|
| 758 | 758 |
return Path(*_gr, *_pred, t); |
| 759 | 759 |
} |
| 760 |
|
|
| 760 |
|
|
| 761 | 761 |
/// \brief The distance of the given node from the root(s). |
| 762 | 762 |
/// |
| 763 | 763 |
/// Returns the distance of the given node from the root(s). |
| 764 | 764 |
/// |
| 765 | 765 |
/// \warning If node \c v is not reached from the root(s), then |
| 766 | 766 |
/// the return value of this function is undefined. |
| 767 | 767 |
/// |
| 768 | 768 |
/// \pre Either \ref run() or \ref init() must be called before |
| 769 | 769 |
/// using this function. |
| 770 | 770 |
Value dist(Node v) const { return (*_dist)[v]; }
|
| 771 | 771 |
|
| 772 | 772 |
/// \brief Returns the 'previous arc' of the shortest path tree for |
| 773 | 773 |
/// the given node. |
| 774 | 774 |
/// |
| 775 | 775 |
/// This function returns the 'previous arc' of the shortest path |
| 776 | 776 |
/// tree for node \c v, i.e. it returns the last arc of a |
| 777 | 777 |
/// shortest path from a root to \c v. It is \c INVALID if \c v |
| 778 | 778 |
/// is not reached from the root(s) or if \c v is a root. |
| 779 | 779 |
/// |
| 780 | 780 |
/// The shortest path tree used here is equal to the shortest path |
| 781 | 781 |
/// tree used in \ref predNode() and \ref predMap(). |
| 782 | 782 |
/// |
| 783 | 783 |
/// \pre Either \ref run() or \ref init() must be called before |
| 784 | 784 |
/// using this function. |
| 785 | 785 |
Arc predArc(Node v) const { return (*_pred)[v]; }
|
| 786 | 786 |
|
| 787 | 787 |
/// \brief Returns the 'previous node' of the shortest path tree for |
| 788 | 788 |
/// the given node. |
| 789 | 789 |
/// |
| 790 | 790 |
/// This function returns the 'previous node' of the shortest path |
| 791 | 791 |
/// tree for node \c v, i.e. it returns the last but one node of |
| 792 | 792 |
/// a shortest path from a root to \c v. It is \c INVALID if \c v |
| 793 | 793 |
/// is not reached from the root(s) or if \c v is a root. |
| 794 | 794 |
/// |
| 795 | 795 |
/// The shortest path tree used here is equal to the shortest path |
| 796 | 796 |
/// tree used in \ref predArc() and \ref predMap(). |
| 797 | 797 |
/// |
| 798 | 798 |
/// \pre Either \ref run() or \ref init() must be called before |
| 799 | 799 |
/// using this function. |
| 800 |
Node predNode(Node v) const {
|
|
| 801 |
return (*_pred)[v] == INVALID ? INVALID : _gr->source((*_pred)[v]); |
|
| 800 |
Node predNode(Node v) const {
|
|
| 801 |
return (*_pred)[v] == INVALID ? INVALID : _gr->source((*_pred)[v]); |
|
| 802 | 802 |
} |
| 803 |
|
|
| 803 |
|
|
| 804 | 804 |
/// \brief Returns a const reference to the node map that stores the |
| 805 | 805 |
/// distances of the nodes. |
| 806 | 806 |
/// |
| 807 | 807 |
/// Returns a const reference to the node map that stores the distances |
| 808 | 808 |
/// of the nodes calculated by the algorithm. |
| 809 | 809 |
/// |
| 810 | 810 |
/// \pre Either \ref run() or \ref init() must be called before |
| 811 | 811 |
/// using this function. |
| 812 | 812 |
const DistMap &distMap() const { return *_dist;}
|
| 813 |
|
|
| 813 |
|
|
| 814 | 814 |
/// \brief Returns a const reference to the node map that stores the |
| 815 | 815 |
/// predecessor arcs. |
| 816 | 816 |
/// |
| 817 | 817 |
/// Returns a const reference to the node map that stores the predecessor |
| 818 | 818 |
/// arcs, which form the shortest path tree (forest). |
| 819 | 819 |
/// |
| 820 | 820 |
/// \pre Either \ref run() or \ref init() must be called before |
| 821 | 821 |
/// using this function. |
| 822 | 822 |
const PredMap &predMap() const { return *_pred; }
|
| 823 |
|
|
| 823 |
|
|
| 824 | 824 |
/// \brief Checks if a node is reached from the root(s). |
| 825 | 825 |
/// |
| 826 | 826 |
/// Returns \c true if \c v is reached from the root(s). |
| 827 | 827 |
/// |
| 828 | 828 |
/// \pre Either \ref run() or \ref init() must be called before |
| 829 | 829 |
/// using this function. |
| 830 | 830 |
bool reached(Node v) const {
|
| 831 | 831 |
return (*_dist)[v] != OperationTraits::infinity(); |
| 832 | 832 |
} |
| 833 | 833 |
|
| 834 | 834 |
/// \brief Gives back a negative cycle. |
| 835 |
/// |
|
| 835 |
/// |
|
| 836 | 836 |
/// This function gives back a directed cycle with negative total |
| 837 | 837 |
/// length if the algorithm has already found one. |
| 838 | 838 |
/// Otherwise it gives back an empty path. |
| 839 | 839 |
lemon::Path<Digraph> negativeCycle() const {
|
| 840 | 840 |
typename Digraph::template NodeMap<int> state(*_gr, -1); |
| 841 | 841 |
lemon::Path<Digraph> cycle; |
| 842 | 842 |
for (int i = 0; i < int(_process.size()); ++i) {
|
| 843 | 843 |
if (state[_process[i]] != -1) continue; |
| 844 | 844 |
for (Node v = _process[i]; (*_pred)[v] != INVALID; |
| 845 | 845 |
v = _gr->source((*_pred)[v])) {
|
| 846 | 846 |
if (state[v] == i) {
|
| 847 | 847 |
cycle.addFront((*_pred)[v]); |
| 848 | 848 |
for (Node u = _gr->source((*_pred)[v]); u != v; |
| 849 | 849 |
u = _gr->source((*_pred)[u])) {
|
| 850 | 850 |
cycle.addFront((*_pred)[u]); |
| 851 | 851 |
} |
| 852 | 852 |
return cycle; |
| 853 | 853 |
} |
| 854 | 854 |
else if (state[v] >= 0) {
|
| 855 | 855 |
break; |
| 856 | 856 |
} |
| 857 | 857 |
state[v] = i; |
| 858 | 858 |
} |
| 859 | 859 |
} |
| 860 | 860 |
return cycle; |
| 861 | 861 |
} |
| 862 |
|
|
| 862 |
|
|
| 863 | 863 |
///@} |
| 864 | 864 |
}; |
| 865 |
|
|
| 865 |
|
|
| 866 | 866 |
/// \brief Default traits class of bellmanFord() function. |
| 867 | 867 |
/// |
| 868 | 868 |
/// Default traits class of bellmanFord() function. |
| 869 | 869 |
/// \tparam GR The type of the digraph. |
| 870 | 870 |
/// \tparam LEN The type of the length map. |
| 871 | 871 |
template <typename GR, typename LEN> |
| 872 | 872 |
struct BellmanFordWizardDefaultTraits {
|
| 873 |
/// The type of the digraph the algorithm runs on. |
|
| 873 |
/// The type of the digraph the algorithm runs on. |
|
| 874 | 874 |
typedef GR Digraph; |
| 875 | 875 |
|
| 876 | 876 |
/// \brief The type of the map that stores the arc lengths. |
| 877 | 877 |
/// |
| 878 | 878 |
/// The type of the map that stores the arc lengths. |
| 879 | 879 |
/// It must meet the \ref concepts::ReadMap "ReadMap" concept. |
| 880 | 880 |
typedef LEN LengthMap; |
| 881 | 881 |
|
| 882 | 882 |
/// The type of the arc lengths. |
| 883 | 883 |
typedef typename LEN::Value Value; |
| 884 | 884 |
|
| 885 | 885 |
/// \brief Operation traits for Bellman-Ford algorithm. |
| 886 | 886 |
/// |
| 887 | 887 |
/// It defines the used operations and the infinity value for the |
| 888 | 888 |
/// given \c Value type. |
| 889 | 889 |
/// \see BellmanFordDefaultOperationTraits, |
| 890 | 890 |
/// BellmanFordToleranceOperationTraits |
| 891 | 891 |
typedef BellmanFordDefaultOperationTraits<Value> OperationTraits; |
| 892 | 892 |
|
| 893 | 893 |
/// \brief The type of the map that stores the last |
| 894 | 894 |
/// arcs of the shortest paths. |
| 895 |
/// |
|
| 895 |
/// |
|
| 896 | 896 |
/// The type of the map that stores the last arcs of the shortest paths. |
| 897 | 897 |
/// It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
| 898 | 898 |
typedef typename GR::template NodeMap<typename GR::Arc> PredMap; |
| 899 | 899 |
|
| 900 | 900 |
/// \brief Instantiates a \c PredMap. |
| 901 |
/// |
|
| 901 |
/// |
|
| 902 | 902 |
/// This function instantiates a \ref PredMap. |
| 903 | 903 |
/// \param g is the digraph to which we would like to define the |
| 904 | 904 |
/// \ref PredMap. |
| 905 | 905 |
static PredMap *createPredMap(const GR &g) {
|
| 906 | 906 |
return new PredMap(g); |
| 907 | 907 |
} |
| 908 | 908 |
|
| 909 | 909 |
/// \brief The type of the map that stores the distances of the nodes. |
| 910 | 910 |
/// |
| 911 | 911 |
/// The type of the map that stores the distances of the nodes. |
| 912 | 912 |
/// It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
| 913 | 913 |
typedef typename GR::template NodeMap<Value> DistMap; |
| 914 | 914 |
|
| 915 | 915 |
/// \brief Instantiates a \c DistMap. |
| 916 | 916 |
/// |
| 917 |
/// This function instantiates a \ref DistMap. |
|
| 917 |
/// This function instantiates a \ref DistMap. |
|
| 918 | 918 |
/// \param g is the digraph to which we would like to define the |
| 919 | 919 |
/// \ref DistMap. |
| 920 | 920 |
static DistMap *createDistMap(const GR &g) {
|
| 921 | 921 |
return new DistMap(g); |
| 922 | 922 |
} |
| 923 | 923 |
|
| 924 | 924 |
///The type of the shortest paths. |
| 925 | 925 |
|
| 926 | 926 |
///The type of the shortest paths. |
| 927 | 927 |
///It must meet the \ref concepts::Path "Path" concept. |
| 928 | 928 |
typedef lemon::Path<Digraph> Path; |
| 929 | 929 |
}; |
| 930 |
|
|
| 930 |
|
|
| 931 | 931 |
/// \brief Default traits class used by BellmanFordWizard. |
| 932 | 932 |
/// |
| 933 | 933 |
/// Default traits class used by BellmanFordWizard. |
| 934 | 934 |
/// \tparam GR The type of the digraph. |
| 935 | 935 |
/// \tparam LEN The type of the length map. |
| 936 | 936 |
template <typename GR, typename LEN> |
| 937 |
class BellmanFordWizardBase |
|
| 937 |
class BellmanFordWizardBase |
|
| 938 | 938 |
: public BellmanFordWizardDefaultTraits<GR, LEN> {
|
| 939 | 939 |
|
| 940 | 940 |
typedef BellmanFordWizardDefaultTraits<GR, LEN> Base; |
| 941 | 941 |
protected: |
| 942 | 942 |
// Type of the nodes in the digraph. |
| 943 | 943 |
typedef typename Base::Digraph::Node Node; |
| 944 | 944 |
|
| 945 | 945 |
// Pointer to the underlying digraph. |
| 946 | 946 |
void *_graph; |
| 947 | 947 |
// Pointer to the length map |
| 948 | 948 |
void *_length; |
| 949 | 949 |
// Pointer to the map of predecessors arcs. |
| 950 | 950 |
void *_pred; |
| 951 | 951 |
// Pointer to the map of distances. |
| 952 | 952 |
void *_dist; |
| 953 | 953 |
//Pointer to the shortest path to the target node. |
| 954 | 954 |
void *_path; |
| 955 | 955 |
//Pointer to the distance of the target node. |
| 956 | 956 |
void *_di; |
| 957 | 957 |
|
| 958 | 958 |
public: |
| 959 | 959 |
/// Constructor. |
| 960 |
|
|
| 960 |
|
|
| 961 | 961 |
/// This constructor does not require parameters, it initiates |
| 962 | 962 |
/// all of the attributes to default values \c 0. |
| 963 | 963 |
BellmanFordWizardBase() : |
| 964 | 964 |
_graph(0), _length(0), _pred(0), _dist(0), _path(0), _di(0) {}
|
| 965 | 965 |
|
| 966 | 966 |
/// Constructor. |
| 967 |
|
|
| 967 |
|
|
| 968 | 968 |
/// This constructor requires two parameters, |
| 969 | 969 |
/// others are initiated to \c 0. |
| 970 | 970 |
/// \param gr The digraph the algorithm runs on. |
| 971 | 971 |
/// \param len The length map. |
| 972 |
BellmanFordWizardBase(const GR& gr, |
|
| 973 |
const LEN& len) : |
|
| 974 |
_graph(reinterpret_cast<void*>(const_cast<GR*>(&gr))), |
|
| 975 |
_length(reinterpret_cast<void*>(const_cast<LEN*>(&len))), |
|
| 972 |
BellmanFordWizardBase(const GR& gr, |
|
| 973 |
const LEN& len) : |
|
| 974 |
_graph(reinterpret_cast<void*>(const_cast<GR*>(&gr))), |
|
| 975 |
_length(reinterpret_cast<void*>(const_cast<LEN*>(&len))), |
|
| 976 | 976 |
_pred(0), _dist(0), _path(0), _di(0) {}
|
| 977 | 977 |
|
| 978 | 978 |
}; |
| 979 |
|
|
| 979 |
|
|
| 980 | 980 |
/// \brief Auxiliary class for the function-type interface of the |
| 981 | 981 |
/// \ref BellmanFord "Bellman-Ford" algorithm. |
| 982 | 982 |
/// |
| 983 | 983 |
/// This auxiliary class is created to implement the |
| 984 | 984 |
/// \ref bellmanFord() "function-type interface" of the |
| 985 | 985 |
/// \ref BellmanFord "Bellman-Ford" algorithm. |
| 986 | 986 |
/// It does not have own \ref run() method, it uses the |
| 987 | 987 |
/// functions and features of the plain \ref BellmanFord. |
| 988 | 988 |
/// |
| 989 | 989 |
/// This class should only be used through the \ref bellmanFord() |
| 990 | 990 |
/// function, which makes it easier to use the algorithm. |
| 991 | 991 |
/// |
| 992 | 992 |
/// \tparam TR The traits class that defines various types used by the |
| 993 | 993 |
/// algorithm. |
| 994 | 994 |
template<class TR> |
| 995 | 995 |
class BellmanFordWizard : public TR {
|
| 996 | 996 |
typedef TR Base; |
| 997 | 997 |
|
| 998 | 998 |
typedef typename TR::Digraph Digraph; |
| 999 | 999 |
|
| 1000 | 1000 |
typedef typename Digraph::Node Node; |
| 1001 | 1001 |
typedef typename Digraph::NodeIt NodeIt; |
| 1002 | 1002 |
typedef typename Digraph::Arc Arc; |
| 1003 | 1003 |
typedef typename Digraph::OutArcIt ArcIt; |
| 1004 |
|
|
| 1004 |
|
|
| 1005 | 1005 |
typedef typename TR::LengthMap LengthMap; |
| 1006 | 1006 |
typedef typename LengthMap::Value Value; |
| 1007 | 1007 |
typedef typename TR::PredMap PredMap; |
| 1008 | 1008 |
typedef typename TR::DistMap DistMap; |
| 1009 | 1009 |
typedef typename TR::Path Path; |
| 1010 | 1010 |
|
| 1011 | 1011 |
public: |
| 1012 | 1012 |
/// Constructor. |
| 1013 | 1013 |
BellmanFordWizard() : TR() {}
|
| 1014 | 1014 |
|
| 1015 | 1015 |
/// \brief Constructor that requires parameters. |
| 1016 | 1016 |
/// |
| 1017 | 1017 |
/// Constructor that requires parameters. |
| 1018 | 1018 |
/// These parameters will be the default values for the traits class. |
| 1019 | 1019 |
/// \param gr The digraph the algorithm runs on. |
| 1020 | 1020 |
/// \param len The length map. |
| 1021 |
BellmanFordWizard(const Digraph& gr, const LengthMap& len) |
|
| 1021 |
BellmanFordWizard(const Digraph& gr, const LengthMap& len) |
|
| 1022 | 1022 |
: TR(gr, len) {}
|
| 1023 | 1023 |
|
| 1024 | 1024 |
/// \brief Copy constructor |
| 1025 | 1025 |
BellmanFordWizard(const TR &b) : TR(b) {}
|
| 1026 | 1026 |
|
| 1027 | 1027 |
~BellmanFordWizard() {}
|
| 1028 | 1028 |
|
| 1029 | 1029 |
/// \brief Runs the Bellman-Ford algorithm from the given source node. |
| 1030 |
/// |
|
| 1030 |
/// |
|
| 1031 | 1031 |
/// This method runs the Bellman-Ford algorithm from the given source |
| 1032 | 1032 |
/// node in order to compute the shortest path to each node. |
| 1033 | 1033 |
void run(Node s) {
|
| 1034 |
BellmanFord<Digraph,LengthMap,TR> |
|
| 1035 |
bf(*reinterpret_cast<const Digraph*>(Base::_graph), |
|
| 1034 |
BellmanFord<Digraph,LengthMap,TR> |
|
| 1035 |
bf(*reinterpret_cast<const Digraph*>(Base::_graph), |
|
| 1036 | 1036 |
*reinterpret_cast<const LengthMap*>(Base::_length)); |
| 1037 | 1037 |
if (Base::_pred) bf.predMap(*reinterpret_cast<PredMap*>(Base::_pred)); |
| 1038 | 1038 |
if (Base::_dist) bf.distMap(*reinterpret_cast<DistMap*>(Base::_dist)); |
| 1039 | 1039 |
bf.run(s); |
| 1040 | 1040 |
} |
| 1041 | 1041 |
|
| 1042 | 1042 |
/// \brief Runs the Bellman-Ford algorithm to find the shortest path |
| 1043 | 1043 |
/// between \c s and \c t. |
| 1044 | 1044 |
/// |
| 1045 | 1045 |
/// This method runs the Bellman-Ford algorithm from node \c s |
| 1046 | 1046 |
/// in order to compute the shortest path to node \c t. |
| 1047 | 1047 |
/// Actually, it computes the shortest path to each node, but using |
| 1048 | 1048 |
/// this function you can retrieve the distance and the shortest path |
| 1049 | 1049 |
/// for a single target node easier. |
| 1050 | 1050 |
/// |
| 1051 | 1051 |
/// \return \c true if \c t is reachable form \c s. |
| 1052 | 1052 |
bool run(Node s, Node t) {
|
| 1053 | 1053 |
BellmanFord<Digraph,LengthMap,TR> |
| 1054 | 1054 |
bf(*reinterpret_cast<const Digraph*>(Base::_graph), |
| 1055 | 1055 |
*reinterpret_cast<const LengthMap*>(Base::_length)); |
| 1056 | 1056 |
if (Base::_pred) bf.predMap(*reinterpret_cast<PredMap*>(Base::_pred)); |
| 1057 | 1057 |
if (Base::_dist) bf.distMap(*reinterpret_cast<DistMap*>(Base::_dist)); |
| 1058 | 1058 |
bf.run(s); |
| 1059 | 1059 |
if (Base::_path) *reinterpret_cast<Path*>(Base::_path) = bf.path(t); |
| 1060 | 1060 |
if (Base::_di) *reinterpret_cast<Value*>(Base::_di) = bf.dist(t); |
| 1061 | 1061 |
return bf.reached(t); |
| 1062 | 1062 |
} |
| 1063 | 1063 |
|
| 1064 | 1064 |
template<class T> |
| 1065 | 1065 |
struct SetPredMapBase : public Base {
|
| 1066 | 1066 |
typedef T PredMap; |
| 1067 | 1067 |
static PredMap *createPredMap(const Digraph &) { return 0; };
|
| 1068 | 1068 |
SetPredMapBase(const TR &b) : TR(b) {}
|
| 1069 | 1069 |
}; |
| 1070 |
|
|
| 1070 |
|
|
| 1071 | 1071 |
/// \brief \ref named-templ-param "Named parameter" for setting |
| 1072 | 1072 |
/// the predecessor map. |
| 1073 | 1073 |
/// |
| 1074 | 1074 |
/// \ref named-templ-param "Named parameter" for setting |
| 1075 | 1075 |
/// the map that stores the predecessor arcs of the nodes. |
| 1076 | 1076 |
template<class T> |
| 1077 | 1077 |
BellmanFordWizard<SetPredMapBase<T> > predMap(const T &t) {
|
| 1078 | 1078 |
Base::_pred=reinterpret_cast<void*>(const_cast<T*>(&t)); |
| 1079 | 1079 |
return BellmanFordWizard<SetPredMapBase<T> >(*this); |
| 1080 | 1080 |
} |
| 1081 |
|
|
| 1081 |
|
|
| 1082 | 1082 |
template<class T> |
| 1083 | 1083 |
struct SetDistMapBase : public Base {
|
| 1084 | 1084 |
typedef T DistMap; |
| 1085 | 1085 |
static DistMap *createDistMap(const Digraph &) { return 0; };
|
| 1086 | 1086 |
SetDistMapBase(const TR &b) : TR(b) {}
|
| 1087 | 1087 |
}; |
| 1088 |
|
|
| 1088 |
|
|
| 1089 | 1089 |
/// \brief \ref named-templ-param "Named parameter" for setting |
| 1090 | 1090 |
/// the distance map. |
| 1091 | 1091 |
/// |
| 1092 | 1092 |
/// \ref named-templ-param "Named parameter" for setting |
| 1093 | 1093 |
/// the map that stores the distances of the nodes calculated |
| 1094 | 1094 |
/// by the algorithm. |
| 1095 | 1095 |
template<class T> |
| 1096 | 1096 |
BellmanFordWizard<SetDistMapBase<T> > distMap(const T &t) {
|
| 1097 | 1097 |
Base::_dist=reinterpret_cast<void*>(const_cast<T*>(&t)); |
| 1098 | 1098 |
return BellmanFordWizard<SetDistMapBase<T> >(*this); |
| 1099 | 1099 |
} |
| 1100 | 1100 |
|
| 1101 | 1101 |
template<class T> |
| 1102 | 1102 |
struct SetPathBase : public Base {
|
| 1103 | 1103 |
typedef T Path; |
| 1104 | 1104 |
SetPathBase(const TR &b) : TR(b) {}
|
| 1105 | 1105 |
}; |
| 1106 | 1106 |
|
| 1107 | 1107 |
/// \brief \ref named-func-param "Named parameter" for getting |
| 1108 | 1108 |
/// the shortest path to the target node. |
| 1109 | 1109 |
/// |
| 1110 | 1110 |
/// \ref named-func-param "Named parameter" for getting |
| 1111 | 1111 |
/// the shortest path to the target node. |
| 1112 | 1112 |
template<class T> |
| 1113 | 1113 |
BellmanFordWizard<SetPathBase<T> > path(const T &t) |
| 1114 | 1114 |
{
|
| 1115 | 1115 |
Base::_path=reinterpret_cast<void*>(const_cast<T*>(&t)); |
| 1116 | 1116 |
return BellmanFordWizard<SetPathBase<T> >(*this); |
| 1117 | 1117 |
} |
| 1118 | 1118 |
|
| 1119 | 1119 |
/// \brief \ref named-func-param "Named parameter" for getting |
| 1120 | 1120 |
/// the distance of the target node. |
| 1121 | 1121 |
/// |
| 1122 | 1122 |
/// \ref named-func-param "Named parameter" for getting |
| 1123 | 1123 |
/// the distance of the target node. |
| 1124 | 1124 |
BellmanFordWizard dist(const Value &d) |
| 1125 | 1125 |
{
|
| 1126 | 1126 |
Base::_di=reinterpret_cast<void*>(const_cast<Value*>(&d)); |
| 1127 | 1127 |
return *this; |
| 1128 | 1128 |
} |
| 1129 |
|
|
| 1129 |
|
|
| 1130 | 1130 |
}; |
| 1131 |
|
|
| 1131 |
|
|
| 1132 | 1132 |
/// \brief Function type interface for the \ref BellmanFord "Bellman-Ford" |
| 1133 | 1133 |
/// algorithm. |
| 1134 | 1134 |
/// |
| 1135 | 1135 |
/// \ingroup shortest_path |
| 1136 | 1136 |
/// Function type interface for the \ref BellmanFord "Bellman-Ford" |
| 1137 | 1137 |
/// algorithm. |
| 1138 | 1138 |
/// |
| 1139 |
/// This function also has several \ref named-templ-func-param |
|
| 1140 |
/// "named parameters", they are declared as the members of class |
|
| 1139 |
/// This function also has several \ref named-templ-func-param |
|
| 1140 |
/// "named parameters", they are declared as the members of class |
|
| 1141 | 1141 |
/// \ref BellmanFordWizard. |
| 1142 | 1142 |
/// The following examples show how to use these parameters. |
| 1143 | 1143 |
/// \code |
| 1144 | 1144 |
/// // Compute shortest path from node s to each node |
| 1145 | 1145 |
/// bellmanFord(g,length).predMap(preds).distMap(dists).run(s); |
| 1146 | 1146 |
/// |
| 1147 | 1147 |
/// // Compute shortest path from s to t |
| 1148 | 1148 |
/// bool reached = bellmanFord(g,length).path(p).dist(d).run(s,t); |
| 1149 | 1149 |
/// \endcode |
| 1150 | 1150 |
/// \warning Don't forget to put the \ref BellmanFordWizard::run() "run()" |
| 1151 | 1151 |
/// to the end of the parameter list. |
| 1152 | 1152 |
/// \sa BellmanFordWizard |
| 1153 | 1153 |
/// \sa BellmanFord |
| 1154 | 1154 |
template<typename GR, typename LEN> |
| 1155 | 1155 |
BellmanFordWizard<BellmanFordWizardBase<GR,LEN> > |
| 1156 | 1156 |
bellmanFord(const GR& digraph, |
| 1157 |
|
|
| 1157 |
const LEN& length) |
|
| 1158 | 1158 |
{
|
| 1159 | 1159 |
return BellmanFordWizard<BellmanFordWizardBase<GR,LEN> >(digraph, length); |
| 1160 | 1160 |
} |
| 1161 | 1161 |
|
| 1162 | 1162 |
} //END OF NAMESPACE LEMON |
| 1163 | 1163 |
|
| 1164 | 1164 |
#endif |
| 1165 | 1165 |
| 1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
| 2 | 2 |
* |
| 3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
| 4 | 4 |
* |
| 5 |
* Copyright (C) 2003- |
|
| 5 |
* Copyright (C) 2003-2010 |
|
| 6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
| 7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
| 8 | 8 |
* |
| 9 | 9 |
* Permission to use, modify and distribute this software is granted |
| 10 | 10 |
* provided that this copyright notice appears in all copies. For |
| 11 | 11 |
* precise terms see the accompanying LICENSE file. |
| 12 | 12 |
* |
| 13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
| 14 | 14 |
* express or implied, and with no claim as to its suitability for any |
| 15 | 15 |
* purpose. |
| 16 | 16 |
* |
| 17 | 17 |
*/ |
| 18 | 18 |
|
| 19 | 19 |
#ifndef LEMON_BFS_H |
| 20 | 20 |
#define LEMON_BFS_H |
| 21 | 21 |
|
| 22 | 22 |
///\ingroup search |
| 23 | 23 |
///\file |
| 24 | 24 |
///\brief BFS algorithm. |
| 25 | 25 |
|
| 26 | 26 |
#include <lemon/list_graph.h> |
| 27 | 27 |
#include <lemon/bits/path_dump.h> |
| 28 | 28 |
#include <lemon/core.h> |
| 29 | 29 |
#include <lemon/error.h> |
| 30 | 30 |
#include <lemon/maps.h> |
| 31 | 31 |
#include <lemon/path.h> |
| 32 | 32 |
|
| 33 | 33 |
namespace lemon {
|
| 34 | 34 |
|
| 35 | 35 |
///Default traits class of Bfs class. |
| 36 | 36 |
|
| 37 | 37 |
///Default traits class of Bfs class. |
| ... | ... |
@@ -53,65 +53,66 @@ |
| 53 | 53 |
|
| 54 | 54 |
///This function instantiates a \ref PredMap. |
| 55 | 55 |
///\param g is the digraph, to which we would like to define the |
| 56 | 56 |
///\ref PredMap. |
| 57 | 57 |
static PredMap *createPredMap(const Digraph &g) |
| 58 | 58 |
{
|
| 59 | 59 |
return new PredMap(g); |
| 60 | 60 |
} |
| 61 | 61 |
|
| 62 | 62 |
///The type of the map that indicates which nodes are processed. |
| 63 | 63 |
|
| 64 | 64 |
///The type of the map that indicates which nodes are processed. |
| 65 | 65 |
///It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
| 66 | 66 |
///By default, it is a NullMap. |
| 67 | 67 |
typedef NullMap<typename Digraph::Node,bool> ProcessedMap; |
| 68 | 68 |
///Instantiates a \c ProcessedMap. |
| 69 | 69 |
|
| 70 | 70 |
///This function instantiates a \ref ProcessedMap. |
| 71 | 71 |
///\param g is the digraph, to which |
| 72 | 72 |
///we would like to define the \ref ProcessedMap |
| 73 | 73 |
#ifdef DOXYGEN |
| 74 | 74 |
static ProcessedMap *createProcessedMap(const Digraph &g) |
| 75 | 75 |
#else |
| 76 | 76 |
static ProcessedMap *createProcessedMap(const Digraph &) |
| 77 | 77 |
#endif |
| 78 | 78 |
{
|
| 79 | 79 |
return new ProcessedMap(); |
| 80 | 80 |
} |
| 81 | 81 |
|
| 82 | 82 |
///The type of the map that indicates which nodes are reached. |
| 83 | 83 |
|
| 84 | 84 |
///The type of the map that indicates which nodes are reached. |
| 85 |
///It must conform to |
|
| 85 |
///It must conform to |
|
| 86 |
///the \ref concepts::ReadWriteMap "ReadWriteMap" concept. |
|
| 86 | 87 |
typedef typename Digraph::template NodeMap<bool> ReachedMap; |
| 87 | 88 |
///Instantiates a \c ReachedMap. |
| 88 | 89 |
|
| 89 | 90 |
///This function instantiates a \ref ReachedMap. |
| 90 | 91 |
///\param g is the digraph, to which |
| 91 | 92 |
///we would like to define the \ref ReachedMap. |
| 92 | 93 |
static ReachedMap *createReachedMap(const Digraph &g) |
| 93 | 94 |
{
|
| 94 | 95 |
return new ReachedMap(g); |
| 95 | 96 |
} |
| 96 | 97 |
|
| 97 | 98 |
///The type of the map that stores the distances of the nodes. |
| 98 | 99 |
|
| 99 | 100 |
///The type of the map that stores the distances of the nodes. |
| 100 | 101 |
///It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
| 101 | 102 |
typedef typename Digraph::template NodeMap<int> DistMap; |
| 102 | 103 |
///Instantiates a \c DistMap. |
| 103 | 104 |
|
| 104 | 105 |
///This function instantiates a \ref DistMap. |
| 105 | 106 |
///\param g is the digraph, to which we would like to define the |
| 106 | 107 |
///\ref DistMap. |
| 107 | 108 |
static DistMap *createDistMap(const Digraph &g) |
| 108 | 109 |
{
|
| 109 | 110 |
return new DistMap(g); |
| 110 | 111 |
} |
| 111 | 112 |
}; |
| 112 | 113 |
|
| 113 | 114 |
///%BFS algorithm class. |
| 114 | 115 |
|
| 115 | 116 |
///\ingroup search |
| 116 | 117 |
///This class provides an efficient implementation of the %BFS algorithm. |
| 117 | 118 |
/// |
| ... | ... |
@@ -242,65 +243,66 @@ |
| 242 | 243 |
typedef T DistMap; |
| 243 | 244 |
static DistMap *createDistMap(const Digraph &) |
| 244 | 245 |
{
|
| 245 | 246 |
LEMON_ASSERT(false, "DistMap is not initialized"); |
| 246 | 247 |
return 0; // ignore warnings |
| 247 | 248 |
} |
| 248 | 249 |
}; |
| 249 | 250 |
///\brief \ref named-templ-param "Named parameter" for setting |
| 250 | 251 |
///\c DistMap type. |
| 251 | 252 |
/// |
| 252 | 253 |
///\ref named-templ-param "Named parameter" for setting |
| 253 | 254 |
///\c DistMap type. |
| 254 | 255 |
///It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
| 255 | 256 |
template <class T> |
| 256 | 257 |
struct SetDistMap : public Bfs< Digraph, SetDistMapTraits<T> > {
|
| 257 | 258 |
typedef Bfs< Digraph, SetDistMapTraits<T> > Create; |
| 258 | 259 |
}; |
| 259 | 260 |
|
| 260 | 261 |
template <class T> |
| 261 | 262 |
struct SetReachedMapTraits : public Traits {
|
| 262 | 263 |
typedef T ReachedMap; |
| 263 | 264 |
static ReachedMap *createReachedMap(const Digraph &) |
| 264 | 265 |
{
|
| 265 | 266 |
LEMON_ASSERT(false, "ReachedMap is not initialized"); |
| 266 | 267 |
return 0; // ignore warnings |
| 267 | 268 |
} |
| 268 | 269 |
}; |
| 269 | 270 |
///\brief \ref named-templ-param "Named parameter" for setting |
| 270 | 271 |
///\c ReachedMap type. |
| 271 | 272 |
/// |
| 272 | 273 |
///\ref named-templ-param "Named parameter" for setting |
| 273 | 274 |
///\c ReachedMap type. |
| 274 |
///It must conform to |
|
| 275 |
///It must conform to |
|
| 276 |
///the \ref concepts::ReadWriteMap "ReadWriteMap" concept. |
|
| 275 | 277 |
template <class T> |
| 276 | 278 |
struct SetReachedMap : public Bfs< Digraph, SetReachedMapTraits<T> > {
|
| 277 | 279 |
typedef Bfs< Digraph, SetReachedMapTraits<T> > Create; |
| 278 | 280 |
}; |
| 279 | 281 |
|
| 280 | 282 |
template <class T> |
| 281 | 283 |
struct SetProcessedMapTraits : public Traits {
|
| 282 | 284 |
typedef T ProcessedMap; |
| 283 | 285 |
static ProcessedMap *createProcessedMap(const Digraph &) |
| 284 | 286 |
{
|
| 285 | 287 |
LEMON_ASSERT(false, "ProcessedMap is not initialized"); |
| 286 | 288 |
return 0; // ignore warnings |
| 287 | 289 |
} |
| 288 | 290 |
}; |
| 289 | 291 |
///\brief \ref named-templ-param "Named parameter" for setting |
| 290 | 292 |
///\c ProcessedMap type. |
| 291 | 293 |
/// |
| 292 | 294 |
///\ref named-templ-param "Named parameter" for setting |
| 293 | 295 |
///\c ProcessedMap type. |
| 294 | 296 |
///It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
| 295 | 297 |
template <class T> |
| 296 | 298 |
struct SetProcessedMap : public Bfs< Digraph, SetProcessedMapTraits<T> > {
|
| 297 | 299 |
typedef Bfs< Digraph, SetProcessedMapTraits<T> > Create; |
| 298 | 300 |
}; |
| 299 | 301 |
|
| 300 | 302 |
struct SetStandardProcessedMapTraits : public Traits {
|
| 301 | 303 |
typedef typename Digraph::template NodeMap<bool> ProcessedMap; |
| 302 | 304 |
static ProcessedMap *createProcessedMap(const Digraph &g) |
| 303 | 305 |
{
|
| 304 | 306 |
return new ProcessedMap(g); |
| 305 | 307 |
return 0; // ignore warnings |
| 306 | 308 |
} |
| ... | ... |
@@ -843,65 +845,66 @@ |
| 843 | 845 |
|
| 844 | 846 |
///This function instantiates a PredMap. |
| 845 | 847 |
///\param g is the digraph, to which we would like to define the |
| 846 | 848 |
///PredMap. |
| 847 | 849 |
static PredMap *createPredMap(const Digraph &g) |
| 848 | 850 |
{
|
| 849 | 851 |
return new PredMap(g); |
| 850 | 852 |
} |
| 851 | 853 |
|
| 852 | 854 |
///The type of the map that indicates which nodes are processed. |
| 853 | 855 |
|
| 854 | 856 |
///The type of the map that indicates which nodes are processed. |
| 855 | 857 |
///It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
| 856 | 858 |
///By default, it is a NullMap. |
| 857 | 859 |
typedef NullMap<typename Digraph::Node,bool> ProcessedMap; |
| 858 | 860 |
///Instantiates a ProcessedMap. |
| 859 | 861 |
|
| 860 | 862 |
///This function instantiates a ProcessedMap. |
| 861 | 863 |
///\param g is the digraph, to which |
| 862 | 864 |
///we would like to define the ProcessedMap. |
| 863 | 865 |
#ifdef DOXYGEN |
| 864 | 866 |
static ProcessedMap *createProcessedMap(const Digraph &g) |
| 865 | 867 |
#else |
| 866 | 868 |
static ProcessedMap *createProcessedMap(const Digraph &) |
| 867 | 869 |
#endif |
| 868 | 870 |
{
|
| 869 | 871 |
return new ProcessedMap(); |
| 870 | 872 |
} |
| 871 | 873 |
|
| 872 | 874 |
///The type of the map that indicates which nodes are reached. |
| 873 | 875 |
|
| 874 | 876 |
///The type of the map that indicates which nodes are reached. |
| 875 |
///It must conform to |
|
| 877 |
///It must conform to |
|
| 878 |
///the \ref concepts::ReadWriteMap "ReadWriteMap" concept. |
|
| 876 | 879 |
typedef typename Digraph::template NodeMap<bool> ReachedMap; |
| 877 | 880 |
///Instantiates a ReachedMap. |
| 878 | 881 |
|
| 879 | 882 |
///This function instantiates a ReachedMap. |
| 880 | 883 |
///\param g is the digraph, to which |
| 881 | 884 |
///we would like to define the ReachedMap. |
| 882 | 885 |
static ReachedMap *createReachedMap(const Digraph &g) |
| 883 | 886 |
{
|
| 884 | 887 |
return new ReachedMap(g); |
| 885 | 888 |
} |
| 886 | 889 |
|
| 887 | 890 |
///The type of the map that stores the distances of the nodes. |
| 888 | 891 |
|
| 889 | 892 |
///The type of the map that stores the distances of the nodes. |
| 890 | 893 |
///It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
| 891 | 894 |
typedef typename Digraph::template NodeMap<int> DistMap; |
| 892 | 895 |
///Instantiates a DistMap. |
| 893 | 896 |
|
| 894 | 897 |
///This function instantiates a DistMap. |
| 895 | 898 |
///\param g is the digraph, to which we would like to define |
| 896 | 899 |
///the DistMap |
| 897 | 900 |
static DistMap *createDistMap(const Digraph &g) |
| 898 | 901 |
{
|
| 899 | 902 |
return new DistMap(g); |
| 900 | 903 |
} |
| 901 | 904 |
|
| 902 | 905 |
///The type of the shortest paths. |
| 903 | 906 |
|
| 904 | 907 |
///The type of the shortest paths. |
| 905 | 908 |
///It must conform to the \ref concepts::Path "Path" concept. |
| 906 | 909 |
typedef lemon::Path<Digraph> Path; |
| 907 | 910 |
}; |
| ... | ... |
@@ -1236,65 +1239,66 @@ |
| 1236 | 1239 |
void discover(const Arc&) {}
|
| 1237 | 1240 |
void examine(const Arc&) {}
|
| 1238 | 1241 |
|
| 1239 | 1242 |
template <typename _Visitor> |
| 1240 | 1243 |
struct Constraints {
|
| 1241 | 1244 |
void constraints() {
|
| 1242 | 1245 |
Arc arc; |
| 1243 | 1246 |
Node node; |
| 1244 | 1247 |
visitor.start(node); |
| 1245 | 1248 |
visitor.reach(node); |
| 1246 | 1249 |
visitor.process(node); |
| 1247 | 1250 |
visitor.discover(arc); |
| 1248 | 1251 |
visitor.examine(arc); |
| 1249 | 1252 |
} |
| 1250 | 1253 |
_Visitor& visitor; |
| 1251 | 1254 |
}; |
| 1252 | 1255 |
}; |
| 1253 | 1256 |
#endif |
| 1254 | 1257 |
|
| 1255 | 1258 |
/// \brief Default traits class of BfsVisit class. |
| 1256 | 1259 |
/// |
| 1257 | 1260 |
/// Default traits class of BfsVisit class. |
| 1258 | 1261 |
/// \tparam GR The type of the digraph the algorithm runs on. |
| 1259 | 1262 |
template<class GR> |
| 1260 | 1263 |
struct BfsVisitDefaultTraits {
|
| 1261 | 1264 |
|
| 1262 | 1265 |
/// \brief The type of the digraph the algorithm runs on. |
| 1263 | 1266 |
typedef GR Digraph; |
| 1264 | 1267 |
|
| 1265 | 1268 |
/// \brief The type of the map that indicates which nodes are reached. |
| 1266 | 1269 |
/// |
| 1267 | 1270 |
/// The type of the map that indicates which nodes are reached. |
| 1268 |
/// It must conform to |
|
| 1271 |
/// It must conform to |
|
| 1272 |
///the \ref concepts::ReadWriteMap "ReadWriteMap" concept. |
|
| 1269 | 1273 |
typedef typename Digraph::template NodeMap<bool> ReachedMap; |
| 1270 | 1274 |
|
| 1271 | 1275 |
/// \brief Instantiates a ReachedMap. |
| 1272 | 1276 |
/// |
| 1273 | 1277 |
/// This function instantiates a ReachedMap. |
| 1274 | 1278 |
/// \param digraph is the digraph, to which |
| 1275 | 1279 |
/// we would like to define the ReachedMap. |
| 1276 | 1280 |
static ReachedMap *createReachedMap(const Digraph &digraph) {
|
| 1277 | 1281 |
return new ReachedMap(digraph); |
| 1278 | 1282 |
} |
| 1279 | 1283 |
|
| 1280 | 1284 |
}; |
| 1281 | 1285 |
|
| 1282 | 1286 |
/// \ingroup search |
| 1283 | 1287 |
/// |
| 1284 | 1288 |
/// \brief BFS algorithm class with visitor interface. |
| 1285 | 1289 |
/// |
| 1286 | 1290 |
/// This class provides an efficient implementation of the BFS algorithm |
| 1287 | 1291 |
/// with visitor interface. |
| 1288 | 1292 |
/// |
| 1289 | 1293 |
/// The BfsVisit class provides an alternative interface to the Bfs |
| 1290 | 1294 |
/// class. It works with callback mechanism, the BfsVisit object calls |
| 1291 | 1295 |
/// the member functions of the \c Visitor class on every BFS event. |
| 1292 | 1296 |
/// |
| 1293 | 1297 |
/// This interface of the BFS algorithm should be used in special cases |
| 1294 | 1298 |
/// when extra actions have to be performed in connection with certain |
| 1295 | 1299 |
/// events of the BFS algorithm. Otherwise consider to use Bfs or bfs() |
| 1296 | 1300 |
/// instead. |
| 1297 | 1301 |
/// |
| 1298 | 1302 |
/// \tparam GR The type of the digraph the algorithm runs on. |
| 1299 | 1303 |
/// The default type is \ref ListDigraph. |
| 1300 | 1304 |
/// The value of GR is not used directly by \ref BfsVisit, |
| 1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
| 2 | 2 |
* |
| 3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
| 4 | 4 |
* |
| 5 |
* Copyright (C) 2003- |
|
| 5 |
* Copyright (C) 2003-2010 |
|
| 6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
| 7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
| 8 | 8 |
* |
| 9 | 9 |
* Permission to use, modify and distribute this software is granted |
| 10 | 10 |
* provided that this copyright notice appears in all copies. For |
| 11 | 11 |
* precise terms see the accompanying LICENSE file. |
| 12 | 12 |
* |
| 13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
| 14 | 14 |
* express or implied, and with no claim as to its suitability for any |
| 15 | 15 |
* purpose. |
| 16 | 16 |
* |
| 17 | 17 |
*/ |
| 18 | 18 |
|
| 19 | 19 |
#ifndef LEMON_BINOMIAL_HEAP_H |
| 20 | 20 |
#define LEMON_BINOMIAL_HEAP_H |
| 21 | 21 |
|
| 22 | 22 |
///\file |
| 23 | 23 |
///\ingroup heaps |
| 24 | 24 |
///\brief Binomial Heap implementation. |
| 25 | 25 |
|
| 26 | 26 |
#include <vector> |
| 27 | 27 |
#include <utility> |
| 28 | 28 |
#include <functional> |
| 29 | 29 |
#include <lemon/math.h> |
| 30 | 30 |
#include <lemon/counter.h> |
| 31 | 31 |
|
| 32 | 32 |
namespace lemon {
|
| 33 | 33 |
|
| 34 | 34 |
/// \ingroup heaps |
| 35 | 35 |
/// |
| 36 | 36 |
///\brief Binomial heap data structure. |
| 37 | 37 |
/// |
| ... | ... |
@@ -229,204 +229,204 @@ |
| 229 | 229 |
if( _head!=_min ) { unlace(_min); }
|
| 230 | 230 |
else { _head=_data[_head].right_neighbor; }
|
| 231 | 231 |
merge(head_child); |
| 232 | 232 |
} |
| 233 | 233 |
_min=findMin(); |
| 234 | 234 |
--_num_items; |
| 235 | 235 |
} |
| 236 | 236 |
|
| 237 | 237 |
/// \brief Remove the given item from the heap. |
| 238 | 238 |
/// |
| 239 | 239 |
/// This function removes the given item from the heap if it is |
| 240 | 240 |
/// already stored. |
| 241 | 241 |
/// \param item The item to delete. |
| 242 | 242 |
/// \pre \e item must be in the heap. |
| 243 | 243 |
void erase (const Item& item) {
|
| 244 | 244 |
int i=_iim[item]; |
| 245 | 245 |
if ( i >= 0 && _data[i].in ) {
|
| 246 | 246 |
decrease( item, _data[_min].prio-1 ); |
| 247 | 247 |
pop(); |
| 248 | 248 |
} |
| 249 | 249 |
} |
| 250 | 250 |
|
| 251 | 251 |
/// \brief Decrease the priority of an item to the given value. |
| 252 | 252 |
/// |
| 253 | 253 |
/// This function decreases the priority of an item to the given value. |
| 254 | 254 |
/// \param item The item. |
| 255 | 255 |
/// \param value The priority. |
| 256 | 256 |
/// \pre \e item must be stored in the heap with priority at least \e value. |
| 257 | 257 |
void decrease (Item item, const Prio& value) {
|
| 258 | 258 |
int i=_iim[item]; |
| 259 | 259 |
int p=_data[i].parent; |
| 260 | 260 |
_data[i].prio=value; |
| 261 |
|
|
| 261 |
|
|
| 262 | 262 |
while( p!=-1 && _comp(value, _data[p].prio) ) {
|
| 263 | 263 |
_data[i].name=_data[p].name; |
| 264 | 264 |
_data[i].prio=_data[p].prio; |
| 265 | 265 |
_data[p].name=item; |
| 266 | 266 |
_data[p].prio=value; |
| 267 | 267 |
_iim[_data[i].name]=i; |
| 268 | 268 |
i=p; |
| 269 | 269 |
p=_data[p].parent; |
| 270 | 270 |
} |
| 271 | 271 |
_iim[item]=i; |
| 272 | 272 |
if ( _comp(value, _data[_min].prio) ) _min=i; |
| 273 | 273 |
} |
| 274 | 274 |
|
| 275 | 275 |
/// \brief Increase the priority of an item to the given value. |
| 276 | 276 |
/// |
| 277 | 277 |
/// This function increases the priority of an item to the given value. |
| 278 | 278 |
/// \param item The item. |
| 279 | 279 |
/// \param value The priority. |
| 280 | 280 |
/// \pre \e item must be stored in the heap with priority at most \e value. |
| 281 | 281 |
void increase (Item item, const Prio& value) {
|
| 282 | 282 |
erase(item); |
| 283 | 283 |
push(item, value); |
| 284 | 284 |
} |
| 285 | 285 |
|
| 286 | 286 |
/// \brief Return the state of an item. |
| 287 | 287 |
/// |
| 288 | 288 |
/// This method returns \c PRE_HEAP if the given item has never |
| 289 | 289 |
/// been in the heap, \c IN_HEAP if it is in the heap at the moment, |
| 290 | 290 |
/// and \c POST_HEAP otherwise. |
| 291 | 291 |
/// In the latter case it is possible that the item will get back |
| 292 | 292 |
/// to the heap again. |
| 293 | 293 |
/// \param item The item. |
| 294 | 294 |
State state(const Item &item) const {
|
| 295 | 295 |
int i=_iim[item]; |
| 296 | 296 |
if( i>=0 ) {
|
| 297 | 297 |
if ( _data[i].in ) i=0; |
| 298 | 298 |
else i=-2; |
| 299 | 299 |
} |
| 300 | 300 |
return State(i); |
| 301 | 301 |
} |
| 302 | 302 |
|
| 303 | 303 |
/// \brief Set the state of an item in the heap. |
| 304 | 304 |
/// |
| 305 | 305 |
/// This function sets the state of the given item in the heap. |
| 306 | 306 |
/// It can be used to manually clear the heap when it is important |
| 307 | 307 |
/// to achive better time complexity. |
| 308 | 308 |
/// \param i The item. |
| 309 | 309 |
/// \param st The state. It should not be \c IN_HEAP. |
| 310 | 310 |
void state(const Item& i, State st) {
|
| 311 | 311 |
switch (st) {
|
| 312 | 312 |
case POST_HEAP: |
| 313 | 313 |
case PRE_HEAP: |
| 314 | 314 |
if (state(i) == IN_HEAP) {
|
| 315 | 315 |
erase(i); |
| 316 | 316 |
} |
| 317 | 317 |
_iim[i] = st; |
| 318 | 318 |
break; |
| 319 | 319 |
case IN_HEAP: |
| 320 | 320 |
break; |
| 321 | 321 |
} |
| 322 | 322 |
} |
| 323 | 323 |
|
| 324 | 324 |
private: |
| 325 |
|
|
| 325 |
|
|
| 326 | 326 |
// Find the minimum of the roots |
| 327 | 327 |
int findMin() {
|
| 328 | 328 |
if( _head!=-1 ) {
|
| 329 | 329 |
int min_loc=_head, min_val=_data[_head].prio; |
| 330 | 330 |
for( int x=_data[_head].right_neighbor; x!=-1; |
| 331 | 331 |
x=_data[x].right_neighbor ) {
|
| 332 | 332 |
if( _comp( _data[x].prio,min_val ) ) {
|
| 333 | 333 |
min_val=_data[x].prio; |
| 334 | 334 |
min_loc=x; |
| 335 | 335 |
} |
| 336 | 336 |
} |
| 337 | 337 |
return min_loc; |
| 338 | 338 |
} |
| 339 | 339 |
else return -1; |
| 340 | 340 |
} |
| 341 | 341 |
|
| 342 | 342 |
// Merge the heap with another heap starting at the given position |
| 343 | 343 |
void merge(int a) {
|
| 344 | 344 |
if( _head==-1 || a==-1 ) return; |
| 345 | 345 |
if( _data[a].right_neighbor==-1 && |
| 346 | 346 |
_data[a].degree<=_data[_head].degree ) {
|
| 347 | 347 |
_data[a].right_neighbor=_head; |
| 348 | 348 |
_head=a; |
| 349 | 349 |
} else {
|
| 350 | 350 |
interleave(a); |
| 351 | 351 |
} |
| 352 | 352 |
if( _data[_head].right_neighbor==-1 ) return; |
| 353 |
|
|
| 353 |
|
|
| 354 | 354 |
int x=_head; |
| 355 | 355 |
int x_prev=-1, x_next=_data[x].right_neighbor; |
| 356 | 356 |
while( x_next!=-1 ) {
|
| 357 | 357 |
if( _data[x].degree!=_data[x_next].degree || |
| 358 | 358 |
( _data[x_next].right_neighbor!=-1 && |
| 359 | 359 |
_data[_data[x_next].right_neighbor].degree==_data[x].degree ) ) {
|
| 360 | 360 |
x_prev=x; |
| 361 | 361 |
x=x_next; |
| 362 | 362 |
} |
| 363 | 363 |
else {
|
| 364 | 364 |
if( _comp(_data[x_next].prio,_data[x].prio) ) {
|
| 365 | 365 |
if( x_prev==-1 ) {
|
| 366 | 366 |
_head=x_next; |
| 367 | 367 |
} else {
|
| 368 | 368 |
_data[x_prev].right_neighbor=x_next; |
| 369 | 369 |
} |
| 370 | 370 |
fuse(x,x_next); |
| 371 | 371 |
x=x_next; |
| 372 | 372 |
} |
| 373 | 373 |
else {
|
| 374 | 374 |
_data[x].right_neighbor=_data[x_next].right_neighbor; |
| 375 | 375 |
fuse(x_next,x); |
| 376 | 376 |
} |
| 377 | 377 |
} |
| 378 | 378 |
x_next=_data[x].right_neighbor; |
| 379 | 379 |
} |
| 380 | 380 |
} |
| 381 | 381 |
|
| 382 | 382 |
// Interleave the elements of the given list into the list of the roots |
| 383 | 383 |
void interleave(int a) {
|
| 384 | 384 |
int p=_head, q=a; |
| 385 | 385 |
int curr=_data.size(); |
| 386 | 386 |
_data.push_back(Store()); |
| 387 |
|
|
| 387 |
|
|
| 388 | 388 |
while( p!=-1 || q!=-1 ) {
|
| 389 | 389 |
if( q==-1 || ( p!=-1 && _data[p].degree<_data[q].degree ) ) {
|
| 390 | 390 |
_data[curr].right_neighbor=p; |
| 391 | 391 |
curr=p; |
| 392 | 392 |
p=_data[p].right_neighbor; |
| 393 | 393 |
} |
| 394 | 394 |
else {
|
| 395 | 395 |
_data[curr].right_neighbor=q; |
| 396 | 396 |
curr=q; |
| 397 | 397 |
q=_data[q].right_neighbor; |
| 398 | 398 |
} |
| 399 | 399 |
} |
| 400 |
|
|
| 400 |
|
|
| 401 | 401 |
_head=_data.back().right_neighbor; |
| 402 | 402 |
_data.pop_back(); |
| 403 | 403 |
} |
| 404 | 404 |
|
| 405 | 405 |
// Lace node a under node b |
| 406 | 406 |
void fuse(int a, int b) {
|
| 407 | 407 |
_data[a].parent=b; |
| 408 | 408 |
_data[a].right_neighbor=_data[b].child; |
| 409 | 409 |
_data[b].child=a; |
| 410 | 410 |
|
| 411 | 411 |
++_data[b].degree; |
| 412 | 412 |
} |
| 413 | 413 |
|
| 414 | 414 |
// Unlace node a (if it has siblings) |
| 415 | 415 |
void unlace(int a) {
|
| 416 | 416 |
int neighb=_data[a].right_neighbor; |
| 417 | 417 |
int other=_head; |
| 418 | 418 |
|
| 419 | 419 |
while( _data[other].right_neighbor!=a ) |
| 420 | 420 |
other=_data[other].right_neighbor; |
| 421 | 421 |
_data[other].right_neighbor=neighb; |
| 422 | 422 |
} |
| 423 | 423 |
|
| 424 | 424 |
private: |
| 425 | 425 |
|
| 426 | 426 |
class Store {
|
| 427 | 427 |
friend class BinomialHeap; |
| 428 | 428 |
|
| 429 | 429 |
Item name; |
| 430 | 430 |
int parent; |
| 431 | 431 |
int right_neighbor; |
| 432 | 432 |
int child; |
| 1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
| 2 | 2 |
* |
| 3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
| 4 | 4 |
* |
| 5 |
* Copyright (C) 2003- |
|
| 5 |
* Copyright (C) 2003-2010 |
|
| 6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
| 7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
| 8 | 8 |
* |
| 9 | 9 |
* Permission to use, modify and distribute this software is granted |
| 10 | 10 |
* provided that this copyright notice appears in all copies. For |
| 11 | 11 |
* precise terms see the accompanying LICENSE file. |
| 12 | 12 |
* |
| 13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
| 14 | 14 |
* express or implied, and with no claim as to its suitability for any |
| 15 | 15 |
* purpose. |
| 16 | 16 |
* |
| 17 | 17 |
*/ |
| 18 | 18 |
|
| 19 | 19 |
#ifndef LEMON_BITS_ARRAY_MAP_H |
| 20 | 20 |
#define LEMON_BITS_ARRAY_MAP_H |
| 21 | 21 |
|
| 22 | 22 |
#include <memory> |
| 23 | 23 |
|
| 24 | 24 |
#include <lemon/bits/traits.h> |
| 25 | 25 |
#include <lemon/bits/alteration_notifier.h> |
| 26 | 26 |
#include <lemon/concept_check.h> |
| 27 | 27 |
#include <lemon/concepts/maps.h> |
| 28 | 28 |
|
| 29 | 29 |
// \ingroup graphbits |
| 30 | 30 |
// \file |
| 31 | 31 |
// \brief Graph map based on the array storage. |
| 32 | 32 |
|
| 33 | 33 |
namespace lemon {
|
| 34 | 34 |
|
| 35 | 35 |
// \ingroup graphbits |
| 36 | 36 |
// |
| 37 | 37 |
// \brief Graph map based on the array storage. |
| ... | ... |
@@ -41,65 +41,65 @@ |
| 41 | 41 |
// This map uses the allocators to implement the container functionality. |
| 42 | 42 |
// |
| 43 | 43 |
// The template parameters are the Graph, the current Item type and |
| 44 | 44 |
// the Value type of the map. |
| 45 | 45 |
template <typename _Graph, typename _Item, typename _Value> |
| 46 | 46 |
class ArrayMap |
| 47 | 47 |
: public ItemSetTraits<_Graph, _Item>::ItemNotifier::ObserverBase {
|
| 48 | 48 |
public: |
| 49 | 49 |
// The graph type. |
| 50 | 50 |
typedef _Graph GraphType; |
| 51 | 51 |
// The item type. |
| 52 | 52 |
typedef _Item Item; |
| 53 | 53 |
// The reference map tag. |
| 54 | 54 |
typedef True ReferenceMapTag; |
| 55 | 55 |
|
| 56 | 56 |
// The key type of the map. |
| 57 | 57 |
typedef _Item Key; |
| 58 | 58 |
// The value type of the map. |
| 59 | 59 |
typedef _Value Value; |
| 60 | 60 |
|
| 61 | 61 |
// The const reference type of the map. |
| 62 | 62 |
typedef const _Value& ConstReference; |
| 63 | 63 |
// The reference type of the map. |
| 64 | 64 |
typedef _Value& Reference; |
| 65 | 65 |
|
| 66 | 66 |
// The map type. |
| 67 | 67 |
typedef ArrayMap Map; |
| 68 | 68 |
|
| 69 | 69 |
// The notifier type. |
| 70 | 70 |
typedef typename ItemSetTraits<_Graph, _Item>::ItemNotifier Notifier; |
| 71 | 71 |
|
| 72 | 72 |
private: |
| 73 |
|
|
| 73 |
|
|
| 74 | 74 |
// The MapBase of the Map which imlements the core regisitry function. |
| 75 | 75 |
typedef typename Notifier::ObserverBase Parent; |
| 76 | 76 |
|
| 77 | 77 |
typedef std::allocator<Value> Allocator; |
| 78 | 78 |
|
| 79 | 79 |
public: |
| 80 | 80 |
|
| 81 | 81 |
// \brief Graph initialized map constructor. |
| 82 | 82 |
// |
| 83 | 83 |
// Graph initialized map constructor. |
| 84 | 84 |
explicit ArrayMap(const GraphType& graph) {
|
| 85 | 85 |
Parent::attach(graph.notifier(Item())); |
| 86 | 86 |
allocate_memory(); |
| 87 | 87 |
Notifier* nf = Parent::notifier(); |
| 88 | 88 |
Item it; |
| 89 | 89 |
for (nf->first(it); it != INVALID; nf->next(it)) {
|
| 90 | 90 |
int id = nf->id(it);; |
| 91 | 91 |
allocator.construct(&(values[id]), Value()); |
| 92 | 92 |
} |
| 93 | 93 |
} |
| 94 | 94 |
|
| 95 | 95 |
// \brief Constructor to use default value to initialize the map. |
| 96 | 96 |
// |
| 97 | 97 |
// It constructs a map and initialize all of the the map. |
| 98 | 98 |
ArrayMap(const GraphType& graph, const Value& value) {
|
| 99 | 99 |
Parent::attach(graph.notifier(Item())); |
| 100 | 100 |
allocate_memory(); |
| 101 | 101 |
Notifier* nf = Parent::notifier(); |
| 102 | 102 |
Item it; |
| 103 | 103 |
for (nf->first(it); it != INVALID; nf->next(it)) {
|
| 104 | 104 |
int id = nf->id(it);; |
| 105 | 105 |
allocator.construct(&(values[id]), value); |
| 1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
| 2 | 2 |
* |
| 3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
| 4 | 4 |
* |
| 5 |
* Copyright (C) 2003- |
|
| 5 |
* Copyright (C) 2003-2010 |
|
| 6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
| 7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
| 8 | 8 |
* |
| 9 | 9 |
* Permission to use, modify and distribute this software is granted |
| 10 | 10 |
* provided that this copyright notice appears in all copies. For |
| 11 | 11 |
* precise terms see the accompanying LICENSE file. |
| 12 | 12 |
* |
| 13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
| 14 | 14 |
* express or implied, and with no claim as to its suitability for any |
| 15 | 15 |
* purpose. |
| 16 | 16 |
* |
| 17 | 17 |
*/ |
| 18 | 18 |
|
| 19 | 19 |
#ifndef LEMON_BITS_DEFAULT_MAP_H |
| 20 | 20 |
#define LEMON_BITS_DEFAULT_MAP_H |
| 21 | 21 |
|
| 22 | 22 |
#include <lemon/config.h> |
| 23 | 23 |
#include <lemon/bits/array_map.h> |
| 24 | 24 |
#include <lemon/bits/vector_map.h> |
| 25 | 25 |
//#include <lemon/bits/debug_map.h> |
| 26 | 26 |
|
| 27 | 27 |
//\ingroup graphbits |
| 28 | 28 |
//\file |
| 29 | 29 |
//\brief Graph maps that construct and destruct their elements dynamically. |
| 30 | 30 |
|
| 31 | 31 |
namespace lemon {
|
| 32 | 32 |
|
| 33 | 33 |
|
| 34 | 34 |
//#ifndef LEMON_USE_DEBUG_MAP |
| 35 | 35 |
|
| 36 | 36 |
template <typename _Graph, typename _Item, typename _Value> |
| 37 | 37 |
struct DefaultMapSelector {
|
| ... | ... |
@@ -128,55 +128,55 @@ |
| 128 | 128 |
|
| 129 | 129 |
|
| 130 | 130 |
// long double |
| 131 | 131 |
template <typename _Graph, typename _Item> |
| 132 | 132 |
struct DefaultMapSelector<_Graph, _Item, long double> {
|
| 133 | 133 |
typedef VectorMap<_Graph, _Item, long double> Map; |
| 134 | 134 |
}; |
| 135 | 135 |
|
| 136 | 136 |
|
| 137 | 137 |
// pointer |
| 138 | 138 |
template <typename _Graph, typename _Item, typename _Ptr> |
| 139 | 139 |
struct DefaultMapSelector<_Graph, _Item, _Ptr*> {
|
| 140 | 140 |
typedef VectorMap<_Graph, _Item, _Ptr*> Map; |
| 141 | 141 |
}; |
| 142 | 142 |
|
| 143 | 143 |
// #else |
| 144 | 144 |
|
| 145 | 145 |
// template <typename _Graph, typename _Item, typename _Value> |
| 146 | 146 |
// struct DefaultMapSelector {
|
| 147 | 147 |
// typedef DebugMap<_Graph, _Item, _Value> Map; |
| 148 | 148 |
// }; |
| 149 | 149 |
|
| 150 | 150 |
// #endif |
| 151 | 151 |
|
| 152 | 152 |
// DefaultMap class |
| 153 | 153 |
template <typename _Graph, typename _Item, typename _Value> |
| 154 | 154 |
class DefaultMap |
| 155 | 155 |
: public DefaultMapSelector<_Graph, _Item, _Value>::Map {
|
| 156 | 156 |
typedef typename DefaultMapSelector<_Graph, _Item, _Value>::Map Parent; |
| 157 | 157 |
|
| 158 | 158 |
public: |
| 159 | 159 |
typedef DefaultMap<_Graph, _Item, _Value> Map; |
| 160 |
|
|
| 160 |
|
|
| 161 | 161 |
typedef typename Parent::GraphType GraphType; |
| 162 | 162 |
typedef typename Parent::Value Value; |
| 163 | 163 |
|
| 164 | 164 |
explicit DefaultMap(const GraphType& graph) : Parent(graph) {}
|
| 165 | 165 |
DefaultMap(const GraphType& graph, const Value& value) |
| 166 | 166 |
: Parent(graph, value) {}
|
| 167 | 167 |
|
| 168 | 168 |
DefaultMap& operator=(const DefaultMap& cmap) {
|
| 169 | 169 |
return operator=<DefaultMap>(cmap); |
| 170 | 170 |
} |
| 171 | 171 |
|
| 172 | 172 |
template <typename CMap> |
| 173 | 173 |
DefaultMap& operator=(const CMap& cmap) {
|
| 174 | 174 |
Parent::operator=(cmap); |
| 175 | 175 |
return *this; |
| 176 | 176 |
} |
| 177 | 177 |
|
| 178 | 178 |
}; |
| 179 | 179 |
|
| 180 | 180 |
} |
| 181 | 181 |
|
| 182 | 182 |
#endif |
| 1 |
/* -*- C++ -*- |
|
| 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
|
| 2 | 2 |
* |
| 3 |
* This file is a part of LEMON, a generic C++ optimization library |
|
| 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
|
| 4 | 4 |
* |
| 5 |
* Copyright (C) 2003- |
|
| 5 |
* Copyright (C) 2003-2010 |
|
| 6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
| 7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
| 8 | 8 |
* |
| 9 | 9 |
* Permission to use, modify and distribute this software is granted |
| 10 | 10 |
* provided that this copyright notice appears in all copies. For |
| 11 | 11 |
* precise terms see the accompanying LICENSE file. |
| 12 | 12 |
* |
| 13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
| 14 | 14 |
* express or implied, and with no claim as to its suitability for any |
| 15 | 15 |
* purpose. |
| 16 | 16 |
* |
| 17 | 17 |
*/ |
| 18 | 18 |
|
| 19 | 19 |
#ifndef LEMON_BITS_EDGE_SET_EXTENDER_H |
| 20 | 20 |
#define LEMON_BITS_EDGE_SET_EXTENDER_H |
| 21 | 21 |
|
| 22 | 22 |
#include <lemon/core.h> |
| 23 | 23 |
#include <lemon/error.h> |
| 24 | 24 |
#include <lemon/bits/default_map.h> |
| 25 | 25 |
#include <lemon/bits/map_extender.h> |
| 26 | 26 |
|
| 27 | 27 |
//\ingroup digraphbits |
| 28 | 28 |
//\file |
| 29 | 29 |
//\brief Extenders for the arc set types |
| 30 | 30 |
namespace lemon {
|
| 31 | 31 |
|
| 32 | 32 |
// \ingroup digraphbits |
| 33 | 33 |
// |
| 34 | 34 |
// \brief Extender for the ArcSets |
| 35 | 35 |
template <typename Base> |
| 36 | 36 |
class ArcSetExtender : public Base {
|
| 37 | 37 |
typedef Base Parent; |
| 38 | 38 |
|
| 39 | 39 |
public: |
| 40 | 40 |
|
| 41 | 41 |
typedef ArcSetExtender Digraph; |
| 42 | 42 |
|
| 43 | 43 |
// Base extensions |
| 44 | 44 |
|
| 45 | 45 |
typedef typename Parent::Node Node; |
| 46 | 46 |
typedef typename Parent::Arc Arc; |
| 47 | 47 |
|
| 48 | 48 |
int maxId(Node) const {
|
| 49 | 49 |
return Parent::maxNodeId(); |
| 50 | 50 |
} |
| 51 | 51 |
|
| 52 | 52 |
int maxId(Arc) const {
|
| 53 | 53 |
return Parent::maxArcId(); |
| 54 | 54 |
} |
| 55 | 55 |
|
| 56 | 56 |
Node fromId(int id, Node) const {
|
| 57 | 57 |
return Parent::nodeFromId(id); |
| 58 | 58 |
} |
| 59 | 59 |
|
| 60 | 60 |
Arc fromId(int id, Arc) const {
|
| 61 | 61 |
return Parent::arcFromId(id); |
| 62 | 62 |
} |
| 63 | 63 |
|
| 64 | 64 |
Node oppositeNode(const Node &n, const Arc &e) const {
|
| 65 | 65 |
if (n == Parent::source(e)) |
| 66 |
|
|
| 66 |
return Parent::target(e); |
|
| 67 | 67 |
else if(n==Parent::target(e)) |
| 68 |
|
|
| 68 |
return Parent::source(e); |
|
| 69 | 69 |
else |
| 70 |
|
|
| 70 |
return INVALID; |
|
| 71 | 71 |
} |
| 72 | 72 |
|
| 73 | 73 |
|
| 74 | 74 |
// Alteration notifier extensions |
| 75 | 75 |
|
| 76 | 76 |
// The arc observer registry. |
| 77 | 77 |
typedef AlterationNotifier<ArcSetExtender, Arc> ArcNotifier; |
| 78 | 78 |
|
| 79 | 79 |
protected: |
| 80 | 80 |
|
| 81 | 81 |
mutable ArcNotifier arc_notifier; |
| 82 | 82 |
|
| 83 | 83 |
public: |
| 84 | 84 |
|
| 85 | 85 |
using Parent::notifier; |
| 86 | 86 |
|
| 87 | 87 |
// Gives back the arc alteration notifier. |
| 88 | 88 |
ArcNotifier& notifier(Arc) const {
|
| 89 | 89 |
return arc_notifier; |
| 90 | 90 |
} |
| 91 | 91 |
|
| 92 | 92 |
// Iterable extensions |
| 93 | 93 |
|
| 94 |
class NodeIt : public Node {
|
|
| 94 |
class NodeIt : public Node {
|
|
| 95 | 95 |
const Digraph* digraph; |
| 96 | 96 |
public: |
| 97 | 97 |
|
| 98 | 98 |
NodeIt() {}
|
| 99 | 99 |
|
| 100 | 100 |
NodeIt(Invalid i) : Node(i) { }
|
| 101 | 101 |
|
| 102 | 102 |
explicit NodeIt(const Digraph& _graph) : digraph(&_graph) {
|
| 103 |
|
|
| 103 |
_graph.first(static_cast<Node&>(*this)); |
|
| 104 | 104 |
} |
| 105 | 105 |
|
| 106 |
NodeIt(const Digraph& _graph, const Node& node) |
|
| 107 |
: Node(node), digraph(&_graph) {}
|
|
| 106 |
NodeIt(const Digraph& _graph, const Node& node) |
|
| 107 |
: Node(node), digraph(&_graph) {}
|
|
| 108 | 108 |
|
| 109 |
NodeIt& operator++() {
|
|
| 110 |
digraph->next(*this); |
|
| 111 |
|
|
| 109 |
NodeIt& operator++() {
|
|
| 110 |
digraph->next(*this); |
|
| 111 |
return *this; |
|
| 112 | 112 |
} |
| 113 | 113 |
|
| 114 | 114 |
}; |
| 115 | 115 |
|
| 116 | 116 |
|
| 117 |
class ArcIt : public Arc {
|
|
| 117 |
class ArcIt : public Arc {
|
|
| 118 | 118 |
const Digraph* digraph; |
| 119 | 119 |
public: |
| 120 | 120 |
|
| 121 | 121 |
ArcIt() { }
|
| 122 | 122 |
|
| 123 | 123 |
ArcIt(Invalid i) : Arc(i) { }
|
| 124 | 124 |
|
| 125 | 125 |
explicit ArcIt(const Digraph& _graph) : digraph(&_graph) {
|
| 126 |
|
|
| 126 |
_graph.first(static_cast<Arc&>(*this)); |
|
| 127 | 127 |
} |
| 128 | 128 |
|
| 129 |
ArcIt(const Digraph& _graph, const Arc& e) : |
|
| 130 |
Arc(e), digraph(&_graph) { }
|
|
| 129 |
ArcIt(const Digraph& _graph, const Arc& e) : |
|
| 130 |
Arc(e), digraph(&_graph) { }
|
|
| 131 | 131 |
|
| 132 |
ArcIt& operator++() {
|
|
| 133 |
digraph->next(*this); |
|
| 134 |
|
|
| 132 |
ArcIt& operator++() {
|
|
| 133 |
digraph->next(*this); |
|
| 134 |
return *this; |
|
| 135 | 135 |
} |
| 136 | 136 |
|
| 137 | 137 |
}; |
| 138 | 138 |
|
| 139 | 139 |
|
| 140 |
class OutArcIt : public Arc {
|
|
| 140 |
class OutArcIt : public Arc {
|
|
| 141 | 141 |
const Digraph* digraph; |
| 142 | 142 |
public: |
| 143 | 143 |
|
| 144 | 144 |
OutArcIt() { }
|
| 145 | 145 |
|
| 146 | 146 |
OutArcIt(Invalid i) : Arc(i) { }
|
| 147 | 147 |
|
| 148 |
OutArcIt(const Digraph& _graph, const Node& node) |
|
| 149 |
: digraph(&_graph) {
|
|
| 150 |
|
|
| 148 |
OutArcIt(const Digraph& _graph, const Node& node) |
|
| 149 |
: digraph(&_graph) {
|
|
| 150 |
_graph.firstOut(*this, node); |
|
| 151 | 151 |
} |
| 152 | 152 |
|
| 153 |
OutArcIt(const Digraph& _graph, const Arc& arc) |
|
| 154 |
: Arc(arc), digraph(&_graph) {}
|
|
| 153 |
OutArcIt(const Digraph& _graph, const Arc& arc) |
|
| 154 |
: Arc(arc), digraph(&_graph) {}
|
|
| 155 | 155 |
|
| 156 |
OutArcIt& operator++() {
|
|
| 157 |
digraph->nextOut(*this); |
|
| 158 |
|
|
| 156 |
OutArcIt& operator++() {
|
|
| 157 |
digraph->nextOut(*this); |
|
| 158 |
return *this; |
|
| 159 | 159 |
} |
| 160 | 160 |
|
| 161 | 161 |
}; |
| 162 | 162 |
|
| 163 | 163 |
|
| 164 |
class InArcIt : public Arc {
|
|
| 164 |
class InArcIt : public Arc {
|
|
| 165 | 165 |
const Digraph* digraph; |
| 166 | 166 |
public: |
| 167 | 167 |
|
| 168 | 168 |
InArcIt() { }
|
| 169 | 169 |
|
| 170 | 170 |
InArcIt(Invalid i) : Arc(i) { }
|
| 171 | 171 |
|
| 172 |
InArcIt(const Digraph& _graph, const Node& node) |
|
| 173 |
: digraph(&_graph) {
|
|
| 174 |
|
|
| 172 |
InArcIt(const Digraph& _graph, const Node& node) |
|
| 173 |
: digraph(&_graph) {
|
|
| 174 |
_graph.firstIn(*this, node); |
|
| 175 | 175 |
} |
| 176 | 176 |
|
| 177 |
InArcIt(const Digraph& _graph, const Arc& arc) : |
|
| 178 |
Arc(arc), digraph(&_graph) {}
|
|
| 177 |
InArcIt(const Digraph& _graph, const Arc& arc) : |
|
| 178 |
Arc(arc), digraph(&_graph) {}
|
|
| 179 | 179 |
|
| 180 |
InArcIt& operator++() {
|
|
| 181 |
digraph->nextIn(*this); |
|
| 182 |
|
|
| 180 |
InArcIt& operator++() {
|
|
| 181 |
digraph->nextIn(*this); |
|
| 182 |
return *this; |
|
| 183 | 183 |
} |
| 184 | 184 |
|
| 185 | 185 |
}; |
| 186 | 186 |
|
| 187 | 187 |
// \brief Base node of the iterator |
| 188 | 188 |
// |
| 189 | 189 |
// Returns the base node (ie. the source in this case) of the iterator |
| 190 | 190 |
Node baseNode(const OutArcIt &e) const {
|
| 191 | 191 |
return Parent::source(static_cast<const Arc&>(e)); |
| 192 | 192 |
} |
| 193 | 193 |
// \brief Running node of the iterator |
| 194 | 194 |
// |
| 195 | 195 |
// Returns the running node (ie. the target in this case) of the |
| 196 | 196 |
// iterator |
| 197 | 197 |
Node runningNode(const OutArcIt &e) const {
|
| 198 | 198 |
return Parent::target(static_cast<const Arc&>(e)); |
| 199 | 199 |
} |
| 200 | 200 |
|
| 201 | 201 |
// \brief Base node of the iterator |
| 202 | 202 |
// |
| 203 | 203 |
// Returns the base node (ie. the target in this case) of the iterator |
| 204 | 204 |
Node baseNode(const InArcIt &e) const {
|
| 205 | 205 |
return Parent::target(static_cast<const Arc&>(e)); |
| 206 | 206 |
} |
| 207 | 207 |
// \brief Running node of the iterator |
| 208 | 208 |
// |
| 209 | 209 |
// Returns the running node (ie. the source in this case) of the |
| 210 | 210 |
// iterator |
| 211 | 211 |
Node runningNode(const InArcIt &e) const {
|
| 212 | 212 |
return Parent::source(static_cast<const Arc&>(e)); |
| 213 | 213 |
} |
| 214 | 214 |
|
| 215 | 215 |
using Parent::first; |
| 216 | 216 |
|
| 217 | 217 |
// Mappable extension |
| 218 |
|
|
| 218 |
|
|
| 219 | 219 |
template <typename _Value> |
| 220 |
class ArcMap |
|
| 220 |
class ArcMap |
|
| 221 | 221 |
: public MapExtender<DefaultMap<Digraph, Arc, _Value> > {
|
| 222 | 222 |
typedef MapExtender<DefaultMap<Digraph, Arc, _Value> > Parent; |
| 223 | 223 |
|
| 224 | 224 |
public: |
| 225 |
explicit ArcMap(const Digraph& _g) |
|
| 226 |
: Parent(_g) {}
|
|
| 227 |
ArcMap(const Digraph& _g, const _Value& _v) |
|
| 228 |
: Parent(_g, _v) {}
|
|
| 225 |
explicit ArcMap(const Digraph& _g) |
|
| 226 |
: Parent(_g) {}
|
|
| 227 |
ArcMap(const Digraph& _g, const _Value& _v) |
|
| 228 |
: Parent(_g, _v) {}
|
|
| 229 | 229 |
|
| 230 | 230 |
ArcMap& operator=(const ArcMap& cmap) {
|
| 231 |
|
|
| 231 |
return operator=<ArcMap>(cmap); |
|
| 232 | 232 |
} |
| 233 | 233 |
|
| 234 | 234 |
template <typename CMap> |
| 235 | 235 |
ArcMap& operator=(const CMap& cmap) {
|
| 236 | 236 |
Parent::operator=(cmap); |
| 237 |
|
|
| 237 |
return *this; |
|
| 238 | 238 |
} |
| 239 | 239 |
|
| 240 | 240 |
}; |
| 241 | 241 |
|
| 242 | 242 |
|
| 243 | 243 |
// Alteration extension |
| 244 | 244 |
|
| 245 | 245 |
Arc addArc(const Node& from, const Node& to) {
|
| 246 | 246 |
Arc arc = Parent::addArc(from, to); |
| 247 | 247 |
notifier(Arc()).add(arc); |
| 248 | 248 |
return arc; |
| 249 | 249 |
} |
| 250 |
|
|
| 250 |
|
|
| 251 | 251 |
void clear() {
|
| 252 | 252 |
notifier(Arc()).clear(); |
| 253 | 253 |
Parent::clear(); |
| 254 | 254 |
} |
| 255 | 255 |
|
| 256 | 256 |
void erase(const Arc& arc) {
|
| 257 | 257 |
notifier(Arc()).erase(arc); |
| 258 | 258 |
Parent::erase(arc); |
| 259 | 259 |
} |
| 260 | 260 |
|
| 261 | 261 |
ArcSetExtender() {
|
| 262 | 262 |
arc_notifier.setContainer(*this); |
| 263 | 263 |
} |
| 264 | 264 |
|
| 265 | 265 |
~ArcSetExtender() {
|
| 266 | 266 |
arc_notifier.clear(); |
| 267 | 267 |
} |
| 268 | 268 |
|
| 269 | 269 |
}; |
| 270 | 270 |
|
| 271 | 271 |
|
| 272 | 272 |
// \ingroup digraphbits |
| 273 | 273 |
// |
| 274 | 274 |
// \brief Extender for the EdgeSets |
| 275 | 275 |
template <typename Base> |
| 276 | 276 |
class EdgeSetExtender : public Base {
|
| 277 | 277 |
typedef Base Parent; |
| 278 | 278 |
|
| 279 | 279 |
public: |
| 280 | 280 |
|
| 281 | 281 |
typedef EdgeSetExtender Graph; |
| 282 | 282 |
|
| 283 | 283 |
typedef typename Parent::Node Node; |
| 284 | 284 |
typedef typename Parent::Arc Arc; |
| 285 | 285 |
typedef typename Parent::Edge Edge; |
| 286 | 286 |
|
| 287 | 287 |
int maxId(Node) const {
|
| 288 | 288 |
return Parent::maxNodeId(); |
| 289 | 289 |
} |
| 290 | 290 |
|
| 291 | 291 |
int maxId(Arc) const {
|
| 292 | 292 |
return Parent::maxArcId(); |
| 293 | 293 |
} |
| 294 | 294 |
|
| 295 | 295 |
int maxId(Edge) const {
|
| 296 | 296 |
return Parent::maxEdgeId(); |
| 297 | 297 |
} |
| 298 | 298 |
|
| 299 | 299 |
Node fromId(int id, Node) const {
|
| 300 | 300 |
return Parent::nodeFromId(id); |
| 301 | 301 |
} |
| 302 | 302 |
|
| 303 | 303 |
Arc fromId(int id, Arc) const {
|
| 304 | 304 |
return Parent::arcFromId(id); |
| 305 | 305 |
} |
| 306 | 306 |
|
| 307 | 307 |
Edge fromId(int id, Edge) const {
|
| 308 | 308 |
return Parent::edgeFromId(id); |
| 309 | 309 |
} |
| 310 | 310 |
|
| 311 | 311 |
Node oppositeNode(const Node &n, const Edge &e) const {
|
| 312 | 312 |
if( n == Parent::u(e)) |
| 313 |
|
|
| 313 |
return Parent::v(e); |
|
| 314 | 314 |
else if( n == Parent::v(e)) |
| 315 |
|
|
| 315 |
return Parent::u(e); |
|
| 316 | 316 |
else |
| 317 |
|
|
| 317 |
return INVALID; |
|
| 318 | 318 |
} |
| 319 | 319 |
|
| 320 | 320 |
Arc oppositeArc(const Arc &e) const {
|
| 321 | 321 |
return Parent::direct(e, !Parent::direction(e)); |
| 322 | 322 |
} |
| 323 | 323 |
|
| 324 | 324 |
using Parent::direct; |
| 325 | 325 |
Arc direct(const Edge &e, const Node &s) const {
|
| 326 | 326 |
return Parent::direct(e, Parent::u(e) == s); |
| 327 | 327 |
} |
| 328 | 328 |
|
| 329 | 329 |
typedef AlterationNotifier<EdgeSetExtender, Arc> ArcNotifier; |
| 330 | 330 |
typedef AlterationNotifier<EdgeSetExtender, Edge> EdgeNotifier; |
| 331 | 331 |
|
| 332 | 332 |
|
| 333 | 333 |
protected: |
| 334 | 334 |
|
| 335 | 335 |
mutable ArcNotifier arc_notifier; |
| 336 | 336 |
mutable EdgeNotifier edge_notifier; |
| 337 | 337 |
|
| 338 | 338 |
public: |
| 339 | 339 |
|
| 340 | 340 |
using Parent::notifier; |
| 341 |
|
|
| 341 |
|
|
| 342 | 342 |
ArcNotifier& notifier(Arc) const {
|
| 343 | 343 |
return arc_notifier; |
| 344 | 344 |
} |
| 345 | 345 |
|
| 346 | 346 |
EdgeNotifier& notifier(Edge) const {
|
| 347 | 347 |
return edge_notifier; |
| 348 | 348 |
} |
| 349 | 349 |
|
| 350 | 350 |
|
| 351 |
class NodeIt : public Node {
|
|
| 351 |
class NodeIt : public Node {
|
|
| 352 | 352 |
const Graph* graph; |
| 353 | 353 |
public: |
| 354 | 354 |
|
| 355 | 355 |
NodeIt() {}
|
| 356 | 356 |
|
| 357 | 357 |
NodeIt(Invalid i) : Node(i) { }
|
| 358 | 358 |
|
| 359 | 359 |
explicit NodeIt(const Graph& _graph) : graph(&_graph) {
|
| 360 |
|
|
| 360 |
_graph.first(static_cast<Node&>(*this)); |
|
| 361 | 361 |
} |
| 362 | 362 |
|
| 363 |
NodeIt(const Graph& _graph, const Node& node) |
|
| 364 |
: Node(node), graph(&_graph) {}
|
|
| 363 |
NodeIt(const Graph& _graph, const Node& node) |
|
| 364 |
: Node(node), graph(&_graph) {}
|
|
| 365 | 365 |
|
| 366 |
NodeIt& operator++() {
|
|
| 367 |
graph->next(*this); |
|
| 368 |
|
|
| 366 |
NodeIt& operator++() {
|
|
| 367 |
graph->next(*this); |
|
| 368 |
return *this; |
|
| 369 | 369 |
} |
| 370 | 370 |
|
| 371 | 371 |
}; |
| 372 | 372 |
|
| 373 | 373 |
|
| 374 |
class ArcIt : public Arc {
|
|
| 374 |
class ArcIt : public Arc {
|
|
| 375 | 375 |
const Graph* graph; |
| 376 | 376 |
public: |
| 377 | 377 |
|
| 378 | 378 |
ArcIt() { }
|
| 379 | 379 |
|
| 380 | 380 |
ArcIt(Invalid i) : Arc(i) { }
|
| 381 | 381 |
|
| 382 | 382 |
explicit ArcIt(const Graph& _graph) : graph(&_graph) {
|
| 383 |
|
|
| 383 |
_graph.first(static_cast<Arc&>(*this)); |
|
| 384 | 384 |
} |
| 385 | 385 |
|
| 386 |
ArcIt(const Graph& _graph, const Arc& e) : |
|
| 387 |
Arc(e), graph(&_graph) { }
|
|
| 386 |
ArcIt(const Graph& _graph, const Arc& e) : |
|
| 387 |
Arc(e), graph(&_graph) { }
|
|
| 388 | 388 |
|
| 389 |
ArcIt& operator++() {
|
|
| 390 |
graph->next(*this); |
|
| 391 |
|
|
| 389 |
ArcIt& operator++() {
|
|
| 390 |
graph->next(*this); |
|
| 391 |
return *this; |
|
| 392 | 392 |
} |
| 393 | 393 |
|
| 394 | 394 |
}; |
| 395 | 395 |
|
| 396 | 396 |
|
| 397 |
class OutArcIt : public Arc {
|
|
| 397 |
class OutArcIt : public Arc {
|
|
| 398 | 398 |
const Graph* graph; |
| 399 | 399 |
public: |
| 400 | 400 |
|
| 401 | 401 |
OutArcIt() { }
|
| 402 | 402 |
|
| 403 | 403 |
OutArcIt(Invalid i) : Arc(i) { }
|
| 404 | 404 |
|
| 405 |
OutArcIt(const Graph& _graph, const Node& node) |
|
| 406 |
: graph(&_graph) {
|
|
| 407 |
|
|
| 405 |
OutArcIt(const Graph& _graph, const Node& node) |
|
| 406 |
: graph(&_graph) {
|
|
| 407 |
_graph.firstOut(*this, node); |
|
| 408 | 408 |
} |
| 409 | 409 |
|
| 410 |
OutArcIt(const Graph& _graph, const Arc& arc) |
|
| 411 |
: Arc(arc), graph(&_graph) {}
|
|
| 410 |
OutArcIt(const Graph& _graph, const Arc& arc) |
|
| 411 |
: Arc(arc), graph(&_graph) {}
|
|
| 412 | 412 |
|
| 413 |
OutArcIt& operator++() {
|
|
| 414 |
graph->nextOut(*this); |
|
| 415 |
|
|
| 413 |
OutArcIt& operator++() {
|
|
| 414 |
graph->nextOut(*this); |
|
| 415 |
return *this; |
|
| 416 | 416 |
} |
| 417 | 417 |
|
| 418 | 418 |
}; |
| 419 | 419 |
|
| 420 | 420 |
|
| 421 |
class InArcIt : public Arc {
|
|
| 421 |
class InArcIt : public Arc {
|
|
| 422 | 422 |
const Graph* graph; |
| 423 | 423 |
public: |
| 424 | 424 |
|
| 425 | 425 |
InArcIt() { }
|
| 426 | 426 |
|
| 427 | 427 |
InArcIt(Invalid i) : Arc(i) { }
|
| 428 | 428 |
|
| 429 |
InArcIt(const Graph& _graph, const Node& node) |
|
| 430 |
: graph(&_graph) {
|
|
| 431 |
|
|
| 429 |
InArcIt(const Graph& _graph, const Node& node) |
|
| 430 |
: graph(&_graph) {
|
|
| 431 |
_graph.firstIn(*this, node); |
|
| 432 | 432 |
} |
| 433 | 433 |
|
| 434 |
InArcIt(const Graph& _graph, const Arc& arc) : |
|
| 435 |
Arc(arc), graph(&_graph) {}
|
|
| 434 |
InArcIt(const Graph& _graph, const Arc& arc) : |
|
| 435 |
Arc(arc), graph(&_graph) {}
|
|
| 436 | 436 |
|
| 437 |
InArcIt& operator++() {
|
|
| 438 |
graph->nextIn(*this); |
|
| 439 |
|
|
| 437 |
InArcIt& operator++() {
|
|
| 438 |
graph->nextIn(*this); |
|
| 439 |
return *this; |
|
| 440 | 440 |
} |
| 441 | 441 |
|
| 442 | 442 |
}; |
| 443 | 443 |
|
| 444 | 444 |
|
| 445 |
class EdgeIt : public Parent::Edge {
|
|
| 445 |
class EdgeIt : public Parent::Edge {
|
|
| 446 | 446 |
const Graph* graph; |
| 447 | 447 |
public: |
| 448 | 448 |
|
| 449 | 449 |
EdgeIt() { }
|
| 450 | 450 |
|
| 451 | 451 |
EdgeIt(Invalid i) : Edge(i) { }
|
| 452 | 452 |
|
| 453 | 453 |
explicit EdgeIt(const Graph& _graph) : graph(&_graph) {
|
| 454 |
|
|
| 454 |
_graph.first(static_cast<Edge&>(*this)); |
|
| 455 | 455 |
} |
| 456 | 456 |
|
| 457 |
EdgeIt(const Graph& _graph, const Edge& e) : |
|
| 458 |
Edge(e), graph(&_graph) { }
|
|
| 457 |
EdgeIt(const Graph& _graph, const Edge& e) : |
|
| 458 |
Edge(e), graph(&_graph) { }
|
|
| 459 | 459 |
|
| 460 |
EdgeIt& operator++() {
|
|
| 461 |
graph->next(*this); |
|
| 462 |
|
|
| 460 |
EdgeIt& operator++() {
|
|
| 461 |
graph->next(*this); |
|
| 462 |
return *this; |
|
| 463 | 463 |
} |
| 464 | 464 |
|
| 465 | 465 |
}; |
| 466 | 466 |
|
| 467 | 467 |
class IncEdgeIt : public Parent::Edge {
|
| 468 | 468 |
friend class EdgeSetExtender; |
| 469 | 469 |
const Graph* graph; |
| 470 | 470 |
bool direction; |
| 471 | 471 |
public: |
| 472 | 472 |
|
| 473 | 473 |
IncEdgeIt() { }
|
| 474 | 474 |
|
| 475 | 475 |
IncEdgeIt(Invalid i) : Edge(i), direction(false) { }
|
| 476 | 476 |
|
| 477 | 477 |
IncEdgeIt(const Graph& _graph, const Node &n) : graph(&_graph) {
|
| 478 |
|
|
| 478 |
_graph.firstInc(*this, direction, n); |
|
| 479 | 479 |
} |
| 480 | 480 |
|
| 481 | 481 |
IncEdgeIt(const Graph& _graph, const Edge &ue, const Node &n) |
| 482 |
: graph(&_graph), Edge(ue) {
|
|
| 483 |
direction = (_graph.source(ue) == n); |
|
| 482 |
: graph(&_graph), Edge(ue) {
|
|
| 483 |
direction = (_graph.source(ue) == n); |
|
| 484 | 484 |
} |
| 485 | 485 |
|
| 486 | 486 |
IncEdgeIt& operator++() {
|
| 487 |
graph->nextInc(*this, direction); |
|
| 488 |
return *this; |
|
| 487 |
graph->nextInc(*this, direction); |
|
| 488 |
return *this; |
|
| 489 | 489 |
} |
| 490 | 490 |
}; |
| 491 | 491 |
|
| 492 | 492 |
// \brief Base node of the iterator |
| 493 | 493 |
// |
| 494 | 494 |
// Returns the base node (ie. the source in this case) of the iterator |
| 495 | 495 |
Node baseNode(const OutArcIt &e) const {
|
| 496 | 496 |
return Parent::source(static_cast<const Arc&>(e)); |
| 497 | 497 |
} |
| 498 | 498 |
// \brief Running node of the iterator |
| 499 | 499 |
// |
| 500 | 500 |
// Returns the running node (ie. the target in this case) of the |
| 501 | 501 |
// iterator |
| 502 | 502 |
Node runningNode(const OutArcIt &e) const {
|
| 503 | 503 |
return Parent::target(static_cast<const Arc&>(e)); |
| 504 | 504 |
} |
| 505 | 505 |
|
| 506 | 506 |
// \brief Base node of the iterator |
| 507 | 507 |
// |
| 508 | 508 |
// Returns the base node (ie. the target in this case) of the iterator |
| 509 | 509 |
Node baseNode(const InArcIt &e) const {
|
| 510 | 510 |
return Parent::target(static_cast<const Arc&>(e)); |
| 511 | 511 |
} |
| 512 | 512 |
// \brief Running node of the iterator |
| 513 | 513 |
// |
| 514 | 514 |
// Returns the running node (ie. the source in this case) of the |
| 515 | 515 |
// iterator |
| 516 | 516 |
Node runningNode(const InArcIt &e) const {
|
| 517 | 517 |
return Parent::source(static_cast<const Arc&>(e)); |
| 518 | 518 |
} |
| 519 | 519 |
|
| 520 | 520 |
// Base node of the iterator |
| 521 | 521 |
// |
| 522 | 522 |
// Returns the base node of the iterator |
| 523 | 523 |
Node baseNode(const IncEdgeIt &e) const {
|
| 524 | 524 |
return e.direction ? u(e) : v(e); |
| 525 | 525 |
} |
| 526 | 526 |
// Running node of the iterator |
| 527 | 527 |
// |
| 528 | 528 |
// Returns the running node of the iterator |
| 529 | 529 |
Node runningNode(const IncEdgeIt &e) const {
|
| 530 | 530 |
return e.direction ? v(e) : u(e); |
| 531 | 531 |
} |
| 532 | 532 |
|
| 533 | 533 |
|
| 534 | 534 |
template <typename _Value> |
| 535 |
class ArcMap |
|
| 535 |
class ArcMap |
|
| 536 | 536 |
: public MapExtender<DefaultMap<Graph, Arc, _Value> > {
|
| 537 | 537 |
typedef MapExtender<DefaultMap<Graph, Arc, _Value> > Parent; |
| 538 | 538 |
|
| 539 | 539 |
public: |
| 540 |
explicit ArcMap(const Graph& _g) |
|
| 541 |
: Parent(_g) {}
|
|
| 542 |
ArcMap(const Graph& _g, const _Value& _v) |
|
| 543 |
: Parent(_g, _v) {}
|
|
| 540 |
explicit ArcMap(const Graph& _g) |
|
| 541 |
: Parent(_g) {}
|
|
| 542 |
ArcMap(const Graph& _g, const _Value& _v) |
|
| 543 |
: Parent(_g, _v) {}
|
|
| 544 | 544 |
|
| 545 | 545 |
ArcMap& operator=(const ArcMap& cmap) {
|
| 546 |
|
|
| 546 |
return operator=<ArcMap>(cmap); |
|
| 547 | 547 |
} |
| 548 | 548 |
|
| 549 | 549 |
template <typename CMap> |
| 550 | 550 |
ArcMap& operator=(const CMap& cmap) {
|
| 551 | 551 |
Parent::operator=(cmap); |
| 552 |
|
|
| 552 |
return *this; |
|
| 553 | 553 |
} |
| 554 | 554 |
|
| 555 | 555 |
}; |
| 556 | 556 |
|
| 557 | 557 |
|
| 558 | 558 |
template <typename _Value> |
| 559 |
class EdgeMap |
|
| 559 |
class EdgeMap |
|
| 560 | 560 |
: public MapExtender<DefaultMap<Graph, Edge, _Value> > {
|
| 561 | 561 |
typedef MapExtender<DefaultMap<Graph, Edge, _Value> > Parent; |
| 562 | 562 |
|
| 563 | 563 |
public: |
| 564 |
explicit EdgeMap(const Graph& _g) |
|
| 565 |
: Parent(_g) {}
|
|
| 564 |
explicit EdgeMap(const Graph& _g) |
|
| 565 |
: Parent(_g) {}
|
|
| 566 | 566 |
|
| 567 |
EdgeMap(const Graph& _g, const _Value& _v) |
|
| 568 |
: Parent(_g, _v) {}
|
|
| 567 |
EdgeMap(const Graph& _g, const _Value& _v) |
|
| 568 |
: Parent(_g, _v) {}
|
|
| 569 | 569 |
|
| 570 | 570 |
EdgeMap& operator=(const EdgeMap& cmap) {
|
| 571 |
|
|
| 571 |
return operator=<EdgeMap>(cmap); |
|
| 572 | 572 |
} |
| 573 | 573 |
|
| 574 | 574 |
template <typename CMap> |
| 575 | 575 |
EdgeMap& operator=(const CMap& cmap) {
|
| 576 | 576 |
Parent::operator=(cmap); |
| 577 |
|
|
| 577 |
return *this; |
|
| 578 | 578 |
} |
| 579 | 579 |
|
| 580 | 580 |
}; |
| 581 | 581 |
|
| 582 | 582 |
|
| 583 | 583 |
// Alteration extension |
| 584 | 584 |
|
| 585 | 585 |
Edge addEdge(const Node& from, const Node& to) {
|
| 586 | 586 |
Edge edge = Parent::addEdge(from, to); |
| 587 | 587 |
notifier(Edge()).add(edge); |
| 588 | 588 |
std::vector<Arc> arcs; |
| 589 | 589 |
arcs.push_back(Parent::direct(edge, true)); |
| 590 | 590 |
arcs.push_back(Parent::direct(edge, false)); |
| 591 | 591 |
notifier(Arc()).add(arcs); |
| 592 | 592 |
return edge; |
| 593 | 593 |
} |
| 594 |
|
|
| 594 |
|
|
| 595 | 595 |
void clear() {
|
| 596 | 596 |
notifier(Arc()).clear(); |
| 597 | 597 |
notifier(Edge()).clear(); |
| 598 | 598 |
Parent::clear(); |
| 599 | 599 |
} |
| 600 | 600 |
|
| 601 | 601 |
void erase(const Edge& edge) {
|
| 602 | 602 |
std::vector<Arc> arcs; |
| 603 | 603 |
arcs.push_back(Parent::direct(edge, true)); |
| 604 | 604 |
arcs.push_back(Parent::direct(edge, false)); |
| 605 | 605 |
notifier(Arc()).erase(arcs); |
| 606 | 606 |
notifier(Edge()).erase(edge); |
| 607 | 607 |
Parent::erase(edge); |
| 608 | 608 |
} |
| 609 | 609 |
|
| 610 | 610 |
|
| 611 | 611 |
EdgeSetExtender() {
|
| 612 | 612 |
arc_notifier.setContainer(*this); |
| 613 | 613 |
edge_notifier.setContainer(*this); |
| 614 | 614 |
} |
| 615 | 615 |
|
| 616 | 616 |
~EdgeSetExtender() {
|
| 617 | 617 |
edge_notifier.clear(); |
| 618 | 618 |
arc_notifier.clear(); |
| 619 | 619 |
} |
| 620 |
|
|
| 620 |
|
|
| 621 | 621 |
}; |
| 622 | 622 |
|
| 623 | 623 |
} |
| 624 | 624 |
|
| 625 | 625 |
#endif |
| 1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
| 2 | 2 |
* |
| 3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
| 4 | 4 |
* |
| 5 |
* Copyright (C) 2003- |
|
| 5 |
* Copyright (C) 2003-2010 |
|
| 6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
| 7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
| 8 | 8 |
* |
| 9 | 9 |
* Permission to use, modify and distribute this software is granted |
| 10 | 10 |
* provided that this copyright notice appears in all copies. For |
| 11 | 11 |
* precise terms see the accompanying LICENSE file. |
| 12 | 12 |
* |
| 13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
| 14 | 14 |
* express or implied, and with no claim as to its suitability for any |
| 15 | 15 |
* purpose. |
| 16 | 16 |
* |
| 17 | 17 |
*/ |
| 18 | 18 |
|
| 19 | 19 |
#ifndef LEMON_BITS_SOLVER_BITS_H |
| 20 | 20 |
#define LEMON_BITS_SOLVER_BITS_H |
| 21 | 21 |
|
| 22 | 22 |
#include <vector> |
| 23 | 23 |
|
| 24 | 24 |
namespace lemon {
|
| 25 | 25 |
|
| 26 | 26 |
namespace _solver_bits {
|
| 27 | 27 |
|
| 28 | 28 |
class VarIndex {
|
| 29 | 29 |
private: |
| 30 | 30 |
struct ItemT {
|
| 31 | 31 |
int prev, next; |
| 32 | 32 |
int index; |
| 33 | 33 |
}; |
| 34 | 34 |
std::vector<ItemT> items; |
| 35 | 35 |
int first_item, last_item, first_free_item; |
| 36 | 36 |
|
| 37 | 37 |
std::vector<int> cross; |
| 1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
| 2 | 2 |
* |
| 3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
| 4 | 4 |
* |
| 5 |
* Copyright (C) 2003- |
|
| 5 |
* Copyright (C) 2003-2010 |
|
| 6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
| 7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
| 8 | 8 |
* |
| 9 | 9 |
* Permission to use, modify and distribute this software is granted |
| 10 | 10 |
* provided that this copyright notice appears in all copies. For |
| 11 | 11 |
* precise terms see the accompanying LICENSE file. |
| 12 | 12 |
* |
| 13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
| 14 | 14 |
* express or implied, and with no claim as to its suitability for any |
| 15 | 15 |
* purpose. |
| 16 | 16 |
* |
| 17 | 17 |
*/ |
| 18 | 18 |
|
| 19 | 19 |
///\file |
| 20 | 20 |
///\brief Some basic non-inline functions and static global data. |
| 21 | 21 |
|
| 22 | 22 |
#include<lemon/bits/windows.h> |
| 23 | 23 |
|
| 24 | 24 |
#ifdef WIN32 |
| 25 | 25 |
#ifndef WIN32_LEAN_AND_MEAN |
| 26 | 26 |
#define WIN32_LEAN_AND_MEAN |
| 27 | 27 |
#endif |
| 28 | 28 |
#ifndef NOMINMAX |
| 29 | 29 |
#define NOMINMAX |
| 30 | 30 |
#endif |
| 31 | 31 |
#ifdef UNICODE |
| 32 | 32 |
#undef UNICODE |
| 33 | 33 |
#endif |
| 34 | 34 |
#include <windows.h> |
| 35 | 35 |
#ifdef LOCALE_INVARIANT |
| 36 | 36 |
#define MY_LOCALE LOCALE_INVARIANT |
| 37 | 37 |
#else |
| ... | ... |
@@ -67,65 +67,65 @@ |
| 67 | 67 |
stime = ch * kernel.dwHighDateTime + cl * kernel.dwLowDateTime; |
| 68 | 68 |
cutime = 0; |
| 69 | 69 |
cstime = 0; |
| 70 | 70 |
} else {
|
| 71 | 71 |
rtime = 0; |
| 72 | 72 |
utime = 0; |
| 73 | 73 |
stime = 0; |
| 74 | 74 |
cutime = 0; |
| 75 | 75 |
cstime = 0; |
| 76 | 76 |
} |
| 77 | 77 |
#else |
| 78 | 78 |
timeval tv; |
| 79 | 79 |
gettimeofday(&tv, 0); |
| 80 | 80 |
rtime=tv.tv_sec+double(tv.tv_usec)/1e6; |
| 81 | 81 |
|
| 82 | 82 |
tms ts; |
| 83 | 83 |
double tck=sysconf(_SC_CLK_TCK); |
| 84 | 84 |
times(&ts); |
| 85 | 85 |
utime=ts.tms_utime/tck; |
| 86 | 86 |
stime=ts.tms_stime/tck; |
| 87 | 87 |
cutime=ts.tms_cutime/tck; |
| 88 | 88 |
cstime=ts.tms_cstime/tck; |
| 89 | 89 |
#endif |
| 90 | 90 |
} |
| 91 | 91 |
|
| 92 | 92 |
std::string getWinFormattedDate() |
| 93 | 93 |
{
|
| 94 | 94 |
std::ostringstream os; |
| 95 | 95 |
#ifdef WIN32 |
| 96 | 96 |
SYSTEMTIME time; |
| 97 | 97 |
GetSystemTime(&time); |
| 98 | 98 |
char buf1[11], buf2[9], buf3[5]; |
| 99 |
|
|
| 99 |
if (GetDateFormat(MY_LOCALE, 0, &time, |
|
| 100 | 100 |
("ddd MMM dd"), buf1, 11) &&
|
| 101 | 101 |
GetTimeFormat(MY_LOCALE, 0, &time, |
| 102 | 102 |
("HH':'mm':'ss"), buf2, 9) &&
|
| 103 | 103 |
GetDateFormat(MY_LOCALE, 0, &time, |
| 104 | 104 |
("yyyy"), buf3, 5)) {
|
| 105 | 105 |
os << buf1 << ' ' << buf2 << ' ' << buf3; |
| 106 | 106 |
} |
| 107 | 107 |
else os << "unknown"; |
| 108 | 108 |
#else |
| 109 | 109 |
timeval tv; |
| 110 | 110 |
gettimeofday(&tv, 0); |
| 111 | 111 |
|
| 112 | 112 |
char cbuf[26]; |
| 113 | 113 |
ctime_r(&tv.tv_sec,cbuf); |
| 114 | 114 |
os << cbuf; |
| 115 | 115 |
#endif |
| 116 | 116 |
return os.str(); |
| 117 | 117 |
} |
| 118 | 118 |
|
| 119 | 119 |
int getWinRndSeed() |
| 120 | 120 |
{
|
| 121 | 121 |
#ifdef WIN32 |
| 122 | 122 |
FILETIME time; |
| 123 | 123 |
GetSystemTimeAsFileTime(&time); |
| 124 | 124 |
return GetCurrentProcessId() + time.dwHighDateTime + time.dwLowDateTime; |
| 125 | 125 |
#else |
| 126 | 126 |
timeval tv; |
| 127 | 127 |
gettimeofday(&tv, 0); |
| 128 | 128 |
return getpid() + tv.tv_sec + tv.tv_usec; |
| 129 | 129 |
#endif |
| 130 | 130 |
} |
| 131 | 131 |
} |
| 1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
| 2 | 2 |
* |
| 3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
| 4 | 4 |
* |
| 5 |
* Copyright (C) 2003- |
|
| 5 |
* Copyright (C) 2003-2010 |
|
| 6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
| 7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
| 8 | 8 |
* |
| 9 | 9 |
* Permission to use, modify and distribute this software is granted |
| 10 | 10 |
* provided that this copyright notice appears in all copies. For |
| 11 | 11 |
* precise terms see the accompanying LICENSE file. |
| 12 | 12 |
* |
| 13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
| 14 | 14 |
* express or implied, and with no claim as to its suitability for any |
| 15 | 15 |
* purpose. |
| 16 | 16 |
* |
| 17 | 17 |
*/ |
| 18 | 18 |
|
| 19 | 19 |
#ifndef LEMON_BUCKET_HEAP_H |
| 20 | 20 |
#define LEMON_BUCKET_HEAP_H |
| 21 | 21 |
|
| 22 | 22 |
///\ingroup heaps |
| 23 | 23 |
///\file |
| 24 | 24 |
///\brief Bucket heap implementation. |
| 25 | 25 |
|
| 26 | 26 |
#include <vector> |
| 27 | 27 |
#include <utility> |
| 28 | 28 |
#include <functional> |
| 29 | 29 |
|
| 30 | 30 |
namespace lemon {
|
| 31 | 31 |
|
| 32 | 32 |
namespace _bucket_heap_bits {
|
| 33 | 33 |
|
| 34 | 34 |
template <bool MIN> |
| 35 | 35 |
struct DirectionTraits {
|
| 36 | 36 |
static bool less(int left, int right) {
|
| 37 | 37 |
return left < right; |
| ... | ... |
@@ -355,65 +355,65 @@ |
| 355 | 355 |
private: |
| 356 | 356 |
|
| 357 | 357 |
struct BucketItem {
|
| 358 | 358 |
BucketItem(const Item& _item, int _value) |
| 359 | 359 |
: item(_item), value(_value) {}
|
| 360 | 360 |
|
| 361 | 361 |
Item item; |
| 362 | 362 |
int value; |
| 363 | 363 |
|
| 364 | 364 |
int prev, next; |
| 365 | 365 |
}; |
| 366 | 366 |
|
| 367 | 367 |
ItemIntMap& _iim; |
| 368 | 368 |
std::vector<int> _first; |
| 369 | 369 |
std::vector<BucketItem> _data; |
| 370 | 370 |
mutable int _minimum; |
| 371 | 371 |
|
| 372 | 372 |
}; // class BucketHeap |
| 373 | 373 |
|
| 374 | 374 |
/// \ingroup heaps |
| 375 | 375 |
/// |
| 376 | 376 |
/// \brief Simplified bucket heap data structure. |
| 377 | 377 |
/// |
| 378 | 378 |
/// This class implements a simplified \e bucket \e heap data |
| 379 | 379 |
/// structure. It does not provide some functionality, but it is |
| 380 | 380 |
/// faster and simpler than BucketHeap. The main difference is |
| 381 | 381 |
/// that BucketHeap stores a doubly-linked list for each key while |
| 382 | 382 |
/// this class stores only simply-linked lists. It supports erasing |
| 383 | 383 |
/// only for the item having minimum priority and it does not support |
| 384 | 384 |
/// key increasing and decreasing. |
| 385 | 385 |
/// |
| 386 | 386 |
/// Note that this implementation does not conform to the |
| 387 |
/// \ref concepts::Heap "heap concept" due to the lack of some |
|
| 387 |
/// \ref concepts::Heap "heap concept" due to the lack of some |
|
| 388 | 388 |
/// functionality. |
| 389 | 389 |
/// |
| 390 | 390 |
/// \tparam IM A read-writable item map with \c int values, used |
| 391 | 391 |
/// internally to handle the cross references. |
| 392 | 392 |
/// \tparam MIN Indicate if the heap is a \e min-heap or a \e max-heap. |
| 393 | 393 |
/// The default is \e min-heap. If this parameter is set to \c false, |
| 394 | 394 |
/// then the comparison is reversed, so the top(), prio() and pop() |
| 395 | 395 |
/// functions deal with the item having maximum priority instead of the |
| 396 | 396 |
/// minimum. |
| 397 | 397 |
/// |
| 398 | 398 |
/// \sa BucketHeap |
| 399 | 399 |
template <typename IM, bool MIN = true > |
| 400 | 400 |
class SimpleBucketHeap {
|
| 401 | 401 |
|
| 402 | 402 |
public: |
| 403 | 403 |
|
| 404 | 404 |
/// Type of the item-int map. |
| 405 | 405 |
typedef IM ItemIntMap; |
| 406 | 406 |
/// Type of the priorities. |
| 407 | 407 |
typedef int Prio; |
| 408 | 408 |
/// Type of the items stored in the heap. |
| 409 | 409 |
typedef typename ItemIntMap::Key Item; |
| 410 | 410 |
/// Type of the item-priority pairs. |
| 411 | 411 |
typedef std::pair<Item,Prio> Pair; |
| 412 | 412 |
|
| 413 | 413 |
private: |
| 414 | 414 |
|
| 415 | 415 |
typedef _bucket_heap_bits::DirectionTraits<MIN> Direction; |
| 416 | 416 |
|
| 417 | 417 |
public: |
| 418 | 418 |
|
| 419 | 419 |
/// \brief Type to represent the states of the items. |
| 1 |
/* -*- C++ -*- |
|
| 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
|
| 2 | 2 |
* |
| 3 |
* This file is a part of LEMON, a generic C++ optimization library |
|
| 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
|
| 4 | 4 |
* |
| 5 |
* Copyright (C) 2003- |
|
| 5 |
* Copyright (C) 2003-2010 |
|
| 6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
| 7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
| 8 | 8 |
* |
| 9 | 9 |
* Permission to use, modify and distribute this software is granted |
| 10 | 10 |
* provided that this copyright notice appears in all copies. For |
| 11 | 11 |
* precise terms see the accompanying LICENSE file. |
| 12 | 12 |
* |
| 13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
| 14 | 14 |
* express or implied, and with no claim as to its suitability for any |
| 15 | 15 |
* purpose. |
| 16 | 16 |
* |
| 17 | 17 |
*/ |
| 18 | 18 |
|
| 19 | 19 |
#ifndef LEMON_CAPACITY_SCALING_H |
| 20 | 20 |
#define LEMON_CAPACITY_SCALING_H |
| 21 | 21 |
|
| 22 | 22 |
/// \ingroup min_cost_flow_algs |
| 23 | 23 |
/// |
| 24 | 24 |
/// \file |
| 25 | 25 |
/// \brief Capacity Scaling algorithm for finding a minimum cost flow. |
| 26 | 26 |
|
| 27 | 27 |
#include <vector> |
| 28 | 28 |
#include <limits> |
| 29 | 29 |
#include <lemon/core.h> |
| 30 | 30 |
#include <lemon/bin_heap.h> |
| 31 | 31 |
|
| 32 | 32 |
namespace lemon {
|
| 33 | 33 |
|
| 34 | 34 |
/// \brief Default traits class of CapacityScaling algorithm. |
| 35 | 35 |
/// |
| 36 | 36 |
/// Default traits class of CapacityScaling algorithm. |
| 37 | 37 |
/// \tparam GR Digraph type. |
| ... | ... |
@@ -104,146 +104,146 @@ |
| 104 | 104 |
typedef typename TR::Digraph Digraph; |
| 105 | 105 |
/// The type of the flow amounts, capacity bounds and supply values |
| 106 | 106 |
typedef typename TR::Value Value; |
| 107 | 107 |
/// The type of the arc costs |
| 108 | 108 |
typedef typename TR::Cost Cost; |
| 109 | 109 |
|
| 110 | 110 |
/// The type of the heap used for internal Dijkstra computations |
| 111 | 111 |
typedef typename TR::Heap Heap; |
| 112 | 112 |
|
| 113 | 113 |
/// The \ref CapacityScalingDefaultTraits "traits class" of the algorithm |
| 114 | 114 |
typedef TR Traits; |
| 115 | 115 |
|
| 116 | 116 |
public: |
| 117 | 117 |
|
| 118 | 118 |
/// \brief Problem type constants for the \c run() function. |
| 119 | 119 |
/// |
| 120 | 120 |
/// Enum type containing the problem type constants that can be |
| 121 | 121 |
/// returned by the \ref run() function of the algorithm. |
| 122 | 122 |
enum ProblemType {
|
| 123 | 123 |
/// The problem has no feasible solution (flow). |
| 124 | 124 |
INFEASIBLE, |
| 125 | 125 |
/// The problem has optimal solution (i.e. it is feasible and |
| 126 | 126 |
/// bounded), and the algorithm has found optimal flow and node |
| 127 | 127 |
/// potentials (primal and dual solutions). |
| 128 | 128 |
OPTIMAL, |
| 129 | 129 |
/// The digraph contains an arc of negative cost and infinite |
| 130 | 130 |
/// upper bound. It means that the objective function is unbounded |
| 131 | 131 |
/// on that arc, however, note that it could actually be bounded |
| 132 | 132 |
/// over the feasible flows, but this algroithm cannot handle |
| 133 | 133 |
/// these cases. |
| 134 | 134 |
UNBOUNDED |
| 135 | 135 |
}; |
| 136 |
|
|
| 136 |
|
|
| 137 | 137 |
private: |
| 138 | 138 |
|
| 139 | 139 |
TEMPLATE_DIGRAPH_TYPEDEFS(GR); |
| 140 | 140 |
|
| 141 | 141 |
typedef std::vector<int> IntVector; |
| 142 | 142 |
typedef std::vector<Value> ValueVector; |
| 143 | 143 |
typedef std::vector<Cost> CostVector; |
| 144 | 144 |
typedef std::vector<char> BoolVector; |
| 145 | 145 |
// Note: vector<char> is used instead of vector<bool> for efficiency reasons |
| 146 | 146 |
|
| 147 | 147 |
private: |
| 148 | 148 |
|
| 149 | 149 |
// Data related to the underlying digraph |
| 150 | 150 |
const GR &_graph; |
| 151 | 151 |
int _node_num; |
| 152 | 152 |
int _arc_num; |
| 153 | 153 |
int _res_arc_num; |
| 154 | 154 |
int _root; |
| 155 | 155 |
|
| 156 | 156 |
// Parameters of the problem |
| 157 | 157 |
bool _have_lower; |
| 158 | 158 |
Value _sum_supply; |
| 159 | 159 |
|
| 160 | 160 |
// Data structures for storing the digraph |
| 161 | 161 |
IntNodeMap _node_id; |
| 162 | 162 |
IntArcMap _arc_idf; |
| 163 | 163 |
IntArcMap _arc_idb; |
| 164 | 164 |
IntVector _first_out; |
| 165 | 165 |
BoolVector _forward; |
| 166 | 166 |
IntVector _source; |
| 167 | 167 |
IntVector _target; |
| 168 | 168 |
IntVector _reverse; |
| 169 | 169 |
|
| 170 | 170 |
// Node and arc data |
| 171 | 171 |
ValueVector _lower; |
| 172 | 172 |
ValueVector _upper; |
| 173 | 173 |
CostVector _cost; |
| 174 | 174 |
ValueVector _supply; |
| 175 | 175 |
|
| 176 | 176 |
ValueVector _res_cap; |
| 177 | 177 |
CostVector _pi; |
| 178 | 178 |
ValueVector _excess; |
| 179 | 179 |
IntVector _excess_nodes; |
| 180 | 180 |
IntVector _deficit_nodes; |
| 181 | 181 |
|
| 182 | 182 |
Value _delta; |
| 183 | 183 |
int _factor; |
| 184 | 184 |
IntVector _pred; |
| 185 | 185 |
|
| 186 | 186 |
public: |
| 187 |
|
|
| 187 |
|
|
| 188 | 188 |
/// \brief Constant for infinite upper bounds (capacities). |
| 189 | 189 |
/// |
| 190 | 190 |
/// Constant for infinite upper bounds (capacities). |
| 191 | 191 |
/// It is \c std::numeric_limits<Value>::infinity() if available, |
| 192 | 192 |
/// \c std::numeric_limits<Value>::max() otherwise. |
| 193 | 193 |
const Value INF; |
| 194 | 194 |
|
| 195 | 195 |
private: |
| 196 | 196 |
|
| 197 | 197 |
// Special implementation of the Dijkstra algorithm for finding |
| 198 | 198 |
// shortest paths in the residual network of the digraph with |
| 199 | 199 |
// respect to the reduced arc costs and modifying the node |
| 200 | 200 |
// potentials according to the found distance labels. |
| 201 | 201 |
class ResidualDijkstra |
| 202 | 202 |
{
|
| 203 | 203 |
private: |
| 204 | 204 |
|
| 205 | 205 |
int _node_num; |
| 206 | 206 |
bool _geq; |
| 207 | 207 |
const IntVector &_first_out; |
| 208 | 208 |
const IntVector &_target; |
| 209 | 209 |
const CostVector &_cost; |
| 210 | 210 |
const ValueVector &_res_cap; |
| 211 | 211 |
const ValueVector &_excess; |
| 212 | 212 |
CostVector &_pi; |
| 213 | 213 |
IntVector &_pred; |
| 214 |
|
|
| 214 |
|
|
| 215 | 215 |
IntVector _proc_nodes; |
| 216 | 216 |
CostVector _dist; |
| 217 |
|
|
| 217 |
|
|
| 218 | 218 |
public: |
| 219 | 219 |
|
| 220 | 220 |
ResidualDijkstra(CapacityScaling& cs) : |
| 221 | 221 |
_node_num(cs._node_num), _geq(cs._sum_supply < 0), |
| 222 | 222 |
_first_out(cs._first_out), _target(cs._target), _cost(cs._cost), |
| 223 | 223 |
_res_cap(cs._res_cap), _excess(cs._excess), _pi(cs._pi), |
| 224 | 224 |
_pred(cs._pred), _dist(cs._node_num) |
| 225 | 225 |
{}
|
| 226 | 226 |
|
| 227 | 227 |
int run(int s, Value delta = 1) {
|
| 228 | 228 |
RangeMap<int> heap_cross_ref(_node_num, Heap::PRE_HEAP); |
| 229 | 229 |
Heap heap(heap_cross_ref); |
| 230 | 230 |
heap.push(s, 0); |
| 231 | 231 |
_pred[s] = -1; |
| 232 | 232 |
_proc_nodes.clear(); |
| 233 | 233 |
|
| 234 | 234 |
// Process nodes |
| 235 | 235 |
while (!heap.empty() && _excess[heap.top()] > -delta) {
|
| 236 | 236 |
int u = heap.top(), v; |
| 237 | 237 |
Cost d = heap.prio() + _pi[u], dn; |
| 238 | 238 |
_dist[u] = heap.prio(); |
| 239 | 239 |
_proc_nodes.push_back(u); |
| 240 | 240 |
heap.pop(); |
| 241 | 241 |
|
| 242 | 242 |
// Traverse outgoing residual arcs |
| 243 | 243 |
int last_out = _geq ? _first_out[u+1] : _first_out[u+1] - 1; |
| 244 | 244 |
for (int a = _first_out[u]; a != last_out; ++a) {
|
| 245 | 245 |
if (_res_cap[a] < delta) continue; |
| 246 | 246 |
v = _target[a]; |
| 247 | 247 |
switch (heap.state(v)) {
|
| 248 | 248 |
case Heap::PRE_HEAP: |
| 249 | 249 |
heap.push(v, d + _cost[a] - _pi[v]); |
| ... | ... |
@@ -410,65 +410,65 @@ |
| 410 | 410 |
CapacityScaling& supplyMap(const SupplyMap& map) {
|
| 411 | 411 |
for (NodeIt n(_graph); n != INVALID; ++n) {
|
| 412 | 412 |
_supply[_node_id[n]] = map[n]; |
| 413 | 413 |
} |
| 414 | 414 |
return *this; |
| 415 | 415 |
} |
| 416 | 416 |
|
| 417 | 417 |
/// \brief Set single source and target nodes and a supply value. |
| 418 | 418 |
/// |
| 419 | 419 |
/// This function sets a single source node and a single target node |
| 420 | 420 |
/// and the required flow value. |
| 421 | 421 |
/// If neither this function nor \ref supplyMap() is used before |
| 422 | 422 |
/// calling \ref run(), the supply of each node will be set to zero. |
| 423 | 423 |
/// |
| 424 | 424 |
/// Using this function has the same effect as using \ref supplyMap() |
| 425 | 425 |
/// with such a map in which \c k is assigned to \c s, \c -k is |
| 426 | 426 |
/// assigned to \c t and all other nodes have zero supply value. |
| 427 | 427 |
/// |
| 428 | 428 |
/// \param s The source node. |
| 429 | 429 |
/// \param t The target node. |
| 430 | 430 |
/// \param k The required amount of flow from node \c s to node \c t |
| 431 | 431 |
/// (i.e. the supply of \c s and the demand of \c t). |
| 432 | 432 |
/// |
| 433 | 433 |
/// \return <tt>(*this)</tt> |
| 434 | 434 |
CapacityScaling& stSupply(const Node& s, const Node& t, Value k) {
|
| 435 | 435 |
for (int i = 0; i != _node_num; ++i) {
|
| 436 | 436 |
_supply[i] = 0; |
| 437 | 437 |
} |
| 438 | 438 |
_supply[_node_id[s]] = k; |
| 439 | 439 |
_supply[_node_id[t]] = -k; |
| 440 | 440 |
return *this; |
| 441 | 441 |
} |
| 442 |
|
|
| 442 |
|
|
| 443 | 443 |
/// @} |
| 444 | 444 |
|
| 445 | 445 |
/// \name Execution control |
| 446 | 446 |
/// The algorithm can be executed using \ref run(). |
| 447 | 447 |
|
| 448 | 448 |
/// @{
|
| 449 | 449 |
|
| 450 | 450 |
/// \brief Run the algorithm. |
| 451 | 451 |
/// |
| 452 | 452 |
/// This function runs the algorithm. |
| 453 | 453 |
/// The paramters can be specified using functions \ref lowerMap(), |
| 454 | 454 |
/// \ref upperMap(), \ref costMap(), \ref supplyMap(), \ref stSupply(). |
| 455 | 455 |
/// For example, |
| 456 | 456 |
/// \code |
| 457 | 457 |
/// CapacityScaling<ListDigraph> cs(graph); |
| 458 | 458 |
/// cs.lowerMap(lower).upperMap(upper).costMap(cost) |
| 459 | 459 |
/// .supplyMap(sup).run(); |
| 460 | 460 |
/// \endcode |
| 461 | 461 |
/// |
| 462 | 462 |
/// This function can be called more than once. All the given parameters |
| 463 | 463 |
/// are kept for the next call, unless \ref resetParams() or \ref reset() |
| 464 | 464 |
/// is used, thus only the modified parameters have to be set again. |
| 465 | 465 |
/// If the underlying digraph was also modified after the construction |
| 466 | 466 |
/// of the class (or the last \ref reset() call), then the \ref reset() |
| 467 | 467 |
/// function must be called. |
| 468 | 468 |
/// |
| 469 | 469 |
/// \param factor The capacity scaling factor. It must be larger than |
| 470 | 470 |
/// one to use scaling. If it is less or equal to one, then scaling |
| 471 | 471 |
/// will be disabled. |
| 472 | 472 |
/// |
| 473 | 473 |
/// \return \c INFEASIBLE if no feasible flow exists, |
| 474 | 474 |
/// \n \c OPTIMAL if the problem has optimal solution |
| ... | ... |
@@ -546,109 +546,109 @@ |
| 546 | 546 |
/// \ref upperMap(), \ref costMap(), \ref supplyMap(), \ref stSupply(). |
| 547 | 547 |
/// |
| 548 | 548 |
/// It is useful for multiple \ref run() calls. Basically, all the given |
| 549 | 549 |
/// parameters are kept for the next \ref run() call, unless |
| 550 | 550 |
/// \ref resetParams() or \ref reset() is used. |
| 551 | 551 |
/// If the underlying digraph was also modified after the construction |
| 552 | 552 |
/// of the class or the last \ref reset() call, then the \ref reset() |
| 553 | 553 |
/// function must be used, otherwise \ref resetParams() is sufficient. |
| 554 | 554 |
/// |
| 555 | 555 |
/// See \ref resetParams() for examples. |
| 556 | 556 |
/// |
| 557 | 557 |
/// \return <tt>(*this)</tt> |
| 558 | 558 |
/// |
| 559 | 559 |
/// \see resetParams(), run() |
| 560 | 560 |
CapacityScaling& reset() {
|
| 561 | 561 |
// Resize vectors |
| 562 | 562 |
_node_num = countNodes(_graph); |
| 563 | 563 |
_arc_num = countArcs(_graph); |
| 564 | 564 |
_res_arc_num = 2 * (_arc_num + _node_num); |
| 565 | 565 |
_root = _node_num; |
| 566 | 566 |
++_node_num; |
| 567 | 567 |
|
| 568 | 568 |
_first_out.resize(_node_num + 1); |
| 569 | 569 |
_forward.resize(_res_arc_num); |
| 570 | 570 |
_source.resize(_res_arc_num); |
| 571 | 571 |
_target.resize(_res_arc_num); |
| 572 | 572 |
_reverse.resize(_res_arc_num); |
| 573 | 573 |
|
| 574 | 574 |
_lower.resize(_res_arc_num); |
| 575 | 575 |
_upper.resize(_res_arc_num); |
| 576 | 576 |
_cost.resize(_res_arc_num); |
| 577 | 577 |
_supply.resize(_node_num); |
| 578 |
|
|
| 578 |
|
|
| 579 | 579 |
_res_cap.resize(_res_arc_num); |
| 580 | 580 |
_pi.resize(_node_num); |
| 581 | 581 |
_excess.resize(_node_num); |
| 582 | 582 |
_pred.resize(_node_num); |
| 583 | 583 |
|
| 584 | 584 |
// Copy the graph |
| 585 | 585 |
int i = 0, j = 0, k = 2 * _arc_num + _node_num - 1; |
| 586 | 586 |
for (NodeIt n(_graph); n != INVALID; ++n, ++i) {
|
| 587 | 587 |
_node_id[n] = i; |
| 588 | 588 |
} |
| 589 | 589 |
i = 0; |
| 590 | 590 |
for (NodeIt n(_graph); n != INVALID; ++n, ++i) {
|
| 591 | 591 |
_first_out[i] = j; |
| 592 | 592 |
for (OutArcIt a(_graph, n); a != INVALID; ++a, ++j) {
|
| 593 | 593 |
_arc_idf[a] = j; |
| 594 | 594 |
_forward[j] = true; |
| 595 | 595 |
_source[j] = i; |
| 596 | 596 |
_target[j] = _node_id[_graph.runningNode(a)]; |
| 597 | 597 |
} |
| 598 | 598 |
for (InArcIt a(_graph, n); a != INVALID; ++a, ++j) {
|
| 599 | 599 |
_arc_idb[a] = j; |
| 600 | 600 |
_forward[j] = false; |
| 601 | 601 |
_source[j] = i; |
| 602 | 602 |
_target[j] = _node_id[_graph.runningNode(a)]; |
| 603 | 603 |
} |
| 604 | 604 |
_forward[j] = false; |
| 605 | 605 |
_source[j] = i; |
| 606 | 606 |
_target[j] = _root; |
| 607 | 607 |
_reverse[j] = k; |
| 608 | 608 |
_forward[k] = true; |
| 609 | 609 |
_source[k] = _root; |
| 610 | 610 |
_target[k] = i; |
| 611 | 611 |
_reverse[k] = j; |
| 612 | 612 |
++j; ++k; |
| 613 | 613 |
} |
| 614 | 614 |
_first_out[i] = j; |
| 615 | 615 |
_first_out[_node_num] = k; |
| 616 | 616 |
for (ArcIt a(_graph); a != INVALID; ++a) {
|
| 617 | 617 |
int fi = _arc_idf[a]; |
| 618 | 618 |
int bi = _arc_idb[a]; |
| 619 | 619 |
_reverse[fi] = bi; |
| 620 | 620 |
_reverse[bi] = fi; |
| 621 | 621 |
} |
| 622 |
|
|
| 622 |
|
|
| 623 | 623 |
// Reset parameters |
| 624 | 624 |
resetParams(); |
| 625 | 625 |
return *this; |
| 626 | 626 |
} |
| 627 | 627 |
|
| 628 | 628 |
/// @} |
| 629 | 629 |
|
| 630 | 630 |
/// \name Query Functions |
| 631 | 631 |
/// The results of the algorithm can be obtained using these |
| 632 | 632 |
/// functions.\n |
| 633 | 633 |
/// The \ref run() function must be called before using them. |
| 634 | 634 |
|
| 635 | 635 |
/// @{
|
| 636 | 636 |
|
| 637 | 637 |
/// \brief Return the total cost of the found flow. |
| 638 | 638 |
/// |
| 639 | 639 |
/// This function returns the total cost of the found flow. |
| 640 | 640 |
/// Its complexity is O(e). |
| 641 | 641 |
/// |
| 642 | 642 |
/// \note The return type of the function can be specified as a |
| 643 | 643 |
/// template parameter. For example, |
| 644 | 644 |
/// \code |
| 645 | 645 |
/// cs.totalCost<double>(); |
| 646 | 646 |
/// \endcode |
| 647 | 647 |
/// It is useful if the total cost cannot be stored in the \c Cost |
| 648 | 648 |
/// type of the algorithm, which is the default return type of the |
| 649 | 649 |
/// function. |
| 650 | 650 |
/// |
| 651 | 651 |
/// \pre \ref run() must be called before using this function. |
| 652 | 652 |
template <typename Number> |
| 653 | 653 |
Number totalCost() const {
|
| 654 | 654 |
Number c = 0; |
| ... | ... |
@@ -699,113 +699,113 @@ |
| 699 | 699 |
return _pi[_node_id[n]]; |
| 700 | 700 |
} |
| 701 | 701 |
|
| 702 | 702 |
/// \brief Return the potential map (the dual solution). |
| 703 | 703 |
/// |
| 704 | 704 |
/// This function copies the potential (dual value) of each node |
| 705 | 705 |
/// into the given map. |
| 706 | 706 |
/// The \c Cost type of the algorithm must be convertible to the |
| 707 | 707 |
/// \c Value type of the map. |
| 708 | 708 |
/// |
| 709 | 709 |
/// \pre \ref run() must be called before using this function. |
| 710 | 710 |
template <typename PotentialMap> |
| 711 | 711 |
void potentialMap(PotentialMap &map) const {
|
| 712 | 712 |
for (NodeIt n(_graph); n != INVALID; ++n) {
|
| 713 | 713 |
map.set(n, _pi[_node_id[n]]); |
| 714 | 714 |
} |
| 715 | 715 |
} |
| 716 | 716 |
|
| 717 | 717 |
/// @} |
| 718 | 718 |
|
| 719 | 719 |
private: |
| 720 | 720 |
|
| 721 | 721 |
// Initialize the algorithm |
| 722 | 722 |
ProblemType init() {
|
| 723 | 723 |
if (_node_num <= 1) return INFEASIBLE; |
| 724 | 724 |
|
| 725 | 725 |
// Check the sum of supply values |
| 726 | 726 |
_sum_supply = 0; |
| 727 | 727 |
for (int i = 0; i != _root; ++i) {
|
| 728 | 728 |
_sum_supply += _supply[i]; |
| 729 | 729 |
} |
| 730 | 730 |
if (_sum_supply > 0) return INFEASIBLE; |
| 731 |
|
|
| 731 |
|
|
| 732 | 732 |
// Initialize vectors |
| 733 | 733 |
for (int i = 0; i != _root; ++i) {
|
| 734 | 734 |
_pi[i] = 0; |
| 735 | 735 |
_excess[i] = _supply[i]; |
| 736 | 736 |
} |
| 737 | 737 |
|
| 738 | 738 |
// Remove non-zero lower bounds |
| 739 | 739 |
const Value MAX = std::numeric_limits<Value>::max(); |
| 740 | 740 |
int last_out; |
| 741 | 741 |
if (_have_lower) {
|
| 742 | 742 |
for (int i = 0; i != _root; ++i) {
|
| 743 | 743 |
last_out = _first_out[i+1]; |
| 744 | 744 |
for (int j = _first_out[i]; j != last_out; ++j) {
|
| 745 | 745 |
if (_forward[j]) {
|
| 746 | 746 |
Value c = _lower[j]; |
| 747 | 747 |
if (c >= 0) {
|
| 748 | 748 |
_res_cap[j] = _upper[j] < MAX ? _upper[j] - c : INF; |
| 749 | 749 |
} else {
|
| 750 | 750 |
_res_cap[j] = _upper[j] < MAX + c ? _upper[j] - c : INF; |
| 751 | 751 |
} |
| 752 | 752 |
_excess[i] -= c; |
| 753 | 753 |
_excess[_target[j]] += c; |
| 754 | 754 |
} else {
|
| 755 | 755 |
_res_cap[j] = 0; |
| 756 | 756 |
} |
| 757 | 757 |
} |
| 758 | 758 |
} |
| 759 | 759 |
} else {
|
| 760 | 760 |
for (int j = 0; j != _res_arc_num; ++j) {
|
| 761 | 761 |
_res_cap[j] = _forward[j] ? _upper[j] : 0; |
| 762 | 762 |
} |
| 763 | 763 |
} |
| 764 | 764 |
|
| 765 | 765 |
// Handle negative costs |
| 766 | 766 |
for (int i = 0; i != _root; ++i) {
|
| 767 | 767 |
last_out = _first_out[i+1] - 1; |
| 768 | 768 |
for (int j = _first_out[i]; j != last_out; ++j) {
|
| 769 | 769 |
Value rc = _res_cap[j]; |
| 770 | 770 |
if (_cost[j] < 0 && rc > 0) {
|
| 771 | 771 |
if (rc >= MAX) return UNBOUNDED; |
| 772 | 772 |
_excess[i] -= rc; |
| 773 | 773 |
_excess[_target[j]] += rc; |
| 774 | 774 |
_res_cap[j] = 0; |
| 775 | 775 |
_res_cap[_reverse[j]] += rc; |
| 776 | 776 |
} |
| 777 | 777 |
} |
| 778 | 778 |
} |
| 779 |
|
|
| 779 |
|
|
| 780 | 780 |
// Handle GEQ supply type |
| 781 | 781 |
if (_sum_supply < 0) {
|
| 782 | 782 |
_pi[_root] = 0; |
| 783 | 783 |
_excess[_root] = -_sum_supply; |
| 784 | 784 |
for (int a = _first_out[_root]; a != _res_arc_num; ++a) {
|
| 785 | 785 |
int ra = _reverse[a]; |
| 786 | 786 |
_res_cap[a] = -_sum_supply + 1; |
| 787 | 787 |
_res_cap[ra] = 0; |
| 788 | 788 |
_cost[a] = 0; |
| 789 | 789 |
_cost[ra] = 0; |
| 790 | 790 |
} |
| 791 | 791 |
} else {
|
| 792 | 792 |
_pi[_root] = 0; |
| 793 | 793 |
_excess[_root] = 0; |
| 794 | 794 |
for (int a = _first_out[_root]; a != _res_arc_num; ++a) {
|
| 795 | 795 |
int ra = _reverse[a]; |
| 796 | 796 |
_res_cap[a] = 1; |
| 797 | 797 |
_res_cap[ra] = 0; |
| 798 | 798 |
_cost[a] = 0; |
| 799 | 799 |
_cost[ra] = 0; |
| 800 | 800 |
} |
| 801 | 801 |
} |
| 802 | 802 |
|
| 803 | 803 |
// Initialize delta value |
| 804 | 804 |
if (_factor > 1) {
|
| 805 | 805 |
// With scaling |
| 806 | 806 |
Value max_sup = 0, max_dem = 0, max_cap = 0; |
| 807 | 807 |
for (int i = 0; i != _root; ++i) {
|
| 808 | 808 |
Value ex = _excess[i]; |
| 809 | 809 |
if ( ex > max_sup) max_sup = ex; |
| 810 | 810 |
if (-ex > max_dem) max_dem = -ex; |
| 811 | 811 |
int last_out = _first_out[i+1] - 1; |
| ... | ... |
@@ -815,67 +815,67 @@ |
| 815 | 815 |
} |
| 816 | 816 |
max_sup = std::min(std::min(max_sup, max_dem), max_cap); |
| 817 | 817 |
for (_delta = 1; 2 * _delta <= max_sup; _delta *= 2) ; |
| 818 | 818 |
} else {
|
| 819 | 819 |
// Without scaling |
| 820 | 820 |
_delta = 1; |
| 821 | 821 |
} |
| 822 | 822 |
|
| 823 | 823 |
return OPTIMAL; |
| 824 | 824 |
} |
| 825 | 825 |
|
| 826 | 826 |
ProblemType start() {
|
| 827 | 827 |
// Execute the algorithm |
| 828 | 828 |
ProblemType pt; |
| 829 | 829 |
if (_delta > 1) |
| 830 | 830 |
pt = startWithScaling(); |
| 831 | 831 |
else |
| 832 | 832 |
pt = startWithoutScaling(); |
| 833 | 833 |
|
| 834 | 834 |
// Handle non-zero lower bounds |
| 835 | 835 |
if (_have_lower) {
|
| 836 | 836 |
int limit = _first_out[_root]; |
| 837 | 837 |
for (int j = 0; j != limit; ++j) {
|
| 838 | 838 |
if (!_forward[j]) _res_cap[j] += _lower[j]; |
| 839 | 839 |
} |
| 840 | 840 |
} |
| 841 | 841 |
|
| 842 | 842 |
// Shift potentials if necessary |
| 843 | 843 |
Cost pr = _pi[_root]; |
| 844 | 844 |
if (_sum_supply < 0 || pr > 0) {
|
| 845 | 845 |
for (int i = 0; i != _node_num; ++i) {
|
| 846 | 846 |
_pi[i] -= pr; |
| 847 |
} |
|
| 847 |
} |
|
| 848 | 848 |
} |
| 849 |
|
|
| 849 |
|
|
| 850 | 850 |
return pt; |
| 851 | 851 |
} |
| 852 | 852 |
|
| 853 | 853 |
// Execute the capacity scaling algorithm |
| 854 | 854 |
ProblemType startWithScaling() {
|
| 855 | 855 |
// Perform capacity scaling phases |
| 856 | 856 |
int s, t; |
| 857 | 857 |
ResidualDijkstra _dijkstra(*this); |
| 858 | 858 |
while (true) {
|
| 859 | 859 |
// Saturate all arcs not satisfying the optimality condition |
| 860 | 860 |
int last_out; |
| 861 | 861 |
for (int u = 0; u != _node_num; ++u) {
|
| 862 | 862 |
last_out = _sum_supply < 0 ? |
| 863 | 863 |
_first_out[u+1] : _first_out[u+1] - 1; |
| 864 | 864 |
for (int a = _first_out[u]; a != last_out; ++a) {
|
| 865 | 865 |
int v = _target[a]; |
| 866 | 866 |
Cost c = _cost[a] + _pi[u] - _pi[v]; |
| 867 | 867 |
Value rc = _res_cap[a]; |
| 868 | 868 |
if (c < 0 && rc >= _delta) {
|
| 869 | 869 |
_excess[u] -= rc; |
| 870 | 870 |
_excess[v] += rc; |
| 871 | 871 |
_res_cap[a] = 0; |
| 872 | 872 |
_res_cap[_reverse[a]] += rc; |
| 873 | 873 |
} |
| 874 | 874 |
} |
| 875 | 875 |
} |
| 876 | 876 |
|
| 877 | 877 |
// Find excess nodes and deficit nodes |
| 878 | 878 |
_excess_nodes.clear(); |
| 879 | 879 |
_deficit_nodes.clear(); |
| 880 | 880 |
for (int u = 0; u != _node_num; ++u) {
|
| 881 | 881 |
Value ex = _excess[u]; |
| 1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
| 2 | 2 |
* |
| 3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
| 4 | 4 |
* |
| 5 |
* Copyright (C) 2003- |
|
| 5 |
* Copyright (C) 2003-2010 |
|
| 6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
| 7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
| 8 | 8 |
* |
| 9 | 9 |
* Permission to use, modify and distribute this software is granted |
| 10 | 10 |
* provided that this copyright notice appears in all copies. For |
| 11 | 11 |
* precise terms see the accompanying LICENSE file. |
| 12 | 12 |
* |
| 13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
| 14 | 14 |
* express or implied, and with no claim as to its suitability for any |
| 15 | 15 |
* purpose. |
| 16 | 16 |
* |
| 17 | 17 |
*/ |
| 18 | 18 |
|
| 19 | 19 |
// -*- C++ -*- |
| 20 | 20 |
#ifndef LEMON_CBC_H |
| 21 | 21 |
#define LEMON_CBC_H |
| 22 | 22 |
|
| 23 | 23 |
///\file |
| 24 | 24 |
///\brief Header of the LEMON-CBC mip solver interface. |
| 25 | 25 |
///\ingroup lp_group |
| 26 | 26 |
|
| 27 | 27 |
#include <lemon/lp_base.h> |
| 28 | 28 |
|
| 29 | 29 |
class CoinModel; |
| 30 | 30 |
class OsiSolverInterface; |
| 31 | 31 |
class CbcModel; |
| 32 | 32 |
|
| 33 | 33 |
namespace lemon {
|
| 34 | 34 |
|
| 35 | 35 |
/// \brief Interface for the CBC MIP solver |
| 36 | 36 |
/// |
| 37 | 37 |
/// This class implements an interface for the CBC MIP solver. |
| ... | ... |
@@ -92,39 +92,39 @@ |
| 92 | 92 |
virtual void _setColUpperBound(int i, Value value); |
| 93 | 93 |
virtual Value _getColUpperBound(int i) const; |
| 94 | 94 |
|
| 95 | 95 |
virtual void _setRowLowerBound(int i, Value value); |
| 96 | 96 |
virtual Value _getRowLowerBound(int i) const; |
| 97 | 97 |
virtual void _setRowUpperBound(int i, Value value); |
| 98 | 98 |
virtual Value _getRowUpperBound(int i) const; |
| 99 | 99 |
|
| 100 | 100 |
virtual void _setObjCoeffs(ExprIterator b, ExprIterator e); |
| 101 | 101 |
virtual void _getObjCoeffs(InsertIterator b) const; |
| 102 | 102 |
|
| 103 | 103 |
virtual void _setObjCoeff(int i, Value obj_coef); |
| 104 | 104 |
virtual Value _getObjCoeff(int i) const; |
| 105 | 105 |
|
| 106 | 106 |
virtual void _setSense(Sense sense); |
| 107 | 107 |
virtual Sense _getSense() const; |
| 108 | 108 |
|
| 109 | 109 |
virtual ColTypes _getColType(int col) const; |
| 110 | 110 |
virtual void _setColType(int col, ColTypes col_type); |
| 111 | 111 |
|
| 112 | 112 |
virtual SolveExitStatus _solve(); |
| 113 | 113 |
virtual ProblemType _getType() const; |
| 114 | 114 |
virtual Value _getSol(int i) const; |
| 115 | 115 |
virtual Value _getSolValue() const; |
| 116 | 116 |
|
| 117 | 117 |
virtual void _clear(); |
| 118 | 118 |
|
| 119 | 119 |
virtual void _messageLevel(MessageLevel level); |
| 120 | 120 |
void _applyMessageLevel(); |
| 121 | 121 |
|
| 122 | 122 |
int _message_level; |
| 123 | 123 |
|
| 124 |
|
|
| 124 |
|
|
| 125 | 125 |
|
| 126 | 126 |
}; |
| 127 | 127 |
|
| 128 | 128 |
} |
| 129 | 129 |
|
| 130 | 130 |
#endif |
| 1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
| 2 | 2 |
* |
| 3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
| 4 | 4 |
* |
| 5 |
* Copyright (C) 2003- |
|
| 5 |
* Copyright (C) 2003-2010 |
|
| 6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
| 7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
| 8 | 8 |
* |
| 9 | 9 |
* Permission to use, modify and distribute this software is granted |
| 10 | 10 |
* provided that this copyright notice appears in all copies. For |
| 11 | 11 |
* precise terms see the accompanying LICENSE file. |
| 12 | 12 |
* |
| 13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
| 14 | 14 |
* express or implied, and with no claim as to its suitability for any |
| 15 | 15 |
* purpose. |
| 16 | 16 |
* |
| 17 | 17 |
*/ |
| 18 | 18 |
|
| 19 | 19 |
#ifndef LEMON_CIRCULATION_H |
| 20 | 20 |
#define LEMON_CIRCULATION_H |
| 21 | 21 |
|
| 22 | 22 |
#include <lemon/tolerance.h> |
| 23 | 23 |
#include <lemon/elevator.h> |
| 24 | 24 |
#include <limits> |
| 25 | 25 |
|
| 26 | 26 |
///\ingroup max_flow |
| 27 | 27 |
///\file |
| 28 | 28 |
///\brief Push-relabel algorithm for finding a feasible circulation. |
| 29 | 29 |
/// |
| 30 | 30 |
namespace lemon {
|
| 31 | 31 |
|
| 32 | 32 |
/// \brief Default traits class of Circulation class. |
| 33 | 33 |
/// |
| 34 | 34 |
/// Default traits class of Circulation class. |
| 35 | 35 |
/// |
| 36 | 36 |
/// \tparam GR Type of the digraph the algorithm runs on. |
| 37 | 37 |
/// \tparam LM The type of the lower bound map. |
| 38 | 38 |
/// \tparam UM The type of the upper bound (capacity) map. |
| 39 | 39 |
/// \tparam SM The type of the supply map. |
| 40 | 40 |
template <typename GR, typename LM, |
| 41 | 41 |
typename UM, typename SM> |
| 42 | 42 |
struct CirculationDefaultTraits {
|
| 43 | 43 |
|
| 44 | 44 |
/// \brief The type of the digraph the algorithm runs on. |
| 45 | 45 |
typedef GR Digraph; |
| 46 | 46 |
|
| 47 | 47 |
/// \brief The type of the lower bound map. |
| 48 | 48 |
/// |
| 49 | 49 |
/// The type of the map that stores the lower bounds on the arcs. |
| 50 | 50 |
/// It must conform to the \ref concepts::ReadMap "ReadMap" concept. |
| 51 | 51 |
typedef LM LowerMap; |
| 52 | 52 |
|
| 53 | 53 |
/// \brief The type of the upper bound (capacity) map. |
| 54 | 54 |
/// |
| 55 | 55 |
/// The type of the map that stores the upper bounds (capacities) |
| 56 | 56 |
/// on the arcs. |
| 57 | 57 |
/// It must conform to the \ref concepts::ReadMap "ReadMap" concept. |
| 58 | 58 |
typedef UM UpperMap; |
| 59 | 59 |
|
| 60 | 60 |
/// \brief The type of supply map. |
| 61 | 61 |
/// |
| 62 |
/// The type of the map that stores the signed supply values of the |
|
| 63 |
/// nodes. |
|
| 62 |
/// The type of the map that stores the signed supply values of the |
|
| 63 |
/// nodes. |
|
| 64 | 64 |
/// It must conform to the \ref concepts::ReadMap "ReadMap" concept. |
| 65 | 65 |
typedef SM SupplyMap; |
| 66 | 66 |
|
| 67 | 67 |
/// \brief The type of the flow and supply values. |
| 68 | 68 |
typedef typename SupplyMap::Value Value; |
| 69 | 69 |
|
| 70 | 70 |
/// \brief The type of the map that stores the flow values. |
| 71 | 71 |
/// |
| 72 | 72 |
/// The type of the map that stores the flow values. |
| 73 | 73 |
/// It must conform to the \ref concepts::ReadWriteMap "ReadWriteMap" |
| 74 | 74 |
/// concept. |
| 75 | 75 |
#ifdef DOXYGEN |
| 76 | 76 |
typedef GR::ArcMap<Value> FlowMap; |
| 77 | 77 |
#else |
| 78 | 78 |
typedef typename Digraph::template ArcMap<Value> FlowMap; |
| 79 | 79 |
#endif |
| 80 | 80 |
|
| 81 | 81 |
/// \brief Instantiates a FlowMap. |
| 82 | 82 |
/// |
| 83 | 83 |
/// This function instantiates a \ref FlowMap. |
| 84 | 84 |
/// \param digraph The digraph for which we would like to define |
| 85 | 85 |
/// the flow map. |
| 86 | 86 |
static FlowMap* createFlowMap(const Digraph& digraph) {
|
| 87 | 87 |
return new FlowMap(digraph); |
| 88 | 88 |
} |
| 89 | 89 |
|
| 90 | 90 |
/// \brief The elevator type used by the algorithm. |
| 91 | 91 |
/// |
| 92 | 92 |
/// The elevator type used by the algorithm. |
| 93 | 93 |
/// |
| 94 | 94 |
/// \sa Elevator, LinkedElevator |
| 95 | 95 |
#ifdef DOXYGEN |
| ... | ... |
@@ -112,75 +112,75 @@ |
| 112 | 112 |
/// |
| 113 | 113 |
/// The tolerance used by the algorithm to handle inexact computation. |
| 114 | 114 |
typedef lemon::Tolerance<Value> Tolerance; |
| 115 | 115 |
|
| 116 | 116 |
}; |
| 117 | 117 |
|
| 118 | 118 |
/** |
| 119 | 119 |
\brief Push-relabel algorithm for the network circulation problem. |
| 120 | 120 |
|
| 121 | 121 |
\ingroup max_flow |
| 122 | 122 |
This class implements a push-relabel algorithm for the \e network |
| 123 | 123 |
\e circulation problem. |
| 124 | 124 |
It is to find a feasible circulation when lower and upper bounds |
| 125 | 125 |
are given for the flow values on the arcs and lower bounds are |
| 126 | 126 |
given for the difference between the outgoing and incoming flow |
| 127 | 127 |
at the nodes. |
| 128 | 128 |
|
| 129 | 129 |
The exact formulation of this problem is the following. |
| 130 | 130 |
Let \f$G=(V,A)\f$ be a digraph, \f$lower: A\rightarrow\mathbf{R}\f$
|
| 131 | 131 |
\f$upper: A\rightarrow\mathbf{R}\cup\{\infty\}\f$ denote the lower and
|
| 132 | 132 |
upper bounds on the arcs, for which \f$lower(uv) \leq upper(uv)\f$ |
| 133 | 133 |
holds for all \f$uv\in A\f$, and \f$sup: V\rightarrow\mathbf{R}\f$
|
| 134 | 134 |
denotes the signed supply values of the nodes. |
| 135 | 135 |
If \f$sup(u)>0\f$, then \f$u\f$ is a supply node with \f$sup(u)\f$ |
| 136 | 136 |
supply, if \f$sup(u)<0\f$, then \f$u\f$ is a demand node with |
| 137 | 137 |
\f$-sup(u)\f$ demand. |
| 138 | 138 |
A feasible circulation is an \f$f: A\rightarrow\mathbf{R}\f$
|
| 139 | 139 |
solution of the following problem. |
| 140 | 140 |
|
| 141 | 141 |
\f[ \sum_{uv\in A} f(uv) - \sum_{vu\in A} f(vu)
|
| 142 | 142 |
\geq sup(u) \quad \forall u\in V, \f] |
| 143 | 143 |
\f[ lower(uv) \leq f(uv) \leq upper(uv) \quad \forall uv\in A. \f] |
| 144 |
|
|
| 144 |
|
|
| 145 | 145 |
The sum of the supply values, i.e. \f$\sum_{u\in V} sup(u)\f$ must be
|
| 146 | 146 |
zero or negative in order to have a feasible solution (since the sum |
| 147 | 147 |
of the expressions on the left-hand side of the inequalities is zero). |
| 148 | 148 |
It means that the total demand must be greater or equal to the total |
| 149 | 149 |
supply and all the supplies have to be carried out from the supply nodes, |
| 150 | 150 |
but there could be demands that are not satisfied. |
| 151 | 151 |
If \f$\sum_{u\in V} sup(u)\f$ is zero, then all the supply/demand
|
| 152 | 152 |
constraints have to be satisfied with equality, i.e. all demands |
| 153 | 153 |
have to be satisfied and all supplies have to be used. |
| 154 |
|
|
| 154 |
|
|
| 155 | 155 |
If you need the opposite inequalities in the supply/demand constraints |
| 156 | 156 |
(i.e. the total demand is less than the total supply and all the demands |
| 157 | 157 |
have to be satisfied while there could be supplies that are not used), |
| 158 | 158 |
then you could easily transform the problem to the above form by reversing |
| 159 | 159 |
the direction of the arcs and taking the negative of the supply values |
| 160 | 160 |
(e.g. using \ref ReverseDigraph and \ref NegMap adaptors). |
| 161 | 161 |
|
| 162 | 162 |
This algorithm either calculates a feasible circulation, or provides |
| 163 | 163 |
a \ref barrier() "barrier", which prooves that a feasible soultion |
| 164 | 164 |
cannot exist. |
| 165 | 165 |
|
| 166 | 166 |
Note that this algorithm also provides a feasible solution for the |
| 167 | 167 |
\ref min_cost_flow "minimum cost flow problem". |
| 168 | 168 |
|
| 169 | 169 |
\tparam GR The type of the digraph the algorithm runs on. |
| 170 | 170 |
\tparam LM The type of the lower bound map. The default |
| 171 | 171 |
map type is \ref concepts::Digraph::ArcMap "GR::ArcMap<int>". |
| 172 | 172 |
\tparam UM The type of the upper bound (capacity) map. |
| 173 | 173 |
The default map type is \c LM. |
| 174 | 174 |
\tparam SM The type of the supply map. The default map type is |
| 175 | 175 |
\ref concepts::Digraph::NodeMap "GR::NodeMap<UM::Value>". |
| 176 | 176 |
\tparam TR The traits class that defines various types used by the |
| 177 | 177 |
algorithm. By default, it is \ref CirculationDefaultTraits |
| 178 | 178 |
"CirculationDefaultTraits<GR, LM, UM, SM>". |
| 179 | 179 |
In most cases, this parameter should not be set directly, |
| 180 | 180 |
consider to use the named template parameters instead. |
| 181 | 181 |
*/ |
| 182 | 182 |
#ifdef DOXYGEN |
| 183 | 183 |
template< typename GR, |
| 184 | 184 |
typename LM, |
| 185 | 185 |
typename UM, |
| 186 | 186 |
typename SM, |
| ... | ... |
@@ -308,65 +308,65 @@ |
| 308 | 308 |
/// |
| 309 | 309 |
/// \ref named-templ-param "Named parameter" for setting Elevator |
| 310 | 310 |
/// type with automatic allocation. |
| 311 | 311 |
/// The Elevator should have standard constructor interface to be |
| 312 | 312 |
/// able to automatically created by the algorithm (i.e. the |
| 313 | 313 |
/// digraph and the maximum level should be passed to it). |
| 314 | 314 |
/// However, an external elevator object could also be passed to the |
| 315 | 315 |
/// algorithm with the \ref elevator(Elevator&) "elevator()" function |
| 316 | 316 |
/// before calling \ref run() or \ref init(). |
| 317 | 317 |
/// \sa SetElevator |
| 318 | 318 |
template <typename T> |
| 319 | 319 |
struct SetStandardElevator |
| 320 | 320 |
: public Circulation<Digraph, LowerMap, UpperMap, SupplyMap, |
| 321 | 321 |
SetStandardElevatorTraits<T> > {
|
| 322 | 322 |
typedef Circulation<Digraph, LowerMap, UpperMap, SupplyMap, |
| 323 | 323 |
SetStandardElevatorTraits<T> > Create; |
| 324 | 324 |
}; |
| 325 | 325 |
|
| 326 | 326 |
/// @} |
| 327 | 327 |
|
| 328 | 328 |
protected: |
| 329 | 329 |
|
| 330 | 330 |
Circulation() {}
|
| 331 | 331 |
|
| 332 | 332 |
public: |
| 333 | 333 |
|
| 334 | 334 |
/// Constructor. |
| 335 | 335 |
|
| 336 | 336 |
/// The constructor of the class. |
| 337 | 337 |
/// |
| 338 | 338 |
/// \param graph The digraph the algorithm runs on. |
| 339 | 339 |
/// \param lower The lower bounds for the flow values on the arcs. |
| 340 |
/// \param upper The upper bounds (capacities) for the flow values |
|
| 340 |
/// \param upper The upper bounds (capacities) for the flow values |
|
| 341 | 341 |
/// on the arcs. |
| 342 | 342 |
/// \param supply The signed supply values of the nodes. |
| 343 | 343 |
Circulation(const Digraph &graph, const LowerMap &lower, |
| 344 | 344 |
const UpperMap &upper, const SupplyMap &supply) |
| 345 | 345 |
: _g(graph), _lo(&lower), _up(&upper), _supply(&supply), |
| 346 | 346 |
_flow(NULL), _local_flow(false), _level(NULL), _local_level(false), |
| 347 | 347 |
_excess(NULL) {}
|
| 348 | 348 |
|
| 349 | 349 |
/// Destructor. |
| 350 | 350 |
~Circulation() {
|
| 351 | 351 |
destroyStructures(); |
| 352 | 352 |
} |
| 353 | 353 |
|
| 354 | 354 |
|
| 355 | 355 |
private: |
| 356 | 356 |
|
| 357 | 357 |
bool checkBoundMaps() {
|
| 358 | 358 |
for (ArcIt e(_g);e!=INVALID;++e) {
|
| 359 | 359 |
if (_tol.less((*_up)[e], (*_lo)[e])) return false; |
| 360 | 360 |
} |
| 361 | 361 |
return true; |
| 362 | 362 |
} |
| 363 | 363 |
|
| 364 | 364 |
void createStructures() {
|
| 365 | 365 |
_node_num = _el = countNodes(_g); |
| 366 | 366 |
|
| 367 | 367 |
if (!_flow) {
|
| 368 | 368 |
_flow = Traits::createFlowMap(_g); |
| 369 | 369 |
_local_flow = true; |
| 370 | 370 |
} |
| 371 | 371 |
if (!_level) {
|
| 372 | 372 |
_level = Traits::createElevator(_g, _node_num); |
| 1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
| 2 | 2 |
* |
| 3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
| 4 | 4 |
* |
| 5 |
* Copyright (C) 2003- |
|
| 5 |
* Copyright (C) 2003-2010 |
|
| 6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
| 7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
| 8 | 8 |
* |
| 9 | 9 |
* Permission to use, modify and distribute this software is granted |
| 10 | 10 |
* provided that this copyright notice appears in all copies. For |
| 11 | 11 |
* precise terms see the accompanying LICENSE file. |
| 12 | 12 |
* |
| 13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
| 14 | 14 |
* express or implied, and with no claim as to its suitability for any |
| 15 | 15 |
* purpose. |
| 16 | 16 |
* |
| 17 | 17 |
*/ |
| 18 | 18 |
|
| 19 | 19 |
#include <lemon/clp.h> |
| 20 | 20 |
#include <coin/ClpSimplex.hpp> |
| 21 | 21 |
|
| 22 | 22 |
namespace lemon {
|
| 23 | 23 |
|
| 24 | 24 |
ClpLp::ClpLp() {
|
| 25 | 25 |
_prob = new ClpSimplex(); |
| 26 | 26 |
_init_temporals(); |
| 27 | 27 |
messageLevel(MESSAGE_NOTHING); |
| 28 | 28 |
} |
| 29 | 29 |
|
| 30 | 30 |
ClpLp::ClpLp(const ClpLp& other) {
|
| 31 | 31 |
_prob = new ClpSimplex(*other._prob); |
| 32 | 32 |
rows = other.rows; |
| 33 | 33 |
cols = other.cols; |
| 34 | 34 |
_init_temporals(); |
| 35 | 35 |
messageLevel(MESSAGE_NOTHING); |
| 36 | 36 |
} |
| 37 | 37 |
| 1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
| 2 | 2 |
* |
| 3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
| 4 | 4 |
* |
| 5 |
* Copyright (C) 2003- |
|
| 5 |
* Copyright (C) 2003-2010 |
|
| 6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
| 7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
| 8 | 8 |
* |
| 9 | 9 |
* Permission to use, modify and distribute this software is granted |
| 10 | 10 |
* provided that this copyright notice appears in all copies. For |
| 11 | 11 |
* precise terms see the accompanying LICENSE file. |
| 12 | 12 |
* |
| 13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
| 14 | 14 |
* express or implied, and with no claim as to its suitability for any |
| 15 | 15 |
* purpose. |
| 16 | 16 |
* |
| 17 | 17 |
*/ |
| 18 | 18 |
|
| 19 | 19 |
#ifndef LEMON_CLP_H |
| 20 | 20 |
#define LEMON_CLP_H |
| 21 | 21 |
|
| 22 | 22 |
///\file |
| 23 | 23 |
///\brief Header of the LEMON-CLP lp solver interface. |
| 24 | 24 |
|
| 25 | 25 |
#include <vector> |
| 26 | 26 |
#include <string> |
| 27 | 27 |
|
| 28 | 28 |
#include <lemon/lp_base.h> |
| 29 | 29 |
|
| 30 | 30 |
class ClpSimplex; |
| 31 | 31 |
|
| 32 | 32 |
namespace lemon {
|
| 33 | 33 |
|
| 34 | 34 |
/// \ingroup lp_group |
| 35 | 35 |
/// |
| 36 | 36 |
/// \brief Interface for the CLP solver |
| 37 | 37 |
/// |
| ... | ... |
@@ -109,56 +109,56 @@ |
| 109 | 109 |
virtual Value _getRowLowerBound(int i) const; |
| 110 | 110 |
virtual void _setRowUpperBound(int i, Value value); |
| 111 | 111 |
virtual Value _getRowUpperBound(int i) const; |
| 112 | 112 |
|
| 113 | 113 |
virtual void _setObjCoeffs(ExprIterator, ExprIterator); |
| 114 | 114 |
virtual void _getObjCoeffs(InsertIterator) const; |
| 115 | 115 |
|
| 116 | 116 |
virtual void _setObjCoeff(int i, Value obj_coef); |
| 117 | 117 |
virtual Value _getObjCoeff(int i) const; |
| 118 | 118 |
|
| 119 | 119 |
virtual void _setSense(Sense sense); |
| 120 | 120 |
virtual Sense _getSense() const; |
| 121 | 121 |
|
| 122 | 122 |
virtual SolveExitStatus _solve(); |
| 123 | 123 |
|
| 124 | 124 |
virtual Value _getPrimal(int i) const; |
| 125 | 125 |
virtual Value _getDual(int i) const; |
| 126 | 126 |
|
| 127 | 127 |
virtual Value _getPrimalValue() const; |
| 128 | 128 |
|
| 129 | 129 |
virtual Value _getPrimalRay(int i) const; |
| 130 | 130 |
virtual Value _getDualRay(int i) const; |
| 131 | 131 |
|
| 132 | 132 |
virtual VarStatus _getColStatus(int i) const; |
| 133 | 133 |
virtual VarStatus _getRowStatus(int i) const; |
| 134 | 134 |
|
| 135 | 135 |
virtual ProblemType _getPrimalType() const; |
| 136 | 136 |
virtual ProblemType _getDualType() const; |
| 137 | 137 |
|
| 138 | 138 |
virtual void _clear(); |
| 139 | 139 |
|
| 140 | 140 |
virtual void _messageLevel(MessageLevel); |
| 141 |
|
|
| 141 |
|
|
| 142 | 142 |
public: |
| 143 | 143 |
|
| 144 | 144 |
///Solves LP with primal simplex method. |
| 145 | 145 |
SolveExitStatus solvePrimal(); |
| 146 | 146 |
|
| 147 | 147 |
///Solves LP with dual simplex method. |
| 148 | 148 |
SolveExitStatus solveDual(); |
| 149 | 149 |
|
| 150 | 150 |
///Solves LP with barrier method. |
| 151 | 151 |
SolveExitStatus solveBarrier(); |
| 152 | 152 |
|
| 153 | 153 |
///Returns the constraint identifier understood by CLP. |
| 154 | 154 |
int clpRow(Row r) const { return rows(id(r)); }
|
| 155 | 155 |
|
| 156 | 156 |
///Returns the variable identifier understood by CLP. |
| 157 | 157 |
int clpCol(Col c) const { return cols(id(c)); }
|
| 158 | 158 |
|
| 159 | 159 |
}; |
| 160 | 160 |
|
| 161 | 161 |
} //END OF NAMESPACE LEMON |
| 162 | 162 |
|
| 163 | 163 |
#endif //LEMON_CLP_H |
| 164 | 164 |
| 1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
| 2 | 2 |
* |
| 3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
| 4 | 4 |
* |
| 5 |
* Copyright (C) 2003- |
|
| 5 |
* Copyright (C) 2003-2010 |
|
| 6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
| 7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
| 8 | 8 |
* |
| 9 | 9 |
* Permission to use, modify and distribute this software is granted |
| 10 | 10 |
* provided that this copyright notice appears in all copies. For |
| 11 | 11 |
* precise terms see the accompanying LICENSE file. |
| 12 | 12 |
* |
| 13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
| 14 | 14 |
* express or implied, and with no claim as to its suitability for any |
| 15 | 15 |
* purpose. |
| 16 | 16 |
* |
| 17 | 17 |
*/ |
| 18 | 18 |
|
| 19 | 19 |
#ifndef LEMON_CONCEPTS_DIGRAPH_H |
| 20 | 20 |
#define LEMON_CONCEPTS_DIGRAPH_H |
| 21 | 21 |
|
| 22 | 22 |
///\ingroup graph_concepts |
| 23 | 23 |
///\file |
| 24 | 24 |
///\brief The concept of directed graphs. |
| 25 | 25 |
|
| 26 | 26 |
#include <lemon/core.h> |
| 27 | 27 |
#include <lemon/concepts/maps.h> |
| 28 | 28 |
#include <lemon/concept_check.h> |
| 29 | 29 |
#include <lemon/concepts/graph_components.h> |
| 30 | 30 |
|
| 31 | 31 |
namespace lemon {
|
| 32 | 32 |
namespace concepts {
|
| 33 | 33 |
|
| 34 | 34 |
/// \ingroup graph_concepts |
| 35 | 35 |
/// |
| 36 | 36 |
/// \brief Class describing the concept of directed graphs. |
| 37 | 37 |
/// |
| ... | ... |
@@ -405,65 +405,65 @@ |
| 405 | 405 |
/// |
| 406 | 406 |
/// Returns the running node of the given outgoing arc iterator |
| 407 | 407 |
/// (i.e. the target node of the corresponding arc). |
| 408 | 408 |
Node runningNode(OutArcIt) const { return INVALID; }
|
| 409 | 409 |
|
| 410 | 410 |
/// \brief The base node of the iterator. |
| 411 | 411 |
/// |
| 412 | 412 |
/// Returns the base node of the given incomming arc iterator |
| 413 | 413 |
/// (i.e. the target node of the corresponding arc). |
| 414 | 414 |
Node baseNode(InArcIt) const { return INVALID; }
|
| 415 | 415 |
|
| 416 | 416 |
/// \brief The running node of the iterator. |
| 417 | 417 |
/// |
| 418 | 418 |
/// Returns the running node of the given incomming arc iterator |
| 419 | 419 |
/// (i.e. the source node of the corresponding arc). |
| 420 | 420 |
Node runningNode(InArcIt) const { return INVALID; }
|
| 421 | 421 |
|
| 422 | 422 |
/// \brief Standard graph map type for the nodes. |
| 423 | 423 |
/// |
| 424 | 424 |
/// Standard graph map type for the nodes. |
| 425 | 425 |
/// It conforms to the ReferenceMap concept. |
| 426 | 426 |
template<class T> |
| 427 | 427 |
class NodeMap : public ReferenceMap<Node, T, T&, const T&> {
|
| 428 | 428 |
public: |
| 429 | 429 |
|
| 430 | 430 |
/// Constructor |
| 431 | 431 |
explicit NodeMap(const Digraph&) { }
|
| 432 | 432 |
/// Constructor with given initial value |
| 433 | 433 |
NodeMap(const Digraph&, T) { }
|
| 434 | 434 |
|
| 435 | 435 |
private: |
| 436 | 436 |
///Copy constructor |
| 437 |
NodeMap(const NodeMap& nm) : |
|
| 437 |
NodeMap(const NodeMap& nm) : |
|
| 438 | 438 |
ReferenceMap<Node, T, T&, const T&>(nm) { }
|
| 439 | 439 |
///Assignment operator |
| 440 | 440 |
template <typename CMap> |
| 441 | 441 |
NodeMap& operator=(const CMap&) {
|
| 442 | 442 |
checkConcept<ReadMap<Node, T>, CMap>(); |
| 443 | 443 |
return *this; |
| 444 | 444 |
} |
| 445 | 445 |
}; |
| 446 | 446 |
|
| 447 | 447 |
/// \brief Standard graph map type for the arcs. |
| 448 | 448 |
/// |
| 449 | 449 |
/// Standard graph map type for the arcs. |
| 450 | 450 |
/// It conforms to the ReferenceMap concept. |
| 451 | 451 |
template<class T> |
| 452 | 452 |
class ArcMap : public ReferenceMap<Arc, T, T&, const T&> {
|
| 453 | 453 |
public: |
| 454 | 454 |
|
| 455 | 455 |
/// Constructor |
| 456 | 456 |
explicit ArcMap(const Digraph&) { }
|
| 457 | 457 |
/// Constructor with given initial value |
| 458 | 458 |
ArcMap(const Digraph&, T) { }
|
| 459 | 459 |
|
| 460 | 460 |
private: |
| 461 | 461 |
///Copy constructor |
| 462 | 462 |
ArcMap(const ArcMap& em) : |
| 463 | 463 |
ReferenceMap<Arc, T, T&, const T&>(em) { }
|
| 464 | 464 |
///Assignment operator |
| 465 | 465 |
template <typename CMap> |
| 466 | 466 |
ArcMap& operator=(const CMap&) {
|
| 467 | 467 |
checkConcept<ReadMap<Arc, T>, CMap>(); |
| 468 | 468 |
return *this; |
| 469 | 469 |
} |
| 1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
| 2 | 2 |
* |
| 3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
| 4 | 4 |
* |
| 5 |
* Copyright (C) 2003- |
|
| 5 |
* Copyright (C) 2003-2010 |
|
| 6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
| 7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
| 8 | 8 |
* |
| 9 | 9 |
* Permission to use, modify and distribute this software is granted |
| 10 | 10 |
* provided that this copyright notice appears in all copies. For |
| 11 | 11 |
* precise terms see the accompanying LICENSE file. |
| 12 | 12 |
* |
| 13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
| 14 | 14 |
* express or implied, and with no claim as to its suitability for any |
| 15 | 15 |
* purpose. |
| 16 | 16 |
* |
| 17 | 17 |
*/ |
| 18 | 18 |
|
| 19 | 19 |
///\ingroup graph_concepts |
| 20 | 20 |
///\file |
| 21 | 21 |
///\brief The concept of undirected graphs. |
| 22 | 22 |
|
| 23 | 23 |
#ifndef LEMON_CONCEPTS_GRAPH_H |
| 24 | 24 |
#define LEMON_CONCEPTS_GRAPH_H |
| 25 | 25 |
|
| 26 | 26 |
#include <lemon/concepts/graph_components.h> |
| 27 | 27 |
#include <lemon/concepts/maps.h> |
| 28 | 28 |
#include <lemon/concept_check.h> |
| 29 | 29 |
#include <lemon/core.h> |
| 30 | 30 |
|
| 31 | 31 |
namespace lemon {
|
| 32 | 32 |
namespace concepts {
|
| 33 | 33 |
|
| 34 | 34 |
/// \ingroup graph_concepts |
| 35 | 35 |
/// |
| 36 | 36 |
/// \brief Class describing the concept of undirected graphs. |
| 37 | 37 |
/// |
| 38 | 38 |
/// This class describes the common interface of all undirected |
| 39 | 39 |
/// graphs. |
| 40 | 40 |
/// |
| 41 | 41 |
/// Like all concept classes, it only provides an interface |
| 42 | 42 |
/// without any sensible implementation. So any general algorithm for |
| 43 | 43 |
/// undirected graphs should compile with this class, but it will not |
| 44 | 44 |
/// run properly, of course. |
| 45 | 45 |
/// An actual graph implementation like \ref ListGraph or |
| 46 |
/// \ref SmartGraph may have additional functionality. |
|
| 46 |
/// \ref SmartGraph may have additional functionality. |
|
| 47 | 47 |
/// |
| 48 | 48 |
/// The undirected graphs also fulfill the concept of \ref Digraph |
| 49 | 49 |
/// "directed graphs", since each edge can also be regarded as two |
| 50 | 50 |
/// oppositely directed arcs. |
| 51 | 51 |
/// Undirected graphs provide an Edge type for the undirected edges and |
| 52 | 52 |
/// an Arc type for the directed arcs. The Arc type is convertible to |
| 53 | 53 |
/// Edge or inherited from it, i.e. the corresponding edge can be |
| 54 | 54 |
/// obtained from an arc. |
| 55 | 55 |
/// EdgeIt and EdgeMap classes can be used for the edges, while ArcIt |
| 56 | 56 |
/// and ArcMap classes can be used for the arcs (just like in digraphs). |
| 57 | 57 |
/// Both InArcIt and OutArcIt iterates on the same edges but with |
| 58 | 58 |
/// opposite direction. IncEdgeIt also iterates on the same edges |
| 59 | 59 |
/// as OutArcIt and InArcIt, but it is not convertible to Arc, |
| 60 | 60 |
/// only to Edge. |
| 61 | 61 |
/// |
| 62 | 62 |
/// In LEMON, each undirected edge has an inherent orientation. |
| 63 | 63 |
/// Thus it can defined if an arc is forward or backward oriented in |
| 64 | 64 |
/// an undirected graph with respect to this default oriantation of |
| 65 | 65 |
/// the represented edge. |
| 66 | 66 |
/// With the direction() and direct() functions the direction |
| 67 | 67 |
/// of an arc can be obtained and set, respectively. |
| 68 | 68 |
/// |
| 69 | 69 |
/// Only nodes and edges can be added to or removed from an undirected |
| 70 | 70 |
/// graph and the corresponding arcs are added or removed automatically. |
| 71 | 71 |
/// |
| 72 | 72 |
/// \sa Digraph |
| 73 | 73 |
class Graph {
|
| 74 | 74 |
private: |
| 75 | 75 |
/// Graphs are \e not copy constructible. Use DigraphCopy instead. |
| 76 | 76 |
Graph(const Graph&) {}
|
| 77 | 77 |
/// \brief Assignment of a graph to another one is \e not allowed. |
| 78 | 78 |
/// Use DigraphCopy instead. |
| 79 | 79 |
void operator=(const Graph&) {}
|
| 80 | 80 |
|
| 81 | 81 |
public: |
| 82 | 82 |
/// Default constructor. |
| 83 | 83 |
Graph() {}
|
| 84 | 84 |
|
| 85 | 85 |
/// \brief Undirected graphs should be tagged with \c UndirectedTag. |
| 86 | 86 |
/// |
| 87 | 87 |
/// Undirected graphs should be tagged with \c UndirectedTag. |
| 88 |
/// |
|
| 88 |
/// |
|
| 89 | 89 |
/// This tag helps the \c enable_if technics to make compile time |
| 90 | 90 |
/// specializations for undirected graphs. |
| 91 | 91 |
typedef True UndirectedTag; |
| 92 | 92 |
|
| 93 | 93 |
/// The node type of the graph |
| 94 | 94 |
|
| 95 | 95 |
/// This class identifies a node of the graph. It also serves |
| 96 | 96 |
/// as a base class of the node iterators, |
| 97 | 97 |
/// thus they convert to this type. |
| 98 | 98 |
class Node {
|
| 99 | 99 |
public: |
| 100 | 100 |
/// Default constructor |
| 101 | 101 |
|
| 102 | 102 |
/// Default constructor. |
| 103 | 103 |
/// \warning It sets the object to an undefined value. |
| 104 | 104 |
Node() { }
|
| 105 | 105 |
/// Copy constructor. |
| 106 | 106 |
|
| 107 | 107 |
/// Copy constructor. |
| 108 | 108 |
/// |
| 109 | 109 |
Node(const Node&) { }
|
| 110 | 110 |
|
| 111 | 111 |
/// %Invalid constructor \& conversion. |
| 112 | 112 |
|
| 113 | 113 |
/// Initializes the object to be invalid. |
| 114 | 114 |
/// \sa Invalid for more details. |
| 115 | 115 |
Node(Invalid) { }
|
| 116 | 116 |
/// Equality operator |
| 117 | 117 |
|
| 118 | 118 |
/// Equality operator. |
| 119 | 119 |
/// |
| 120 | 120 |
/// Two iterators are equal if and only if they point to the |
| ... | ... |
@@ -331,65 +331,65 @@ |
| 331 | 331 |
/// Copy constructor. |
| 332 | 332 |
|
| 333 | 333 |
/// Copy constructor. |
| 334 | 334 |
/// |
| 335 | 335 |
Arc(const Arc&) { }
|
| 336 | 336 |
/// %Invalid constructor \& conversion. |
| 337 | 337 |
|
| 338 | 338 |
/// Initializes the object to be invalid. |
| 339 | 339 |
/// \sa Invalid for more details. |
| 340 | 340 |
Arc(Invalid) { }
|
| 341 | 341 |
/// Equality operator |
| 342 | 342 |
|
| 343 | 343 |
/// Equality operator. |
| 344 | 344 |
/// |
| 345 | 345 |
/// Two iterators are equal if and only if they point to the |
| 346 | 346 |
/// same object or both are \c INVALID. |
| 347 | 347 |
bool operator==(Arc) const { return true; }
|
| 348 | 348 |
/// Inequality operator |
| 349 | 349 |
|
| 350 | 350 |
/// Inequality operator. |
| 351 | 351 |
bool operator!=(Arc) const { return true; }
|
| 352 | 352 |
|
| 353 | 353 |
/// Artificial ordering operator. |
| 354 | 354 |
|
| 355 | 355 |
/// Artificial ordering operator. |
| 356 | 356 |
/// |
| 357 | 357 |
/// \note This operator only has to define some strict ordering of |
| 358 | 358 |
/// the arcs; this order has nothing to do with the iteration |
| 359 | 359 |
/// ordering of the arcs. |
| 360 | 360 |
bool operator<(Arc) const { return false; }
|
| 361 | 361 |
|
| 362 | 362 |
/// Converison to \c Edge |
| 363 |
|
|
| 363 |
|
|
| 364 | 364 |
/// Converison to \c Edge. |
| 365 | 365 |
/// |
| 366 | 366 |
operator Edge() const { return Edge(); }
|
| 367 | 367 |
}; |
| 368 | 368 |
|
| 369 | 369 |
/// Iterator class for the arcs. |
| 370 | 370 |
|
| 371 | 371 |
/// This iterator goes through each directed arc of the graph. |
| 372 | 372 |
/// Its usage is quite simple, for example, you can count the number |
| 373 | 373 |
/// of arcs in a graph \c g of type \c %Graph as follows: |
| 374 | 374 |
///\code |
| 375 | 375 |
/// int count=0; |
| 376 | 376 |
/// for(Graph::ArcIt a(g); a!=INVALID; ++a) ++count; |
| 377 | 377 |
///\endcode |
| 378 | 378 |
class ArcIt : public Arc {
|
| 379 | 379 |
public: |
| 380 | 380 |
/// Default constructor |
| 381 | 381 |
|
| 382 | 382 |
/// Default constructor. |
| 383 | 383 |
/// \warning It sets the iterator to an undefined value. |
| 384 | 384 |
ArcIt() { }
|
| 385 | 385 |
/// Copy constructor. |
| 386 | 386 |
|
| 387 | 387 |
/// Copy constructor. |
| 388 | 388 |
/// |
| 389 | 389 |
ArcIt(const ArcIt& e) : Arc(e) { }
|
| 390 | 390 |
/// %Invalid constructor \& conversion. |
| 391 | 391 |
|
| 392 | 392 |
/// Initializes the iterator to be invalid. |
| 393 | 393 |
/// \sa Invalid for more details. |
| 394 | 394 |
ArcIt(Invalid) { }
|
| 395 | 395 |
/// Sets the iterator to the first arc. |
| 1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
| 2 | 2 |
* |
| 3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
| 4 | 4 |
* |
| 5 |
* Copyright (C) 2003- |
|
| 5 |
* Copyright (C) 2003-2010 |
|
| 6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
| 7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
| 8 | 8 |
* |
| 9 | 9 |
* Permission to use, modify and distribute this software is granted |
| 10 | 10 |
* provided that this copyright notice appears in all copies. For |
| 11 | 11 |
* precise terms see the accompanying LICENSE file. |
| 12 | 12 |
* |
| 13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
| 14 | 14 |
* express or implied, and with no claim as to its suitability for any |
| 15 | 15 |
* purpose. |
| 16 | 16 |
* |
| 17 | 17 |
*/ |
| 18 | 18 |
|
| 19 | 19 |
///\ingroup graph_concepts |
| 20 | 20 |
///\file |
| 21 | 21 |
///\brief The concepts of graph components. |
| 22 | 22 |
|
| 23 | 23 |
#ifndef LEMON_CONCEPTS_GRAPH_COMPONENTS_H |
| 24 | 24 |
#define LEMON_CONCEPTS_GRAPH_COMPONENTS_H |
| 25 | 25 |
|
| 26 | 26 |
#include <lemon/core.h> |
| 27 | 27 |
#include <lemon/concepts/maps.h> |
| 28 | 28 |
|
| 29 | 29 |
#include <lemon/bits/alteration_notifier.h> |
| 30 | 30 |
|
| 31 | 31 |
namespace lemon {
|
| 32 | 32 |
namespace concepts {
|
| 33 | 33 |
|
| 34 | 34 |
/// \brief Concept class for \c Node, \c Arc and \c Edge types. |
| 35 | 35 |
/// |
| 36 | 36 |
/// This class describes the concept of \c Node, \c Arc and \c Edge |
| 37 | 37 |
/// subtypes of digraph and graph types. |
| 38 | 38 |
/// |
| 39 | 39 |
/// \note This class is a template class so that we can use it to |
| 40 | 40 |
/// create graph skeleton classes. The reason for this is that \c Node |
| 41 |
/// and \c Arc (or \c Edge) types should \e not derive from the same |
|
| 41 |
/// and \c Arc (or \c Edge) types should \e not derive from the same |
|
| 42 | 42 |
/// base class. For \c Node you should instantiate it with character |
| 43 | 43 |
/// \c 'n', for \c Arc with \c 'a' and for \c Edge with \c 'e'. |
| 44 | 44 |
#ifndef DOXYGEN |
| 45 | 45 |
template <char sel = '0'> |
| 46 | 46 |
#endif |
| 47 | 47 |
class GraphItem {
|
| 48 | 48 |
public: |
| 49 | 49 |
/// \brief Default constructor. |
| 50 | 50 |
/// |
| 51 | 51 |
/// Default constructor. |
| 52 | 52 |
/// \warning The default constructor is not required to set |
| 53 | 53 |
/// the item to some well-defined value. So you should consider it |
| 54 | 54 |
/// as uninitialized. |
| 55 | 55 |
GraphItem() {}
|
| 56 | 56 |
|
| 57 | 57 |
/// \brief Copy constructor. |
| 58 | 58 |
/// |
| 59 | 59 |
/// Copy constructor. |
| 60 | 60 |
GraphItem(const GraphItem &) {}
|
| 61 | 61 |
|
| 62 | 62 |
/// \brief Constructor for conversion from \c INVALID. |
| 63 | 63 |
/// |
| 64 | 64 |
/// Constructor for conversion from \c INVALID. |
| 65 | 65 |
/// It initializes the item to be invalid. |
| 66 | 66 |
/// \sa Invalid for more details. |
| 67 | 67 |
GraphItem(Invalid) {}
|
| 68 | 68 |
|
| 69 | 69 |
/// \brief Assignment operator. |
| 70 | 70 |
/// |
| 71 | 71 |
/// Assignment operator for the item. |
| 72 | 72 |
GraphItem& operator=(const GraphItem&) { return *this; }
|
| 73 | 73 |
|
| 74 | 74 |
/// \brief Assignment operator for INVALID. |
| 75 | 75 |
/// |
| 76 | 76 |
/// This operator makes the item invalid. |
| 77 | 77 |
GraphItem& operator=(Invalid) { return *this; }
|
| 78 | 78 |
|
| 79 | 79 |
/// \brief Equality operator. |
| 80 | 80 |
/// |
| 81 | 81 |
/// Equality operator. |
| 82 | 82 |
bool operator==(const GraphItem&) const { return false; }
|
| 83 | 83 |
|
| 84 | 84 |
/// \brief Inequality operator. |
| 85 | 85 |
/// |
| 86 | 86 |
/// Inequality operator. |
| 87 | 87 |
bool operator!=(const GraphItem&) const { return false; }
|
| 88 | 88 |
|
| 89 | 89 |
/// \brief Ordering operator. |
| 90 | 90 |
/// |
| 91 | 91 |
/// This operator defines an ordering of the items. |
| 92 |
/// It makes possible to use graph item types as key types in |
|
| 92 |
/// It makes possible to use graph item types as key types in |
|
| 93 | 93 |
/// associative containers (e.g. \c std::map). |
| 94 | 94 |
/// |
| 95 | 95 |
/// \note This operator only has to define some strict ordering of |
| 96 | 96 |
/// the items; this order has nothing to do with the iteration |
| 97 | 97 |
/// ordering of the items. |
| 98 | 98 |
bool operator<(const GraphItem&) const { return false; }
|
| 99 | 99 |
|
| 100 | 100 |
template<typename _GraphItem> |
| 101 | 101 |
struct Constraints {
|
| 102 | 102 |
void constraints() {
|
| 103 | 103 |
_GraphItem i1; |
| 104 | 104 |
i1=INVALID; |
| 105 | 105 |
_GraphItem i2 = i1; |
| 106 | 106 |
_GraphItem i3 = INVALID; |
| 107 | 107 |
|
| 108 | 108 |
i1 = i2 = i3; |
| 109 | 109 |
|
| 110 | 110 |
bool b; |
| 111 | 111 |
b = (ia == ib) && (ia != ib); |
| 112 | 112 |
b = (ia == INVALID) && (ib != INVALID); |
| 113 | 113 |
b = (ia < ib); |
| 114 | 114 |
} |
| 115 | 115 |
|
| 116 | 116 |
const _GraphItem &ia; |
| 117 | 117 |
const _GraphItem &ib; |
| 118 | 118 |
}; |
| 119 | 119 |
}; |
| 120 | 120 |
|
| 121 | 121 |
/// \brief Base skeleton class for directed graphs. |
| 122 | 122 |
/// |
| 123 | 123 |
/// This class describes the base interface of directed graph types. |
| 124 | 124 |
/// All digraph %concepts have to conform to this class. |
| 125 |
/// It just provides types for nodes and arcs and functions |
|
| 125 |
/// It just provides types for nodes and arcs and functions |
|
| 126 | 126 |
/// to get the source and the target nodes of arcs. |
| 127 | 127 |
class BaseDigraphComponent {
|
| 128 | 128 |
public: |
| 129 | 129 |
|
| 130 | 130 |
typedef BaseDigraphComponent Digraph; |
| 131 | 131 |
|
| 132 | 132 |
/// \brief Node class of the digraph. |
| 133 | 133 |
/// |
| 134 | 134 |
/// This class represents the nodes of the digraph. |
| 135 | 135 |
typedef GraphItem<'n'> Node; |
| 136 | 136 |
|
| 137 | 137 |
/// \brief Arc class of the digraph. |
| 138 | 138 |
/// |
| 139 | 139 |
/// This class represents the arcs of the digraph. |
| 140 | 140 |
typedef GraphItem<'a'> Arc; |
| 141 | 141 |
|
| 142 | 142 |
/// \brief Return the source node of an arc. |
| 143 | 143 |
/// |
| 144 | 144 |
/// This function returns the source node of an arc. |
| 145 | 145 |
Node source(const Arc&) const { return INVALID; }
|
| 146 | 146 |
|
| 147 | 147 |
/// \brief Return the target node of an arc. |
| 148 | 148 |
/// |
| 149 | 149 |
/// This function returns the target node of an arc. |
| 150 | 150 |
Node target(const Arc&) const { return INVALID; }
|
| 151 | 151 |
|
| 152 | 152 |
/// \brief Return the opposite node on the given arc. |
| 153 | 153 |
/// |
| 154 | 154 |
/// This function returns the opposite node on the given arc. |
| 155 | 155 |
Node oppositeNode(const Node&, const Arc&) const {
|
| 156 | 156 |
return INVALID; |
| 157 | 157 |
} |
| ... | ... |
@@ -397,172 +397,172 @@ |
| 397 | 397 |
/// |
| 398 | 398 |
/// This function returns the edge by its unique id. |
| 399 | 399 |
/// If the graph does not contain an edge with the given id, |
| 400 | 400 |
/// then the result of the function is undefined. |
| 401 | 401 |
Edge edgeFromId(int) const { return INVALID; }
|
| 402 | 402 |
|
| 403 | 403 |
/// \brief Return an integer greater or equal to the maximum |
| 404 | 404 |
/// edge id. |
| 405 | 405 |
/// |
| 406 | 406 |
/// This function returns an integer greater or equal to the |
| 407 | 407 |
/// maximum edge id. |
| 408 | 408 |
int maxEdgeId() const { return -1; }
|
| 409 | 409 |
|
| 410 | 410 |
template <typename _Graph> |
| 411 | 411 |
struct Constraints {
|
| 412 | 412 |
|
| 413 | 413 |
void constraints() {
|
| 414 | 414 |
checkConcept<IDableDigraphComponent<Base>, _Graph >(); |
| 415 | 415 |
typename _Graph::Edge edge; |
| 416 | 416 |
int ueid = graph.id(edge); |
| 417 | 417 |
ueid = graph.id(edge); |
| 418 | 418 |
edge = graph.edgeFromId(ueid); |
| 419 | 419 |
ueid = graph.maxEdgeId(); |
| 420 | 420 |
ignore_unused_variable_warning(ueid); |
| 421 | 421 |
} |
| 422 | 422 |
|
| 423 | 423 |
const _Graph& graph; |
| 424 | 424 |
}; |
| 425 | 425 |
}; |
| 426 | 426 |
|
| 427 | 427 |
/// \brief Concept class for \c NodeIt, \c ArcIt and \c EdgeIt types. |
| 428 | 428 |
/// |
| 429 |
/// This class describes the concept of \c NodeIt, \c ArcIt and |
|
| 429 |
/// This class describes the concept of \c NodeIt, \c ArcIt and |
|
| 430 | 430 |
/// \c EdgeIt subtypes of digraph and graph types. |
| 431 | 431 |
template <typename GR, typename Item> |
| 432 | 432 |
class GraphItemIt : public Item {
|
| 433 | 433 |
public: |
| 434 | 434 |
/// \brief Default constructor. |
| 435 | 435 |
/// |
| 436 | 436 |
/// Default constructor. |
| 437 | 437 |
/// \warning The default constructor is not required to set |
| 438 | 438 |
/// the iterator to some well-defined value. So you should consider it |
| 439 | 439 |
/// as uninitialized. |
| 440 | 440 |
GraphItemIt() {}
|
| 441 | 441 |
|
| 442 | 442 |
/// \brief Copy constructor. |
| 443 | 443 |
/// |
| 444 | 444 |
/// Copy constructor. |
| 445 | 445 |
GraphItemIt(const GraphItemIt& it) : Item(it) {}
|
| 446 | 446 |
|
| 447 | 447 |
/// \brief Constructor that sets the iterator to the first item. |
| 448 | 448 |
/// |
| 449 | 449 |
/// Constructor that sets the iterator to the first item. |
| 450 | 450 |
explicit GraphItemIt(const GR&) {}
|
| 451 | 451 |
|
| 452 | 452 |
/// \brief Constructor for conversion from \c INVALID. |
| 453 | 453 |
/// |
| 454 | 454 |
/// Constructor for conversion from \c INVALID. |
| 455 | 455 |
/// It initializes the iterator to be invalid. |
| 456 | 456 |
/// \sa Invalid for more details. |
| 457 | 457 |
GraphItemIt(Invalid) {}
|
| 458 | 458 |
|
| 459 | 459 |
/// \brief Assignment operator. |
| 460 | 460 |
/// |
| 461 | 461 |
/// Assignment operator for the iterator. |
| 462 | 462 |
GraphItemIt& operator=(const GraphItemIt&) { return *this; }
|
| 463 | 463 |
|
| 464 | 464 |
/// \brief Increment the iterator. |
| 465 | 465 |
/// |
| 466 | 466 |
/// This operator increments the iterator, i.e. assigns it to the |
| 467 | 467 |
/// next item. |
| 468 | 468 |
GraphItemIt& operator++() { return *this; }
|
| 469 |
|
|
| 469 |
|
|
| 470 | 470 |
/// \brief Equality operator |
| 471 | 471 |
/// |
| 472 | 472 |
/// Equality operator. |
| 473 | 473 |
/// Two iterators are equal if and only if they point to the |
| 474 | 474 |
/// same object or both are invalid. |
| 475 | 475 |
bool operator==(const GraphItemIt&) const { return true;}
|
| 476 | 476 |
|
| 477 | 477 |
/// \brief Inequality operator |
| 478 | 478 |
/// |
| 479 | 479 |
/// Inequality operator. |
| 480 | 480 |
/// Two iterators are equal if and only if they point to the |
| 481 | 481 |
/// same object or both are invalid. |
| 482 | 482 |
bool operator!=(const GraphItemIt&) const { return true;}
|
| 483 | 483 |
|
| 484 | 484 |
template<typename _GraphItemIt> |
| 485 | 485 |
struct Constraints {
|
| 486 | 486 |
void constraints() {
|
| 487 | 487 |
checkConcept<GraphItem<>, _GraphItemIt>(); |
| 488 | 488 |
_GraphItemIt it1(g); |
| 489 | 489 |
_GraphItemIt it2; |
| 490 | 490 |
_GraphItemIt it3 = it1; |
| 491 | 491 |
_GraphItemIt it4 = INVALID; |
| 492 | 492 |
|
| 493 | 493 |
it2 = ++it1; |
| 494 | 494 |
++it2 = it1; |
| 495 | 495 |
++(++it1); |
| 496 | 496 |
|
| 497 | 497 |
Item bi = it1; |
| 498 | 498 |
bi = it2; |
| 499 | 499 |
} |
| 500 | 500 |
const GR& g; |
| 501 | 501 |
}; |
| 502 | 502 |
}; |
| 503 | 503 |
|
| 504 |
/// \brief Concept class for \c InArcIt, \c OutArcIt and |
|
| 504 |
/// \brief Concept class for \c InArcIt, \c OutArcIt and |
|
| 505 | 505 |
/// \c IncEdgeIt types. |
| 506 | 506 |
/// |
| 507 |
/// This class describes the concept of \c InArcIt, \c OutArcIt |
|
| 507 |
/// This class describes the concept of \c InArcIt, \c OutArcIt |
|
| 508 | 508 |
/// and \c IncEdgeIt subtypes of digraph and graph types. |
| 509 | 509 |
/// |
| 510 | 510 |
/// \note Since these iterator classes do not inherit from the same |
| 511 | 511 |
/// base class, there is an additional template parameter (selector) |
| 512 |
/// \c sel. For \c InArcIt you should instantiate it with character |
|
| 512 |
/// \c sel. For \c InArcIt you should instantiate it with character |
|
| 513 | 513 |
/// \c 'i', for \c OutArcIt with \c 'o' and for \c IncEdgeIt with \c 'e'. |
| 514 | 514 |
template <typename GR, |
| 515 | 515 |
typename Item = typename GR::Arc, |
| 516 | 516 |
typename Base = typename GR::Node, |
| 517 | 517 |
char sel = '0'> |
| 518 | 518 |
class GraphIncIt : public Item {
|
| 519 | 519 |
public: |
| 520 | 520 |
/// \brief Default constructor. |
| 521 | 521 |
/// |
| 522 | 522 |
/// Default constructor. |
| 523 | 523 |
/// \warning The default constructor is not required to set |
| 524 | 524 |
/// the iterator to some well-defined value. So you should consider it |
| 525 | 525 |
/// as uninitialized. |
| 526 | 526 |
GraphIncIt() {}
|
| 527 | 527 |
|
| 528 | 528 |
/// \brief Copy constructor. |
| 529 | 529 |
/// |
| 530 | 530 |
/// Copy constructor. |
| 531 | 531 |
GraphIncIt(const GraphIncIt& it) : Item(it) {}
|
| 532 | 532 |
|
| 533 |
/// \brief Constructor that sets the iterator to the first |
|
| 533 |
/// \brief Constructor that sets the iterator to the first |
|
| 534 | 534 |
/// incoming or outgoing arc. |
| 535 | 535 |
/// |
| 536 |
/// Constructor that sets the iterator to the first arc |
|
| 536 |
/// Constructor that sets the iterator to the first arc |
|
| 537 | 537 |
/// incoming to or outgoing from the given node. |
| 538 | 538 |
explicit GraphIncIt(const GR&, const Base&) {}
|
| 539 | 539 |
|
| 540 | 540 |
/// \brief Constructor for conversion from \c INVALID. |
| 541 | 541 |
/// |
| 542 | 542 |
/// Constructor for conversion from \c INVALID. |
| 543 | 543 |
/// It initializes the iterator to be invalid. |
| 544 | 544 |
/// \sa Invalid for more details. |
| 545 | 545 |
GraphIncIt(Invalid) {}
|
| 546 | 546 |
|
| 547 | 547 |
/// \brief Assignment operator. |
| 548 | 548 |
/// |
| 549 | 549 |
/// Assignment operator for the iterator. |
| 550 | 550 |
GraphIncIt& operator=(const GraphIncIt&) { return *this; }
|
| 551 | 551 |
|
| 552 | 552 |
/// \brief Increment the iterator. |
| 553 | 553 |
/// |
| 554 | 554 |
/// This operator increments the iterator, i.e. assigns it to the |
| 555 | 555 |
/// next arc incoming to or outgoing from the given node. |
| 556 | 556 |
GraphIncIt& operator++() { return *this; }
|
| 557 | 557 |
|
| 558 | 558 |
/// \brief Equality operator |
| 559 | 559 |
/// |
| 560 | 560 |
/// Equality operator. |
| 561 | 561 |
/// Two iterators are equal if and only if they point to the |
| 562 | 562 |
/// same object or both are invalid. |
| 563 | 563 |
bool operator==(const GraphIncIt&) const { return true;}
|
| 564 | 564 |
|
| 565 | 565 |
/// \brief Inequality operator |
| 566 | 566 |
/// |
| 567 | 567 |
/// Inequality operator. |
| 568 | 568 |
/// Two iterators are equal if and only if they point to the |
| ... | ... |
@@ -775,74 +775,74 @@ |
| 775 | 775 |
class IterableGraphComponent : public IterableDigraphComponent<BAS> {
|
| 776 | 776 |
public: |
| 777 | 777 |
|
| 778 | 778 |
typedef BAS Base; |
| 779 | 779 |
typedef typename Base::Node Node; |
| 780 | 780 |
typedef typename Base::Arc Arc; |
| 781 | 781 |
typedef typename Base::Edge Edge; |
| 782 | 782 |
|
| 783 | 783 |
|
| 784 | 784 |
typedef IterableGraphComponent Graph; |
| 785 | 785 |
|
| 786 | 786 |
/// \name Base Iteration |
| 787 | 787 |
/// |
| 788 | 788 |
/// This interface provides functions for iteration on edges. |
| 789 | 789 |
/// |
| 790 | 790 |
/// @{
|
| 791 | 791 |
|
| 792 | 792 |
using IterableDigraphComponent<Base>::first; |
| 793 | 793 |
using IterableDigraphComponent<Base>::next; |
| 794 | 794 |
|
| 795 | 795 |
/// \brief Return the first edge. |
| 796 | 796 |
/// |
| 797 | 797 |
/// This function gives back the first edge in the iteration order. |
| 798 | 798 |
void first(Edge&) const {}
|
| 799 | 799 |
|
| 800 | 800 |
/// \brief Return the next edge. |
| 801 | 801 |
/// |
| 802 | 802 |
/// This function gives back the next edge in the iteration order. |
| 803 | 803 |
void next(Edge&) const {}
|
| 804 | 804 |
|
| 805 | 805 |
/// \brief Return the first edge incident to the given node. |
| 806 | 806 |
/// |
| 807 |
/// This function gives back the first edge incident to the given |
|
| 807 |
/// This function gives back the first edge incident to the given |
|
| 808 | 808 |
/// node. The bool parameter gives back the direction for which the |
| 809 |
/// source node of the directed arc representing the edge is the |
|
| 809 |
/// source node of the directed arc representing the edge is the |
|
| 810 | 810 |
/// given node. |
| 811 | 811 |
void firstInc(Edge&, bool&, const Node&) const {}
|
| 812 | 812 |
|
| 813 | 813 |
/// \brief Gives back the next of the edges from the |
| 814 | 814 |
/// given node. |
| 815 | 815 |
/// |
| 816 |
/// This function gives back the next edge incident to the given |
|
| 816 |
/// This function gives back the next edge incident to the given |
|
| 817 | 817 |
/// node. The bool parameter should be used as \c firstInc() use it. |
| 818 | 818 |
void nextInc(Edge&, bool&) const {}
|
| 819 | 819 |
|
| 820 | 820 |
using IterableDigraphComponent<Base>::baseNode; |
| 821 | 821 |
using IterableDigraphComponent<Base>::runningNode; |
| 822 | 822 |
|
| 823 | 823 |
/// @} |
| 824 | 824 |
|
| 825 | 825 |
/// \name Class Based Iteration |
| 826 | 826 |
/// |
| 827 | 827 |
/// This interface provides iterator classes for edges. |
| 828 | 828 |
/// |
| 829 | 829 |
/// @{
|
| 830 | 830 |
|
| 831 | 831 |
/// \brief This iterator goes through each edge. |
| 832 | 832 |
/// |
| 833 | 833 |
/// This iterator goes through each edge. |
| 834 | 834 |
typedef GraphItemIt<Graph, Edge> EdgeIt; |
| 835 | 835 |
|
| 836 | 836 |
/// \brief This iterator goes trough the incident edges of a |
| 837 | 837 |
/// node. |
| 838 | 838 |
/// |
| 839 | 839 |
/// This iterator goes trough the incident edges of a certain |
| 840 | 840 |
/// node of a graph. |
| 841 | 841 |
typedef GraphIncIt<Graph, Edge, Node, 'e'> IncEdgeIt; |
| 842 | 842 |
|
| 843 | 843 |
/// \brief The base node of the iterator. |
| 844 | 844 |
/// |
| 845 | 845 |
/// This function gives back the base node of the iterator. |
| 846 | 846 |
Node baseNode(const IncEdgeIt&) const { return INVALID; }
|
| 847 | 847 |
|
| 848 | 848 |
/// \brief The running node of the iterator. |
| ... | ... |
@@ -961,143 +961,143 @@ |
| 961 | 961 |
|
| 962 | 962 |
typedef BAS Base; |
| 963 | 963 |
typedef typename Base::Edge Edge; |
| 964 | 964 |
|
| 965 | 965 |
|
| 966 | 966 |
/// Edge alteration notifier class. |
| 967 | 967 |
typedef AlterationNotifier<AlterableGraphComponent, Edge> |
| 968 | 968 |
EdgeNotifier; |
| 969 | 969 |
|
| 970 | 970 |
/// \brief Return the edge alteration notifier. |
| 971 | 971 |
/// |
| 972 | 972 |
/// This function gives back the edge alteration notifier. |
| 973 | 973 |
EdgeNotifier& notifier(Edge) const {
|
| 974 | 974 |
return EdgeNotifier(); |
| 975 | 975 |
} |
| 976 | 976 |
|
| 977 | 977 |
template <typename _Graph> |
| 978 | 978 |
struct Constraints {
|
| 979 | 979 |
void constraints() {
|
| 980 | 980 |
checkConcept<AlterableDigraphComponent<Base>, _Graph>(); |
| 981 | 981 |
typename _Graph::EdgeNotifier& uen |
| 982 | 982 |
= graph.notifier(typename _Graph::Edge()); |
| 983 | 983 |
ignore_unused_variable_warning(uen); |
| 984 | 984 |
} |
| 985 | 985 |
|
| 986 | 986 |
const _Graph& graph; |
| 987 | 987 |
}; |
| 988 | 988 |
}; |
| 989 | 989 |
|
| 990 | 990 |
/// \brief Concept class for standard graph maps. |
| 991 | 991 |
/// |
| 992 | 992 |
/// This class describes the concept of standard graph maps, i.e. |
| 993 |
/// the \c NodeMap, \c ArcMap and \c EdgeMap subtypes of digraph and |
|
| 993 |
/// the \c NodeMap, \c ArcMap and \c EdgeMap subtypes of digraph and |
|
| 994 | 994 |
/// graph types, which can be used for associating data to graph items. |
| 995 | 995 |
/// The standard graph maps must conform to the ReferenceMap concept. |
| 996 | 996 |
template <typename GR, typename K, typename V> |
| 997 | 997 |
class GraphMap : public ReferenceMap<K, V, V&, const V&> {
|
| 998 | 998 |
typedef ReferenceMap<K, V, V&, const V&> Parent; |
| 999 | 999 |
|
| 1000 | 1000 |
public: |
| 1001 | 1001 |
|
| 1002 | 1002 |
/// The key type of the map. |
| 1003 | 1003 |
typedef K Key; |
| 1004 | 1004 |
/// The value type of the map. |
| 1005 | 1005 |
typedef V Value; |
| 1006 | 1006 |
/// The reference type of the map. |
| 1007 | 1007 |
typedef Value& Reference; |
| 1008 | 1008 |
/// The const reference type of the map. |
| 1009 | 1009 |
typedef const Value& ConstReference; |
| 1010 | 1010 |
|
| 1011 | 1011 |
// The reference map tag. |
| 1012 | 1012 |
typedef True ReferenceMapTag; |
| 1013 | 1013 |
|
| 1014 | 1014 |
/// \brief Construct a new map. |
| 1015 | 1015 |
/// |
| 1016 | 1016 |
/// Construct a new map for the graph. |
| 1017 | 1017 |
explicit GraphMap(const GR&) {}
|
| 1018 | 1018 |
/// \brief Construct a new map with default value. |
| 1019 | 1019 |
/// |
| 1020 | 1020 |
/// Construct a new map for the graph and initalize the values. |
| 1021 | 1021 |
GraphMap(const GR&, const Value&) {}
|
| 1022 | 1022 |
|
| 1023 | 1023 |
private: |
| 1024 | 1024 |
/// \brief Copy constructor. |
| 1025 | 1025 |
/// |
| 1026 | 1026 |
/// Copy Constructor. |
| 1027 | 1027 |
GraphMap(const GraphMap&) : Parent() {}
|
| 1028 | 1028 |
|
| 1029 | 1029 |
/// \brief Assignment operator. |
| 1030 | 1030 |
/// |
| 1031 | 1031 |
/// Assignment operator. It does not mofify the underlying graph, |
| 1032 | 1032 |
/// it just iterates on the current item set and set the map |
| 1033 | 1033 |
/// with the value returned by the assigned map. |
| 1034 | 1034 |
template <typename CMap> |
| 1035 | 1035 |
GraphMap& operator=(const CMap&) {
|
| 1036 | 1036 |
checkConcept<ReadMap<Key, Value>, CMap>(); |
| 1037 | 1037 |
return *this; |
| 1038 | 1038 |
} |
| 1039 | 1039 |
|
| 1040 | 1040 |
public: |
| 1041 | 1041 |
template<typename _Map> |
| 1042 | 1042 |
struct Constraints {
|
| 1043 | 1043 |
void constraints() {
|
| 1044 | 1044 |
checkConcept |
| 1045 | 1045 |
<ReferenceMap<Key, Value, Value&, const Value&>, _Map>(); |
| 1046 | 1046 |
_Map m1(g); |
| 1047 | 1047 |
_Map m2(g,t); |
| 1048 |
|
|
| 1048 |
|
|
| 1049 | 1049 |
// Copy constructor |
| 1050 | 1050 |
// _Map m3(m); |
| 1051 | 1051 |
|
| 1052 | 1052 |
// Assignment operator |
| 1053 | 1053 |
// ReadMap<Key, Value> cmap; |
| 1054 | 1054 |
// m3 = cmap; |
| 1055 | 1055 |
|
| 1056 | 1056 |
ignore_unused_variable_warning(m1); |
| 1057 | 1057 |
ignore_unused_variable_warning(m2); |
| 1058 | 1058 |
// ignore_unused_variable_warning(m3); |
| 1059 | 1059 |
} |
| 1060 | 1060 |
|
| 1061 | 1061 |
const _Map &m; |
| 1062 | 1062 |
const GR &g; |
| 1063 | 1063 |
const typename GraphMap::Value &t; |
| 1064 | 1064 |
}; |
| 1065 | 1065 |
|
| 1066 | 1066 |
}; |
| 1067 | 1067 |
|
| 1068 | 1068 |
/// \brief Skeleton class for mappable directed graphs. |
| 1069 | 1069 |
/// |
| 1070 | 1070 |
/// This class describes the interface of mappable directed graphs. |
| 1071 |
/// It extends \ref BaseDigraphComponent with the standard digraph |
|
| 1071 |
/// It extends \ref BaseDigraphComponent with the standard digraph |
|
| 1072 | 1072 |
/// map classes, namely \c NodeMap and \c ArcMap. |
| 1073 | 1073 |
/// This concept is part of the Digraph concept. |
| 1074 | 1074 |
template <typename BAS = BaseDigraphComponent> |
| 1075 | 1075 |
class MappableDigraphComponent : public BAS {
|
| 1076 | 1076 |
public: |
| 1077 | 1077 |
|
| 1078 | 1078 |
typedef BAS Base; |
| 1079 | 1079 |
typedef typename Base::Node Node; |
| 1080 | 1080 |
typedef typename Base::Arc Arc; |
| 1081 | 1081 |
|
| 1082 | 1082 |
typedef MappableDigraphComponent Digraph; |
| 1083 | 1083 |
|
| 1084 | 1084 |
/// \brief Standard graph map for the nodes. |
| 1085 | 1085 |
/// |
| 1086 | 1086 |
/// Standard graph map for the nodes. |
| 1087 | 1087 |
/// It conforms to the ReferenceMap concept. |
| 1088 | 1088 |
template <typename V> |
| 1089 | 1089 |
class NodeMap : public GraphMap<MappableDigraphComponent, Node, V> {
|
| 1090 | 1090 |
typedef GraphMap<MappableDigraphComponent, Node, V> Parent; |
| 1091 | 1091 |
|
| 1092 | 1092 |
public: |
| 1093 | 1093 |
/// \brief Construct a new map. |
| 1094 | 1094 |
/// |
| 1095 | 1095 |
/// Construct a new map for the digraph. |
| 1096 | 1096 |
explicit NodeMap(const MappableDigraphComponent& digraph) |
| 1097 | 1097 |
: Parent(digraph) {}
|
| 1098 | 1098 |
|
| 1099 | 1099 |
/// \brief Construct a new map with default value. |
| 1100 | 1100 |
/// |
| 1101 | 1101 |
/// Construct a new map for the digraph and initalize the values. |
| 1102 | 1102 |
NodeMap(const MappableDigraphComponent& digraph, const V& value) |
| 1103 | 1103 |
: Parent(digraph, value) {}
|
| ... | ... |
@@ -1176,65 +1176,65 @@ |
| 1176 | 1176 |
} { // bool map test
|
| 1177 | 1177 |
typedef typename _Digraph::template NodeMap<bool> BoolNodeMap; |
| 1178 | 1178 |
checkConcept<GraphMap<_Digraph, typename _Digraph::Node, bool>, |
| 1179 | 1179 |
BoolNodeMap >(); |
| 1180 | 1180 |
} { // Dummy map test
|
| 1181 | 1181 |
typedef typename _Digraph::template NodeMap<Dummy> DummyNodeMap; |
| 1182 | 1182 |
checkConcept<GraphMap<_Digraph, typename _Digraph::Node, Dummy>, |
| 1183 | 1183 |
DummyNodeMap >(); |
| 1184 | 1184 |
} |
| 1185 | 1185 |
|
| 1186 | 1186 |
{ // int map test
|
| 1187 | 1187 |
typedef typename _Digraph::template ArcMap<int> IntArcMap; |
| 1188 | 1188 |
checkConcept<GraphMap<_Digraph, typename _Digraph::Arc, int>, |
| 1189 | 1189 |
IntArcMap >(); |
| 1190 | 1190 |
} { // bool map test
|
| 1191 | 1191 |
typedef typename _Digraph::template ArcMap<bool> BoolArcMap; |
| 1192 | 1192 |
checkConcept<GraphMap<_Digraph, typename _Digraph::Arc, bool>, |
| 1193 | 1193 |
BoolArcMap >(); |
| 1194 | 1194 |
} { // Dummy map test
|
| 1195 | 1195 |
typedef typename _Digraph::template ArcMap<Dummy> DummyArcMap; |
| 1196 | 1196 |
checkConcept<GraphMap<_Digraph, typename _Digraph::Arc, Dummy>, |
| 1197 | 1197 |
DummyArcMap >(); |
| 1198 | 1198 |
} |
| 1199 | 1199 |
} |
| 1200 | 1200 |
|
| 1201 | 1201 |
const _Digraph& digraph; |
| 1202 | 1202 |
}; |
| 1203 | 1203 |
}; |
| 1204 | 1204 |
|
| 1205 | 1205 |
/// \brief Skeleton class for mappable undirected graphs. |
| 1206 | 1206 |
/// |
| 1207 | 1207 |
/// This class describes the interface of mappable undirected graphs. |
| 1208 |
/// It extends \ref MappableDigraphComponent with the standard graph |
|
| 1208 |
/// It extends \ref MappableDigraphComponent with the standard graph |
|
| 1209 | 1209 |
/// map class for edges (\c EdgeMap). |
| 1210 | 1210 |
/// This concept is part of the Graph concept. |
| 1211 | 1211 |
template <typename BAS = BaseGraphComponent> |
| 1212 | 1212 |
class MappableGraphComponent : public MappableDigraphComponent<BAS> {
|
| 1213 | 1213 |
public: |
| 1214 | 1214 |
|
| 1215 | 1215 |
typedef BAS Base; |
| 1216 | 1216 |
typedef typename Base::Edge Edge; |
| 1217 | 1217 |
|
| 1218 | 1218 |
typedef MappableGraphComponent Graph; |
| 1219 | 1219 |
|
| 1220 | 1220 |
/// \brief Standard graph map for the edges. |
| 1221 | 1221 |
/// |
| 1222 | 1222 |
/// Standard graph map for the edges. |
| 1223 | 1223 |
/// It conforms to the ReferenceMap concept. |
| 1224 | 1224 |
template <typename V> |
| 1225 | 1225 |
class EdgeMap : public GraphMap<MappableGraphComponent, Edge, V> {
|
| 1226 | 1226 |
typedef GraphMap<MappableGraphComponent, Edge, V> Parent; |
| 1227 | 1227 |
|
| 1228 | 1228 |
public: |
| 1229 | 1229 |
/// \brief Construct a new map. |
| 1230 | 1230 |
/// |
| 1231 | 1231 |
/// Construct a new map for the graph. |
| 1232 | 1232 |
explicit EdgeMap(const MappableGraphComponent& graph) |
| 1233 | 1233 |
: Parent(graph) {}
|
| 1234 | 1234 |
|
| 1235 | 1235 |
/// \brief Construct a new map with default value. |
| 1236 | 1236 |
/// |
| 1237 | 1237 |
/// Construct a new map for the graph and initalize the values. |
| 1238 | 1238 |
EdgeMap(const MappableGraphComponent& graph, const V& value) |
| 1239 | 1239 |
: Parent(graph, value) {}
|
| 1240 | 1240 |
|
| ... | ... |
@@ -1261,192 +1261,192 @@ |
| 1261 | 1261 |
|
| 1262 | 1262 |
struct Dummy {
|
| 1263 | 1263 |
int value; |
| 1264 | 1264 |
Dummy() : value(0) {}
|
| 1265 | 1265 |
Dummy(int _v) : value(_v) {}
|
| 1266 | 1266 |
}; |
| 1267 | 1267 |
|
| 1268 | 1268 |
void constraints() {
|
| 1269 | 1269 |
checkConcept<MappableDigraphComponent<Base>, _Graph>(); |
| 1270 | 1270 |
|
| 1271 | 1271 |
{ // int map test
|
| 1272 | 1272 |
typedef typename _Graph::template EdgeMap<int> IntEdgeMap; |
| 1273 | 1273 |
checkConcept<GraphMap<_Graph, typename _Graph::Edge, int>, |
| 1274 | 1274 |
IntEdgeMap >(); |
| 1275 | 1275 |
} { // bool map test
|
| 1276 | 1276 |
typedef typename _Graph::template EdgeMap<bool> BoolEdgeMap; |
| 1277 | 1277 |
checkConcept<GraphMap<_Graph, typename _Graph::Edge, bool>, |
| 1278 | 1278 |
BoolEdgeMap >(); |
| 1279 | 1279 |
} { // Dummy map test
|
| 1280 | 1280 |
typedef typename _Graph::template EdgeMap<Dummy> DummyEdgeMap; |
| 1281 | 1281 |
checkConcept<GraphMap<_Graph, typename _Graph::Edge, Dummy>, |
| 1282 | 1282 |
DummyEdgeMap >(); |
| 1283 | 1283 |
} |
| 1284 | 1284 |
} |
| 1285 | 1285 |
|
| 1286 | 1286 |
const _Graph& graph; |
| 1287 | 1287 |
}; |
| 1288 | 1288 |
}; |
| 1289 | 1289 |
|
| 1290 | 1290 |
/// \brief Skeleton class for extendable directed graphs. |
| 1291 | 1291 |
/// |
| 1292 | 1292 |
/// This class describes the interface of extendable directed graphs. |
| 1293 |
/// It extends \ref BaseDigraphComponent with functions for adding |
|
| 1293 |
/// It extends \ref BaseDigraphComponent with functions for adding |
|
| 1294 | 1294 |
/// nodes and arcs to the digraph. |
| 1295 | 1295 |
/// This concept requires \ref AlterableDigraphComponent. |
| 1296 | 1296 |
template <typename BAS = BaseDigraphComponent> |
| 1297 | 1297 |
class ExtendableDigraphComponent : public BAS {
|
| 1298 | 1298 |
public: |
| 1299 | 1299 |
typedef BAS Base; |
| 1300 | 1300 |
|
| 1301 | 1301 |
typedef typename Base::Node Node; |
| 1302 | 1302 |
typedef typename Base::Arc Arc; |
| 1303 | 1303 |
|
| 1304 | 1304 |
/// \brief Add a new node to the digraph. |
| 1305 | 1305 |
/// |
| 1306 | 1306 |
/// This function adds a new node to the digraph. |
| 1307 | 1307 |
Node addNode() {
|
| 1308 | 1308 |
return INVALID; |
| 1309 | 1309 |
} |
| 1310 | 1310 |
|
| 1311 | 1311 |
/// \brief Add a new arc connecting the given two nodes. |
| 1312 | 1312 |
/// |
| 1313 | 1313 |
/// This function adds a new arc connecting the given two nodes |
| 1314 | 1314 |
/// of the digraph. |
| 1315 | 1315 |
Arc addArc(const Node&, const Node&) {
|
| 1316 | 1316 |
return INVALID; |
| 1317 | 1317 |
} |
| 1318 | 1318 |
|
| 1319 | 1319 |
template <typename _Digraph> |
| 1320 | 1320 |
struct Constraints {
|
| 1321 | 1321 |
void constraints() {
|
| 1322 | 1322 |
checkConcept<Base, _Digraph>(); |
| 1323 | 1323 |
typename _Digraph::Node node_a, node_b; |
| 1324 | 1324 |
node_a = digraph.addNode(); |
| 1325 | 1325 |
node_b = digraph.addNode(); |
| 1326 | 1326 |
typename _Digraph::Arc arc; |
| 1327 | 1327 |
arc = digraph.addArc(node_a, node_b); |
| 1328 | 1328 |
} |
| 1329 | 1329 |
|
| 1330 | 1330 |
_Digraph& digraph; |
| 1331 | 1331 |
}; |
| 1332 | 1332 |
}; |
| 1333 | 1333 |
|
| 1334 | 1334 |
/// \brief Skeleton class for extendable undirected graphs. |
| 1335 | 1335 |
/// |
| 1336 | 1336 |
/// This class describes the interface of extendable undirected graphs. |
| 1337 |
/// It extends \ref BaseGraphComponent with functions for adding |
|
| 1337 |
/// It extends \ref BaseGraphComponent with functions for adding |
|
| 1338 | 1338 |
/// nodes and edges to the graph. |
| 1339 | 1339 |
/// This concept requires \ref AlterableGraphComponent. |
| 1340 | 1340 |
template <typename BAS = BaseGraphComponent> |
| 1341 | 1341 |
class ExtendableGraphComponent : public BAS {
|
| 1342 | 1342 |
public: |
| 1343 | 1343 |
|
| 1344 | 1344 |
typedef BAS Base; |
| 1345 | 1345 |
typedef typename Base::Node Node; |
| 1346 | 1346 |
typedef typename Base::Edge Edge; |
| 1347 | 1347 |
|
| 1348 | 1348 |
/// \brief Add a new node to the digraph. |
| 1349 | 1349 |
/// |
| 1350 | 1350 |
/// This function adds a new node to the digraph. |
| 1351 | 1351 |
Node addNode() {
|
| 1352 | 1352 |
return INVALID; |
| 1353 | 1353 |
} |
| 1354 | 1354 |
|
| 1355 | 1355 |
/// \brief Add a new edge connecting the given two nodes. |
| 1356 | 1356 |
/// |
| 1357 | 1357 |
/// This function adds a new edge connecting the given two nodes |
| 1358 | 1358 |
/// of the graph. |
| 1359 | 1359 |
Edge addEdge(const Node&, const Node&) {
|
| 1360 | 1360 |
return INVALID; |
| 1361 | 1361 |
} |
| 1362 | 1362 |
|
| 1363 | 1363 |
template <typename _Graph> |
| 1364 | 1364 |
struct Constraints {
|
| 1365 | 1365 |
void constraints() {
|
| 1366 | 1366 |
checkConcept<Base, _Graph>(); |
| 1367 | 1367 |
typename _Graph::Node node_a, node_b; |
| 1368 | 1368 |
node_a = graph.addNode(); |
| 1369 | 1369 |
node_b = graph.addNode(); |
| 1370 | 1370 |
typename _Graph::Edge edge; |
| 1371 | 1371 |
edge = graph.addEdge(node_a, node_b); |
| 1372 | 1372 |
} |
| 1373 | 1373 |
|
| 1374 | 1374 |
_Graph& graph; |
| 1375 | 1375 |
}; |
| 1376 | 1376 |
}; |
| 1377 | 1377 |
|
| 1378 | 1378 |
/// \brief Skeleton class for erasable directed graphs. |
| 1379 | 1379 |
/// |
| 1380 | 1380 |
/// This class describes the interface of erasable directed graphs. |
| 1381 |
/// It extends \ref BaseDigraphComponent with functions for removing |
|
| 1381 |
/// It extends \ref BaseDigraphComponent with functions for removing |
|
| 1382 | 1382 |
/// nodes and arcs from the digraph. |
| 1383 | 1383 |
/// This concept requires \ref AlterableDigraphComponent. |
| 1384 | 1384 |
template <typename BAS = BaseDigraphComponent> |
| 1385 | 1385 |
class ErasableDigraphComponent : public BAS {
|
| 1386 | 1386 |
public: |
| 1387 | 1387 |
|
| 1388 | 1388 |
typedef BAS Base; |
| 1389 | 1389 |
typedef typename Base::Node Node; |
| 1390 | 1390 |
typedef typename Base::Arc Arc; |
| 1391 | 1391 |
|
| 1392 | 1392 |
/// \brief Erase a node from the digraph. |
| 1393 | 1393 |
/// |
| 1394 |
/// This function erases the given node from the digraph and all arcs |
|
| 1394 |
/// This function erases the given node from the digraph and all arcs |
|
| 1395 | 1395 |
/// connected to the node. |
| 1396 | 1396 |
void erase(const Node&) {}
|
| 1397 | 1397 |
|
| 1398 | 1398 |
/// \brief Erase an arc from the digraph. |
| 1399 | 1399 |
/// |
| 1400 | 1400 |
/// This function erases the given arc from the digraph. |
| 1401 | 1401 |
void erase(const Arc&) {}
|
| 1402 | 1402 |
|
| 1403 | 1403 |
template <typename _Digraph> |
| 1404 | 1404 |
struct Constraints {
|
| 1405 | 1405 |
void constraints() {
|
| 1406 | 1406 |
checkConcept<Base, _Digraph>(); |
| 1407 | 1407 |
const typename _Digraph::Node node(INVALID); |
| 1408 | 1408 |
digraph.erase(node); |
| 1409 | 1409 |
const typename _Digraph::Arc arc(INVALID); |
| 1410 | 1410 |
digraph.erase(arc); |
| 1411 | 1411 |
} |
| 1412 | 1412 |
|
| 1413 | 1413 |
_Digraph& digraph; |
| 1414 | 1414 |
}; |
| 1415 | 1415 |
}; |
| 1416 | 1416 |
|
| 1417 | 1417 |
/// \brief Skeleton class for erasable undirected graphs. |
| 1418 | 1418 |
/// |
| 1419 | 1419 |
/// This class describes the interface of erasable undirected graphs. |
| 1420 |
/// It extends \ref BaseGraphComponent with functions for removing |
|
| 1420 |
/// It extends \ref BaseGraphComponent with functions for removing |
|
| 1421 | 1421 |
/// nodes and edges from the graph. |
| 1422 | 1422 |
/// This concept requires \ref AlterableGraphComponent. |
| 1423 | 1423 |
template <typename BAS = BaseGraphComponent> |
| 1424 | 1424 |
class ErasableGraphComponent : public BAS {
|
| 1425 | 1425 |
public: |
| 1426 | 1426 |
|
| 1427 | 1427 |
typedef BAS Base; |
| 1428 | 1428 |
typedef typename Base::Node Node; |
| 1429 | 1429 |
typedef typename Base::Edge Edge; |
| 1430 | 1430 |
|
| 1431 | 1431 |
/// \brief Erase a node from the graph. |
| 1432 | 1432 |
/// |
| 1433 | 1433 |
/// This function erases the given node from the graph and all edges |
| 1434 | 1434 |
/// connected to the node. |
| 1435 | 1435 |
void erase(const Node&) {}
|
| 1436 | 1436 |
|
| 1437 | 1437 |
/// \brief Erase an edge from the digraph. |
| 1438 | 1438 |
/// |
| 1439 | 1439 |
/// This function erases the given edge from the digraph. |
| 1440 | 1440 |
void erase(const Edge&) {}
|
| 1441 | 1441 |
|
| 1442 | 1442 |
template <typename _Graph> |
| 1443 | 1443 |
struct Constraints {
|
| 1444 | 1444 |
void constraints() {
|
| 1445 | 1445 |
checkConcept<Base, _Graph>(); |
| 1446 | 1446 |
const typename _Graph::Node node(INVALID); |
| 1447 | 1447 |
graph.erase(node); |
| 1448 | 1448 |
const typename _Graph::Edge edge(INVALID); |
| 1449 | 1449 |
graph.erase(edge); |
| 1450 | 1450 |
} |
| 1451 | 1451 |
|
| 1452 | 1452 |
_Graph& graph; |
| 1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
| 2 | 2 |
* |
| 3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
| 4 | 4 |
* |
| 5 |
* Copyright (C) 2003- |
|
| 5 |
* Copyright (C) 2003-2010 |
|
| 6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
| 7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
| 8 | 8 |
* |
| 9 | 9 |
* Permission to use, modify and distribute this software is granted |
| 10 | 10 |
* provided that this copyright notice appears in all copies. For |
| 11 | 11 |
* precise terms see the accompanying LICENSE file. |
| 12 | 12 |
* |
| 13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
| 14 | 14 |
* express or implied, and with no claim as to its suitability for any |
| 15 | 15 |
* purpose. |
| 16 | 16 |
* |
| 17 | 17 |
*/ |
| 18 | 18 |
|
| 19 | 19 |
#ifndef LEMON_CONCEPTS_HEAP_H |
| 20 | 20 |
#define LEMON_CONCEPTS_HEAP_H |
| 21 | 21 |
|
| 22 | 22 |
///\ingroup concept |
| 23 | 23 |
///\file |
| 24 | 24 |
///\brief The concept of heaps. |
| 25 | 25 |
|
| 26 | 26 |
#include <lemon/core.h> |
| 27 | 27 |
#include <lemon/concept_check.h> |
| 28 | 28 |
|
| 29 | 29 |
namespace lemon {
|
| 30 | 30 |
|
| 31 | 31 |
namespace concepts {
|
| 32 | 32 |
|
| 33 | 33 |
/// \addtogroup concept |
| 34 | 34 |
/// @{
|
| 35 | 35 |
|
| 36 | 36 |
/// \brief The heap concept. |
| 37 | 37 |
/// |
| ... | ... |
@@ -63,218 +63,218 @@ |
| 63 | 63 |
/// Type of the item-int map. |
| 64 | 64 |
typedef IM ItemIntMap; |
| 65 | 65 |
/// Type of the priorities. |
| 66 | 66 |
typedef PR Prio; |
| 67 | 67 |
/// Type of the items stored in the heap. |
| 68 | 68 |
typedef typename ItemIntMap::Key Item; |
| 69 | 69 |
|
| 70 | 70 |
/// \brief Type to represent the states of the items. |
| 71 | 71 |
/// |
| 72 | 72 |
/// Each item has a state associated to it. It can be "in heap", |
| 73 | 73 |
/// "pre-heap" or "post-heap". The latter two are indifferent from the |
| 74 | 74 |
/// heap's point of view, but may be useful to the user. |
| 75 | 75 |
/// |
| 76 | 76 |
/// The item-int map must be initialized in such way that it assigns |
| 77 | 77 |
/// \c PRE_HEAP (<tt>-1</tt>) to any element to be put in the heap. |
| 78 | 78 |
enum State {
|
| 79 | 79 |
IN_HEAP = 0, ///< = 0. The "in heap" state constant. |
| 80 | 80 |
PRE_HEAP = -1, ///< = -1. The "pre-heap" state constant. |
| 81 | 81 |
POST_HEAP = -2 ///< = -2. The "post-heap" state constant. |
| 82 | 82 |
}; |
| 83 | 83 |
|
| 84 | 84 |
/// \brief Constructor. |
| 85 | 85 |
/// |
| 86 | 86 |
/// Constructor. |
| 87 | 87 |
/// \param map A map that assigns \c int values to keys of type |
| 88 | 88 |
/// \c Item. It is used internally by the heap implementations to |
| 89 | 89 |
/// handle the cross references. The assigned value must be |
| 90 | 90 |
/// \c PRE_HEAP (<tt>-1</tt>) for each item. |
| 91 | 91 |
#ifdef DOXYGEN |
| 92 | 92 |
explicit Heap(ItemIntMap &map) {}
|
| 93 | 93 |
#else |
| 94 | 94 |
explicit Heap(ItemIntMap&) {}
|
| 95 |
#endif |
|
| 95 |
#endif |
|
| 96 | 96 |
|
| 97 | 97 |
/// \brief Constructor. |
| 98 | 98 |
/// |
| 99 | 99 |
/// Constructor. |
| 100 | 100 |
/// \param map A map that assigns \c int values to keys of type |
| 101 | 101 |
/// \c Item. It is used internally by the heap implementations to |
| 102 | 102 |
/// handle the cross references. The assigned value must be |
| 103 | 103 |
/// \c PRE_HEAP (<tt>-1</tt>) for each item. |
| 104 | 104 |
/// \param comp The function object used for comparing the priorities. |
| 105 | 105 |
#ifdef DOXYGEN |
| 106 | 106 |
explicit Heap(ItemIntMap &map, const CMP &comp) {}
|
| 107 | 107 |
#else |
| 108 | 108 |
explicit Heap(ItemIntMap&, const CMP&) {}
|
| 109 |
#endif |
|
| 109 |
#endif |
|
| 110 | 110 |
|
| 111 | 111 |
/// \brief The number of items stored in the heap. |
| 112 | 112 |
/// |
| 113 | 113 |
/// This function returns the number of items stored in the heap. |
| 114 | 114 |
int size() const { return 0; }
|
| 115 | 115 |
|
| 116 | 116 |
/// \brief Check if the heap is empty. |
| 117 | 117 |
/// |
| 118 | 118 |
/// This function returns \c true if the heap is empty. |
| 119 | 119 |
bool empty() const { return false; }
|
| 120 | 120 |
|
| 121 | 121 |
/// \brief Make the heap empty. |
| 122 | 122 |
/// |
| 123 | 123 |
/// This functon makes the heap empty. |
| 124 | 124 |
/// It does not change the cross reference map. If you want to reuse |
| 125 | 125 |
/// a heap that is not surely empty, you should first clear it and |
| 126 | 126 |
/// then you should set the cross reference map to \c PRE_HEAP |
| 127 | 127 |
/// for each item. |
| 128 | 128 |
void clear() {}
|
| 129 | 129 |
|
| 130 | 130 |
/// \brief Insert an item into the heap with the given priority. |
| 131 | 131 |
/// |
| 132 | 132 |
/// This function inserts the given item into the heap with the |
| 133 | 133 |
/// given priority. |
| 134 | 134 |
/// \param i The item to insert. |
| 135 | 135 |
/// \param p The priority of the item. |
| 136 | 136 |
/// \pre \e i must not be stored in the heap. |
| 137 | 137 |
#ifdef DOXYGEN |
| 138 | 138 |
void push(const Item &i, const Prio &p) {}
|
| 139 | 139 |
#else |
| 140 | 140 |
void push(const Item&, const Prio&) {}
|
| 141 |
#endif |
|
| 141 |
#endif |
|
| 142 | 142 |
|
| 143 | 143 |
/// \brief Return the item having minimum priority. |
| 144 | 144 |
/// |
| 145 | 145 |
/// This function returns the item having minimum priority. |
| 146 | 146 |
/// \pre The heap must be non-empty. |
| 147 | 147 |
Item top() const { return Item(); }
|
| 148 | 148 |
|
| 149 | 149 |
/// \brief The minimum priority. |
| 150 | 150 |
/// |
| 151 | 151 |
/// This function returns the minimum priority. |
| 152 | 152 |
/// \pre The heap must be non-empty. |
| 153 | 153 |
Prio prio() const { return Prio(); }
|
| 154 | 154 |
|
| 155 | 155 |
/// \brief Remove the item having minimum priority. |
| 156 | 156 |
/// |
| 157 | 157 |
/// This function removes the item having minimum priority. |
| 158 | 158 |
/// \pre The heap must be non-empty. |
| 159 | 159 |
void pop() {}
|
| 160 | 160 |
|
| 161 | 161 |
/// \brief Remove the given item from the heap. |
| 162 | 162 |
/// |
| 163 | 163 |
/// This function removes the given item from the heap if it is |
| 164 | 164 |
/// already stored. |
| 165 | 165 |
/// \param i The item to delete. |
| 166 | 166 |
/// \pre \e i must be in the heap. |
| 167 | 167 |
#ifdef DOXYGEN |
| 168 | 168 |
void erase(const Item &i) {}
|
| 169 | 169 |
#else |
| 170 | 170 |
void erase(const Item&) {}
|
| 171 |
#endif |
|
| 171 |
#endif |
|
| 172 | 172 |
|
| 173 | 173 |
/// \brief The priority of the given item. |
| 174 | 174 |
/// |
| 175 | 175 |
/// This function returns the priority of the given item. |
| 176 | 176 |
/// \param i The item. |
| 177 | 177 |
/// \pre \e i must be in the heap. |
| 178 | 178 |
#ifdef DOXYGEN |
| 179 | 179 |
Prio operator[](const Item &i) const {}
|
| 180 | 180 |
#else |
| 181 | 181 |
Prio operator[](const Item&) const { return Prio(); }
|
| 182 |
#endif |
|
| 182 |
#endif |
|
| 183 | 183 |
|
| 184 | 184 |
/// \brief Set the priority of an item or insert it, if it is |
| 185 | 185 |
/// not stored in the heap. |
| 186 | 186 |
/// |
| 187 | 187 |
/// This method sets the priority of the given item if it is |
| 188 | 188 |
/// already stored in the heap. Otherwise it inserts the given |
| 189 | 189 |
/// item into the heap with the given priority. |
| 190 | 190 |
/// |
| 191 | 191 |
/// \param i The item. |
| 192 | 192 |
/// \param p The priority. |
| 193 | 193 |
#ifdef DOXYGEN |
| 194 | 194 |
void set(const Item &i, const Prio &p) {}
|
| 195 | 195 |
#else |
| 196 | 196 |
void set(const Item&, const Prio&) {}
|
| 197 |
#endif |
|
| 197 |
#endif |
|
| 198 | 198 |
|
| 199 | 199 |
/// \brief Decrease the priority of an item to the given value. |
| 200 | 200 |
/// |
| 201 | 201 |
/// This function decreases the priority of an item to the given value. |
| 202 | 202 |
/// \param i The item. |
| 203 | 203 |
/// \param p The priority. |
| 204 | 204 |
/// \pre \e i must be stored in the heap with priority at least \e p. |
| 205 | 205 |
#ifdef DOXYGEN |
| 206 | 206 |
void decrease(const Item &i, const Prio &p) {}
|
| 207 | 207 |
#else |
| 208 | 208 |
void decrease(const Item&, const Prio&) {}
|
| 209 |
#endif |
|
| 209 |
#endif |
|
| 210 | 210 |
|
| 211 | 211 |
/// \brief Increase the priority of an item to the given value. |
| 212 | 212 |
/// |
| 213 | 213 |
/// This function increases the priority of an item to the given value. |
| 214 | 214 |
/// \param i The item. |
| 215 | 215 |
/// \param p The priority. |
| 216 | 216 |
/// \pre \e i must be stored in the heap with priority at most \e p. |
| 217 | 217 |
#ifdef DOXYGEN |
| 218 | 218 |
void increase(const Item &i, const Prio &p) {}
|
| 219 | 219 |
#else |
| 220 | 220 |
void increase(const Item&, const Prio&) {}
|
| 221 |
#endif |
|
| 221 |
#endif |
|
| 222 | 222 |
|
| 223 | 223 |
/// \brief Return the state of an item. |
| 224 | 224 |
/// |
| 225 | 225 |
/// This method returns \c PRE_HEAP if the given item has never |
| 226 | 226 |
/// been in the heap, \c IN_HEAP if it is in the heap at the moment, |
| 227 | 227 |
/// and \c POST_HEAP otherwise. |
| 228 | 228 |
/// In the latter case it is possible that the item will get back |
| 229 | 229 |
/// to the heap again. |
| 230 | 230 |
/// \param i The item. |
| 231 | 231 |
#ifdef DOXYGEN |
| 232 | 232 |
State state(const Item &i) const {}
|
| 233 | 233 |
#else |
| 234 | 234 |
State state(const Item&) const { return PRE_HEAP; }
|
| 235 |
#endif |
|
| 235 |
#endif |
|
| 236 | 236 |
|
| 237 | 237 |
/// \brief Set the state of an item in the heap. |
| 238 | 238 |
/// |
| 239 | 239 |
/// This function sets the state of the given item in the heap. |
| 240 | 240 |
/// It can be used to manually clear the heap when it is important |
| 241 | 241 |
/// to achive better time complexity. |
| 242 | 242 |
/// \param i The item. |
| 243 | 243 |
/// \param st The state. It should not be \c IN_HEAP. |
| 244 | 244 |
#ifdef DOXYGEN |
| 245 | 245 |
void state(const Item& i, State st) {}
|
| 246 | 246 |
#else |
| 247 | 247 |
void state(const Item&, State) {}
|
| 248 |
#endif |
|
| 248 |
#endif |
|
| 249 | 249 |
|
| 250 | 250 |
|
| 251 | 251 |
template <typename _Heap> |
| 252 | 252 |
struct Constraints {
|
| 253 | 253 |
public: |
| 254 | 254 |
void constraints() {
|
| 255 | 255 |
typedef typename _Heap::Item OwnItem; |
| 256 | 256 |
typedef typename _Heap::Prio OwnPrio; |
| 257 | 257 |
typedef typename _Heap::State OwnState; |
| 258 | 258 |
|
| 259 | 259 |
Item item; |
| 260 | 260 |
Prio prio; |
| 261 | 261 |
item=Item(); |
| 262 | 262 |
prio=Prio(); |
| 263 | 263 |
ignore_unused_variable_warning(item); |
| 264 | 264 |
ignore_unused_variable_warning(prio); |
| 265 | 265 |
|
| 266 | 266 |
OwnItem own_item; |
| 267 | 267 |
OwnPrio own_prio; |
| 268 | 268 |
OwnState own_state; |
| 269 | 269 |
own_item=Item(); |
| 270 | 270 |
own_prio=Prio(); |
| 271 | 271 |
ignore_unused_variable_warning(own_item); |
| 272 | 272 |
ignore_unused_variable_warning(own_prio); |
| 273 | 273 |
ignore_unused_variable_warning(own_state); |
| 274 | 274 |
|
| 275 | 275 |
_Heap heap1(map); |
| 276 | 276 |
_Heap heap2 = heap1; |
| 277 | 277 |
ignore_unused_variable_warning(heap1); |
| 278 | 278 |
ignore_unused_variable_warning(heap2); |
| 279 | 279 |
|
| 280 | 280 |
int s = heap.size(); |
Changeset was too big and was cut off... Show full diff
0 comments (0 inline)