1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 |
* Copyright (C) 2003- |
|
5 |
* Copyright (C) 2003-2010 |
|
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 | 19 |
///\ingroup demos |
20 | 20 |
///\file |
21 | 21 |
///\brief Argument parser demo |
22 | 22 |
/// |
23 | 23 |
/// This example shows how the argument parser can be used. |
24 | 24 |
/// |
25 | 25 |
/// \include arg_parser_demo.cc |
26 | 26 |
|
27 | 27 |
#include <lemon/arg_parser.h> |
28 | 28 |
|
29 | 29 |
using namespace lemon; |
30 | 30 |
int main(int argc, char **argv) |
31 | 31 |
{ |
32 | 32 |
// Initialize the argument parser |
33 | 33 |
ArgParser ap(argc, argv); |
34 | 34 |
int i; |
35 | 35 |
std::string s; |
36 | 36 |
double d = 1.0; |
37 | 37 |
bool b, nh; |
38 | 38 |
bool g1, g2, g3; |
39 | 39 |
|
40 | 40 |
// Add a mandatory integer option with storage reference |
41 | 41 |
ap.refOption("n", "An integer input.", i, true); |
42 | 42 |
// Add a double option with storage reference (the default value is 1.0) |
43 | 43 |
ap.refOption("val", "A double input.", d); |
44 | 44 |
// Add a double option without storage reference (the default value is 3.14) |
45 | 45 |
ap.doubleOption("val2", "A double input.", 3.14); |
46 | 46 |
// Set synonym for -val option |
47 | 47 |
ap.synonym("vals", "val"); |
48 | 48 |
// Add a string option |
49 | 49 |
ap.refOption("name", "A string input.", s); |
50 | 50 |
// Add bool options |
51 | 51 |
ap.refOption("f", "A switch.", b) |
52 | 52 |
.refOption("nohelp", "", nh) |
53 | 53 |
.refOption("gra", "Choice A", g1) |
54 | 54 |
.refOption("grb", "Choice B", g2) |
55 | 55 |
.refOption("grc", "Choice C", g3); |
56 | 56 |
// Bundle -gr* options into a group |
57 | 57 |
ap.optionGroup("gr", "gra") |
58 | 58 |
.optionGroup("gr", "grb") |
59 | 59 |
.optionGroup("gr", "grc"); |
60 | 60 |
// Set the group mandatory |
61 | 61 |
ap.mandatoryGroup("gr"); |
62 | 62 |
// Set the options of the group exclusive (only one option can be given) |
63 | 63 |
ap.onlyOneGroup("gr"); |
64 | 64 |
// Add non-parsed arguments (e.g. input files) |
65 | 65 |
ap.other("infile", "The input file.") |
66 | 66 |
.other("..."); |
67 | 67 |
|
68 | 68 |
// Throw an exception when problems occurs. The default behavior is to |
69 | 69 |
// exit(1) on these cases, but this makes Valgrind falsely warn |
70 | 70 |
// about memory leaks. |
71 | 71 |
ap.throwOnProblems(); |
72 |
|
|
72 |
|
|
73 | 73 |
// Perform the parsing process |
74 | 74 |
// (in case of any error it terminates the program) |
75 | 75 |
// The try {} construct is necessary only if the ap.trowOnProblems() |
76 | 76 |
// setting is in use. |
77 | 77 |
try { |
78 | 78 |
ap.parse(); |
79 | 79 |
} catch (ArgParserException &) { return 1; } |
80 | 80 |
|
81 | 81 |
// Check each option if it has been given and print its value |
82 | 82 |
std::cout << "Parameters of '" << ap.commandName() << "':\n"; |
83 | 83 |
|
84 | 84 |
std::cout << " Value of -n: " << i << std::endl; |
85 | 85 |
if(ap.given("val")) std::cout << " Value of -val: " << d << std::endl; |
86 | 86 |
if(ap.given("val2")) { |
87 | 87 |
d = ap["val2"]; |
88 | 88 |
std::cout << " Value of -val2: " << d << std::endl; |
89 | 89 |
} |
90 | 90 |
if(ap.given("name")) std::cout << " Value of -name: " << s << std::endl; |
91 | 91 |
if(ap.given("f")) std::cout << " -f is given\n"; |
92 | 92 |
if(ap.given("nohelp")) std::cout << " Value of -nohelp: " << nh << std::endl; |
93 | 93 |
if(ap.given("gra")) std::cout << " -gra is given\n"; |
94 | 94 |
if(ap.given("grb")) std::cout << " -grb is given\n"; |
95 | 95 |
if(ap.given("grc")) std::cout << " -grc is given\n"; |
96 | 96 |
|
97 | 97 |
switch(ap.files().size()) { |
98 | 98 |
case 0: |
99 | 99 |
std::cout << " No file argument was given.\n"; |
100 | 100 |
break; |
101 | 101 |
case 1: |
102 | 102 |
std::cout << " 1 file argument was given. It is:\n"; |
103 | 103 |
break; |
104 | 104 |
default: |
105 | 105 |
std::cout << " " |
106 | 106 |
<< ap.files().size() << " file arguments were given. They are:\n"; |
107 | 107 |
} |
108 | 108 |
for(unsigned int i=0;i<ap.files().size();++i) |
109 | 109 |
std::cout << " '" << ap.files()[i] << "'\n"; |
110 | 110 |
|
111 | 111 |
return 0; |
112 | 112 |
} |
1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 |
* Copyright (C) 2003- |
|
5 |
* Copyright (C) 2003-2010 |
|
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 | 19 |
namespace lemon { |
20 | 20 |
|
21 | 21 |
/** |
22 | 22 |
@defgroup datas Data Structures |
23 | 23 |
This group contains the several data structures implemented in LEMON. |
24 | 24 |
*/ |
25 | 25 |
|
26 | 26 |
/** |
27 | 27 |
@defgroup graphs Graph Structures |
28 | 28 |
@ingroup datas |
29 | 29 |
\brief Graph structures implemented in LEMON. |
30 | 30 |
|
31 | 31 |
The implementation of combinatorial algorithms heavily relies on |
32 | 32 |
efficient graph implementations. LEMON offers data structures which are |
33 | 33 |
planned to be easily used in an experimental phase of implementation studies, |
34 | 34 |
and thereafter the program code can be made efficient by small modifications. |
35 | 35 |
|
36 | 36 |
The most efficient implementation of diverse applications require the |
37 | 37 |
usage of different physical graph implementations. These differences |
38 | 38 |
appear in the size of graph we require to handle, memory or time usage |
39 | 39 |
limitations or in the set of operations through which the graph can be |
40 | 40 |
accessed. LEMON provides several physical graph structures to meet |
41 | 41 |
the diverging requirements of the possible users. In order to save on |
42 | 42 |
running time or on memory usage, some structures may fail to provide |
43 | 43 |
some graph features like arc/edge or node deletion. |
44 | 44 |
|
45 | 45 |
Alteration of standard containers need a very limited number of |
46 | 46 |
operations, these together satisfy the everyday requirements. |
47 | 47 |
In the case of graph structures, different operations are needed which do |
48 | 48 |
not alter the physical graph, but gives another view. If some nodes or |
49 | 49 |
arcs have to be hidden or the reverse oriented graph have to be used, then |
50 | 50 |
this is the case. It also may happen that in a flow implementation |
51 | 51 |
the residual graph can be accessed by another algorithm, or a node-set |
52 | 52 |
is to be shrunk for another algorithm. |
53 | 53 |
LEMON also provides a variety of graphs for these requirements called |
54 | 54 |
\ref graph_adaptors "graph adaptors". Adaptors cannot be used alone but only |
55 | 55 |
in conjunction with other graph representations. |
56 | 56 |
|
57 | 57 |
You are free to use the graph structure that fit your requirements |
58 | 58 |
the best, most graph algorithms and auxiliary data structures can be used |
59 | 59 |
with any graph structure. |
60 | 60 |
|
61 | 61 |
<b>See also:</b> \ref graph_concepts "Graph Structure Concepts". |
62 | 62 |
*/ |
63 | 63 |
|
64 | 64 |
/** |
65 | 65 |
@defgroup graph_adaptors Adaptor Classes for Graphs |
66 | 66 |
@ingroup graphs |
67 | 67 |
\brief Adaptor classes for digraphs and graphs |
68 | 68 |
|
69 | 69 |
This group contains several useful adaptor classes for digraphs and graphs. |
70 | 70 |
|
71 | 71 |
The main parts of LEMON are the different graph structures, generic |
72 | 72 |
graph algorithms, graph concepts, which couple them, and graph |
73 | 73 |
adaptors. While the previous notions are more or less clear, the |
74 | 74 |
latter one needs further explanation. Graph adaptors are graph classes |
75 | 75 |
which serve for considering graph structures in different ways. |
76 | 76 |
|
77 | 77 |
A short example makes this much clearer. Suppose that we have an |
78 | 78 |
instance \c g of a directed graph type, say ListDigraph and an algorithm |
79 | 79 |
\code |
80 | 80 |
template <typename Digraph> |
81 | 81 |
int algorithm(const Digraph&); |
82 | 82 |
\endcode |
83 | 83 |
is needed to run on the reverse oriented graph. It may be expensive |
84 | 84 |
(in time or in memory usage) to copy \c g with the reversed |
85 | 85 |
arcs. In this case, an adaptor class is used, which (according |
86 | 86 |
to LEMON \ref concepts::Digraph "digraph concepts") works as a digraph. |
87 | 87 |
The adaptor uses the original digraph structure and digraph operations when |
88 | 88 |
methods of the reversed oriented graph are called. This means that the adaptor |
89 | 89 |
have minor memory usage, and do not perform sophisticated algorithmic |
90 | 90 |
actions. The purpose of it is to give a tool for the cases when a |
91 | 91 |
graph have to be used in a specific alteration. If this alteration is |
92 | 92 |
obtained by a usual construction like filtering the node or the arc set or |
93 | 93 |
considering a new orientation, then an adaptor is worthwhile to use. |
94 | 94 |
To come back to the reverse oriented graph, in this situation |
95 | 95 |
\code |
96 | 96 |
template<typename Digraph> class ReverseDigraph; |
97 | 97 |
\endcode |
98 | 98 |
template class can be used. The code looks as follows |
99 | 99 |
\code |
100 | 100 |
ListDigraph g; |
101 | 101 |
ReverseDigraph<ListDigraph> rg(g); |
102 | 102 |
int result = algorithm(rg); |
103 | 103 |
\endcode |
104 | 104 |
During running the algorithm, the original digraph \c g is untouched. |
105 | 105 |
This techniques give rise to an elegant code, and based on stable |
106 | 106 |
graph adaptors, complex algorithms can be implemented easily. |
107 | 107 |
|
108 | 108 |
In flow, circulation and matching problems, the residual |
109 | 109 |
graph is of particular importance. Combining an adaptor implementing |
110 | 110 |
this with shortest path algorithms or minimum mean cycle algorithms, |
111 | 111 |
a range of weighted and cardinality optimization algorithms can be |
112 | 112 |
obtained. For other examples, the interested user is referred to the |
113 | 113 |
detailed documentation of particular adaptors. |
114 | 114 |
|
115 | 115 |
The behavior of graph adaptors can be very different. Some of them keep |
116 | 116 |
capabilities of the original graph while in other cases this would be |
117 | 117 |
meaningless. This means that the concepts that they meet depend |
118 | 118 |
on the graph adaptor, and the wrapped graph. |
119 | 119 |
For example, if an arc of a reversed digraph is deleted, this is carried |
120 | 120 |
out by deleting the corresponding arc of the original digraph, thus the |
121 | 121 |
adaptor modifies the original digraph. |
122 | 122 |
However in case of a residual digraph, this operation has no sense. |
123 | 123 |
|
124 | 124 |
Let us stand one more example here to simplify your work. |
125 | 125 |
ReverseDigraph has constructor |
126 | 126 |
\code |
127 | 127 |
ReverseDigraph(Digraph& digraph); |
128 | 128 |
\endcode |
129 | 129 |
This means that in a situation, when a <tt>const %ListDigraph&</tt> |
130 | 130 |
reference to a graph is given, then it have to be instantiated with |
131 | 131 |
<tt>Digraph=const %ListDigraph</tt>. |
132 | 132 |
\code |
133 | 133 |
int algorithm1(const ListDigraph& g) { |
134 | 134 |
ReverseDigraph<const ListDigraph> rg(g); |
135 | 135 |
return algorithm2(rg); |
136 | 136 |
} |
137 | 137 |
\endcode |
138 | 138 |
*/ |
139 | 139 |
|
140 | 140 |
/** |
141 | 141 |
@defgroup maps Maps |
142 | 142 |
@ingroup datas |
143 | 143 |
\brief Map structures implemented in LEMON. |
144 | 144 |
|
145 | 145 |
This group contains the map structures implemented in LEMON. |
146 | 146 |
|
147 | 147 |
LEMON provides several special purpose maps and map adaptors that e.g. combine |
148 | 148 |
new maps from existing ones. |
149 | 149 |
|
150 | 150 |
<b>See also:</b> \ref map_concepts "Map Concepts". |
151 | 151 |
*/ |
152 | 152 |
|
153 | 153 |
/** |
154 | 154 |
@defgroup graph_maps Graph Maps |
155 | 155 |
@ingroup maps |
156 | 156 |
\brief Special graph-related maps. |
157 | 157 |
|
158 | 158 |
This group contains maps that are specifically designed to assign |
159 | 159 |
values to the nodes and arcs/edges of graphs. |
160 | 160 |
|
161 | 161 |
If you are looking for the standard graph maps (\c NodeMap, \c ArcMap, |
162 | 162 |
\c EdgeMap), see the \ref graph_concepts "Graph Structure Concepts". |
163 | 163 |
*/ |
164 | 164 |
|
165 | 165 |
/** |
166 | 166 |
\defgroup map_adaptors Map Adaptors |
167 | 167 |
\ingroup maps |
168 | 168 |
\brief Tools to create new maps from existing ones |
169 | 169 |
|
170 | 170 |
This group contains map adaptors that are used to create "implicit" |
171 | 171 |
maps from other maps. |
172 | 172 |
|
173 | 173 |
Most of them are \ref concepts::ReadMap "read-only maps". |
174 | 174 |
They can make arithmetic and logical operations between one or two maps |
175 | 175 |
(negation, shifting, addition, multiplication, logical 'and', 'or', |
176 | 176 |
'not' etc.) or e.g. convert a map to another one of different Value type. |
177 | 177 |
|
178 | 178 |
The typical usage of this classes is passing implicit maps to |
179 | 179 |
algorithms. If a function type algorithm is called then the function |
180 | 180 |
type map adaptors can be used comfortable. For example let's see the |
181 | 181 |
usage of map adaptors with the \c graphToEps() function. |
182 | 182 |
\code |
183 | 183 |
Color nodeColor(int deg) { |
184 | 184 |
if (deg >= 2) { |
185 | 185 |
return Color(0.5, 0.0, 0.5); |
186 | 186 |
} else if (deg == 1) { |
187 | 187 |
return Color(1.0, 0.5, 1.0); |
188 | 188 |
} else { |
189 | 189 |
return Color(0.0, 0.0, 0.0); |
190 | 190 |
} |
191 | 191 |
} |
192 | 192 |
|
193 | 193 |
Digraph::NodeMap<int> degree_map(graph); |
194 | 194 |
|
195 | 195 |
graphToEps(graph, "graph.eps") |
196 | 196 |
.coords(coords).scaleToA4().undirected() |
197 | 197 |
.nodeColors(composeMap(functorToMap(nodeColor), degree_map)) |
1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 |
* Copyright (C) 2003- |
|
5 |
* Copyright (C) 2003-2010 |
|
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 | 19 |
/** |
20 | 20 |
\mainpage LEMON Documentation |
21 | 21 |
|
22 | 22 |
\section intro Introduction |
23 | 23 |
|
24 | 24 |
<b>LEMON</b> stands for <i><b>L</b>ibrary for <b>E</b>fficient <b>M</b>odeling |
25 | 25 |
and <b>O</b>ptimization in <b>N</b>etworks</i>. |
26 | 26 |
It is a C++ template library providing efficient implementations of common |
27 | 27 |
data structures and algorithms with focus on combinatorial optimization |
28 |
tasks connected mainly with graphs and networks. |
|
28 |
tasks connected mainly with graphs and networks. |
|
29 | 29 |
|
30 | 30 |
<b> |
31 | 31 |
LEMON is an <a class="el" href="http://opensource.org/">open source</a> |
32 | 32 |
project. |
33 | 33 |
You are free to use it in your commercial or |
34 | 34 |
non-commercial applications under very permissive |
35 | 35 |
\ref license "license terms". |
36 | 36 |
</b> |
37 | 37 |
|
38 |
The project is maintained by the |
|
38 |
The project is maintained by the |
|
39 | 39 |
<a href="http://www.cs.elte.hu/egres/">Egerváry Research Group on |
40 | 40 |
Combinatorial Optimization</a> \ref egres |
41 | 41 |
at the Operations Research Department of the |
42 | 42 |
<a href="http://www.elte.hu/en/">Eötvös Loránd University</a>, |
43 | 43 |
Budapest, Hungary. |
44 | 44 |
LEMON is also a member of the <a href="http://www.coin-or.org/">COIN-OR</a> |
45 | 45 |
initiative \ref coinor. |
46 | 46 |
|
47 | 47 |
\section howtoread How to Read the Documentation |
48 | 48 |
|
49 | 49 |
If you would like to get to know the library, see |
50 | 50 |
<a class="el" href="http://lemon.cs.elte.hu/pub/tutorial/">LEMON Tutorial</a>. |
51 | 51 |
|
52 | 52 |
If you are interested in starting to use the library, see the <a class="el" |
53 | 53 |
href="http://lemon.cs.elte.hu/trac/lemon/wiki/InstallGuide/">Installation |
54 | 54 |
Guide</a>. |
55 | 55 |
|
56 | 56 |
If you know what you are looking for, then try to find it under the |
57 | 57 |
<a class="el" href="modules.html">Modules</a> section. |
58 | 58 |
|
59 | 59 |
If you are a user of the old (0.x) series of LEMON, please check out the |
60 | 60 |
\ref migration "Migration Guide" for the backward incompatibilities. |
61 | 61 |
*/ |
1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 |
* Copyright (C) 2003- |
|
5 |
* Copyright (C) 2003-2010 |
|
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 | 19 |
namespace lemon { |
20 | 20 |
|
21 | 21 |
/** |
22 | 22 |
\page min_cost_flow Minimum Cost Flow Problem |
23 | 23 |
|
24 | 24 |
\section mcf_def Definition (GEQ form) |
25 | 25 |
|
26 | 26 |
The \e minimum \e cost \e flow \e problem is to find a feasible flow of |
27 | 27 |
minimum total cost from a set of supply nodes to a set of demand nodes |
28 | 28 |
in a network with capacity constraints (lower and upper bounds) |
29 | 29 |
and arc costs \ref amo93networkflows. |
30 | 30 |
|
31 | 31 |
Formally, let \f$G=(V,A)\f$ be a digraph, \f$lower: A\rightarrow\mathbf{R}\f$, |
32 | 32 |
\f$upper: A\rightarrow\mathbf{R}\cup\{+\infty\}\f$ denote the lower and |
33 | 33 |
upper bounds for the flow values on the arcs, for which |
34 | 34 |
\f$lower(uv) \leq upper(uv)\f$ must hold for all \f$uv\in A\f$, |
35 | 35 |
\f$cost: A\rightarrow\mathbf{R}\f$ denotes the cost per unit flow |
36 | 36 |
on the arcs and \f$sup: V\rightarrow\mathbf{R}\f$ denotes the |
37 | 37 |
signed supply values of the nodes. |
38 | 38 |
If \f$sup(u)>0\f$, then \f$u\f$ is a supply node with \f$sup(u)\f$ |
39 | 39 |
supply, if \f$sup(u)<0\f$, then \f$u\f$ is a demand node with |
40 | 40 |
\f$-sup(u)\f$ demand. |
41 | 41 |
A minimum cost flow is an \f$f: A\rightarrow\mathbf{R}\f$ solution |
42 | 42 |
of the following optimization problem. |
43 | 43 |
|
44 | 44 |
\f[ \min\sum_{uv\in A} f(uv) \cdot cost(uv) \f] |
45 | 45 |
\f[ \sum_{uv\in A} f(uv) - \sum_{vu\in A} f(vu) \geq |
46 | 46 |
sup(u) \quad \forall u\in V \f] |
47 | 47 |
\f[ lower(uv) \leq f(uv) \leq upper(uv) \quad \forall uv\in A \f] |
48 | 48 |
|
49 | 49 |
The sum of the supply values, i.e. \f$\sum_{u\in V} sup(u)\f$ must be |
50 | 50 |
zero or negative in order to have a feasible solution (since the sum |
51 | 51 |
of the expressions on the left-hand side of the inequalities is zero). |
52 | 52 |
It means that the total demand must be greater or equal to the total |
53 | 53 |
supply and all the supplies have to be carried out from the supply nodes, |
54 | 54 |
but there could be demands that are not satisfied. |
55 | 55 |
If \f$\sum_{u\in V} sup(u)\f$ is zero, then all the supply/demand |
56 | 56 |
constraints have to be satisfied with equality, i.e. all demands |
57 | 57 |
have to be satisfied and all supplies have to be used. |
58 | 58 |
|
59 | 59 |
|
60 | 60 |
\section mcf_algs Algorithms |
61 | 61 |
|
62 | 62 |
LEMON contains several algorithms for solving this problem, for more |
63 | 63 |
information see \ref min_cost_flow_algs "Minimum Cost Flow Algorithms". |
64 | 64 |
|
65 | 65 |
A feasible solution for this problem can be found using \ref Circulation. |
66 | 66 |
|
67 | 67 |
|
68 | 68 |
\section mcf_dual Dual Solution |
69 | 69 |
|
70 | 70 |
The dual solution of the minimum cost flow problem is represented by |
71 | 71 |
node potentials \f$\pi: V\rightarrow\mathbf{R}\f$. |
72 | 72 |
An \f$f: A\rightarrow\mathbf{R}\f$ primal feasible solution is optimal |
73 | 73 |
if and only if for some \f$\pi: V\rightarrow\mathbf{R}\f$ node potentials |
74 | 74 |
the following \e complementary \e slackness optimality conditions hold. |
75 | 75 |
|
76 | 76 |
- For all \f$uv\in A\f$ arcs: |
77 | 77 |
- if \f$cost^\pi(uv)>0\f$, then \f$f(uv)=lower(uv)\f$; |
78 | 78 |
- if \f$lower(uv)<f(uv)<upper(uv)\f$, then \f$cost^\pi(uv)=0\f$; |
79 | 79 |
- if \f$cost^\pi(uv)<0\f$, then \f$f(uv)=upper(uv)\f$. |
80 | 80 |
- For all \f$u\in V\f$ nodes: |
81 | 81 |
- \f$\pi(u)\leq 0\f$; |
82 | 82 |
- if \f$\sum_{uv\in A} f(uv) - \sum_{vu\in A} f(vu) \neq sup(u)\f$, |
83 | 83 |
then \f$\pi(u)=0\f$. |
84 |
|
|
84 |
|
|
85 | 85 |
Here \f$cost^\pi(uv)\f$ denotes the \e reduced \e cost of the arc |
86 | 86 |
\f$uv\in A\f$ with respect to the potential function \f$\pi\f$, i.e. |
87 | 87 |
\f[ cost^\pi(uv) = cost(uv) + \pi(u) - \pi(v).\f] |
88 | 88 |
|
89 | 89 |
All algorithms provide dual solution (node potentials), as well, |
90 | 90 |
if an optimal flow is found. |
91 | 91 |
|
92 | 92 |
|
93 | 93 |
\section mcf_eq Equality Form |
94 | 94 |
|
95 | 95 |
The above \ref mcf_def "definition" is actually more general than the |
96 | 96 |
usual formulation of the minimum cost flow problem, in which strict |
97 | 97 |
equalities are required in the supply/demand contraints. |
98 | 98 |
|
99 | 99 |
\f[ \min\sum_{uv\in A} f(uv) \cdot cost(uv) \f] |
100 | 100 |
\f[ \sum_{uv\in A} f(uv) - \sum_{vu\in A} f(vu) = |
101 | 101 |
sup(u) \quad \forall u\in V \f] |
102 | 102 |
\f[ lower(uv) \leq f(uv) \leq upper(uv) \quad \forall uv\in A \f] |
103 | 103 |
|
104 | 104 |
However if the sum of the supply values is zero, then these two problems |
105 | 105 |
are equivalent. |
106 | 106 |
The \ref min_cost_flow_algs "algorithms" in LEMON support the general |
107 | 107 |
form, so if you need the equality form, you have to ensure this additional |
108 | 108 |
contraint manually. |
109 | 109 |
|
110 | 110 |
|
111 | 111 |
\section mcf_leq Opposite Inequalites (LEQ Form) |
112 | 112 |
|
113 | 113 |
Another possible definition of the minimum cost flow problem is |
114 | 114 |
when there are <em>"less or equal"</em> (LEQ) supply/demand constraints, |
115 | 115 |
instead of the <em>"greater or equal"</em> (GEQ) constraints. |
116 | 116 |
|
117 | 117 |
\f[ \min\sum_{uv\in A} f(uv) \cdot cost(uv) \f] |
118 | 118 |
\f[ \sum_{uv\in A} f(uv) - \sum_{vu\in A} f(vu) \leq |
119 | 119 |
sup(u) \quad \forall u\in V \f] |
120 | 120 |
\f[ lower(uv) \leq f(uv) \leq upper(uv) \quad \forall uv\in A \f] |
121 | 121 |
|
122 |
It means that the total demand must be less or equal to the |
|
122 |
It means that the total demand must be less or equal to the |
|
123 | 123 |
total supply (i.e. \f$\sum_{u\in V} sup(u)\f$ must be zero or |
124 | 124 |
positive) and all the demands have to be satisfied, but there |
125 | 125 |
could be supplies that are not carried out from the supply |
126 | 126 |
nodes. |
127 | 127 |
The equality form is also a special case of this form, of course. |
128 | 128 |
|
129 | 129 |
You could easily transform this case to the \ref mcf_def "GEQ form" |
130 | 130 |
of the problem by reversing the direction of the arcs and taking the |
131 | 131 |
negative of the supply values (e.g. using \ref ReverseDigraph and |
132 | 132 |
\ref NegMap adaptors). |
133 | 133 |
However \ref NetworkSimplex algorithm also supports this form directly |
134 | 134 |
for the sake of convenience. |
135 | 135 |
|
136 | 136 |
Note that the optimality conditions for this supply constraint type are |
137 | 137 |
slightly differ from the conditions that are discussed for the GEQ form, |
138 | 138 |
namely the potentials have to be non-negative instead of non-positive. |
139 | 139 |
An \f$f: A\rightarrow\mathbf{R}\f$ feasible solution of this problem |
140 | 140 |
is optimal if and only if for some \f$\pi: V\rightarrow\mathbf{R}\f$ |
141 | 141 |
node potentials the following conditions hold. |
142 | 142 |
|
143 | 143 |
- For all \f$uv\in A\f$ arcs: |
144 | 144 |
- if \f$cost^\pi(uv)>0\f$, then \f$f(uv)=lower(uv)\f$; |
145 | 145 |
- if \f$lower(uv)<f(uv)<upper(uv)\f$, then \f$cost^\pi(uv)=0\f$; |
146 | 146 |
- if \f$cost^\pi(uv)<0\f$, then \f$f(uv)=upper(uv)\f$. |
147 | 147 |
- For all \f$u\in V\f$ nodes: |
148 | 148 |
- \f$\pi(u)\geq 0\f$; |
149 | 149 |
- if \f$\sum_{uv\in A} f(uv) - \sum_{vu\in A} f(vu) \neq sup(u)\f$, |
150 | 150 |
then \f$\pi(u)=0\f$. |
151 | 151 |
|
152 | 152 |
*/ |
153 | 153 |
} |
1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 |
* Copyright (C) 2003- |
|
5 |
* Copyright (C) 2003-2010 |
|
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 | 19 |
#ifndef LEMON_ADAPTORS_H |
20 | 20 |
#define LEMON_ADAPTORS_H |
21 | 21 |
|
22 | 22 |
/// \ingroup graph_adaptors |
23 | 23 |
/// \file |
24 | 24 |
/// \brief Adaptor classes for digraphs and graphs |
25 | 25 |
/// |
26 | 26 |
/// This file contains several useful adaptors for digraphs and graphs. |
27 | 27 |
|
28 | 28 |
#include <lemon/core.h> |
29 | 29 |
#include <lemon/maps.h> |
30 | 30 |
#include <lemon/bits/variant.h> |
31 | 31 |
|
32 | 32 |
#include <lemon/bits/graph_adaptor_extender.h> |
33 | 33 |
#include <lemon/bits/map_extender.h> |
34 | 34 |
#include <lemon/tolerance.h> |
35 | 35 |
|
36 | 36 |
#include <algorithm> |
37 | 37 |
|
38 | 38 |
namespace lemon { |
39 | 39 |
|
40 | 40 |
#ifdef _MSC_VER |
41 | 41 |
#define LEMON_SCOPE_FIX(OUTER, NESTED) OUTER::NESTED |
42 | 42 |
#else |
43 | 43 |
#define LEMON_SCOPE_FIX(OUTER, NESTED) typename OUTER::template NESTED |
44 | 44 |
#endif |
45 | 45 |
|
46 | 46 |
template<typename DGR> |
47 | 47 |
class DigraphAdaptorBase { |
48 | 48 |
public: |
49 | 49 |
typedef DGR Digraph; |
50 | 50 |
typedef DigraphAdaptorBase Adaptor; |
51 | 51 |
|
52 | 52 |
protected: |
53 | 53 |
DGR* _digraph; |
54 | 54 |
DigraphAdaptorBase() : _digraph(0) { } |
55 | 55 |
void initialize(DGR& digraph) { _digraph = &digraph; } |
56 | 56 |
|
57 | 57 |
public: |
58 | 58 |
DigraphAdaptorBase(DGR& digraph) : _digraph(&digraph) { } |
59 | 59 |
|
60 | 60 |
typedef typename DGR::Node Node; |
61 | 61 |
typedef typename DGR::Arc Arc; |
62 | 62 |
|
63 | 63 |
void first(Node& i) const { _digraph->first(i); } |
64 | 64 |
void first(Arc& i) const { _digraph->first(i); } |
65 | 65 |
void firstIn(Arc& i, const Node& n) const { _digraph->firstIn(i, n); } |
66 | 66 |
void firstOut(Arc& i, const Node& n ) const { _digraph->firstOut(i, n); } |
67 | 67 |
|
68 | 68 |
void next(Node& i) const { _digraph->next(i); } |
69 | 69 |
void next(Arc& i) const { _digraph->next(i); } |
70 | 70 |
void nextIn(Arc& i) const { _digraph->nextIn(i); } |
71 | 71 |
void nextOut(Arc& i) const { _digraph->nextOut(i); } |
72 | 72 |
|
73 | 73 |
Node source(const Arc& a) const { return _digraph->source(a); } |
74 | 74 |
Node target(const Arc& a) const { return _digraph->target(a); } |
75 | 75 |
|
76 | 76 |
typedef NodeNumTagIndicator<DGR> NodeNumTag; |
77 | 77 |
int nodeNum() const { return _digraph->nodeNum(); } |
78 | 78 |
|
79 | 79 |
typedef ArcNumTagIndicator<DGR> ArcNumTag; |
80 | 80 |
int arcNum() const { return _digraph->arcNum(); } |
81 | 81 |
|
82 | 82 |
typedef FindArcTagIndicator<DGR> FindArcTag; |
83 | 83 |
Arc findArc(const Node& u, const Node& v, const Arc& prev = INVALID) const { |
84 | 84 |
return _digraph->findArc(u, v, prev); |
85 | 85 |
} |
86 | 86 |
|
87 | 87 |
Node addNode() { return _digraph->addNode(); } |
88 | 88 |
Arc addArc(const Node& u, const Node& v) { return _digraph->addArc(u, v); } |
89 | 89 |
|
90 | 90 |
void erase(const Node& n) { _digraph->erase(n); } |
91 | 91 |
void erase(const Arc& a) { _digraph->erase(a); } |
92 | 92 |
|
93 | 93 |
void clear() { _digraph->clear(); } |
94 | 94 |
|
95 | 95 |
int id(const Node& n) const { return _digraph->id(n); } |
96 | 96 |
int id(const Arc& a) const { return _digraph->id(a); } |
97 | 97 |
|
98 | 98 |
Node nodeFromId(int ix) const { return _digraph->nodeFromId(ix); } |
99 | 99 |
Arc arcFromId(int ix) const { return _digraph->arcFromId(ix); } |
100 | 100 |
|
101 | 101 |
int maxNodeId() const { return _digraph->maxNodeId(); } |
102 | 102 |
int maxArcId() const { return _digraph->maxArcId(); } |
103 | 103 |
|
104 | 104 |
typedef typename ItemSetTraits<DGR, Node>::ItemNotifier NodeNotifier; |
105 | 105 |
NodeNotifier& notifier(Node) const { return _digraph->notifier(Node()); } |
106 | 106 |
|
107 | 107 |
typedef typename ItemSetTraits<DGR, Arc>::ItemNotifier ArcNotifier; |
108 | 108 |
ArcNotifier& notifier(Arc) const { return _digraph->notifier(Arc()); } |
109 | 109 |
|
110 | 110 |
template <typename V> |
111 | 111 |
class NodeMap : public DGR::template NodeMap<V> { |
112 | 112 |
typedef typename DGR::template NodeMap<V> Parent; |
113 | 113 |
|
114 | 114 |
public: |
115 | 115 |
explicit NodeMap(const Adaptor& adaptor) |
116 | 116 |
: Parent(*adaptor._digraph) {} |
117 | 117 |
NodeMap(const Adaptor& adaptor, const V& value) |
118 | 118 |
: Parent(*adaptor._digraph, value) { } |
119 | 119 |
|
120 | 120 |
private: |
121 | 121 |
NodeMap& operator=(const NodeMap& cmap) { |
122 | 122 |
return operator=<NodeMap>(cmap); |
123 | 123 |
} |
124 | 124 |
|
125 | 125 |
template <typename CMap> |
126 | 126 |
NodeMap& operator=(const CMap& cmap) { |
127 | 127 |
Parent::operator=(cmap); |
128 | 128 |
return *this; |
129 | 129 |
} |
130 | 130 |
|
131 | 131 |
}; |
132 | 132 |
|
133 | 133 |
template <typename V> |
134 | 134 |
class ArcMap : public DGR::template ArcMap<V> { |
135 | 135 |
typedef typename DGR::template ArcMap<V> Parent; |
136 | 136 |
|
137 | 137 |
public: |
138 | 138 |
explicit ArcMap(const DigraphAdaptorBase<DGR>& adaptor) |
139 | 139 |
: Parent(*adaptor._digraph) {} |
140 | 140 |
ArcMap(const DigraphAdaptorBase<DGR>& adaptor, const V& value) |
141 | 141 |
: Parent(*adaptor._digraph, value) {} |
142 | 142 |
|
143 | 143 |
private: |
144 | 144 |
ArcMap& operator=(const ArcMap& cmap) { |
145 | 145 |
return operator=<ArcMap>(cmap); |
146 | 146 |
} |
147 | 147 |
|
148 | 148 |
template <typename CMap> |
149 | 149 |
ArcMap& operator=(const CMap& cmap) { |
150 | 150 |
Parent::operator=(cmap); |
151 | 151 |
return *this; |
152 | 152 |
} |
153 | 153 |
|
154 | 154 |
}; |
155 | 155 |
|
156 | 156 |
}; |
157 | 157 |
|
158 | 158 |
template<typename GR> |
159 | 159 |
class GraphAdaptorBase { |
160 | 160 |
public: |
161 | 161 |
typedef GR Graph; |
162 | 162 |
|
163 | 163 |
protected: |
164 | 164 |
GR* _graph; |
165 | 165 |
|
166 | 166 |
GraphAdaptorBase() : _graph(0) {} |
167 | 167 |
|
168 | 168 |
void initialize(GR& graph) { _graph = &graph; } |
169 | 169 |
|
170 | 170 |
public: |
171 | 171 |
GraphAdaptorBase(GR& graph) : _graph(&graph) {} |
172 | 172 |
|
173 | 173 |
typedef typename GR::Node Node; |
174 | 174 |
typedef typename GR::Arc Arc; |
175 | 175 |
typedef typename GR::Edge Edge; |
176 | 176 |
|
177 | 177 |
void first(Node& i) const { _graph->first(i); } |
178 | 178 |
void first(Arc& i) const { _graph->first(i); } |
179 | 179 |
void first(Edge& i) const { _graph->first(i); } |
180 | 180 |
void firstIn(Arc& i, const Node& n) const { _graph->firstIn(i, n); } |
181 | 181 |
void firstOut(Arc& i, const Node& n ) const { _graph->firstOut(i, n); } |
182 | 182 |
void firstInc(Edge &i, bool &d, const Node &n) const { |
183 | 183 |
_graph->firstInc(i, d, n); |
184 | 184 |
} |
185 | 185 |
|
186 | 186 |
void next(Node& i) const { _graph->next(i); } |
187 | 187 |
void next(Arc& i) const { _graph->next(i); } |
188 | 188 |
void next(Edge& i) const { _graph->next(i); } |
189 | 189 |
void nextIn(Arc& i) const { _graph->nextIn(i); } |
190 | 190 |
void nextOut(Arc& i) const { _graph->nextOut(i); } |
191 | 191 |
void nextInc(Edge &i, bool &d) const { _graph->nextInc(i, d); } |
192 | 192 |
|
193 | 193 |
Node u(const Edge& e) const { return _graph->u(e); } |
194 | 194 |
Node v(const Edge& e) const { return _graph->v(e); } |
195 | 195 |
|
196 | 196 |
Node source(const Arc& a) const { return _graph->source(a); } |
197 | 197 |
Node target(const Arc& a) const { return _graph->target(a); } |
... | ... |
@@ -232,2180 +232,2180 @@ |
232 | 232 |
int id(const Arc& a) const { return _graph->id(a); } |
233 | 233 |
int id(const Edge& e) const { return _graph->id(e); } |
234 | 234 |
|
235 | 235 |
Node nodeFromId(int ix) const { return _graph->nodeFromId(ix); } |
236 | 236 |
Arc arcFromId(int ix) const { return _graph->arcFromId(ix); } |
237 | 237 |
Edge edgeFromId(int ix) const { return _graph->edgeFromId(ix); } |
238 | 238 |
|
239 | 239 |
int maxNodeId() const { return _graph->maxNodeId(); } |
240 | 240 |
int maxArcId() const { return _graph->maxArcId(); } |
241 | 241 |
int maxEdgeId() const { return _graph->maxEdgeId(); } |
242 | 242 |
|
243 | 243 |
typedef typename ItemSetTraits<GR, Node>::ItemNotifier NodeNotifier; |
244 | 244 |
NodeNotifier& notifier(Node) const { return _graph->notifier(Node()); } |
245 | 245 |
|
246 | 246 |
typedef typename ItemSetTraits<GR, Arc>::ItemNotifier ArcNotifier; |
247 | 247 |
ArcNotifier& notifier(Arc) const { return _graph->notifier(Arc()); } |
248 | 248 |
|
249 | 249 |
typedef typename ItemSetTraits<GR, Edge>::ItemNotifier EdgeNotifier; |
250 | 250 |
EdgeNotifier& notifier(Edge) const { return _graph->notifier(Edge()); } |
251 | 251 |
|
252 | 252 |
template <typename V> |
253 | 253 |
class NodeMap : public GR::template NodeMap<V> { |
254 | 254 |
typedef typename GR::template NodeMap<V> Parent; |
255 | 255 |
|
256 | 256 |
public: |
257 | 257 |
explicit NodeMap(const GraphAdaptorBase<GR>& adapter) |
258 | 258 |
: Parent(*adapter._graph) {} |
259 | 259 |
NodeMap(const GraphAdaptorBase<GR>& adapter, const V& value) |
260 | 260 |
: Parent(*adapter._graph, value) {} |
261 | 261 |
|
262 | 262 |
private: |
263 | 263 |
NodeMap& operator=(const NodeMap& cmap) { |
264 | 264 |
return operator=<NodeMap>(cmap); |
265 | 265 |
} |
266 | 266 |
|
267 | 267 |
template <typename CMap> |
268 | 268 |
NodeMap& operator=(const CMap& cmap) { |
269 | 269 |
Parent::operator=(cmap); |
270 | 270 |
return *this; |
271 | 271 |
} |
272 | 272 |
|
273 | 273 |
}; |
274 | 274 |
|
275 | 275 |
template <typename V> |
276 | 276 |
class ArcMap : public GR::template ArcMap<V> { |
277 | 277 |
typedef typename GR::template ArcMap<V> Parent; |
278 | 278 |
|
279 | 279 |
public: |
280 | 280 |
explicit ArcMap(const GraphAdaptorBase<GR>& adapter) |
281 | 281 |
: Parent(*adapter._graph) {} |
282 | 282 |
ArcMap(const GraphAdaptorBase<GR>& adapter, const V& value) |
283 | 283 |
: Parent(*adapter._graph, value) {} |
284 | 284 |
|
285 | 285 |
private: |
286 | 286 |
ArcMap& operator=(const ArcMap& cmap) { |
287 | 287 |
return operator=<ArcMap>(cmap); |
288 | 288 |
} |
289 | 289 |
|
290 | 290 |
template <typename CMap> |
291 | 291 |
ArcMap& operator=(const CMap& cmap) { |
292 | 292 |
Parent::operator=(cmap); |
293 | 293 |
return *this; |
294 | 294 |
} |
295 | 295 |
}; |
296 | 296 |
|
297 | 297 |
template <typename V> |
298 | 298 |
class EdgeMap : public GR::template EdgeMap<V> { |
299 | 299 |
typedef typename GR::template EdgeMap<V> Parent; |
300 | 300 |
|
301 | 301 |
public: |
302 | 302 |
explicit EdgeMap(const GraphAdaptorBase<GR>& adapter) |
303 | 303 |
: Parent(*adapter._graph) {} |
304 | 304 |
EdgeMap(const GraphAdaptorBase<GR>& adapter, const V& value) |
305 | 305 |
: Parent(*adapter._graph, value) {} |
306 | 306 |
|
307 | 307 |
private: |
308 | 308 |
EdgeMap& operator=(const EdgeMap& cmap) { |
309 | 309 |
return operator=<EdgeMap>(cmap); |
310 | 310 |
} |
311 | 311 |
|
312 | 312 |
template <typename CMap> |
313 | 313 |
EdgeMap& operator=(const CMap& cmap) { |
314 | 314 |
Parent::operator=(cmap); |
315 | 315 |
return *this; |
316 | 316 |
} |
317 | 317 |
}; |
318 | 318 |
|
319 | 319 |
}; |
320 | 320 |
|
321 | 321 |
template <typename DGR> |
322 | 322 |
class ReverseDigraphBase : public DigraphAdaptorBase<DGR> { |
323 | 323 |
typedef DigraphAdaptorBase<DGR> Parent; |
324 | 324 |
public: |
325 | 325 |
typedef DGR Digraph; |
326 | 326 |
protected: |
327 | 327 |
ReverseDigraphBase() : Parent() { } |
328 | 328 |
public: |
329 | 329 |
typedef typename Parent::Node Node; |
330 | 330 |
typedef typename Parent::Arc Arc; |
331 | 331 |
|
332 | 332 |
void firstIn(Arc& a, const Node& n) const { Parent::firstOut(a, n); } |
333 | 333 |
void firstOut(Arc& a, const Node& n ) const { Parent::firstIn(a, n); } |
334 | 334 |
|
335 | 335 |
void nextIn(Arc& a) const { Parent::nextOut(a); } |
336 | 336 |
void nextOut(Arc& a) const { Parent::nextIn(a); } |
337 | 337 |
|
338 | 338 |
Node source(const Arc& a) const { return Parent::target(a); } |
339 | 339 |
Node target(const Arc& a) const { return Parent::source(a); } |
340 | 340 |
|
341 | 341 |
Arc addArc(const Node& u, const Node& v) { return Parent::addArc(v, u); } |
342 | 342 |
|
343 | 343 |
typedef FindArcTagIndicator<DGR> FindArcTag; |
344 | 344 |
Arc findArc(const Node& u, const Node& v, |
345 | 345 |
const Arc& prev = INVALID) const { |
346 | 346 |
return Parent::findArc(v, u, prev); |
347 | 347 |
} |
348 | 348 |
|
349 | 349 |
}; |
350 | 350 |
|
351 | 351 |
/// \ingroup graph_adaptors |
352 | 352 |
/// |
353 | 353 |
/// \brief Adaptor class for reversing the orientation of the arcs in |
354 | 354 |
/// a digraph. |
355 | 355 |
/// |
356 | 356 |
/// ReverseDigraph can be used for reversing the arcs in a digraph. |
357 | 357 |
/// It conforms to the \ref concepts::Digraph "Digraph" concept. |
358 | 358 |
/// |
359 | 359 |
/// The adapted digraph can also be modified through this adaptor |
360 | 360 |
/// by adding or removing nodes or arcs, unless the \c GR template |
361 | 361 |
/// parameter is set to be \c const. |
362 | 362 |
/// |
363 | 363 |
/// This class provides item counting in the same time as the adapted |
364 | 364 |
/// digraph structure. |
365 | 365 |
/// |
366 | 366 |
/// \tparam DGR The type of the adapted digraph. |
367 | 367 |
/// It must conform to the \ref concepts::Digraph "Digraph" concept. |
368 | 368 |
/// It can also be specified to be \c const. |
369 | 369 |
/// |
370 | 370 |
/// \note The \c Node and \c Arc types of this adaptor and the adapted |
371 | 371 |
/// digraph are convertible to each other. |
372 | 372 |
template<typename DGR> |
373 | 373 |
#ifdef DOXYGEN |
374 | 374 |
class ReverseDigraph { |
375 | 375 |
#else |
376 | 376 |
class ReverseDigraph : |
377 | 377 |
public DigraphAdaptorExtender<ReverseDigraphBase<DGR> > { |
378 | 378 |
#endif |
379 | 379 |
typedef DigraphAdaptorExtender<ReverseDigraphBase<DGR> > Parent; |
380 | 380 |
public: |
381 | 381 |
/// The type of the adapted digraph. |
382 | 382 |
typedef DGR Digraph; |
383 | 383 |
protected: |
384 | 384 |
ReverseDigraph() { } |
385 | 385 |
public: |
386 | 386 |
|
387 | 387 |
/// \brief Constructor |
388 | 388 |
/// |
389 | 389 |
/// Creates a reverse digraph adaptor for the given digraph. |
390 | 390 |
explicit ReverseDigraph(DGR& digraph) { |
391 | 391 |
Parent::initialize(digraph); |
392 | 392 |
} |
393 | 393 |
}; |
394 | 394 |
|
395 | 395 |
/// \brief Returns a read-only ReverseDigraph adaptor |
396 | 396 |
/// |
397 | 397 |
/// This function just returns a read-only \ref ReverseDigraph adaptor. |
398 | 398 |
/// \ingroup graph_adaptors |
399 | 399 |
/// \relates ReverseDigraph |
400 | 400 |
template<typename DGR> |
401 | 401 |
ReverseDigraph<const DGR> reverseDigraph(const DGR& digraph) { |
402 | 402 |
return ReverseDigraph<const DGR>(digraph); |
403 | 403 |
} |
404 | 404 |
|
405 | 405 |
|
406 | 406 |
template <typename DGR, typename NF, typename AF, bool ch = true> |
407 | 407 |
class SubDigraphBase : public DigraphAdaptorBase<DGR> { |
408 | 408 |
typedef DigraphAdaptorBase<DGR> Parent; |
409 | 409 |
public: |
410 | 410 |
typedef DGR Digraph; |
411 | 411 |
typedef NF NodeFilterMap; |
412 | 412 |
typedef AF ArcFilterMap; |
413 | 413 |
|
414 | 414 |
typedef SubDigraphBase Adaptor; |
415 | 415 |
protected: |
416 | 416 |
NF* _node_filter; |
417 | 417 |
AF* _arc_filter; |
418 | 418 |
SubDigraphBase() |
419 | 419 |
: Parent(), _node_filter(0), _arc_filter(0) { } |
420 | 420 |
|
421 | 421 |
void initialize(DGR& digraph, NF& node_filter, AF& arc_filter) { |
422 | 422 |
Parent::initialize(digraph); |
423 | 423 |
_node_filter = &node_filter; |
424 |
_arc_filter = &arc_filter; |
|
424 |
_arc_filter = &arc_filter; |
|
425 | 425 |
} |
426 | 426 |
|
427 | 427 |
public: |
428 | 428 |
|
429 | 429 |
typedef typename Parent::Node Node; |
430 | 430 |
typedef typename Parent::Arc Arc; |
431 | 431 |
|
432 | 432 |
void first(Node& i) const { |
433 | 433 |
Parent::first(i); |
434 | 434 |
while (i != INVALID && !(*_node_filter)[i]) Parent::next(i); |
435 | 435 |
} |
436 | 436 |
|
437 | 437 |
void first(Arc& i) const { |
438 | 438 |
Parent::first(i); |
439 | 439 |
while (i != INVALID && (!(*_arc_filter)[i] |
440 | 440 |
|| !(*_node_filter)[Parent::source(i)] |
441 | 441 |
|| !(*_node_filter)[Parent::target(i)])) |
442 | 442 |
Parent::next(i); |
443 | 443 |
} |
444 | 444 |
|
445 | 445 |
void firstIn(Arc& i, const Node& n) const { |
446 | 446 |
Parent::firstIn(i, n); |
447 | 447 |
while (i != INVALID && (!(*_arc_filter)[i] |
448 | 448 |
|| !(*_node_filter)[Parent::source(i)])) |
449 | 449 |
Parent::nextIn(i); |
450 | 450 |
} |
451 | 451 |
|
452 | 452 |
void firstOut(Arc& i, const Node& n) const { |
453 | 453 |
Parent::firstOut(i, n); |
454 | 454 |
while (i != INVALID && (!(*_arc_filter)[i] |
455 | 455 |
|| !(*_node_filter)[Parent::target(i)])) |
456 | 456 |
Parent::nextOut(i); |
457 | 457 |
} |
458 | 458 |
|
459 | 459 |
void next(Node& i) const { |
460 | 460 |
Parent::next(i); |
461 | 461 |
while (i != INVALID && !(*_node_filter)[i]) Parent::next(i); |
462 | 462 |
} |
463 | 463 |
|
464 | 464 |
void next(Arc& i) const { |
465 | 465 |
Parent::next(i); |
466 | 466 |
while (i != INVALID && (!(*_arc_filter)[i] |
467 | 467 |
|| !(*_node_filter)[Parent::source(i)] |
468 | 468 |
|| !(*_node_filter)[Parent::target(i)])) |
469 | 469 |
Parent::next(i); |
470 | 470 |
} |
471 | 471 |
|
472 | 472 |
void nextIn(Arc& i) const { |
473 | 473 |
Parent::nextIn(i); |
474 | 474 |
while (i != INVALID && (!(*_arc_filter)[i] |
475 | 475 |
|| !(*_node_filter)[Parent::source(i)])) |
476 | 476 |
Parent::nextIn(i); |
477 | 477 |
} |
478 | 478 |
|
479 | 479 |
void nextOut(Arc& i) const { |
480 | 480 |
Parent::nextOut(i); |
481 | 481 |
while (i != INVALID && (!(*_arc_filter)[i] |
482 | 482 |
|| !(*_node_filter)[Parent::target(i)])) |
483 | 483 |
Parent::nextOut(i); |
484 | 484 |
} |
485 | 485 |
|
486 | 486 |
void status(const Node& n, bool v) const { _node_filter->set(n, v); } |
487 | 487 |
void status(const Arc& a, bool v) const { _arc_filter->set(a, v); } |
488 | 488 |
|
489 | 489 |
bool status(const Node& n) const { return (*_node_filter)[n]; } |
490 | 490 |
bool status(const Arc& a) const { return (*_arc_filter)[a]; } |
491 | 491 |
|
492 | 492 |
typedef False NodeNumTag; |
493 | 493 |
typedef False ArcNumTag; |
494 | 494 |
|
495 | 495 |
typedef FindArcTagIndicator<DGR> FindArcTag; |
496 | 496 |
Arc findArc(const Node& source, const Node& target, |
497 | 497 |
const Arc& prev = INVALID) const { |
498 | 498 |
if (!(*_node_filter)[source] || !(*_node_filter)[target]) { |
499 | 499 |
return INVALID; |
500 | 500 |
} |
501 | 501 |
Arc arc = Parent::findArc(source, target, prev); |
502 | 502 |
while (arc != INVALID && !(*_arc_filter)[arc]) { |
503 | 503 |
arc = Parent::findArc(source, target, arc); |
504 | 504 |
} |
505 | 505 |
return arc; |
506 | 506 |
} |
507 | 507 |
|
508 | 508 |
public: |
509 | 509 |
|
510 | 510 |
template <typename V> |
511 |
class NodeMap |
|
512 |
: public SubMapExtender<SubDigraphBase<DGR, NF, AF, ch>, |
|
513 |
|
|
511 |
class NodeMap |
|
512 |
: public SubMapExtender<SubDigraphBase<DGR, NF, AF, ch>, |
|
513 |
LEMON_SCOPE_FIX(DigraphAdaptorBase<DGR>, NodeMap<V>)> { |
|
514 | 514 |
typedef SubMapExtender<SubDigraphBase<DGR, NF, AF, ch>, |
515 |
|
|
515 |
LEMON_SCOPE_FIX(DigraphAdaptorBase<DGR>, NodeMap<V>)> Parent; |
|
516 | 516 |
|
517 | 517 |
public: |
518 | 518 |
typedef V Value; |
519 | 519 |
|
520 | 520 |
NodeMap(const SubDigraphBase<DGR, NF, AF, ch>& adaptor) |
521 | 521 |
: Parent(adaptor) {} |
522 | 522 |
NodeMap(const SubDigraphBase<DGR, NF, AF, ch>& adaptor, const V& value) |
523 | 523 |
: Parent(adaptor, value) {} |
524 | 524 |
|
525 | 525 |
private: |
526 | 526 |
NodeMap& operator=(const NodeMap& cmap) { |
527 | 527 |
return operator=<NodeMap>(cmap); |
528 | 528 |
} |
529 | 529 |
|
530 | 530 |
template <typename CMap> |
531 | 531 |
NodeMap& operator=(const CMap& cmap) { |
532 | 532 |
Parent::operator=(cmap); |
533 | 533 |
return *this; |
534 | 534 |
} |
535 | 535 |
}; |
536 | 536 |
|
537 | 537 |
template <typename V> |
538 |
class ArcMap |
|
538 |
class ArcMap |
|
539 | 539 |
: public SubMapExtender<SubDigraphBase<DGR, NF, AF, ch>, |
540 |
|
|
540 |
LEMON_SCOPE_FIX(DigraphAdaptorBase<DGR>, ArcMap<V>)> { |
|
541 | 541 |
typedef SubMapExtender<SubDigraphBase<DGR, NF, AF, ch>, |
542 | 542 |
LEMON_SCOPE_FIX(DigraphAdaptorBase<DGR>, ArcMap<V>)> Parent; |
543 | 543 |
|
544 | 544 |
public: |
545 | 545 |
typedef V Value; |
546 | 546 |
|
547 | 547 |
ArcMap(const SubDigraphBase<DGR, NF, AF, ch>& adaptor) |
548 | 548 |
: Parent(adaptor) {} |
549 | 549 |
ArcMap(const SubDigraphBase<DGR, NF, AF, ch>& adaptor, const V& value) |
550 | 550 |
: Parent(adaptor, value) {} |
551 | 551 |
|
552 | 552 |
private: |
553 | 553 |
ArcMap& operator=(const ArcMap& cmap) { |
554 | 554 |
return operator=<ArcMap>(cmap); |
555 | 555 |
} |
556 | 556 |
|
557 | 557 |
template <typename CMap> |
558 | 558 |
ArcMap& operator=(const CMap& cmap) { |
559 | 559 |
Parent::operator=(cmap); |
560 | 560 |
return *this; |
561 | 561 |
} |
562 | 562 |
}; |
563 | 563 |
|
564 | 564 |
}; |
565 | 565 |
|
566 | 566 |
template <typename DGR, typename NF, typename AF> |
567 | 567 |
class SubDigraphBase<DGR, NF, AF, false> |
568 | 568 |
: public DigraphAdaptorBase<DGR> { |
569 | 569 |
typedef DigraphAdaptorBase<DGR> Parent; |
570 | 570 |
public: |
571 | 571 |
typedef DGR Digraph; |
572 | 572 |
typedef NF NodeFilterMap; |
573 | 573 |
typedef AF ArcFilterMap; |
574 | 574 |
|
575 | 575 |
typedef SubDigraphBase Adaptor; |
576 | 576 |
protected: |
577 | 577 |
NF* _node_filter; |
578 | 578 |
AF* _arc_filter; |
579 | 579 |
SubDigraphBase() |
580 | 580 |
: Parent(), _node_filter(0), _arc_filter(0) { } |
581 | 581 |
|
582 | 582 |
void initialize(DGR& digraph, NF& node_filter, AF& arc_filter) { |
583 | 583 |
Parent::initialize(digraph); |
584 | 584 |
_node_filter = &node_filter; |
585 |
_arc_filter = &arc_filter; |
|
585 |
_arc_filter = &arc_filter; |
|
586 | 586 |
} |
587 | 587 |
|
588 | 588 |
public: |
589 | 589 |
|
590 | 590 |
typedef typename Parent::Node Node; |
591 | 591 |
typedef typename Parent::Arc Arc; |
592 | 592 |
|
593 | 593 |
void first(Node& i) const { |
594 | 594 |
Parent::first(i); |
595 | 595 |
while (i!=INVALID && !(*_node_filter)[i]) Parent::next(i); |
596 | 596 |
} |
597 | 597 |
|
598 | 598 |
void first(Arc& i) const { |
599 | 599 |
Parent::first(i); |
600 | 600 |
while (i!=INVALID && !(*_arc_filter)[i]) Parent::next(i); |
601 | 601 |
} |
602 | 602 |
|
603 | 603 |
void firstIn(Arc& i, const Node& n) const { |
604 | 604 |
Parent::firstIn(i, n); |
605 | 605 |
while (i!=INVALID && !(*_arc_filter)[i]) Parent::nextIn(i); |
606 | 606 |
} |
607 | 607 |
|
608 | 608 |
void firstOut(Arc& i, const Node& n) const { |
609 | 609 |
Parent::firstOut(i, n); |
610 | 610 |
while (i!=INVALID && !(*_arc_filter)[i]) Parent::nextOut(i); |
611 | 611 |
} |
612 | 612 |
|
613 | 613 |
void next(Node& i) const { |
614 | 614 |
Parent::next(i); |
615 | 615 |
while (i!=INVALID && !(*_node_filter)[i]) Parent::next(i); |
616 | 616 |
} |
617 | 617 |
void next(Arc& i) const { |
618 | 618 |
Parent::next(i); |
619 | 619 |
while (i!=INVALID && !(*_arc_filter)[i]) Parent::next(i); |
620 | 620 |
} |
621 | 621 |
void nextIn(Arc& i) const { |
622 | 622 |
Parent::nextIn(i); |
623 | 623 |
while (i!=INVALID && !(*_arc_filter)[i]) Parent::nextIn(i); |
624 | 624 |
} |
625 | 625 |
|
626 | 626 |
void nextOut(Arc& i) const { |
627 | 627 |
Parent::nextOut(i); |
628 | 628 |
while (i!=INVALID && !(*_arc_filter)[i]) Parent::nextOut(i); |
629 | 629 |
} |
630 | 630 |
|
631 | 631 |
void status(const Node& n, bool v) const { _node_filter->set(n, v); } |
632 | 632 |
void status(const Arc& a, bool v) const { _arc_filter->set(a, v); } |
633 | 633 |
|
634 | 634 |
bool status(const Node& n) const { return (*_node_filter)[n]; } |
635 | 635 |
bool status(const Arc& a) const { return (*_arc_filter)[a]; } |
636 | 636 |
|
637 | 637 |
typedef False NodeNumTag; |
638 | 638 |
typedef False ArcNumTag; |
639 | 639 |
|
640 | 640 |
typedef FindArcTagIndicator<DGR> FindArcTag; |
641 | 641 |
Arc findArc(const Node& source, const Node& target, |
642 | 642 |
const Arc& prev = INVALID) const { |
643 | 643 |
if (!(*_node_filter)[source] || !(*_node_filter)[target]) { |
644 | 644 |
return INVALID; |
645 | 645 |
} |
646 | 646 |
Arc arc = Parent::findArc(source, target, prev); |
647 | 647 |
while (arc != INVALID && !(*_arc_filter)[arc]) { |
648 | 648 |
arc = Parent::findArc(source, target, arc); |
649 | 649 |
} |
650 | 650 |
return arc; |
651 | 651 |
} |
652 | 652 |
|
653 | 653 |
template <typename V> |
654 |
class NodeMap |
|
654 |
class NodeMap |
|
655 | 655 |
: public SubMapExtender<SubDigraphBase<DGR, NF, AF, false>, |
656 | 656 |
LEMON_SCOPE_FIX(DigraphAdaptorBase<DGR>, NodeMap<V>)> { |
657 |
typedef SubMapExtender<SubDigraphBase<DGR, NF, AF, false>, |
|
657 |
typedef SubMapExtender<SubDigraphBase<DGR, NF, AF, false>, |
|
658 | 658 |
LEMON_SCOPE_FIX(DigraphAdaptorBase<DGR>, NodeMap<V>)> Parent; |
659 | 659 |
|
660 | 660 |
public: |
661 | 661 |
typedef V Value; |
662 | 662 |
|
663 | 663 |
NodeMap(const SubDigraphBase<DGR, NF, AF, false>& adaptor) |
664 | 664 |
: Parent(adaptor) {} |
665 | 665 |
NodeMap(const SubDigraphBase<DGR, NF, AF, false>& adaptor, const V& value) |
666 | 666 |
: Parent(adaptor, value) {} |
667 | 667 |
|
668 | 668 |
private: |
669 | 669 |
NodeMap& operator=(const NodeMap& cmap) { |
670 | 670 |
return operator=<NodeMap>(cmap); |
671 | 671 |
} |
672 | 672 |
|
673 | 673 |
template <typename CMap> |
674 | 674 |
NodeMap& operator=(const CMap& cmap) { |
675 | 675 |
Parent::operator=(cmap); |
676 | 676 |
return *this; |
677 | 677 |
} |
678 | 678 |
}; |
679 | 679 |
|
680 | 680 |
template <typename V> |
681 |
class ArcMap |
|
681 |
class ArcMap |
|
682 | 682 |
: public SubMapExtender<SubDigraphBase<DGR, NF, AF, false>, |
683 | 683 |
LEMON_SCOPE_FIX(DigraphAdaptorBase<DGR>, ArcMap<V>)> { |
684 | 684 |
typedef SubMapExtender<SubDigraphBase<DGR, NF, AF, false>, |
685 | 685 |
LEMON_SCOPE_FIX(DigraphAdaptorBase<DGR>, ArcMap<V>)> Parent; |
686 | 686 |
|
687 | 687 |
public: |
688 | 688 |
typedef V Value; |
689 | 689 |
|
690 | 690 |
ArcMap(const SubDigraphBase<DGR, NF, AF, false>& adaptor) |
691 | 691 |
: Parent(adaptor) {} |
692 | 692 |
ArcMap(const SubDigraphBase<DGR, NF, AF, false>& adaptor, const V& value) |
693 | 693 |
: Parent(adaptor, value) {} |
694 | 694 |
|
695 | 695 |
private: |
696 | 696 |
ArcMap& operator=(const ArcMap& cmap) { |
697 | 697 |
return operator=<ArcMap>(cmap); |
698 | 698 |
} |
699 | 699 |
|
700 | 700 |
template <typename CMap> |
701 | 701 |
ArcMap& operator=(const CMap& cmap) { |
702 | 702 |
Parent::operator=(cmap); |
703 | 703 |
return *this; |
704 | 704 |
} |
705 | 705 |
}; |
706 | 706 |
|
707 | 707 |
}; |
708 | 708 |
|
709 | 709 |
/// \ingroup graph_adaptors |
710 | 710 |
/// |
711 | 711 |
/// \brief Adaptor class for hiding nodes and arcs in a digraph |
712 | 712 |
/// |
713 | 713 |
/// SubDigraph can be used for hiding nodes and arcs in a digraph. |
714 | 714 |
/// A \c bool node map and a \c bool arc map must be specified, which |
715 | 715 |
/// define the filters for nodes and arcs. |
716 | 716 |
/// Only the nodes and arcs with \c true filter value are |
717 | 717 |
/// shown in the subdigraph. The arcs that are incident to hidden |
718 | 718 |
/// nodes are also filtered out. |
719 | 719 |
/// This adaptor conforms to the \ref concepts::Digraph "Digraph" concept. |
720 | 720 |
/// |
721 | 721 |
/// The adapted digraph can also be modified through this adaptor |
722 | 722 |
/// by adding or removing nodes or arcs, unless the \c GR template |
723 | 723 |
/// parameter is set to be \c const. |
724 | 724 |
/// |
725 | 725 |
/// This class provides only linear time counting for nodes and arcs. |
726 | 726 |
/// |
727 | 727 |
/// \tparam DGR The type of the adapted digraph. |
728 | 728 |
/// It must conform to the \ref concepts::Digraph "Digraph" concept. |
729 | 729 |
/// It can also be specified to be \c const. |
730 | 730 |
/// \tparam NF The type of the node filter map. |
731 | 731 |
/// It must be a \c bool (or convertible) node map of the |
732 | 732 |
/// adapted digraph. The default type is |
733 | 733 |
/// \ref concepts::Digraph::NodeMap "DGR::NodeMap<bool>". |
734 | 734 |
/// \tparam AF The type of the arc filter map. |
735 | 735 |
/// It must be \c bool (or convertible) arc map of the |
736 | 736 |
/// adapted digraph. The default type is |
737 | 737 |
/// \ref concepts::Digraph::ArcMap "DGR::ArcMap<bool>". |
738 | 738 |
/// |
739 | 739 |
/// \note The \c Node and \c Arc types of this adaptor and the adapted |
740 | 740 |
/// digraph are convertible to each other. |
741 | 741 |
/// |
742 | 742 |
/// \see FilterNodes |
743 | 743 |
/// \see FilterArcs |
744 | 744 |
#ifdef DOXYGEN |
745 | 745 |
template<typename DGR, typename NF, typename AF> |
746 | 746 |
class SubDigraph { |
747 | 747 |
#else |
748 | 748 |
template<typename DGR, |
749 | 749 |
typename NF = typename DGR::template NodeMap<bool>, |
750 | 750 |
typename AF = typename DGR::template ArcMap<bool> > |
751 | 751 |
class SubDigraph : |
752 | 752 |
public DigraphAdaptorExtender<SubDigraphBase<DGR, NF, AF, true> > { |
753 | 753 |
#endif |
754 | 754 |
public: |
755 | 755 |
/// The type of the adapted digraph. |
756 | 756 |
typedef DGR Digraph; |
757 | 757 |
/// The type of the node filter map. |
758 | 758 |
typedef NF NodeFilterMap; |
759 | 759 |
/// The type of the arc filter map. |
760 | 760 |
typedef AF ArcFilterMap; |
761 | 761 |
|
762 | 762 |
typedef DigraphAdaptorExtender<SubDigraphBase<DGR, NF, AF, true> > |
763 | 763 |
Parent; |
764 | 764 |
|
765 | 765 |
typedef typename Parent::Node Node; |
766 | 766 |
typedef typename Parent::Arc Arc; |
767 | 767 |
|
768 | 768 |
protected: |
769 | 769 |
SubDigraph() { } |
770 | 770 |
public: |
771 | 771 |
|
772 | 772 |
/// \brief Constructor |
773 | 773 |
/// |
774 | 774 |
/// Creates a subdigraph for the given digraph with the |
775 | 775 |
/// given node and arc filter maps. |
776 | 776 |
SubDigraph(DGR& digraph, NF& node_filter, AF& arc_filter) { |
777 | 777 |
Parent::initialize(digraph, node_filter, arc_filter); |
778 | 778 |
} |
779 | 779 |
|
780 | 780 |
/// \brief Sets the status of the given node |
781 | 781 |
/// |
782 | 782 |
/// This function sets the status of the given node. |
783 | 783 |
/// It is done by simply setting the assigned value of \c n |
784 | 784 |
/// to \c v in the node filter map. |
785 | 785 |
void status(const Node& n, bool v) const { Parent::status(n, v); } |
786 | 786 |
|
787 | 787 |
/// \brief Sets the status of the given arc |
788 | 788 |
/// |
789 | 789 |
/// This function sets the status of the given arc. |
790 | 790 |
/// It is done by simply setting the assigned value of \c a |
791 | 791 |
/// to \c v in the arc filter map. |
792 | 792 |
void status(const Arc& a, bool v) const { Parent::status(a, v); } |
793 | 793 |
|
794 | 794 |
/// \brief Returns the status of the given node |
795 | 795 |
/// |
796 | 796 |
/// This function returns the status of the given node. |
797 | 797 |
/// It is \c true if the given node is enabled (i.e. not hidden). |
798 | 798 |
bool status(const Node& n) const { return Parent::status(n); } |
799 | 799 |
|
800 | 800 |
/// \brief Returns the status of the given arc |
801 | 801 |
/// |
802 | 802 |
/// This function returns the status of the given arc. |
803 | 803 |
/// It is \c true if the given arc is enabled (i.e. not hidden). |
804 | 804 |
bool status(const Arc& a) const { return Parent::status(a); } |
805 | 805 |
|
806 | 806 |
/// \brief Disables the given node |
807 | 807 |
/// |
808 | 808 |
/// This function disables the given node in the subdigraph, |
809 | 809 |
/// so the iteration jumps over it. |
810 | 810 |
/// It is the same as \ref status() "status(n, false)". |
811 | 811 |
void disable(const Node& n) const { Parent::status(n, false); } |
812 | 812 |
|
813 | 813 |
/// \brief Disables the given arc |
814 | 814 |
/// |
815 | 815 |
/// This function disables the given arc in the subdigraph, |
816 | 816 |
/// so the iteration jumps over it. |
817 | 817 |
/// It is the same as \ref status() "status(a, false)". |
818 | 818 |
void disable(const Arc& a) const { Parent::status(a, false); } |
819 | 819 |
|
820 | 820 |
/// \brief Enables the given node |
821 | 821 |
/// |
822 | 822 |
/// This function enables the given node in the subdigraph. |
823 | 823 |
/// It is the same as \ref status() "status(n, true)". |
824 | 824 |
void enable(const Node& n) const { Parent::status(n, true); } |
825 | 825 |
|
826 | 826 |
/// \brief Enables the given arc |
827 | 827 |
/// |
828 | 828 |
/// This function enables the given arc in the subdigraph. |
829 | 829 |
/// It is the same as \ref status() "status(a, true)". |
830 | 830 |
void enable(const Arc& a) const { Parent::status(a, true); } |
831 | 831 |
|
832 | 832 |
}; |
833 | 833 |
|
834 | 834 |
/// \brief Returns a read-only SubDigraph adaptor |
835 | 835 |
/// |
836 | 836 |
/// This function just returns a read-only \ref SubDigraph adaptor. |
837 | 837 |
/// \ingroup graph_adaptors |
838 | 838 |
/// \relates SubDigraph |
839 | 839 |
template<typename DGR, typename NF, typename AF> |
840 | 840 |
SubDigraph<const DGR, NF, AF> |
841 | 841 |
subDigraph(const DGR& digraph, |
842 | 842 |
NF& node_filter, AF& arc_filter) { |
843 | 843 |
return SubDigraph<const DGR, NF, AF> |
844 | 844 |
(digraph, node_filter, arc_filter); |
845 | 845 |
} |
846 | 846 |
|
847 | 847 |
template<typename DGR, typename NF, typename AF> |
848 | 848 |
SubDigraph<const DGR, const NF, AF> |
849 | 849 |
subDigraph(const DGR& digraph, |
850 | 850 |
const NF& node_filter, AF& arc_filter) { |
851 | 851 |
return SubDigraph<const DGR, const NF, AF> |
852 | 852 |
(digraph, node_filter, arc_filter); |
853 | 853 |
} |
854 | 854 |
|
855 | 855 |
template<typename DGR, typename NF, typename AF> |
856 | 856 |
SubDigraph<const DGR, NF, const AF> |
857 | 857 |
subDigraph(const DGR& digraph, |
858 | 858 |
NF& node_filter, const AF& arc_filter) { |
859 | 859 |
return SubDigraph<const DGR, NF, const AF> |
860 | 860 |
(digraph, node_filter, arc_filter); |
861 | 861 |
} |
862 | 862 |
|
863 | 863 |
template<typename DGR, typename NF, typename AF> |
864 | 864 |
SubDigraph<const DGR, const NF, const AF> |
865 | 865 |
subDigraph(const DGR& digraph, |
866 | 866 |
const NF& node_filter, const AF& arc_filter) { |
867 | 867 |
return SubDigraph<const DGR, const NF, const AF> |
868 | 868 |
(digraph, node_filter, arc_filter); |
869 | 869 |
} |
870 | 870 |
|
871 | 871 |
|
872 | 872 |
template <typename GR, typename NF, typename EF, bool ch = true> |
873 | 873 |
class SubGraphBase : public GraphAdaptorBase<GR> { |
874 | 874 |
typedef GraphAdaptorBase<GR> Parent; |
875 | 875 |
public: |
876 | 876 |
typedef GR Graph; |
877 | 877 |
typedef NF NodeFilterMap; |
878 | 878 |
typedef EF EdgeFilterMap; |
879 | 879 |
|
880 | 880 |
typedef SubGraphBase Adaptor; |
881 | 881 |
protected: |
882 | 882 |
|
883 | 883 |
NF* _node_filter; |
884 | 884 |
EF* _edge_filter; |
885 | 885 |
|
886 | 886 |
SubGraphBase() |
887 | 887 |
: Parent(), _node_filter(0), _edge_filter(0) { } |
888 | 888 |
|
889 | 889 |
void initialize(GR& graph, NF& node_filter, EF& edge_filter) { |
890 | 890 |
Parent::initialize(graph); |
891 | 891 |
_node_filter = &node_filter; |
892 | 892 |
_edge_filter = &edge_filter; |
893 | 893 |
} |
894 | 894 |
|
895 | 895 |
public: |
896 | 896 |
|
897 | 897 |
typedef typename Parent::Node Node; |
898 | 898 |
typedef typename Parent::Arc Arc; |
899 | 899 |
typedef typename Parent::Edge Edge; |
900 | 900 |
|
901 | 901 |
void first(Node& i) const { |
902 | 902 |
Parent::first(i); |
903 | 903 |
while (i!=INVALID && !(*_node_filter)[i]) Parent::next(i); |
904 | 904 |
} |
905 | 905 |
|
906 | 906 |
void first(Arc& i) const { |
907 | 907 |
Parent::first(i); |
908 | 908 |
while (i!=INVALID && (!(*_edge_filter)[i] |
909 | 909 |
|| !(*_node_filter)[Parent::source(i)] |
910 | 910 |
|| !(*_node_filter)[Parent::target(i)])) |
911 | 911 |
Parent::next(i); |
912 | 912 |
} |
913 | 913 |
|
914 | 914 |
void first(Edge& i) const { |
915 | 915 |
Parent::first(i); |
916 | 916 |
while (i!=INVALID && (!(*_edge_filter)[i] |
917 | 917 |
|| !(*_node_filter)[Parent::u(i)] |
918 | 918 |
|| !(*_node_filter)[Parent::v(i)])) |
919 | 919 |
Parent::next(i); |
920 | 920 |
} |
921 | 921 |
|
922 | 922 |
void firstIn(Arc& i, const Node& n) const { |
923 | 923 |
Parent::firstIn(i, n); |
924 | 924 |
while (i!=INVALID && (!(*_edge_filter)[i] |
925 | 925 |
|| !(*_node_filter)[Parent::source(i)])) |
926 | 926 |
Parent::nextIn(i); |
927 | 927 |
} |
928 | 928 |
|
929 | 929 |
void firstOut(Arc& i, const Node& n) const { |
930 | 930 |
Parent::firstOut(i, n); |
931 | 931 |
while (i!=INVALID && (!(*_edge_filter)[i] |
932 | 932 |
|| !(*_node_filter)[Parent::target(i)])) |
933 | 933 |
Parent::nextOut(i); |
934 | 934 |
} |
935 | 935 |
|
936 | 936 |
void firstInc(Edge& i, bool& d, const Node& n) const { |
937 | 937 |
Parent::firstInc(i, d, n); |
938 | 938 |
while (i!=INVALID && (!(*_edge_filter)[i] |
939 | 939 |
|| !(*_node_filter)[Parent::u(i)] |
940 | 940 |
|| !(*_node_filter)[Parent::v(i)])) |
941 | 941 |
Parent::nextInc(i, d); |
942 | 942 |
} |
943 | 943 |
|
944 | 944 |
void next(Node& i) const { |
945 | 945 |
Parent::next(i); |
946 | 946 |
while (i!=INVALID && !(*_node_filter)[i]) Parent::next(i); |
947 | 947 |
} |
948 | 948 |
|
949 | 949 |
void next(Arc& i) const { |
950 | 950 |
Parent::next(i); |
951 | 951 |
while (i!=INVALID && (!(*_edge_filter)[i] |
952 | 952 |
|| !(*_node_filter)[Parent::source(i)] |
953 | 953 |
|| !(*_node_filter)[Parent::target(i)])) |
954 | 954 |
Parent::next(i); |
955 | 955 |
} |
956 | 956 |
|
957 | 957 |
void next(Edge& i) const { |
958 | 958 |
Parent::next(i); |
959 | 959 |
while (i!=INVALID && (!(*_edge_filter)[i] |
960 | 960 |
|| !(*_node_filter)[Parent::u(i)] |
961 | 961 |
|| !(*_node_filter)[Parent::v(i)])) |
962 | 962 |
Parent::next(i); |
963 | 963 |
} |
964 | 964 |
|
965 | 965 |
void nextIn(Arc& i) const { |
966 | 966 |
Parent::nextIn(i); |
967 | 967 |
while (i!=INVALID && (!(*_edge_filter)[i] |
968 | 968 |
|| !(*_node_filter)[Parent::source(i)])) |
969 | 969 |
Parent::nextIn(i); |
970 | 970 |
} |
971 | 971 |
|
972 | 972 |
void nextOut(Arc& i) const { |
973 | 973 |
Parent::nextOut(i); |
974 | 974 |
while (i!=INVALID && (!(*_edge_filter)[i] |
975 | 975 |
|| !(*_node_filter)[Parent::target(i)])) |
976 | 976 |
Parent::nextOut(i); |
977 | 977 |
} |
978 | 978 |
|
979 | 979 |
void nextInc(Edge& i, bool& d) const { |
980 | 980 |
Parent::nextInc(i, d); |
981 | 981 |
while (i!=INVALID && (!(*_edge_filter)[i] |
982 | 982 |
|| !(*_node_filter)[Parent::u(i)] |
983 | 983 |
|| !(*_node_filter)[Parent::v(i)])) |
984 | 984 |
Parent::nextInc(i, d); |
985 | 985 |
} |
986 | 986 |
|
987 | 987 |
void status(const Node& n, bool v) const { _node_filter->set(n, v); } |
988 | 988 |
void status(const Edge& e, bool v) const { _edge_filter->set(e, v); } |
989 | 989 |
|
990 | 990 |
bool status(const Node& n) const { return (*_node_filter)[n]; } |
991 | 991 |
bool status(const Edge& e) const { return (*_edge_filter)[e]; } |
992 | 992 |
|
993 | 993 |
typedef False NodeNumTag; |
994 | 994 |
typedef False ArcNumTag; |
995 | 995 |
typedef False EdgeNumTag; |
996 | 996 |
|
997 | 997 |
typedef FindArcTagIndicator<Graph> FindArcTag; |
998 | 998 |
Arc findArc(const Node& u, const Node& v, |
999 | 999 |
const Arc& prev = INVALID) const { |
1000 | 1000 |
if (!(*_node_filter)[u] || !(*_node_filter)[v]) { |
1001 | 1001 |
return INVALID; |
1002 | 1002 |
} |
1003 | 1003 |
Arc arc = Parent::findArc(u, v, prev); |
1004 | 1004 |
while (arc != INVALID && !(*_edge_filter)[arc]) { |
1005 | 1005 |
arc = Parent::findArc(u, v, arc); |
1006 | 1006 |
} |
1007 | 1007 |
return arc; |
1008 | 1008 |
} |
1009 | 1009 |
|
1010 | 1010 |
typedef FindEdgeTagIndicator<Graph> FindEdgeTag; |
1011 | 1011 |
Edge findEdge(const Node& u, const Node& v, |
1012 | 1012 |
const Edge& prev = INVALID) const { |
1013 | 1013 |
if (!(*_node_filter)[u] || !(*_node_filter)[v]) { |
1014 | 1014 |
return INVALID; |
1015 | 1015 |
} |
1016 | 1016 |
Edge edge = Parent::findEdge(u, v, prev); |
1017 | 1017 |
while (edge != INVALID && !(*_edge_filter)[edge]) { |
1018 | 1018 |
edge = Parent::findEdge(u, v, edge); |
1019 | 1019 |
} |
1020 | 1020 |
return edge; |
1021 | 1021 |
} |
1022 | 1022 |
|
1023 | 1023 |
template <typename V> |
1024 |
class NodeMap |
|
1024 |
class NodeMap |
|
1025 | 1025 |
: public SubMapExtender<SubGraphBase<GR, NF, EF, ch>, |
1026 | 1026 |
LEMON_SCOPE_FIX(GraphAdaptorBase<GR>, NodeMap<V>)> { |
1027 |
typedef SubMapExtender<SubGraphBase<GR, NF, EF, ch>, |
|
1027 |
typedef SubMapExtender<SubGraphBase<GR, NF, EF, ch>, |
|
1028 | 1028 |
LEMON_SCOPE_FIX(GraphAdaptorBase<GR>, NodeMap<V>)> Parent; |
1029 | 1029 |
|
1030 | 1030 |
public: |
1031 | 1031 |
typedef V Value; |
1032 | 1032 |
|
1033 | 1033 |
NodeMap(const SubGraphBase<GR, NF, EF, ch>& adaptor) |
1034 | 1034 |
: Parent(adaptor) {} |
1035 | 1035 |
NodeMap(const SubGraphBase<GR, NF, EF, ch>& adaptor, const V& value) |
1036 | 1036 |
: Parent(adaptor, value) {} |
1037 | 1037 |
|
1038 | 1038 |
private: |
1039 | 1039 |
NodeMap& operator=(const NodeMap& cmap) { |
1040 | 1040 |
return operator=<NodeMap>(cmap); |
1041 | 1041 |
} |
1042 | 1042 |
|
1043 | 1043 |
template <typename CMap> |
1044 | 1044 |
NodeMap& operator=(const CMap& cmap) { |
1045 | 1045 |
Parent::operator=(cmap); |
1046 | 1046 |
return *this; |
1047 | 1047 |
} |
1048 | 1048 |
}; |
1049 | 1049 |
|
1050 | 1050 |
template <typename V> |
1051 |
class ArcMap |
|
1051 |
class ArcMap |
|
1052 | 1052 |
: public SubMapExtender<SubGraphBase<GR, NF, EF, ch>, |
1053 | 1053 |
LEMON_SCOPE_FIX(GraphAdaptorBase<GR>, ArcMap<V>)> { |
1054 |
typedef SubMapExtender<SubGraphBase<GR, NF, EF, ch>, |
|
1054 |
typedef SubMapExtender<SubGraphBase<GR, NF, EF, ch>, |
|
1055 | 1055 |
LEMON_SCOPE_FIX(GraphAdaptorBase<GR>, ArcMap<V>)> Parent; |
1056 | 1056 |
|
1057 | 1057 |
public: |
1058 | 1058 |
typedef V Value; |
1059 | 1059 |
|
1060 | 1060 |
ArcMap(const SubGraphBase<GR, NF, EF, ch>& adaptor) |
1061 | 1061 |
: Parent(adaptor) {} |
1062 | 1062 |
ArcMap(const SubGraphBase<GR, NF, EF, ch>& adaptor, const V& value) |
1063 | 1063 |
: Parent(adaptor, value) {} |
1064 | 1064 |
|
1065 | 1065 |
private: |
1066 | 1066 |
ArcMap& operator=(const ArcMap& cmap) { |
1067 | 1067 |
return operator=<ArcMap>(cmap); |
1068 | 1068 |
} |
1069 | 1069 |
|
1070 | 1070 |
template <typename CMap> |
1071 | 1071 |
ArcMap& operator=(const CMap& cmap) { |
1072 | 1072 |
Parent::operator=(cmap); |
1073 | 1073 |
return *this; |
1074 | 1074 |
} |
1075 | 1075 |
}; |
1076 | 1076 |
|
1077 | 1077 |
template <typename V> |
1078 |
class EdgeMap |
|
1078 |
class EdgeMap |
|
1079 | 1079 |
: public SubMapExtender<SubGraphBase<GR, NF, EF, ch>, |
1080 | 1080 |
LEMON_SCOPE_FIX(GraphAdaptorBase<GR>, EdgeMap<V>)> { |
1081 |
typedef SubMapExtender<SubGraphBase<GR, NF, EF, ch>, |
|
1081 |
typedef SubMapExtender<SubGraphBase<GR, NF, EF, ch>, |
|
1082 | 1082 |
LEMON_SCOPE_FIX(GraphAdaptorBase<GR>, EdgeMap<V>)> Parent; |
1083 | 1083 |
|
1084 | 1084 |
public: |
1085 | 1085 |
typedef V Value; |
1086 | 1086 |
|
1087 | 1087 |
EdgeMap(const SubGraphBase<GR, NF, EF, ch>& adaptor) |
1088 | 1088 |
: Parent(adaptor) {} |
1089 | 1089 |
|
1090 | 1090 |
EdgeMap(const SubGraphBase<GR, NF, EF, ch>& adaptor, const V& value) |
1091 | 1091 |
: Parent(adaptor, value) {} |
1092 | 1092 |
|
1093 | 1093 |
private: |
1094 | 1094 |
EdgeMap& operator=(const EdgeMap& cmap) { |
1095 | 1095 |
return operator=<EdgeMap>(cmap); |
1096 | 1096 |
} |
1097 | 1097 |
|
1098 | 1098 |
template <typename CMap> |
1099 | 1099 |
EdgeMap& operator=(const CMap& cmap) { |
1100 | 1100 |
Parent::operator=(cmap); |
1101 | 1101 |
return *this; |
1102 | 1102 |
} |
1103 | 1103 |
}; |
1104 | 1104 |
|
1105 | 1105 |
}; |
1106 | 1106 |
|
1107 | 1107 |
template <typename GR, typename NF, typename EF> |
1108 | 1108 |
class SubGraphBase<GR, NF, EF, false> |
1109 | 1109 |
: public GraphAdaptorBase<GR> { |
1110 | 1110 |
typedef GraphAdaptorBase<GR> Parent; |
1111 | 1111 |
public: |
1112 | 1112 |
typedef GR Graph; |
1113 | 1113 |
typedef NF NodeFilterMap; |
1114 | 1114 |
typedef EF EdgeFilterMap; |
1115 | 1115 |
|
1116 | 1116 |
typedef SubGraphBase Adaptor; |
1117 | 1117 |
protected: |
1118 | 1118 |
NF* _node_filter; |
1119 | 1119 |
EF* _edge_filter; |
1120 |
SubGraphBase() |
|
1121 |
: Parent(), _node_filter(0), _edge_filter(0) { } |
|
1120 |
SubGraphBase() |
|
1121 |
: Parent(), _node_filter(0), _edge_filter(0) { } |
|
1122 | 1122 |
|
1123 | 1123 |
void initialize(GR& graph, NF& node_filter, EF& edge_filter) { |
1124 | 1124 |
Parent::initialize(graph); |
1125 | 1125 |
_node_filter = &node_filter; |
1126 | 1126 |
_edge_filter = &edge_filter; |
1127 | 1127 |
} |
1128 | 1128 |
|
1129 | 1129 |
public: |
1130 | 1130 |
|
1131 | 1131 |
typedef typename Parent::Node Node; |
1132 | 1132 |
typedef typename Parent::Arc Arc; |
1133 | 1133 |
typedef typename Parent::Edge Edge; |
1134 | 1134 |
|
1135 | 1135 |
void first(Node& i) const { |
1136 | 1136 |
Parent::first(i); |
1137 | 1137 |
while (i!=INVALID && !(*_node_filter)[i]) Parent::next(i); |
1138 | 1138 |
} |
1139 | 1139 |
|
1140 | 1140 |
void first(Arc& i) const { |
1141 | 1141 |
Parent::first(i); |
1142 | 1142 |
while (i!=INVALID && !(*_edge_filter)[i]) Parent::next(i); |
1143 | 1143 |
} |
1144 | 1144 |
|
1145 | 1145 |
void first(Edge& i) const { |
1146 | 1146 |
Parent::first(i); |
1147 | 1147 |
while (i!=INVALID && !(*_edge_filter)[i]) Parent::next(i); |
1148 | 1148 |
} |
1149 | 1149 |
|
1150 | 1150 |
void firstIn(Arc& i, const Node& n) const { |
1151 | 1151 |
Parent::firstIn(i, n); |
1152 | 1152 |
while (i!=INVALID && !(*_edge_filter)[i]) Parent::nextIn(i); |
1153 | 1153 |
} |
1154 | 1154 |
|
1155 | 1155 |
void firstOut(Arc& i, const Node& n) const { |
1156 | 1156 |
Parent::firstOut(i, n); |
1157 | 1157 |
while (i!=INVALID && !(*_edge_filter)[i]) Parent::nextOut(i); |
1158 | 1158 |
} |
1159 | 1159 |
|
1160 | 1160 |
void firstInc(Edge& i, bool& d, const Node& n) const { |
1161 | 1161 |
Parent::firstInc(i, d, n); |
1162 | 1162 |
while (i!=INVALID && !(*_edge_filter)[i]) Parent::nextInc(i, d); |
1163 | 1163 |
} |
1164 | 1164 |
|
1165 | 1165 |
void next(Node& i) const { |
1166 | 1166 |
Parent::next(i); |
1167 | 1167 |
while (i!=INVALID && !(*_node_filter)[i]) Parent::next(i); |
1168 | 1168 |
} |
1169 | 1169 |
void next(Arc& i) const { |
1170 | 1170 |
Parent::next(i); |
1171 | 1171 |
while (i!=INVALID && !(*_edge_filter)[i]) Parent::next(i); |
1172 | 1172 |
} |
1173 | 1173 |
void next(Edge& i) const { |
1174 | 1174 |
Parent::next(i); |
1175 | 1175 |
while (i!=INVALID && !(*_edge_filter)[i]) Parent::next(i); |
1176 | 1176 |
} |
1177 | 1177 |
void nextIn(Arc& i) const { |
1178 | 1178 |
Parent::nextIn(i); |
1179 | 1179 |
while (i!=INVALID && !(*_edge_filter)[i]) Parent::nextIn(i); |
1180 | 1180 |
} |
1181 | 1181 |
|
1182 | 1182 |
void nextOut(Arc& i) const { |
1183 | 1183 |
Parent::nextOut(i); |
1184 | 1184 |
while (i!=INVALID && !(*_edge_filter)[i]) Parent::nextOut(i); |
1185 | 1185 |
} |
1186 | 1186 |
void nextInc(Edge& i, bool& d) const { |
1187 | 1187 |
Parent::nextInc(i, d); |
1188 | 1188 |
while (i!=INVALID && !(*_edge_filter)[i]) Parent::nextInc(i, d); |
1189 | 1189 |
} |
1190 | 1190 |
|
1191 | 1191 |
void status(const Node& n, bool v) const { _node_filter->set(n, v); } |
1192 | 1192 |
void status(const Edge& e, bool v) const { _edge_filter->set(e, v); } |
1193 | 1193 |
|
1194 | 1194 |
bool status(const Node& n) const { return (*_node_filter)[n]; } |
1195 | 1195 |
bool status(const Edge& e) const { return (*_edge_filter)[e]; } |
1196 | 1196 |
|
1197 | 1197 |
typedef False NodeNumTag; |
1198 | 1198 |
typedef False ArcNumTag; |
1199 | 1199 |
typedef False EdgeNumTag; |
1200 | 1200 |
|
1201 | 1201 |
typedef FindArcTagIndicator<Graph> FindArcTag; |
1202 | 1202 |
Arc findArc(const Node& u, const Node& v, |
1203 | 1203 |
const Arc& prev = INVALID) const { |
1204 | 1204 |
Arc arc = Parent::findArc(u, v, prev); |
1205 | 1205 |
while (arc != INVALID && !(*_edge_filter)[arc]) { |
1206 | 1206 |
arc = Parent::findArc(u, v, arc); |
1207 | 1207 |
} |
1208 | 1208 |
return arc; |
1209 | 1209 |
} |
1210 | 1210 |
|
1211 | 1211 |
typedef FindEdgeTagIndicator<Graph> FindEdgeTag; |
1212 | 1212 |
Edge findEdge(const Node& u, const Node& v, |
1213 | 1213 |
const Edge& prev = INVALID) const { |
1214 | 1214 |
Edge edge = Parent::findEdge(u, v, prev); |
1215 | 1215 |
while (edge != INVALID && !(*_edge_filter)[edge]) { |
1216 | 1216 |
edge = Parent::findEdge(u, v, edge); |
1217 | 1217 |
} |
1218 | 1218 |
return edge; |
1219 | 1219 |
} |
1220 | 1220 |
|
1221 | 1221 |
template <typename V> |
1222 |
class NodeMap |
|
1222 |
class NodeMap |
|
1223 | 1223 |
: public SubMapExtender<SubGraphBase<GR, NF, EF, false>, |
1224 | 1224 |
LEMON_SCOPE_FIX(GraphAdaptorBase<GR>, NodeMap<V>)> { |
1225 |
typedef SubMapExtender<SubGraphBase<GR, NF, EF, false>, |
|
1225 |
typedef SubMapExtender<SubGraphBase<GR, NF, EF, false>, |
|
1226 | 1226 |
LEMON_SCOPE_FIX(GraphAdaptorBase<GR>, NodeMap<V>)> Parent; |
1227 | 1227 |
|
1228 | 1228 |
public: |
1229 | 1229 |
typedef V Value; |
1230 | 1230 |
|
1231 | 1231 |
NodeMap(const SubGraphBase<GR, NF, EF, false>& adaptor) |
1232 | 1232 |
: Parent(adaptor) {} |
1233 | 1233 |
NodeMap(const SubGraphBase<GR, NF, EF, false>& adaptor, const V& value) |
1234 | 1234 |
: Parent(adaptor, value) {} |
1235 | 1235 |
|
1236 | 1236 |
private: |
1237 | 1237 |
NodeMap& operator=(const NodeMap& cmap) { |
1238 | 1238 |
return operator=<NodeMap>(cmap); |
1239 | 1239 |
} |
1240 | 1240 |
|
1241 | 1241 |
template <typename CMap> |
1242 | 1242 |
NodeMap& operator=(const CMap& cmap) { |
1243 | 1243 |
Parent::operator=(cmap); |
1244 | 1244 |
return *this; |
1245 | 1245 |
} |
1246 | 1246 |
}; |
1247 | 1247 |
|
1248 | 1248 |
template <typename V> |
1249 |
class ArcMap |
|
1249 |
class ArcMap |
|
1250 | 1250 |
: public SubMapExtender<SubGraphBase<GR, NF, EF, false>, |
1251 | 1251 |
LEMON_SCOPE_FIX(GraphAdaptorBase<GR>, ArcMap<V>)> { |
1252 |
typedef SubMapExtender<SubGraphBase<GR, NF, EF, false>, |
|
1252 |
typedef SubMapExtender<SubGraphBase<GR, NF, EF, false>, |
|
1253 | 1253 |
LEMON_SCOPE_FIX(GraphAdaptorBase<GR>, ArcMap<V>)> Parent; |
1254 | 1254 |
|
1255 | 1255 |
public: |
1256 | 1256 |
typedef V Value; |
1257 | 1257 |
|
1258 | 1258 |
ArcMap(const SubGraphBase<GR, NF, EF, false>& adaptor) |
1259 | 1259 |
: Parent(adaptor) {} |
1260 | 1260 |
ArcMap(const SubGraphBase<GR, NF, EF, false>& adaptor, const V& value) |
1261 | 1261 |
: Parent(adaptor, value) {} |
1262 | 1262 |
|
1263 | 1263 |
private: |
1264 | 1264 |
ArcMap& operator=(const ArcMap& cmap) { |
1265 | 1265 |
return operator=<ArcMap>(cmap); |
1266 | 1266 |
} |
1267 | 1267 |
|
1268 | 1268 |
template <typename CMap> |
1269 | 1269 |
ArcMap& operator=(const CMap& cmap) { |
1270 | 1270 |
Parent::operator=(cmap); |
1271 | 1271 |
return *this; |
1272 | 1272 |
} |
1273 | 1273 |
}; |
1274 | 1274 |
|
1275 | 1275 |
template <typename V> |
1276 |
class EdgeMap |
|
1276 |
class EdgeMap |
|
1277 | 1277 |
: public SubMapExtender<SubGraphBase<GR, NF, EF, false>, |
1278 | 1278 |
LEMON_SCOPE_FIX(GraphAdaptorBase<GR>, EdgeMap<V>)> { |
1279 |
typedef SubMapExtender<SubGraphBase<GR, NF, EF, false>, |
|
1280 |
LEMON_SCOPE_FIX(GraphAdaptorBase<GR>, EdgeMap<V>)> Parent; |
|
1279 |
typedef SubMapExtender<SubGraphBase<GR, NF, EF, false>, |
|
1280 |
LEMON_SCOPE_FIX(GraphAdaptorBase<GR>, EdgeMap<V>)> Parent; |
|
1281 | 1281 |
|
1282 | 1282 |
public: |
1283 | 1283 |
typedef V Value; |
1284 | 1284 |
|
1285 | 1285 |
EdgeMap(const SubGraphBase<GR, NF, EF, false>& adaptor) |
1286 | 1286 |
: Parent(adaptor) {} |
1287 | 1287 |
|
1288 | 1288 |
EdgeMap(const SubGraphBase<GR, NF, EF, false>& adaptor, const V& value) |
1289 | 1289 |
: Parent(adaptor, value) {} |
1290 | 1290 |
|
1291 | 1291 |
private: |
1292 | 1292 |
EdgeMap& operator=(const EdgeMap& cmap) { |
1293 | 1293 |
return operator=<EdgeMap>(cmap); |
1294 | 1294 |
} |
1295 | 1295 |
|
1296 | 1296 |
template <typename CMap> |
1297 | 1297 |
EdgeMap& operator=(const CMap& cmap) { |
1298 | 1298 |
Parent::operator=(cmap); |
1299 | 1299 |
return *this; |
1300 | 1300 |
} |
1301 | 1301 |
}; |
1302 | 1302 |
|
1303 | 1303 |
}; |
1304 | 1304 |
|
1305 | 1305 |
/// \ingroup graph_adaptors |
1306 | 1306 |
/// |
1307 | 1307 |
/// \brief Adaptor class for hiding nodes and edges in an undirected |
1308 | 1308 |
/// graph. |
1309 | 1309 |
/// |
1310 | 1310 |
/// SubGraph can be used for hiding nodes and edges in a graph. |
1311 | 1311 |
/// A \c bool node map and a \c bool edge map must be specified, which |
1312 | 1312 |
/// define the filters for nodes and edges. |
1313 | 1313 |
/// Only the nodes and edges with \c true filter value are |
1314 | 1314 |
/// shown in the subgraph. The edges that are incident to hidden |
1315 | 1315 |
/// nodes are also filtered out. |
1316 | 1316 |
/// This adaptor conforms to the \ref concepts::Graph "Graph" concept. |
1317 | 1317 |
/// |
1318 | 1318 |
/// The adapted graph can also be modified through this adaptor |
1319 | 1319 |
/// by adding or removing nodes or edges, unless the \c GR template |
1320 | 1320 |
/// parameter is set to be \c const. |
1321 | 1321 |
/// |
1322 | 1322 |
/// This class provides only linear time counting for nodes, edges and arcs. |
1323 | 1323 |
/// |
1324 | 1324 |
/// \tparam GR The type of the adapted graph. |
1325 | 1325 |
/// It must conform to the \ref concepts::Graph "Graph" concept. |
1326 | 1326 |
/// It can also be specified to be \c const. |
1327 | 1327 |
/// \tparam NF The type of the node filter map. |
1328 | 1328 |
/// It must be a \c bool (or convertible) node map of the |
1329 | 1329 |
/// adapted graph. The default type is |
1330 | 1330 |
/// \ref concepts::Graph::NodeMap "GR::NodeMap<bool>". |
1331 | 1331 |
/// \tparam EF The type of the edge filter map. |
1332 | 1332 |
/// It must be a \c bool (or convertible) edge map of the |
1333 | 1333 |
/// adapted graph. The default type is |
1334 | 1334 |
/// \ref concepts::Graph::EdgeMap "GR::EdgeMap<bool>". |
1335 | 1335 |
/// |
1336 | 1336 |
/// \note The \c Node, \c Edge and \c Arc types of this adaptor and the |
1337 | 1337 |
/// adapted graph are convertible to each other. |
1338 | 1338 |
/// |
1339 | 1339 |
/// \see FilterNodes |
1340 | 1340 |
/// \see FilterEdges |
1341 | 1341 |
#ifdef DOXYGEN |
1342 | 1342 |
template<typename GR, typename NF, typename EF> |
1343 | 1343 |
class SubGraph { |
1344 | 1344 |
#else |
1345 | 1345 |
template<typename GR, |
1346 | 1346 |
typename NF = typename GR::template NodeMap<bool>, |
1347 | 1347 |
typename EF = typename GR::template EdgeMap<bool> > |
1348 | 1348 |
class SubGraph : |
1349 | 1349 |
public GraphAdaptorExtender<SubGraphBase<GR, NF, EF, true> > { |
1350 | 1350 |
#endif |
1351 | 1351 |
public: |
1352 | 1352 |
/// The type of the adapted graph. |
1353 | 1353 |
typedef GR Graph; |
1354 | 1354 |
/// The type of the node filter map. |
1355 | 1355 |
typedef NF NodeFilterMap; |
1356 | 1356 |
/// The type of the edge filter map. |
1357 | 1357 |
typedef EF EdgeFilterMap; |
1358 | 1358 |
|
1359 | 1359 |
typedef GraphAdaptorExtender<SubGraphBase<GR, NF, EF, true> > |
1360 | 1360 |
Parent; |
1361 | 1361 |
|
1362 | 1362 |
typedef typename Parent::Node Node; |
1363 | 1363 |
typedef typename Parent::Edge Edge; |
1364 | 1364 |
|
1365 | 1365 |
protected: |
1366 | 1366 |
SubGraph() { } |
1367 | 1367 |
public: |
1368 | 1368 |
|
1369 | 1369 |
/// \brief Constructor |
1370 | 1370 |
/// |
1371 | 1371 |
/// Creates a subgraph for the given graph with the given node |
1372 | 1372 |
/// and edge filter maps. |
1373 | 1373 |
SubGraph(GR& graph, NF& node_filter, EF& edge_filter) { |
1374 | 1374 |
initialize(graph, node_filter, edge_filter); |
1375 | 1375 |
} |
1376 | 1376 |
|
1377 | 1377 |
/// \brief Sets the status of the given node |
1378 | 1378 |
/// |
1379 | 1379 |
/// This function sets the status of the given node. |
1380 | 1380 |
/// It is done by simply setting the assigned value of \c n |
1381 | 1381 |
/// to \c v in the node filter map. |
1382 | 1382 |
void status(const Node& n, bool v) const { Parent::status(n, v); } |
1383 | 1383 |
|
1384 | 1384 |
/// \brief Sets the status of the given edge |
1385 | 1385 |
/// |
1386 | 1386 |
/// This function sets the status of the given edge. |
1387 | 1387 |
/// It is done by simply setting the assigned value of \c e |
1388 | 1388 |
/// to \c v in the edge filter map. |
1389 | 1389 |
void status(const Edge& e, bool v) const { Parent::status(e, v); } |
1390 | 1390 |
|
1391 | 1391 |
/// \brief Returns the status of the given node |
1392 | 1392 |
/// |
1393 | 1393 |
/// This function returns the status of the given node. |
1394 | 1394 |
/// It is \c true if the given node is enabled (i.e. not hidden). |
1395 | 1395 |
bool status(const Node& n) const { return Parent::status(n); } |
1396 | 1396 |
|
1397 | 1397 |
/// \brief Returns the status of the given edge |
1398 | 1398 |
/// |
1399 | 1399 |
/// This function returns the status of the given edge. |
1400 | 1400 |
/// It is \c true if the given edge is enabled (i.e. not hidden). |
1401 | 1401 |
bool status(const Edge& e) const { return Parent::status(e); } |
1402 | 1402 |
|
1403 | 1403 |
/// \brief Disables the given node |
1404 | 1404 |
/// |
1405 | 1405 |
/// This function disables the given node in the subdigraph, |
1406 | 1406 |
/// so the iteration jumps over it. |
1407 | 1407 |
/// It is the same as \ref status() "status(n, false)". |
1408 | 1408 |
void disable(const Node& n) const { Parent::status(n, false); } |
1409 | 1409 |
|
1410 | 1410 |
/// \brief Disables the given edge |
1411 | 1411 |
/// |
1412 | 1412 |
/// This function disables the given edge in the subgraph, |
1413 | 1413 |
/// so the iteration jumps over it. |
1414 | 1414 |
/// It is the same as \ref status() "status(e, false)". |
1415 | 1415 |
void disable(const Edge& e) const { Parent::status(e, false); } |
1416 | 1416 |
|
1417 | 1417 |
/// \brief Enables the given node |
1418 | 1418 |
/// |
1419 | 1419 |
/// This function enables the given node in the subdigraph. |
1420 | 1420 |
/// It is the same as \ref status() "status(n, true)". |
1421 | 1421 |
void enable(const Node& n) const { Parent::status(n, true); } |
1422 | 1422 |
|
1423 | 1423 |
/// \brief Enables the given edge |
1424 | 1424 |
/// |
1425 | 1425 |
/// This function enables the given edge in the subgraph. |
1426 | 1426 |
/// It is the same as \ref status() "status(e, true)". |
1427 | 1427 |
void enable(const Edge& e) const { Parent::status(e, true); } |
1428 | 1428 |
|
1429 | 1429 |
}; |
1430 | 1430 |
|
1431 | 1431 |
/// \brief Returns a read-only SubGraph adaptor |
1432 | 1432 |
/// |
1433 | 1433 |
/// This function just returns a read-only \ref SubGraph adaptor. |
1434 | 1434 |
/// \ingroup graph_adaptors |
1435 | 1435 |
/// \relates SubGraph |
1436 | 1436 |
template<typename GR, typename NF, typename EF> |
1437 | 1437 |
SubGraph<const GR, NF, EF> |
1438 | 1438 |
subGraph(const GR& graph, NF& node_filter, EF& edge_filter) { |
1439 | 1439 |
return SubGraph<const GR, NF, EF> |
1440 | 1440 |
(graph, node_filter, edge_filter); |
1441 | 1441 |
} |
1442 | 1442 |
|
1443 | 1443 |
template<typename GR, typename NF, typename EF> |
1444 | 1444 |
SubGraph<const GR, const NF, EF> |
1445 | 1445 |
subGraph(const GR& graph, const NF& node_filter, EF& edge_filter) { |
1446 | 1446 |
return SubGraph<const GR, const NF, EF> |
1447 | 1447 |
(graph, node_filter, edge_filter); |
1448 | 1448 |
} |
1449 | 1449 |
|
1450 | 1450 |
template<typename GR, typename NF, typename EF> |
1451 | 1451 |
SubGraph<const GR, NF, const EF> |
1452 | 1452 |
subGraph(const GR& graph, NF& node_filter, const EF& edge_filter) { |
1453 | 1453 |
return SubGraph<const GR, NF, const EF> |
1454 | 1454 |
(graph, node_filter, edge_filter); |
1455 | 1455 |
} |
1456 | 1456 |
|
1457 | 1457 |
template<typename GR, typename NF, typename EF> |
1458 | 1458 |
SubGraph<const GR, const NF, const EF> |
1459 | 1459 |
subGraph(const GR& graph, const NF& node_filter, const EF& edge_filter) { |
1460 | 1460 |
return SubGraph<const GR, const NF, const EF> |
1461 | 1461 |
(graph, node_filter, edge_filter); |
1462 | 1462 |
} |
1463 | 1463 |
|
1464 | 1464 |
|
1465 | 1465 |
/// \ingroup graph_adaptors |
1466 | 1466 |
/// |
1467 | 1467 |
/// \brief Adaptor class for hiding nodes in a digraph or a graph. |
1468 | 1468 |
/// |
1469 | 1469 |
/// FilterNodes adaptor can be used for hiding nodes in a digraph or a |
1470 | 1470 |
/// graph. A \c bool node map must be specified, which defines the filter |
1471 | 1471 |
/// for the nodes. Only the nodes with \c true filter value and the |
1472 | 1472 |
/// arcs/edges incident to nodes both with \c true filter value are shown |
1473 | 1473 |
/// in the subgraph. This adaptor conforms to the \ref concepts::Digraph |
1474 | 1474 |
/// "Digraph" concept or the \ref concepts::Graph "Graph" concept |
1475 | 1475 |
/// depending on the \c GR template parameter. |
1476 | 1476 |
/// |
1477 | 1477 |
/// The adapted (di)graph can also be modified through this adaptor |
1478 | 1478 |
/// by adding or removing nodes or arcs/edges, unless the \c GR template |
1479 | 1479 |
/// parameter is set to be \c const. |
1480 | 1480 |
/// |
1481 | 1481 |
/// This class provides only linear time item counting. |
1482 | 1482 |
/// |
1483 | 1483 |
/// \tparam GR The type of the adapted digraph or graph. |
1484 | 1484 |
/// It must conform to the \ref concepts::Digraph "Digraph" concept |
1485 | 1485 |
/// or the \ref concepts::Graph "Graph" concept. |
1486 | 1486 |
/// It can also be specified to be \c const. |
1487 | 1487 |
/// \tparam NF The type of the node filter map. |
1488 | 1488 |
/// It must be a \c bool (or convertible) node map of the |
1489 | 1489 |
/// adapted (di)graph. The default type is |
1490 | 1490 |
/// \ref concepts::Graph::NodeMap "GR::NodeMap<bool>". |
1491 | 1491 |
/// |
1492 | 1492 |
/// \note The \c Node and <tt>Arc/Edge</tt> types of this adaptor and the |
1493 | 1493 |
/// adapted (di)graph are convertible to each other. |
1494 | 1494 |
#ifdef DOXYGEN |
1495 | 1495 |
template<typename GR, typename NF> |
1496 | 1496 |
class FilterNodes { |
1497 | 1497 |
#else |
1498 | 1498 |
template<typename GR, |
1499 | 1499 |
typename NF = typename GR::template NodeMap<bool>, |
1500 | 1500 |
typename Enable = void> |
1501 | 1501 |
class FilterNodes : |
1502 | 1502 |
public DigraphAdaptorExtender< |
1503 | 1503 |
SubDigraphBase<GR, NF, ConstMap<typename GR::Arc, Const<bool, true> >, |
1504 | 1504 |
true> > { |
1505 | 1505 |
#endif |
1506 | 1506 |
typedef DigraphAdaptorExtender< |
1507 |
SubDigraphBase<GR, NF, ConstMap<typename GR::Arc, Const<bool, true> >, |
|
1507 |
SubDigraphBase<GR, NF, ConstMap<typename GR::Arc, Const<bool, true> >, |
|
1508 | 1508 |
true> > Parent; |
1509 | 1509 |
|
1510 | 1510 |
public: |
1511 | 1511 |
|
1512 | 1512 |
typedef GR Digraph; |
1513 | 1513 |
typedef NF NodeFilterMap; |
1514 | 1514 |
|
1515 | 1515 |
typedef typename Parent::Node Node; |
1516 | 1516 |
|
1517 | 1517 |
protected: |
1518 | 1518 |
ConstMap<typename Digraph::Arc, Const<bool, true> > const_true_map; |
1519 | 1519 |
|
1520 | 1520 |
FilterNodes() : const_true_map() {} |
1521 | 1521 |
|
1522 | 1522 |
public: |
1523 | 1523 |
|
1524 | 1524 |
/// \brief Constructor |
1525 | 1525 |
/// |
1526 | 1526 |
/// Creates a subgraph for the given digraph or graph with the |
1527 | 1527 |
/// given node filter map. |
1528 |
FilterNodes(GR& graph, NF& node_filter) |
|
1528 |
FilterNodes(GR& graph, NF& node_filter) |
|
1529 | 1529 |
: Parent(), const_true_map() |
1530 | 1530 |
{ |
1531 | 1531 |
Parent::initialize(graph, node_filter, const_true_map); |
1532 | 1532 |
} |
1533 | 1533 |
|
1534 | 1534 |
/// \brief Sets the status of the given node |
1535 | 1535 |
/// |
1536 | 1536 |
/// This function sets the status of the given node. |
1537 | 1537 |
/// It is done by simply setting the assigned value of \c n |
1538 | 1538 |
/// to \c v in the node filter map. |
1539 | 1539 |
void status(const Node& n, bool v) const { Parent::status(n, v); } |
1540 | 1540 |
|
1541 | 1541 |
/// \brief Returns the status of the given node |
1542 | 1542 |
/// |
1543 | 1543 |
/// This function returns the status of the given node. |
1544 | 1544 |
/// It is \c true if the given node is enabled (i.e. not hidden). |
1545 | 1545 |
bool status(const Node& n) const { return Parent::status(n); } |
1546 | 1546 |
|
1547 | 1547 |
/// \brief Disables the given node |
1548 | 1548 |
/// |
1549 | 1549 |
/// This function disables the given node, so the iteration |
1550 | 1550 |
/// jumps over it. |
1551 | 1551 |
/// It is the same as \ref status() "status(n, false)". |
1552 | 1552 |
void disable(const Node& n) const { Parent::status(n, false); } |
1553 | 1553 |
|
1554 | 1554 |
/// \brief Enables the given node |
1555 | 1555 |
/// |
1556 | 1556 |
/// This function enables the given node. |
1557 | 1557 |
/// It is the same as \ref status() "status(n, true)". |
1558 | 1558 |
void enable(const Node& n) const { Parent::status(n, true); } |
1559 | 1559 |
|
1560 | 1560 |
}; |
1561 | 1561 |
|
1562 | 1562 |
template<typename GR, typename NF> |
1563 | 1563 |
class FilterNodes<GR, NF, |
1564 | 1564 |
typename enable_if<UndirectedTagIndicator<GR> >::type> : |
1565 | 1565 |
public GraphAdaptorExtender< |
1566 |
SubGraphBase<GR, NF, ConstMap<typename GR::Edge, Const<bool, true> >, |
|
1566 |
SubGraphBase<GR, NF, ConstMap<typename GR::Edge, Const<bool, true> >, |
|
1567 | 1567 |
true> > { |
1568 | 1568 |
|
1569 | 1569 |
typedef GraphAdaptorExtender< |
1570 |
SubGraphBase<GR, NF, ConstMap<typename GR::Edge, Const<bool, true> >, |
|
1570 |
SubGraphBase<GR, NF, ConstMap<typename GR::Edge, Const<bool, true> >, |
|
1571 | 1571 |
true> > Parent; |
1572 | 1572 |
|
1573 | 1573 |
public: |
1574 | 1574 |
|
1575 | 1575 |
typedef GR Graph; |
1576 | 1576 |
typedef NF NodeFilterMap; |
1577 | 1577 |
|
1578 | 1578 |
typedef typename Parent::Node Node; |
1579 | 1579 |
|
1580 | 1580 |
protected: |
1581 | 1581 |
ConstMap<typename GR::Edge, Const<bool, true> > const_true_map; |
1582 | 1582 |
|
1583 | 1583 |
FilterNodes() : const_true_map() {} |
1584 | 1584 |
|
1585 | 1585 |
public: |
1586 | 1586 |
|
1587 | 1587 |
FilterNodes(GR& graph, NodeFilterMap& node_filter) : |
1588 | 1588 |
Parent(), const_true_map() { |
1589 | 1589 |
Parent::initialize(graph, node_filter, const_true_map); |
1590 | 1590 |
} |
1591 | 1591 |
|
1592 | 1592 |
void status(const Node& n, bool v) const { Parent::status(n, v); } |
1593 | 1593 |
bool status(const Node& n) const { return Parent::status(n); } |
1594 | 1594 |
void disable(const Node& n) const { Parent::status(n, false); } |
1595 | 1595 |
void enable(const Node& n) const { Parent::status(n, true); } |
1596 | 1596 |
|
1597 | 1597 |
}; |
1598 | 1598 |
|
1599 | 1599 |
|
1600 | 1600 |
/// \brief Returns a read-only FilterNodes adaptor |
1601 | 1601 |
/// |
1602 | 1602 |
/// This function just returns a read-only \ref FilterNodes adaptor. |
1603 | 1603 |
/// \ingroup graph_adaptors |
1604 | 1604 |
/// \relates FilterNodes |
1605 | 1605 |
template<typename GR, typename NF> |
1606 | 1606 |
FilterNodes<const GR, NF> |
1607 | 1607 |
filterNodes(const GR& graph, NF& node_filter) { |
1608 | 1608 |
return FilterNodes<const GR, NF>(graph, node_filter); |
1609 | 1609 |
} |
1610 | 1610 |
|
1611 | 1611 |
template<typename GR, typename NF> |
1612 | 1612 |
FilterNodes<const GR, const NF> |
1613 | 1613 |
filterNodes(const GR& graph, const NF& node_filter) { |
1614 | 1614 |
return FilterNodes<const GR, const NF>(graph, node_filter); |
1615 | 1615 |
} |
1616 | 1616 |
|
1617 | 1617 |
/// \ingroup graph_adaptors |
1618 | 1618 |
/// |
1619 | 1619 |
/// \brief Adaptor class for hiding arcs in a digraph. |
1620 | 1620 |
/// |
1621 | 1621 |
/// FilterArcs adaptor can be used for hiding arcs in a digraph. |
1622 | 1622 |
/// A \c bool arc map must be specified, which defines the filter for |
1623 | 1623 |
/// the arcs. Only the arcs with \c true filter value are shown in the |
1624 | 1624 |
/// subdigraph. This adaptor conforms to the \ref concepts::Digraph |
1625 | 1625 |
/// "Digraph" concept. |
1626 | 1626 |
/// |
1627 | 1627 |
/// The adapted digraph can also be modified through this adaptor |
1628 | 1628 |
/// by adding or removing nodes or arcs, unless the \c GR template |
1629 | 1629 |
/// parameter is set to be \c const. |
1630 | 1630 |
/// |
1631 | 1631 |
/// This class provides only linear time counting for nodes and arcs. |
1632 | 1632 |
/// |
1633 | 1633 |
/// \tparam DGR The type of the adapted digraph. |
1634 | 1634 |
/// It must conform to the \ref concepts::Digraph "Digraph" concept. |
1635 | 1635 |
/// It can also be specified to be \c const. |
1636 | 1636 |
/// \tparam AF The type of the arc filter map. |
1637 | 1637 |
/// It must be a \c bool (or convertible) arc map of the |
1638 | 1638 |
/// adapted digraph. The default type is |
1639 | 1639 |
/// \ref concepts::Digraph::ArcMap "DGR::ArcMap<bool>". |
1640 | 1640 |
/// |
1641 | 1641 |
/// \note The \c Node and \c Arc types of this adaptor and the adapted |
1642 | 1642 |
/// digraph are convertible to each other. |
1643 | 1643 |
#ifdef DOXYGEN |
1644 | 1644 |
template<typename DGR, |
1645 | 1645 |
typename AF> |
1646 | 1646 |
class FilterArcs { |
1647 | 1647 |
#else |
1648 | 1648 |
template<typename DGR, |
1649 | 1649 |
typename AF = typename DGR::template ArcMap<bool> > |
1650 | 1650 |
class FilterArcs : |
1651 | 1651 |
public DigraphAdaptorExtender< |
1652 | 1652 |
SubDigraphBase<DGR, ConstMap<typename DGR::Node, Const<bool, true> >, |
1653 | 1653 |
AF, false> > { |
1654 | 1654 |
#endif |
1655 | 1655 |
typedef DigraphAdaptorExtender< |
1656 |
SubDigraphBase<DGR, ConstMap<typename DGR::Node, Const<bool, true> >, |
|
1656 |
SubDigraphBase<DGR, ConstMap<typename DGR::Node, Const<bool, true> >, |
|
1657 | 1657 |
AF, false> > Parent; |
1658 | 1658 |
|
1659 | 1659 |
public: |
1660 | 1660 |
|
1661 | 1661 |
/// The type of the adapted digraph. |
1662 | 1662 |
typedef DGR Digraph; |
1663 | 1663 |
/// The type of the arc filter map. |
1664 | 1664 |
typedef AF ArcFilterMap; |
1665 | 1665 |
|
1666 | 1666 |
typedef typename Parent::Arc Arc; |
1667 | 1667 |
|
1668 | 1668 |
protected: |
1669 | 1669 |
ConstMap<typename DGR::Node, Const<bool, true> > const_true_map; |
1670 | 1670 |
|
1671 | 1671 |
FilterArcs() : const_true_map() {} |
1672 | 1672 |
|
1673 | 1673 |
public: |
1674 | 1674 |
|
1675 | 1675 |
/// \brief Constructor |
1676 | 1676 |
/// |
1677 | 1677 |
/// Creates a subdigraph for the given digraph with the given arc |
1678 | 1678 |
/// filter map. |
1679 | 1679 |
FilterArcs(DGR& digraph, ArcFilterMap& arc_filter) |
1680 | 1680 |
: Parent(), const_true_map() { |
1681 | 1681 |
Parent::initialize(digraph, const_true_map, arc_filter); |
1682 | 1682 |
} |
1683 | 1683 |
|
1684 | 1684 |
/// \brief Sets the status of the given arc |
1685 | 1685 |
/// |
1686 | 1686 |
/// This function sets the status of the given arc. |
1687 | 1687 |
/// It is done by simply setting the assigned value of \c a |
1688 | 1688 |
/// to \c v in the arc filter map. |
1689 | 1689 |
void status(const Arc& a, bool v) const { Parent::status(a, v); } |
1690 | 1690 |
|
1691 | 1691 |
/// \brief Returns the status of the given arc |
1692 | 1692 |
/// |
1693 | 1693 |
/// This function returns the status of the given arc. |
1694 | 1694 |
/// It is \c true if the given arc is enabled (i.e. not hidden). |
1695 | 1695 |
bool status(const Arc& a) const { return Parent::status(a); } |
1696 | 1696 |
|
1697 | 1697 |
/// \brief Disables the given arc |
1698 | 1698 |
/// |
1699 | 1699 |
/// This function disables the given arc in the subdigraph, |
1700 | 1700 |
/// so the iteration jumps over it. |
1701 | 1701 |
/// It is the same as \ref status() "status(a, false)". |
1702 | 1702 |
void disable(const Arc& a) const { Parent::status(a, false); } |
1703 | 1703 |
|
1704 | 1704 |
/// \brief Enables the given arc |
1705 | 1705 |
/// |
1706 | 1706 |
/// This function enables the given arc in the subdigraph. |
1707 | 1707 |
/// It is the same as \ref status() "status(a, true)". |
1708 | 1708 |
void enable(const Arc& a) const { Parent::status(a, true); } |
1709 | 1709 |
|
1710 | 1710 |
}; |
1711 | 1711 |
|
1712 | 1712 |
/// \brief Returns a read-only FilterArcs adaptor |
1713 | 1713 |
/// |
1714 | 1714 |
/// This function just returns a read-only \ref FilterArcs adaptor. |
1715 | 1715 |
/// \ingroup graph_adaptors |
1716 | 1716 |
/// \relates FilterArcs |
1717 | 1717 |
template<typename DGR, typename AF> |
1718 | 1718 |
FilterArcs<const DGR, AF> |
1719 | 1719 |
filterArcs(const DGR& digraph, AF& arc_filter) { |
1720 | 1720 |
return FilterArcs<const DGR, AF>(digraph, arc_filter); |
1721 | 1721 |
} |
1722 | 1722 |
|
1723 | 1723 |
template<typename DGR, typename AF> |
1724 | 1724 |
FilterArcs<const DGR, const AF> |
1725 | 1725 |
filterArcs(const DGR& digraph, const AF& arc_filter) { |
1726 | 1726 |
return FilterArcs<const DGR, const AF>(digraph, arc_filter); |
1727 | 1727 |
} |
1728 | 1728 |
|
1729 | 1729 |
/// \ingroup graph_adaptors |
1730 | 1730 |
/// |
1731 | 1731 |
/// \brief Adaptor class for hiding edges in a graph. |
1732 | 1732 |
/// |
1733 | 1733 |
/// FilterEdges adaptor can be used for hiding edges in a graph. |
1734 | 1734 |
/// A \c bool edge map must be specified, which defines the filter for |
1735 | 1735 |
/// the edges. Only the edges with \c true filter value are shown in the |
1736 | 1736 |
/// subgraph. This adaptor conforms to the \ref concepts::Graph |
1737 | 1737 |
/// "Graph" concept. |
1738 | 1738 |
/// |
1739 | 1739 |
/// The adapted graph can also be modified through this adaptor |
1740 | 1740 |
/// by adding or removing nodes or edges, unless the \c GR template |
1741 | 1741 |
/// parameter is set to be \c const. |
1742 | 1742 |
/// |
1743 | 1743 |
/// This class provides only linear time counting for nodes, edges and arcs. |
1744 | 1744 |
/// |
1745 | 1745 |
/// \tparam GR The type of the adapted graph. |
1746 | 1746 |
/// It must conform to the \ref concepts::Graph "Graph" concept. |
1747 | 1747 |
/// It can also be specified to be \c const. |
1748 | 1748 |
/// \tparam EF The type of the edge filter map. |
1749 | 1749 |
/// It must be a \c bool (or convertible) edge map of the |
1750 | 1750 |
/// adapted graph. The default type is |
1751 | 1751 |
/// \ref concepts::Graph::EdgeMap "GR::EdgeMap<bool>". |
1752 | 1752 |
/// |
1753 | 1753 |
/// \note The \c Node, \c Edge and \c Arc types of this adaptor and the |
1754 | 1754 |
/// adapted graph are convertible to each other. |
1755 | 1755 |
#ifdef DOXYGEN |
1756 | 1756 |
template<typename GR, |
1757 | 1757 |
typename EF> |
1758 | 1758 |
class FilterEdges { |
1759 | 1759 |
#else |
1760 | 1760 |
template<typename GR, |
1761 | 1761 |
typename EF = typename GR::template EdgeMap<bool> > |
1762 | 1762 |
class FilterEdges : |
1763 | 1763 |
public GraphAdaptorExtender< |
1764 |
SubGraphBase<GR, ConstMap<typename GR::Node, Const<bool, true> >, |
|
1764 |
SubGraphBase<GR, ConstMap<typename GR::Node, Const<bool, true> >, |
|
1765 | 1765 |
EF, false> > { |
1766 | 1766 |
#endif |
1767 | 1767 |
typedef GraphAdaptorExtender< |
1768 |
SubGraphBase<GR, ConstMap<typename GR::Node, Const<bool, true > >, |
|
1768 |
SubGraphBase<GR, ConstMap<typename GR::Node, Const<bool, true > >, |
|
1769 | 1769 |
EF, false> > Parent; |
1770 | 1770 |
|
1771 | 1771 |
public: |
1772 | 1772 |
|
1773 | 1773 |
/// The type of the adapted graph. |
1774 | 1774 |
typedef GR Graph; |
1775 | 1775 |
/// The type of the edge filter map. |
1776 | 1776 |
typedef EF EdgeFilterMap; |
1777 | 1777 |
|
1778 | 1778 |
typedef typename Parent::Edge Edge; |
1779 | 1779 |
|
1780 | 1780 |
protected: |
1781 | 1781 |
ConstMap<typename GR::Node, Const<bool, true> > const_true_map; |
1782 | 1782 |
|
1783 | 1783 |
FilterEdges() : const_true_map(true) { |
1784 | 1784 |
Parent::setNodeFilterMap(const_true_map); |
1785 | 1785 |
} |
1786 | 1786 |
|
1787 | 1787 |
public: |
1788 | 1788 |
|
1789 | 1789 |
/// \brief Constructor |
1790 | 1790 |
/// |
1791 | 1791 |
/// Creates a subgraph for the given graph with the given edge |
1792 | 1792 |
/// filter map. |
1793 |
FilterEdges(GR& graph, EF& edge_filter) |
|
1793 |
FilterEdges(GR& graph, EF& edge_filter) |
|
1794 | 1794 |
: Parent(), const_true_map() { |
1795 | 1795 |
Parent::initialize(graph, const_true_map, edge_filter); |
1796 | 1796 |
} |
1797 | 1797 |
|
1798 | 1798 |
/// \brief Sets the status of the given edge |
1799 | 1799 |
/// |
1800 | 1800 |
/// This function sets the status of the given edge. |
1801 | 1801 |
/// It is done by simply setting the assigned value of \c e |
1802 | 1802 |
/// to \c v in the edge filter map. |
1803 | 1803 |
void status(const Edge& e, bool v) const { Parent::status(e, v); } |
1804 | 1804 |
|
1805 | 1805 |
/// \brief Returns the status of the given edge |
1806 | 1806 |
/// |
1807 | 1807 |
/// This function returns the status of the given edge. |
1808 | 1808 |
/// It is \c true if the given edge is enabled (i.e. not hidden). |
1809 | 1809 |
bool status(const Edge& e) const { return Parent::status(e); } |
1810 | 1810 |
|
1811 | 1811 |
/// \brief Disables the given edge |
1812 | 1812 |
/// |
1813 | 1813 |
/// This function disables the given edge in the subgraph, |
1814 | 1814 |
/// so the iteration jumps over it. |
1815 | 1815 |
/// It is the same as \ref status() "status(e, false)". |
1816 | 1816 |
void disable(const Edge& e) const { Parent::status(e, false); } |
1817 | 1817 |
|
1818 | 1818 |
/// \brief Enables the given edge |
1819 | 1819 |
/// |
1820 | 1820 |
/// This function enables the given edge in the subgraph. |
1821 | 1821 |
/// It is the same as \ref status() "status(e, true)". |
1822 | 1822 |
void enable(const Edge& e) const { Parent::status(e, true); } |
1823 | 1823 |
|
1824 | 1824 |
}; |
1825 | 1825 |
|
1826 | 1826 |
/// \brief Returns a read-only FilterEdges adaptor |
1827 | 1827 |
/// |
1828 | 1828 |
/// This function just returns a read-only \ref FilterEdges adaptor. |
1829 | 1829 |
/// \ingroup graph_adaptors |
1830 | 1830 |
/// \relates FilterEdges |
1831 | 1831 |
template<typename GR, typename EF> |
1832 | 1832 |
FilterEdges<const GR, EF> |
1833 | 1833 |
filterEdges(const GR& graph, EF& edge_filter) { |
1834 | 1834 |
return FilterEdges<const GR, EF>(graph, edge_filter); |
1835 | 1835 |
} |
1836 | 1836 |
|
1837 | 1837 |
template<typename GR, typename EF> |
1838 | 1838 |
FilterEdges<const GR, const EF> |
1839 | 1839 |
filterEdges(const GR& graph, const EF& edge_filter) { |
1840 | 1840 |
return FilterEdges<const GR, const EF>(graph, edge_filter); |
1841 | 1841 |
} |
1842 | 1842 |
|
1843 | 1843 |
|
1844 | 1844 |
template <typename DGR> |
1845 | 1845 |
class UndirectorBase { |
1846 | 1846 |
public: |
1847 | 1847 |
typedef DGR Digraph; |
1848 | 1848 |
typedef UndirectorBase Adaptor; |
1849 | 1849 |
|
1850 | 1850 |
typedef True UndirectedTag; |
1851 | 1851 |
|
1852 | 1852 |
typedef typename Digraph::Arc Edge; |
1853 | 1853 |
typedef typename Digraph::Node Node; |
1854 | 1854 |
|
1855 | 1855 |
class Arc { |
1856 | 1856 |
friend class UndirectorBase; |
1857 | 1857 |
protected: |
1858 | 1858 |
Edge _edge; |
1859 | 1859 |
bool _forward; |
1860 | 1860 |
|
1861 |
Arc(const Edge& edge, bool forward) |
|
1861 |
Arc(const Edge& edge, bool forward) |
|
1862 | 1862 |
: _edge(edge), _forward(forward) {} |
1863 | 1863 |
|
1864 | 1864 |
public: |
1865 | 1865 |
Arc() {} |
1866 | 1866 |
|
1867 | 1867 |
Arc(Invalid) : _edge(INVALID), _forward(true) {} |
1868 | 1868 |
|
1869 | 1869 |
operator const Edge&() const { return _edge; } |
1870 | 1870 |
|
1871 | 1871 |
bool operator==(const Arc &other) const { |
1872 | 1872 |
return _forward == other._forward && _edge == other._edge; |
1873 | 1873 |
} |
1874 | 1874 |
bool operator!=(const Arc &other) const { |
1875 | 1875 |
return _forward != other._forward || _edge != other._edge; |
1876 | 1876 |
} |
1877 | 1877 |
bool operator<(const Arc &other) const { |
1878 | 1878 |
return _forward < other._forward || |
1879 | 1879 |
(_forward == other._forward && _edge < other._edge); |
1880 | 1880 |
} |
1881 | 1881 |
}; |
1882 | 1882 |
|
1883 | 1883 |
void first(Node& n) const { |
1884 | 1884 |
_digraph->first(n); |
1885 | 1885 |
} |
1886 | 1886 |
|
1887 | 1887 |
void next(Node& n) const { |
1888 | 1888 |
_digraph->next(n); |
1889 | 1889 |
} |
1890 | 1890 |
|
1891 | 1891 |
void first(Arc& a) const { |
1892 | 1892 |
_digraph->first(a._edge); |
1893 | 1893 |
a._forward = true; |
1894 | 1894 |
} |
1895 | 1895 |
|
1896 | 1896 |
void next(Arc& a) const { |
1897 | 1897 |
if (a._forward) { |
1898 | 1898 |
a._forward = false; |
1899 | 1899 |
} else { |
1900 | 1900 |
_digraph->next(a._edge); |
1901 | 1901 |
a._forward = true; |
1902 | 1902 |
} |
1903 | 1903 |
} |
1904 | 1904 |
|
1905 | 1905 |
void first(Edge& e) const { |
1906 | 1906 |
_digraph->first(e); |
1907 | 1907 |
} |
1908 | 1908 |
|
1909 | 1909 |
void next(Edge& e) const { |
1910 | 1910 |
_digraph->next(e); |
1911 | 1911 |
} |
1912 | 1912 |
|
1913 | 1913 |
void firstOut(Arc& a, const Node& n) const { |
1914 | 1914 |
_digraph->firstIn(a._edge, n); |
1915 | 1915 |
if (a._edge != INVALID ) { |
1916 | 1916 |
a._forward = false; |
1917 | 1917 |
} else { |
1918 | 1918 |
_digraph->firstOut(a._edge, n); |
1919 | 1919 |
a._forward = true; |
1920 | 1920 |
} |
1921 | 1921 |
} |
1922 | 1922 |
void nextOut(Arc &a) const { |
1923 | 1923 |
if (!a._forward) { |
1924 | 1924 |
Node n = _digraph->target(a._edge); |
1925 | 1925 |
_digraph->nextIn(a._edge); |
1926 | 1926 |
if (a._edge == INVALID) { |
1927 | 1927 |
_digraph->firstOut(a._edge, n); |
1928 | 1928 |
a._forward = true; |
1929 | 1929 |
} |
1930 | 1930 |
} |
1931 | 1931 |
else { |
1932 | 1932 |
_digraph->nextOut(a._edge); |
1933 | 1933 |
} |
1934 | 1934 |
} |
1935 | 1935 |
|
1936 | 1936 |
void firstIn(Arc &a, const Node &n) const { |
1937 | 1937 |
_digraph->firstOut(a._edge, n); |
1938 | 1938 |
if (a._edge != INVALID ) { |
1939 | 1939 |
a._forward = false; |
1940 | 1940 |
} else { |
1941 | 1941 |
_digraph->firstIn(a._edge, n); |
1942 | 1942 |
a._forward = true; |
1943 | 1943 |
} |
1944 | 1944 |
} |
1945 | 1945 |
void nextIn(Arc &a) const { |
1946 | 1946 |
if (!a._forward) { |
1947 | 1947 |
Node n = _digraph->source(a._edge); |
1948 | 1948 |
_digraph->nextOut(a._edge); |
1949 | 1949 |
if (a._edge == INVALID ) { |
1950 | 1950 |
_digraph->firstIn(a._edge, n); |
1951 | 1951 |
a._forward = true; |
1952 | 1952 |
} |
1953 | 1953 |
} |
1954 | 1954 |
else { |
1955 | 1955 |
_digraph->nextIn(a._edge); |
1956 | 1956 |
} |
1957 | 1957 |
} |
1958 | 1958 |
|
1959 | 1959 |
void firstInc(Edge &e, bool &d, const Node &n) const { |
1960 | 1960 |
d = true; |
1961 | 1961 |
_digraph->firstOut(e, n); |
1962 | 1962 |
if (e != INVALID) return; |
1963 | 1963 |
d = false; |
1964 | 1964 |
_digraph->firstIn(e, n); |
1965 | 1965 |
} |
1966 | 1966 |
|
1967 | 1967 |
void nextInc(Edge &e, bool &d) const { |
1968 | 1968 |
if (d) { |
1969 | 1969 |
Node s = _digraph->source(e); |
1970 | 1970 |
_digraph->nextOut(e); |
1971 | 1971 |
if (e != INVALID) return; |
1972 | 1972 |
d = false; |
1973 | 1973 |
_digraph->firstIn(e, s); |
1974 | 1974 |
} else { |
1975 | 1975 |
_digraph->nextIn(e); |
1976 | 1976 |
} |
1977 | 1977 |
} |
1978 | 1978 |
|
1979 | 1979 |
Node u(const Edge& e) const { |
1980 | 1980 |
return _digraph->source(e); |
1981 | 1981 |
} |
1982 | 1982 |
|
1983 | 1983 |
Node v(const Edge& e) const { |
1984 | 1984 |
return _digraph->target(e); |
1985 | 1985 |
} |
1986 | 1986 |
|
1987 | 1987 |
Node source(const Arc &a) const { |
1988 | 1988 |
return a._forward ? _digraph->source(a._edge) : _digraph->target(a._edge); |
1989 | 1989 |
} |
1990 | 1990 |
|
1991 | 1991 |
Node target(const Arc &a) const { |
1992 | 1992 |
return a._forward ? _digraph->target(a._edge) : _digraph->source(a._edge); |
1993 | 1993 |
} |
1994 | 1994 |
|
1995 | 1995 |
static Arc direct(const Edge &e, bool d) { |
1996 | 1996 |
return Arc(e, d); |
1997 | 1997 |
} |
1998 | 1998 |
|
1999 | 1999 |
static bool direction(const Arc &a) { return a._forward; } |
2000 | 2000 |
|
2001 | 2001 |
Node nodeFromId(int ix) const { return _digraph->nodeFromId(ix); } |
2002 | 2002 |
Arc arcFromId(int ix) const { |
2003 | 2003 |
return direct(_digraph->arcFromId(ix >> 1), bool(ix & 1)); |
2004 | 2004 |
} |
2005 | 2005 |
Edge edgeFromId(int ix) const { return _digraph->arcFromId(ix); } |
2006 | 2006 |
|
2007 | 2007 |
int id(const Node &n) const { return _digraph->id(n); } |
2008 | 2008 |
int id(const Arc &a) const { |
2009 | 2009 |
return (_digraph->id(a) << 1) | (a._forward ? 1 : 0); |
2010 | 2010 |
} |
2011 | 2011 |
int id(const Edge &e) const { return _digraph->id(e); } |
2012 | 2012 |
|
2013 | 2013 |
int maxNodeId() const { return _digraph->maxNodeId(); } |
2014 | 2014 |
int maxArcId() const { return (_digraph->maxArcId() << 1) | 1; } |
2015 | 2015 |
int maxEdgeId() const { return _digraph->maxArcId(); } |
2016 | 2016 |
|
2017 | 2017 |
Node addNode() { return _digraph->addNode(); } |
2018 | 2018 |
Edge addEdge(const Node& u, const Node& v) { |
2019 | 2019 |
return _digraph->addArc(u, v); |
2020 | 2020 |
} |
2021 | 2021 |
|
2022 | 2022 |
void erase(const Node& i) { _digraph->erase(i); } |
2023 | 2023 |
void erase(const Edge& i) { _digraph->erase(i); } |
2024 | 2024 |
|
2025 | 2025 |
void clear() { _digraph->clear(); } |
2026 | 2026 |
|
2027 | 2027 |
typedef NodeNumTagIndicator<Digraph> NodeNumTag; |
2028 | 2028 |
int nodeNum() const { return _digraph->nodeNum(); } |
2029 | 2029 |
|
2030 | 2030 |
typedef ArcNumTagIndicator<Digraph> ArcNumTag; |
2031 | 2031 |
int arcNum() const { return 2 * _digraph->arcNum(); } |
2032 | 2032 |
|
2033 | 2033 |
typedef ArcNumTag EdgeNumTag; |
2034 | 2034 |
int edgeNum() const { return _digraph->arcNum(); } |
2035 | 2035 |
|
2036 | 2036 |
typedef FindArcTagIndicator<Digraph> FindArcTag; |
2037 | 2037 |
Arc findArc(Node s, Node t, Arc p = INVALID) const { |
2038 | 2038 |
if (p == INVALID) { |
2039 | 2039 |
Edge arc = _digraph->findArc(s, t); |
2040 | 2040 |
if (arc != INVALID) return direct(arc, true); |
2041 | 2041 |
arc = _digraph->findArc(t, s); |
2042 | 2042 |
if (arc != INVALID) return direct(arc, false); |
2043 | 2043 |
} else if (direction(p)) { |
2044 | 2044 |
Edge arc = _digraph->findArc(s, t, p); |
2045 | 2045 |
if (arc != INVALID) return direct(arc, true); |
2046 | 2046 |
arc = _digraph->findArc(t, s); |
2047 | 2047 |
if (arc != INVALID) return direct(arc, false); |
2048 | 2048 |
} else { |
2049 | 2049 |
Edge arc = _digraph->findArc(t, s, p); |
2050 | 2050 |
if (arc != INVALID) return direct(arc, false); |
2051 | 2051 |
} |
2052 | 2052 |
return INVALID; |
2053 | 2053 |
} |
2054 | 2054 |
|
2055 | 2055 |
typedef FindArcTag FindEdgeTag; |
2056 | 2056 |
Edge findEdge(Node s, Node t, Edge p = INVALID) const { |
2057 | 2057 |
if (s != t) { |
2058 | 2058 |
if (p == INVALID) { |
2059 | 2059 |
Edge arc = _digraph->findArc(s, t); |
2060 | 2060 |
if (arc != INVALID) return arc; |
2061 | 2061 |
arc = _digraph->findArc(t, s); |
2062 | 2062 |
if (arc != INVALID) return arc; |
2063 | 2063 |
} else if (_digraph->source(p) == s) { |
2064 | 2064 |
Edge arc = _digraph->findArc(s, t, p); |
2065 | 2065 |
if (arc != INVALID) return arc; |
2066 | 2066 |
arc = _digraph->findArc(t, s); |
2067 | 2067 |
if (arc != INVALID) return arc; |
2068 | 2068 |
} else { |
2069 | 2069 |
Edge arc = _digraph->findArc(t, s, p); |
2070 | 2070 |
if (arc != INVALID) return arc; |
2071 | 2071 |
} |
2072 | 2072 |
} else { |
2073 | 2073 |
return _digraph->findArc(s, t, p); |
2074 | 2074 |
} |
2075 | 2075 |
return INVALID; |
2076 | 2076 |
} |
2077 | 2077 |
|
2078 | 2078 |
private: |
2079 | 2079 |
|
2080 | 2080 |
template <typename V> |
2081 | 2081 |
class ArcMapBase { |
2082 | 2082 |
private: |
2083 | 2083 |
|
2084 | 2084 |
typedef typename DGR::template ArcMap<V> MapImpl; |
2085 | 2085 |
|
2086 | 2086 |
public: |
2087 | 2087 |
|
2088 | 2088 |
typedef typename MapTraits<MapImpl>::ReferenceMapTag ReferenceMapTag; |
2089 | 2089 |
|
2090 | 2090 |
typedef V Value; |
2091 | 2091 |
typedef Arc Key; |
2092 | 2092 |
typedef typename MapTraits<MapImpl>::ConstReturnValue ConstReturnValue; |
2093 | 2093 |
typedef typename MapTraits<MapImpl>::ReturnValue ReturnValue; |
2094 | 2094 |
typedef typename MapTraits<MapImpl>::ConstReturnValue ConstReference; |
2095 | 2095 |
typedef typename MapTraits<MapImpl>::ReturnValue Reference; |
2096 | 2096 |
|
2097 | 2097 |
ArcMapBase(const UndirectorBase<DGR>& adaptor) : |
2098 | 2098 |
_forward(*adaptor._digraph), _backward(*adaptor._digraph) {} |
2099 | 2099 |
|
2100 | 2100 |
ArcMapBase(const UndirectorBase<DGR>& adaptor, const V& value) |
2101 |
: _forward(*adaptor._digraph, value), |
|
2101 |
: _forward(*adaptor._digraph, value), |
|
2102 | 2102 |
_backward(*adaptor._digraph, value) {} |
2103 | 2103 |
|
2104 | 2104 |
void set(const Arc& a, const V& value) { |
2105 | 2105 |
if (direction(a)) { |
2106 | 2106 |
_forward.set(a, value); |
2107 | 2107 |
} else { |
2108 | 2108 |
_backward.set(a, value); |
2109 | 2109 |
} |
2110 | 2110 |
} |
2111 | 2111 |
|
2112 | 2112 |
ConstReturnValue operator[](const Arc& a) const { |
2113 | 2113 |
if (direction(a)) { |
2114 | 2114 |
return _forward[a]; |
2115 | 2115 |
} else { |
2116 | 2116 |
return _backward[a]; |
2117 | 2117 |
} |
2118 | 2118 |
} |
2119 | 2119 |
|
2120 | 2120 |
ReturnValue operator[](const Arc& a) { |
2121 | 2121 |
if (direction(a)) { |
2122 | 2122 |
return _forward[a]; |
2123 | 2123 |
} else { |
2124 | 2124 |
return _backward[a]; |
2125 | 2125 |
} |
2126 | 2126 |
} |
2127 | 2127 |
|
2128 | 2128 |
protected: |
2129 | 2129 |
|
2130 | 2130 |
MapImpl _forward, _backward; |
2131 | 2131 |
|
2132 | 2132 |
}; |
2133 | 2133 |
|
2134 | 2134 |
public: |
2135 | 2135 |
|
2136 | 2136 |
template <typename V> |
2137 | 2137 |
class NodeMap : public DGR::template NodeMap<V> { |
2138 | 2138 |
typedef typename DGR::template NodeMap<V> Parent; |
2139 | 2139 |
|
2140 | 2140 |
public: |
2141 | 2141 |
typedef V Value; |
2142 | 2142 |
|
2143 | 2143 |
explicit NodeMap(const UndirectorBase<DGR>& adaptor) |
2144 | 2144 |
: Parent(*adaptor._digraph) {} |
2145 | 2145 |
|
2146 | 2146 |
NodeMap(const UndirectorBase<DGR>& adaptor, const V& value) |
2147 | 2147 |
: Parent(*adaptor._digraph, value) { } |
2148 | 2148 |
|
2149 | 2149 |
private: |
2150 | 2150 |
NodeMap& operator=(const NodeMap& cmap) { |
2151 | 2151 |
return operator=<NodeMap>(cmap); |
2152 | 2152 |
} |
2153 | 2153 |
|
2154 | 2154 |
template <typename CMap> |
2155 | 2155 |
NodeMap& operator=(const CMap& cmap) { |
2156 | 2156 |
Parent::operator=(cmap); |
2157 | 2157 |
return *this; |
2158 | 2158 |
} |
2159 | 2159 |
|
2160 | 2160 |
}; |
2161 | 2161 |
|
2162 | 2162 |
template <typename V> |
2163 | 2163 |
class ArcMap |
2164 | 2164 |
: public SubMapExtender<UndirectorBase<DGR>, ArcMapBase<V> > { |
2165 | 2165 |
typedef SubMapExtender<UndirectorBase<DGR>, ArcMapBase<V> > Parent; |
2166 | 2166 |
|
2167 | 2167 |
public: |
2168 | 2168 |
typedef V Value; |
2169 | 2169 |
|
2170 | 2170 |
explicit ArcMap(const UndirectorBase<DGR>& adaptor) |
2171 | 2171 |
: Parent(adaptor) {} |
2172 | 2172 |
|
2173 | 2173 |
ArcMap(const UndirectorBase<DGR>& adaptor, const V& value) |
2174 | 2174 |
: Parent(adaptor, value) {} |
2175 | 2175 |
|
2176 | 2176 |
private: |
2177 | 2177 |
ArcMap& operator=(const ArcMap& cmap) { |
2178 | 2178 |
return operator=<ArcMap>(cmap); |
2179 | 2179 |
} |
2180 | 2180 |
|
2181 | 2181 |
template <typename CMap> |
2182 | 2182 |
ArcMap& operator=(const CMap& cmap) { |
2183 | 2183 |
Parent::operator=(cmap); |
2184 | 2184 |
return *this; |
2185 | 2185 |
} |
2186 | 2186 |
}; |
2187 | 2187 |
|
2188 | 2188 |
template <typename V> |
2189 | 2189 |
class EdgeMap : public Digraph::template ArcMap<V> { |
2190 | 2190 |
typedef typename Digraph::template ArcMap<V> Parent; |
2191 | 2191 |
|
2192 | 2192 |
public: |
2193 | 2193 |
typedef V Value; |
2194 | 2194 |
|
2195 | 2195 |
explicit EdgeMap(const UndirectorBase<DGR>& adaptor) |
2196 | 2196 |
: Parent(*adaptor._digraph) {} |
2197 | 2197 |
|
2198 | 2198 |
EdgeMap(const UndirectorBase<DGR>& adaptor, const V& value) |
2199 | 2199 |
: Parent(*adaptor._digraph, value) {} |
2200 | 2200 |
|
2201 | 2201 |
private: |
2202 | 2202 |
EdgeMap& operator=(const EdgeMap& cmap) { |
2203 | 2203 |
return operator=<EdgeMap>(cmap); |
2204 | 2204 |
} |
2205 | 2205 |
|
2206 | 2206 |
template <typename CMap> |
2207 | 2207 |
EdgeMap& operator=(const CMap& cmap) { |
2208 | 2208 |
Parent::operator=(cmap); |
2209 | 2209 |
return *this; |
2210 | 2210 |
} |
2211 | 2211 |
|
2212 | 2212 |
}; |
2213 | 2213 |
|
2214 | 2214 |
typedef typename ItemSetTraits<DGR, Node>::ItemNotifier NodeNotifier; |
2215 | 2215 |
NodeNotifier& notifier(Node) const { return _digraph->notifier(Node()); } |
2216 | 2216 |
|
2217 | 2217 |
typedef typename ItemSetTraits<DGR, Edge>::ItemNotifier EdgeNotifier; |
2218 | 2218 |
EdgeNotifier& notifier(Edge) const { return _digraph->notifier(Edge()); } |
2219 |
|
|
2219 |
|
|
2220 | 2220 |
typedef EdgeNotifier ArcNotifier; |
2221 | 2221 |
ArcNotifier& notifier(Arc) const { return _digraph->notifier(Edge()); } |
2222 | 2222 |
|
2223 | 2223 |
protected: |
2224 | 2224 |
|
2225 | 2225 |
UndirectorBase() : _digraph(0) {} |
2226 | 2226 |
|
2227 | 2227 |
DGR* _digraph; |
2228 | 2228 |
|
2229 | 2229 |
void initialize(DGR& digraph) { |
2230 | 2230 |
_digraph = &digraph; |
2231 | 2231 |
} |
2232 | 2232 |
|
2233 | 2233 |
}; |
2234 | 2234 |
|
2235 | 2235 |
/// \ingroup graph_adaptors |
2236 | 2236 |
/// |
2237 | 2237 |
/// \brief Adaptor class for viewing a digraph as an undirected graph. |
2238 | 2238 |
/// |
2239 | 2239 |
/// Undirector adaptor can be used for viewing a digraph as an undirected |
2240 | 2240 |
/// graph. All arcs of the underlying digraph are showed in the |
2241 | 2241 |
/// adaptor as an edge (and also as a pair of arcs, of course). |
2242 | 2242 |
/// This adaptor conforms to the \ref concepts::Graph "Graph" concept. |
2243 | 2243 |
/// |
2244 | 2244 |
/// The adapted digraph can also be modified through this adaptor |
2245 | 2245 |
/// by adding or removing nodes or edges, unless the \c GR template |
2246 | 2246 |
/// parameter is set to be \c const. |
2247 | 2247 |
/// |
2248 | 2248 |
/// This class provides item counting in the same time as the adapted |
2249 | 2249 |
/// digraph structure. |
2250 | 2250 |
/// |
2251 | 2251 |
/// \tparam DGR The type of the adapted digraph. |
2252 | 2252 |
/// It must conform to the \ref concepts::Digraph "Digraph" concept. |
2253 | 2253 |
/// It can also be specified to be \c const. |
2254 | 2254 |
/// |
2255 | 2255 |
/// \note The \c Node type of this adaptor and the adapted digraph are |
2256 | 2256 |
/// convertible to each other, moreover the \c Edge type of the adaptor |
2257 | 2257 |
/// and the \c Arc type of the adapted digraph are also convertible to |
2258 | 2258 |
/// each other. |
2259 | 2259 |
/// (Thus the \c Arc type of the adaptor is convertible to the \c Arc type |
2260 | 2260 |
/// of the adapted digraph.) |
2261 | 2261 |
template<typename DGR> |
2262 | 2262 |
#ifdef DOXYGEN |
2263 | 2263 |
class Undirector { |
2264 | 2264 |
#else |
2265 | 2265 |
class Undirector : |
2266 | 2266 |
public GraphAdaptorExtender<UndirectorBase<DGR> > { |
2267 | 2267 |
#endif |
2268 | 2268 |
typedef GraphAdaptorExtender<UndirectorBase<DGR> > Parent; |
2269 | 2269 |
public: |
2270 | 2270 |
/// The type of the adapted digraph. |
2271 | 2271 |
typedef DGR Digraph; |
2272 | 2272 |
protected: |
2273 | 2273 |
Undirector() { } |
2274 | 2274 |
public: |
2275 | 2275 |
|
2276 | 2276 |
/// \brief Constructor |
2277 | 2277 |
/// |
2278 | 2278 |
/// Creates an undirected graph from the given digraph. |
2279 | 2279 |
Undirector(DGR& digraph) { |
2280 | 2280 |
initialize(digraph); |
2281 | 2281 |
} |
2282 | 2282 |
|
2283 | 2283 |
/// \brief Arc map combined from two original arc maps |
2284 | 2284 |
/// |
2285 | 2285 |
/// This map adaptor class adapts two arc maps of the underlying |
2286 | 2286 |
/// digraph to get an arc map of the undirected graph. |
2287 | 2287 |
/// Its value type is inherited from the first arc map type (\c FW). |
2288 | 2288 |
/// \tparam FW The type of the "foward" arc map. |
2289 | 2289 |
/// \tparam BK The type of the "backward" arc map. |
2290 | 2290 |
template <typename FW, typename BK> |
2291 | 2291 |
class CombinedArcMap { |
2292 | 2292 |
public: |
2293 | 2293 |
|
2294 | 2294 |
/// The key type of the map |
2295 | 2295 |
typedef typename Parent::Arc Key; |
2296 | 2296 |
/// The value type of the map |
2297 | 2297 |
typedef typename FW::Value Value; |
2298 | 2298 |
|
2299 | 2299 |
typedef typename MapTraits<FW>::ReferenceMapTag ReferenceMapTag; |
2300 | 2300 |
|
2301 | 2301 |
typedef typename MapTraits<FW>::ReturnValue ReturnValue; |
2302 | 2302 |
typedef typename MapTraits<FW>::ConstReturnValue ConstReturnValue; |
2303 | 2303 |
typedef typename MapTraits<FW>::ReturnValue Reference; |
2304 | 2304 |
typedef typename MapTraits<FW>::ConstReturnValue ConstReference; |
2305 | 2305 |
|
2306 | 2306 |
/// Constructor |
2307 | 2307 |
CombinedArcMap(FW& forward, BK& backward) |
2308 | 2308 |
: _forward(&forward), _backward(&backward) {} |
2309 | 2309 |
|
2310 | 2310 |
/// Sets the value associated with the given key. |
2311 | 2311 |
void set(const Key& e, const Value& a) { |
2312 | 2312 |
if (Parent::direction(e)) { |
2313 | 2313 |
_forward->set(e, a); |
2314 | 2314 |
} else { |
2315 | 2315 |
_backward->set(e, a); |
2316 | 2316 |
} |
2317 | 2317 |
} |
2318 | 2318 |
|
2319 | 2319 |
/// Returns the value associated with the given key. |
2320 | 2320 |
ConstReturnValue operator[](const Key& e) const { |
2321 | 2321 |
if (Parent::direction(e)) { |
2322 | 2322 |
return (*_forward)[e]; |
2323 | 2323 |
} else { |
2324 | 2324 |
return (*_backward)[e]; |
2325 | 2325 |
} |
2326 | 2326 |
} |
2327 | 2327 |
|
2328 | 2328 |
/// Returns a reference to the value associated with the given key. |
2329 | 2329 |
ReturnValue operator[](const Key& e) { |
2330 | 2330 |
if (Parent::direction(e)) { |
2331 | 2331 |
return (*_forward)[e]; |
2332 | 2332 |
} else { |
2333 | 2333 |
return (*_backward)[e]; |
2334 | 2334 |
} |
2335 | 2335 |
} |
2336 | 2336 |
|
2337 | 2337 |
protected: |
2338 | 2338 |
|
2339 | 2339 |
FW* _forward; |
2340 | 2340 |
BK* _backward; |
2341 | 2341 |
|
2342 | 2342 |
}; |
2343 | 2343 |
|
2344 | 2344 |
/// \brief Returns a combined arc map |
2345 | 2345 |
/// |
2346 | 2346 |
/// This function just returns a combined arc map. |
2347 | 2347 |
template <typename FW, typename BK> |
2348 | 2348 |
static CombinedArcMap<FW, BK> |
2349 | 2349 |
combinedArcMap(FW& forward, BK& backward) { |
2350 | 2350 |
return CombinedArcMap<FW, BK>(forward, backward); |
2351 | 2351 |
} |
2352 | 2352 |
|
2353 | 2353 |
template <typename FW, typename BK> |
2354 | 2354 |
static CombinedArcMap<const FW, BK> |
2355 | 2355 |
combinedArcMap(const FW& forward, BK& backward) { |
2356 | 2356 |
return CombinedArcMap<const FW, BK>(forward, backward); |
2357 | 2357 |
} |
2358 | 2358 |
|
2359 | 2359 |
template <typename FW, typename BK> |
2360 | 2360 |
static CombinedArcMap<FW, const BK> |
2361 | 2361 |
combinedArcMap(FW& forward, const BK& backward) { |
2362 | 2362 |
return CombinedArcMap<FW, const BK>(forward, backward); |
2363 | 2363 |
} |
2364 | 2364 |
|
2365 | 2365 |
template <typename FW, typename BK> |
2366 | 2366 |
static CombinedArcMap<const FW, const BK> |
2367 | 2367 |
combinedArcMap(const FW& forward, const BK& backward) { |
2368 | 2368 |
return CombinedArcMap<const FW, const BK>(forward, backward); |
2369 | 2369 |
} |
2370 | 2370 |
|
2371 | 2371 |
}; |
2372 | 2372 |
|
2373 | 2373 |
/// \brief Returns a read-only Undirector adaptor |
2374 | 2374 |
/// |
2375 | 2375 |
/// This function just returns a read-only \ref Undirector adaptor. |
2376 | 2376 |
/// \ingroup graph_adaptors |
2377 | 2377 |
/// \relates Undirector |
2378 | 2378 |
template<typename DGR> |
2379 | 2379 |
Undirector<const DGR> undirector(const DGR& digraph) { |
2380 | 2380 |
return Undirector<const DGR>(digraph); |
2381 | 2381 |
} |
2382 | 2382 |
|
2383 | 2383 |
|
2384 | 2384 |
template <typename GR, typename DM> |
2385 | 2385 |
class OrienterBase { |
2386 | 2386 |
public: |
2387 | 2387 |
|
2388 | 2388 |
typedef GR Graph; |
2389 | 2389 |
typedef DM DirectionMap; |
2390 | 2390 |
|
2391 | 2391 |
typedef typename GR::Node Node; |
2392 | 2392 |
typedef typename GR::Edge Arc; |
2393 | 2393 |
|
2394 | 2394 |
void reverseArc(const Arc& arc) { |
2395 | 2395 |
_direction->set(arc, !(*_direction)[arc]); |
2396 | 2396 |
} |
2397 | 2397 |
|
2398 | 2398 |
void first(Node& i) const { _graph->first(i); } |
2399 | 2399 |
void first(Arc& i) const { _graph->first(i); } |
2400 | 2400 |
void firstIn(Arc& i, const Node& n) const { |
2401 | 2401 |
bool d = true; |
2402 | 2402 |
_graph->firstInc(i, d, n); |
2403 | 2403 |
while (i != INVALID && d == (*_direction)[i]) _graph->nextInc(i, d); |
2404 | 2404 |
} |
2405 | 2405 |
void firstOut(Arc& i, const Node& n ) const { |
2406 | 2406 |
bool d = true; |
2407 | 2407 |
_graph->firstInc(i, d, n); |
2408 | 2408 |
while (i != INVALID && d != (*_direction)[i]) _graph->nextInc(i, d); |
2409 | 2409 |
} |
2410 | 2410 |
|
2411 | 2411 |
void next(Node& i) const { _graph->next(i); } |
... | ... |
@@ -2539,524 +2539,524 @@ |
2539 | 2539 |
/// \ingroup graph_adaptors |
2540 | 2540 |
/// |
2541 | 2541 |
/// \brief Adaptor class for orienting the edges of a graph to get a digraph |
2542 | 2542 |
/// |
2543 | 2543 |
/// Orienter adaptor can be used for orienting the edges of a graph to |
2544 | 2544 |
/// get a digraph. A \c bool edge map of the underlying graph must be |
2545 | 2545 |
/// specified, which define the direction of the arcs in the adaptor. |
2546 | 2546 |
/// The arcs can be easily reversed by the \c reverseArc() member function |
2547 | 2547 |
/// of the adaptor. |
2548 | 2548 |
/// This class conforms to the \ref concepts::Digraph "Digraph" concept. |
2549 | 2549 |
/// |
2550 | 2550 |
/// The adapted graph can also be modified through this adaptor |
2551 | 2551 |
/// by adding or removing nodes or arcs, unless the \c GR template |
2552 | 2552 |
/// parameter is set to be \c const. |
2553 | 2553 |
/// |
2554 | 2554 |
/// This class provides item counting in the same time as the adapted |
2555 | 2555 |
/// graph structure. |
2556 | 2556 |
/// |
2557 | 2557 |
/// \tparam GR The type of the adapted graph. |
2558 | 2558 |
/// It must conform to the \ref concepts::Graph "Graph" concept. |
2559 | 2559 |
/// It can also be specified to be \c const. |
2560 | 2560 |
/// \tparam DM The type of the direction map. |
2561 | 2561 |
/// It must be a \c bool (or convertible) edge map of the |
2562 | 2562 |
/// adapted graph. The default type is |
2563 | 2563 |
/// \ref concepts::Graph::EdgeMap "GR::EdgeMap<bool>". |
2564 | 2564 |
/// |
2565 | 2565 |
/// \note The \c Node type of this adaptor and the adapted graph are |
2566 | 2566 |
/// convertible to each other, moreover the \c Arc type of the adaptor |
2567 | 2567 |
/// and the \c Edge type of the adapted graph are also convertible to |
2568 | 2568 |
/// each other. |
2569 | 2569 |
#ifdef DOXYGEN |
2570 | 2570 |
template<typename GR, |
2571 | 2571 |
typename DM> |
2572 | 2572 |
class Orienter { |
2573 | 2573 |
#else |
2574 | 2574 |
template<typename GR, |
2575 | 2575 |
typename DM = typename GR::template EdgeMap<bool> > |
2576 | 2576 |
class Orienter : |
2577 | 2577 |
public DigraphAdaptorExtender<OrienterBase<GR, DM> > { |
2578 | 2578 |
#endif |
2579 | 2579 |
typedef DigraphAdaptorExtender<OrienterBase<GR, DM> > Parent; |
2580 | 2580 |
public: |
2581 | 2581 |
|
2582 | 2582 |
/// The type of the adapted graph. |
2583 | 2583 |
typedef GR Graph; |
2584 | 2584 |
/// The type of the direction edge map. |
2585 | 2585 |
typedef DM DirectionMap; |
2586 | 2586 |
|
2587 | 2587 |
typedef typename Parent::Arc Arc; |
2588 | 2588 |
|
2589 | 2589 |
protected: |
2590 | 2590 |
Orienter() { } |
2591 | 2591 |
|
2592 | 2592 |
public: |
2593 | 2593 |
|
2594 | 2594 |
/// \brief Constructor |
2595 | 2595 |
/// |
2596 | 2596 |
/// Constructor of the adaptor. |
2597 | 2597 |
Orienter(GR& graph, DM& direction) { |
2598 | 2598 |
Parent::initialize(graph, direction); |
2599 | 2599 |
} |
2600 | 2600 |
|
2601 | 2601 |
/// \brief Reverses the given arc |
2602 | 2602 |
/// |
2603 | 2603 |
/// This function reverses the given arc. |
2604 | 2604 |
/// It is done by simply negate the assigned value of \c a |
2605 | 2605 |
/// in the direction map. |
2606 | 2606 |
void reverseArc(const Arc& a) { |
2607 | 2607 |
Parent::reverseArc(a); |
2608 | 2608 |
} |
2609 | 2609 |
}; |
2610 | 2610 |
|
2611 | 2611 |
/// \brief Returns a read-only Orienter adaptor |
2612 | 2612 |
/// |
2613 | 2613 |
/// This function just returns a read-only \ref Orienter adaptor. |
2614 | 2614 |
/// \ingroup graph_adaptors |
2615 | 2615 |
/// \relates Orienter |
2616 | 2616 |
template<typename GR, typename DM> |
2617 | 2617 |
Orienter<const GR, DM> |
2618 | 2618 |
orienter(const GR& graph, DM& direction) { |
2619 | 2619 |
return Orienter<const GR, DM>(graph, direction); |
2620 | 2620 |
} |
2621 | 2621 |
|
2622 | 2622 |
template<typename GR, typename DM> |
2623 | 2623 |
Orienter<const GR, const DM> |
2624 | 2624 |
orienter(const GR& graph, const DM& direction) { |
2625 | 2625 |
return Orienter<const GR, const DM>(graph, direction); |
2626 | 2626 |
} |
2627 | 2627 |
|
2628 | 2628 |
namespace _adaptor_bits { |
2629 | 2629 |
|
2630 | 2630 |
template <typename DGR, typename CM, typename FM, typename TL> |
2631 | 2631 |
class ResForwardFilter { |
2632 | 2632 |
public: |
2633 | 2633 |
|
2634 | 2634 |
typedef typename DGR::Arc Key; |
2635 | 2635 |
typedef bool Value; |
2636 | 2636 |
|
2637 | 2637 |
private: |
2638 | 2638 |
|
2639 | 2639 |
const CM* _capacity; |
2640 | 2640 |
const FM* _flow; |
2641 | 2641 |
TL _tolerance; |
2642 | 2642 |
|
2643 | 2643 |
public: |
2644 | 2644 |
|
2645 | 2645 |
ResForwardFilter(const CM& capacity, const FM& flow, |
2646 | 2646 |
const TL& tolerance = TL()) |
2647 | 2647 |
: _capacity(&capacity), _flow(&flow), _tolerance(tolerance) { } |
2648 | 2648 |
|
2649 | 2649 |
bool operator[](const typename DGR::Arc& a) const { |
2650 | 2650 |
return _tolerance.positive((*_capacity)[a] - (*_flow)[a]); |
2651 | 2651 |
} |
2652 | 2652 |
}; |
2653 | 2653 |
|
2654 | 2654 |
template<typename DGR,typename CM, typename FM, typename TL> |
2655 | 2655 |
class ResBackwardFilter { |
2656 | 2656 |
public: |
2657 | 2657 |
|
2658 | 2658 |
typedef typename DGR::Arc Key; |
2659 | 2659 |
typedef bool Value; |
2660 | 2660 |
|
2661 | 2661 |
private: |
2662 | 2662 |
|
2663 | 2663 |
const CM* _capacity; |
2664 | 2664 |
const FM* _flow; |
2665 | 2665 |
TL _tolerance; |
2666 | 2666 |
|
2667 | 2667 |
public: |
2668 | 2668 |
|
2669 | 2669 |
ResBackwardFilter(const CM& capacity, const FM& flow, |
2670 | 2670 |
const TL& tolerance = TL()) |
2671 | 2671 |
: _capacity(&capacity), _flow(&flow), _tolerance(tolerance) { } |
2672 | 2672 |
|
2673 | 2673 |
bool operator[](const typename DGR::Arc& a) const { |
2674 | 2674 |
return _tolerance.positive((*_flow)[a]); |
2675 | 2675 |
} |
2676 | 2676 |
}; |
2677 | 2677 |
|
2678 | 2678 |
} |
2679 | 2679 |
|
2680 | 2680 |
/// \ingroup graph_adaptors |
2681 | 2681 |
/// |
2682 | 2682 |
/// \brief Adaptor class for composing the residual digraph for directed |
2683 | 2683 |
/// flow and circulation problems. |
2684 | 2684 |
/// |
2685 | 2685 |
/// ResidualDigraph can be used for composing the \e residual digraph |
2686 | 2686 |
/// for directed flow and circulation problems. Let \f$ G=(V, A) \f$ |
2687 | 2687 |
/// be a directed graph and let \f$ F \f$ be a number type. |
2688 | 2688 |
/// Let \f$ flow, cap: A\to F \f$ be functions on the arcs. |
2689 | 2689 |
/// This adaptor implements a digraph structure with node set \f$ V \f$ |
2690 | 2690 |
/// and arc set \f$ A_{forward}\cup A_{backward} \f$, |
2691 | 2691 |
/// where \f$ A_{forward}=\{uv : uv\in A, flow(uv)<cap(uv)\} \f$ and |
2692 | 2692 |
/// \f$ A_{backward}=\{vu : uv\in A, flow(uv)>0\} \f$, i.e. the so |
2693 | 2693 |
/// called residual digraph. |
2694 | 2694 |
/// When the union \f$ A_{forward}\cup A_{backward} \f$ is taken, |
2695 | 2695 |
/// multiplicities are counted, i.e. the adaptor has exactly |
2696 | 2696 |
/// \f$ |A_{forward}| + |A_{backward}|\f$ arcs (it may have parallel |
2697 | 2697 |
/// arcs). |
2698 | 2698 |
/// This class conforms to the \ref concepts::Digraph "Digraph" concept. |
2699 | 2699 |
/// |
2700 | 2700 |
/// This class provides only linear time counting for nodes and arcs. |
2701 | 2701 |
/// |
2702 | 2702 |
/// \tparam DGR The type of the adapted digraph. |
2703 | 2703 |
/// It must conform to the \ref concepts::Digraph "Digraph" concept. |
2704 | 2704 |
/// It is implicitly \c const. |
2705 | 2705 |
/// \tparam CM The type of the capacity map. |
2706 | 2706 |
/// It must be an arc map of some numerical type, which defines |
2707 | 2707 |
/// the capacities in the flow problem. It is implicitly \c const. |
2708 | 2708 |
/// The default type is |
2709 | 2709 |
/// \ref concepts::Digraph::ArcMap "GR::ArcMap<int>". |
2710 | 2710 |
/// \tparam FM The type of the flow map. |
2711 | 2711 |
/// It must be an arc map of some numerical type, which defines |
2712 | 2712 |
/// the flow values in the flow problem. The default type is \c CM. |
2713 | 2713 |
/// \tparam TL The tolerance type for handling inexact computation. |
2714 | 2714 |
/// The default tolerance type depends on the value type of the |
2715 | 2715 |
/// capacity map. |
2716 | 2716 |
/// |
2717 | 2717 |
/// \note This adaptor is implemented using Undirector and FilterArcs |
2718 | 2718 |
/// adaptors. |
2719 | 2719 |
/// |
2720 | 2720 |
/// \note The \c Node type of this adaptor and the adapted digraph are |
2721 | 2721 |
/// convertible to each other, moreover the \c Arc type of the adaptor |
2722 | 2722 |
/// is convertible to the \c Arc type of the adapted digraph. |
2723 | 2723 |
#ifdef DOXYGEN |
2724 | 2724 |
template<typename DGR, typename CM, typename FM, typename TL> |
2725 | 2725 |
class ResidualDigraph |
2726 | 2726 |
#else |
2727 | 2727 |
template<typename DGR, |
2728 | 2728 |
typename CM = typename DGR::template ArcMap<int>, |
2729 | 2729 |
typename FM = CM, |
2730 | 2730 |
typename TL = Tolerance<typename CM::Value> > |
2731 |
class ResidualDigraph |
|
2731 |
class ResidualDigraph |
|
2732 | 2732 |
: public SubDigraph< |
2733 | 2733 |
Undirector<const DGR>, |
2734 | 2734 |
ConstMap<typename DGR::Node, Const<bool, true> >, |
2735 | 2735 |
typename Undirector<const DGR>::template CombinedArcMap< |
2736 | 2736 |
_adaptor_bits::ResForwardFilter<const DGR, CM, FM, TL>, |
2737 | 2737 |
_adaptor_bits::ResBackwardFilter<const DGR, CM, FM, TL> > > |
2738 | 2738 |
#endif |
2739 | 2739 |
{ |
2740 | 2740 |
public: |
2741 | 2741 |
|
2742 | 2742 |
/// The type of the underlying digraph. |
2743 | 2743 |
typedef DGR Digraph; |
2744 | 2744 |
/// The type of the capacity map. |
2745 | 2745 |
typedef CM CapacityMap; |
2746 | 2746 |
/// The type of the flow map. |
2747 | 2747 |
typedef FM FlowMap; |
2748 | 2748 |
/// The tolerance type. |
2749 | 2749 |
typedef TL Tolerance; |
2750 | 2750 |
|
2751 | 2751 |
typedef typename CapacityMap::Value Value; |
2752 | 2752 |
typedef ResidualDigraph Adaptor; |
2753 | 2753 |
|
2754 | 2754 |
protected: |
2755 | 2755 |
|
2756 | 2756 |
typedef Undirector<const Digraph> Undirected; |
2757 | 2757 |
|
2758 | 2758 |
typedef ConstMap<typename DGR::Node, Const<bool, true> > NodeFilter; |
2759 | 2759 |
|
2760 | 2760 |
typedef _adaptor_bits::ResForwardFilter<const DGR, CM, |
2761 | 2761 |
FM, TL> ForwardFilter; |
2762 | 2762 |
|
2763 | 2763 |
typedef _adaptor_bits::ResBackwardFilter<const DGR, CM, |
2764 | 2764 |
FM, TL> BackwardFilter; |
2765 | 2765 |
|
2766 | 2766 |
typedef typename Undirected:: |
2767 | 2767 |
template CombinedArcMap<ForwardFilter, BackwardFilter> ArcFilter; |
2768 | 2768 |
|
2769 | 2769 |
typedef SubDigraph<Undirected, NodeFilter, ArcFilter> Parent; |
2770 | 2770 |
|
2771 | 2771 |
const CapacityMap* _capacity; |
2772 | 2772 |
FlowMap* _flow; |
2773 | 2773 |
|
2774 | 2774 |
Undirected _graph; |
2775 | 2775 |
NodeFilter _node_filter; |
2776 | 2776 |
ForwardFilter _forward_filter; |
2777 | 2777 |
BackwardFilter _backward_filter; |
2778 | 2778 |
ArcFilter _arc_filter; |
2779 | 2779 |
|
2780 | 2780 |
public: |
2781 | 2781 |
|
2782 | 2782 |
/// \brief Constructor |
2783 | 2783 |
/// |
2784 | 2784 |
/// Constructor of the residual digraph adaptor. The parameters are the |
2785 | 2785 |
/// digraph, the capacity map, the flow map, and a tolerance object. |
2786 | 2786 |
ResidualDigraph(const DGR& digraph, const CM& capacity, |
2787 | 2787 |
FM& flow, const TL& tolerance = Tolerance()) |
2788 |
: Parent(), _capacity(&capacity), _flow(&flow), |
|
2788 |
: Parent(), _capacity(&capacity), _flow(&flow), |
|
2789 | 2789 |
_graph(digraph), _node_filter(), |
2790 | 2790 |
_forward_filter(capacity, flow, tolerance), |
2791 | 2791 |
_backward_filter(capacity, flow, tolerance), |
2792 | 2792 |
_arc_filter(_forward_filter, _backward_filter) |
2793 | 2793 |
{ |
2794 | 2794 |
Parent::initialize(_graph, _node_filter, _arc_filter); |
2795 | 2795 |
} |
2796 | 2796 |
|
2797 | 2797 |
typedef typename Parent::Arc Arc; |
2798 | 2798 |
|
2799 | 2799 |
/// \brief Returns the residual capacity of the given arc. |
2800 | 2800 |
/// |
2801 | 2801 |
/// Returns the residual capacity of the given arc. |
2802 | 2802 |
Value residualCapacity(const Arc& a) const { |
2803 | 2803 |
if (Undirected::direction(a)) { |
2804 | 2804 |
return (*_capacity)[a] - (*_flow)[a]; |
2805 | 2805 |
} else { |
2806 | 2806 |
return (*_flow)[a]; |
2807 | 2807 |
} |
2808 | 2808 |
} |
2809 | 2809 |
|
2810 | 2810 |
/// \brief Augments on the given arc in the residual digraph. |
2811 | 2811 |
/// |
2812 | 2812 |
/// Augments on the given arc in the residual digraph. It increases |
2813 | 2813 |
/// or decreases the flow value on the original arc according to the |
2814 | 2814 |
/// direction of the residual arc. |
2815 | 2815 |
void augment(const Arc& a, const Value& v) const { |
2816 | 2816 |
if (Undirected::direction(a)) { |
2817 | 2817 |
_flow->set(a, (*_flow)[a] + v); |
2818 | 2818 |
} else { |
2819 | 2819 |
_flow->set(a, (*_flow)[a] - v); |
2820 | 2820 |
} |
2821 | 2821 |
} |
2822 | 2822 |
|
2823 | 2823 |
/// \brief Returns \c true if the given residual arc is a forward arc. |
2824 | 2824 |
/// |
2825 | 2825 |
/// Returns \c true if the given residual arc has the same orientation |
2826 | 2826 |
/// as the original arc, i.e. it is a so called forward arc. |
2827 | 2827 |
static bool forward(const Arc& a) { |
2828 | 2828 |
return Undirected::direction(a); |
2829 | 2829 |
} |
2830 | 2830 |
|
2831 | 2831 |
/// \brief Returns \c true if the given residual arc is a backward arc. |
2832 | 2832 |
/// |
2833 | 2833 |
/// Returns \c true if the given residual arc has the opposite orientation |
2834 | 2834 |
/// than the original arc, i.e. it is a so called backward arc. |
2835 | 2835 |
static bool backward(const Arc& a) { |
2836 | 2836 |
return !Undirected::direction(a); |
2837 | 2837 |
} |
2838 | 2838 |
|
2839 | 2839 |
/// \brief Returns the forward oriented residual arc. |
2840 | 2840 |
/// |
2841 | 2841 |
/// Returns the forward oriented residual arc related to the given |
2842 | 2842 |
/// arc of the underlying digraph. |
2843 | 2843 |
static Arc forward(const typename Digraph::Arc& a) { |
2844 | 2844 |
return Undirected::direct(a, true); |
2845 | 2845 |
} |
2846 | 2846 |
|
2847 | 2847 |
/// \brief Returns the backward oriented residual arc. |
2848 | 2848 |
/// |
2849 | 2849 |
/// Returns the backward oriented residual arc related to the given |
2850 | 2850 |
/// arc of the underlying digraph. |
2851 | 2851 |
static Arc backward(const typename Digraph::Arc& a) { |
2852 | 2852 |
return Undirected::direct(a, false); |
2853 | 2853 |
} |
2854 | 2854 |
|
2855 | 2855 |
/// \brief Residual capacity map. |
2856 | 2856 |
/// |
2857 | 2857 |
/// This map adaptor class can be used for obtaining the residual |
2858 | 2858 |
/// capacities as an arc map of the residual digraph. |
2859 | 2859 |
/// Its value type is inherited from the capacity map. |
2860 | 2860 |
class ResidualCapacity { |
2861 | 2861 |
protected: |
2862 | 2862 |
const Adaptor* _adaptor; |
2863 | 2863 |
public: |
2864 | 2864 |
/// The key type of the map |
2865 | 2865 |
typedef Arc Key; |
2866 | 2866 |
/// The value type of the map |
2867 | 2867 |
typedef typename CapacityMap::Value Value; |
2868 | 2868 |
|
2869 | 2869 |
/// Constructor |
2870 |
ResidualCapacity(const ResidualDigraph<DGR, CM, FM, TL>& adaptor) |
|
2870 |
ResidualCapacity(const ResidualDigraph<DGR, CM, FM, TL>& adaptor) |
|
2871 | 2871 |
: _adaptor(&adaptor) {} |
2872 | 2872 |
|
2873 | 2873 |
/// Returns the value associated with the given residual arc |
2874 | 2874 |
Value operator[](const Arc& a) const { |
2875 | 2875 |
return _adaptor->residualCapacity(a); |
2876 | 2876 |
} |
2877 | 2877 |
|
2878 | 2878 |
}; |
2879 | 2879 |
|
2880 | 2880 |
/// \brief Returns a residual capacity map |
2881 | 2881 |
/// |
2882 | 2882 |
/// This function just returns a residual capacity map. |
2883 | 2883 |
ResidualCapacity residualCapacity() const { |
2884 | 2884 |
return ResidualCapacity(*this); |
2885 | 2885 |
} |
2886 | 2886 |
|
2887 | 2887 |
}; |
2888 | 2888 |
|
2889 | 2889 |
/// \brief Returns a (read-only) Residual adaptor |
2890 | 2890 |
/// |
2891 | 2891 |
/// This function just returns a (read-only) \ref ResidualDigraph adaptor. |
2892 | 2892 |
/// \ingroup graph_adaptors |
2893 | 2893 |
/// \relates ResidualDigraph |
2894 | 2894 |
template<typename DGR, typename CM, typename FM> |
2895 | 2895 |
ResidualDigraph<DGR, CM, FM> |
2896 | 2896 |
residualDigraph(const DGR& digraph, const CM& capacity_map, FM& flow_map) { |
2897 | 2897 |
return ResidualDigraph<DGR, CM, FM> (digraph, capacity_map, flow_map); |
2898 | 2898 |
} |
2899 | 2899 |
|
2900 | 2900 |
|
2901 | 2901 |
template <typename DGR> |
2902 | 2902 |
class SplitNodesBase { |
2903 | 2903 |
typedef DigraphAdaptorBase<const DGR> Parent; |
2904 | 2904 |
|
2905 | 2905 |
public: |
2906 | 2906 |
|
2907 | 2907 |
typedef DGR Digraph; |
2908 | 2908 |
typedef SplitNodesBase Adaptor; |
2909 | 2909 |
|
2910 | 2910 |
typedef typename DGR::Node DigraphNode; |
2911 | 2911 |
typedef typename DGR::Arc DigraphArc; |
2912 | 2912 |
|
2913 | 2913 |
class Node; |
2914 | 2914 |
class Arc; |
2915 | 2915 |
|
2916 | 2916 |
private: |
2917 | 2917 |
|
2918 | 2918 |
template <typename T> class NodeMapBase; |
2919 | 2919 |
template <typename T> class ArcMapBase; |
2920 | 2920 |
|
2921 | 2921 |
public: |
2922 | 2922 |
|
2923 | 2923 |
class Node : public DigraphNode { |
2924 | 2924 |
friend class SplitNodesBase; |
2925 | 2925 |
template <typename T> friend class NodeMapBase; |
2926 | 2926 |
private: |
2927 | 2927 |
|
2928 | 2928 |
bool _in; |
2929 | 2929 |
Node(DigraphNode node, bool in) |
2930 | 2930 |
: DigraphNode(node), _in(in) {} |
2931 | 2931 |
|
2932 | 2932 |
public: |
2933 | 2933 |
|
2934 | 2934 |
Node() {} |
2935 | 2935 |
Node(Invalid) : DigraphNode(INVALID), _in(true) {} |
2936 | 2936 |
|
2937 | 2937 |
bool operator==(const Node& node) const { |
2938 | 2938 |
return DigraphNode::operator==(node) && _in == node._in; |
2939 | 2939 |
} |
2940 | 2940 |
|
2941 | 2941 |
bool operator!=(const Node& node) const { |
2942 | 2942 |
return !(*this == node); |
2943 | 2943 |
} |
2944 | 2944 |
|
2945 | 2945 |
bool operator<(const Node& node) const { |
2946 | 2946 |
return DigraphNode::operator<(node) || |
2947 | 2947 |
(DigraphNode::operator==(node) && _in < node._in); |
2948 | 2948 |
} |
2949 | 2949 |
}; |
2950 | 2950 |
|
2951 | 2951 |
class Arc { |
2952 | 2952 |
friend class SplitNodesBase; |
2953 | 2953 |
template <typename T> friend class ArcMapBase; |
2954 | 2954 |
private: |
2955 | 2955 |
typedef BiVariant<DigraphArc, DigraphNode> ArcImpl; |
2956 | 2956 |
|
2957 | 2957 |
explicit Arc(const DigraphArc& arc) : _item(arc) {} |
2958 | 2958 |
explicit Arc(const DigraphNode& node) : _item(node) {} |
2959 | 2959 |
|
2960 | 2960 |
ArcImpl _item; |
2961 | 2961 |
|
2962 | 2962 |
public: |
2963 | 2963 |
Arc() {} |
2964 | 2964 |
Arc(Invalid) : _item(DigraphArc(INVALID)) {} |
2965 | 2965 |
|
2966 | 2966 |
bool operator==(const Arc& arc) const { |
2967 | 2967 |
if (_item.firstState()) { |
2968 | 2968 |
if (arc._item.firstState()) { |
2969 | 2969 |
return _item.first() == arc._item.first(); |
2970 | 2970 |
} |
2971 | 2971 |
} else { |
2972 | 2972 |
if (arc._item.secondState()) { |
2973 | 2973 |
return _item.second() == arc._item.second(); |
2974 | 2974 |
} |
2975 | 2975 |
} |
2976 | 2976 |
return false; |
2977 | 2977 |
} |
2978 | 2978 |
|
2979 | 2979 |
bool operator!=(const Arc& arc) const { |
2980 | 2980 |
return !(*this == arc); |
2981 | 2981 |
} |
2982 | 2982 |
|
2983 | 2983 |
bool operator<(const Arc& arc) const { |
2984 | 2984 |
if (_item.firstState()) { |
2985 | 2985 |
if (arc._item.firstState()) { |
2986 | 2986 |
return _item.first() < arc._item.first(); |
2987 | 2987 |
} |
2988 | 2988 |
return false; |
2989 | 2989 |
} else { |
2990 | 2990 |
if (arc._item.secondState()) { |
2991 | 2991 |
return _item.second() < arc._item.second(); |
2992 | 2992 |
} |
2993 | 2993 |
return true; |
2994 | 2994 |
} |
2995 | 2995 |
} |
2996 | 2996 |
|
2997 | 2997 |
operator DigraphArc() const { return _item.first(); } |
2998 | 2998 |
operator DigraphNode() const { return _item.second(); } |
2999 | 2999 |
|
3000 | 3000 |
}; |
3001 | 3001 |
|
3002 | 3002 |
void first(Node& n) const { |
3003 | 3003 |
_digraph->first(n); |
3004 | 3004 |
n._in = true; |
3005 | 3005 |
} |
3006 | 3006 |
|
3007 | 3007 |
void next(Node& n) const { |
3008 | 3008 |
if (n._in) { |
3009 | 3009 |
n._in = false; |
3010 | 3010 |
} else { |
3011 | 3011 |
n._in = true; |
3012 | 3012 |
_digraph->next(n); |
3013 | 3013 |
} |
3014 | 3014 |
} |
3015 | 3015 |
|
3016 | 3016 |
void first(Arc& e) const { |
3017 | 3017 |
e._item.setSecond(); |
3018 | 3018 |
_digraph->first(e._item.second()); |
3019 | 3019 |
if (e._item.second() == INVALID) { |
3020 | 3020 |
e._item.setFirst(); |
3021 | 3021 |
_digraph->first(e._item.first()); |
3022 | 3022 |
} |
3023 | 3023 |
} |
3024 | 3024 |
|
3025 | 3025 |
void next(Arc& e) const { |
3026 | 3026 |
if (e._item.secondState()) { |
3027 | 3027 |
_digraph->next(e._item.second()); |
3028 | 3028 |
if (e._item.second() == INVALID) { |
3029 | 3029 |
e._item.setFirst(); |
3030 | 3030 |
_digraph->first(e._item.first()); |
3031 | 3031 |
} |
3032 | 3032 |
} else { |
3033 | 3033 |
_digraph->next(e._item.first()); |
3034 | 3034 |
} |
3035 | 3035 |
} |
3036 | 3036 |
|
3037 | 3037 |
void firstOut(Arc& e, const Node& n) const { |
3038 | 3038 |
if (n._in) { |
3039 | 3039 |
e._item.setSecond(n); |
3040 | 3040 |
} else { |
3041 | 3041 |
e._item.setFirst(); |
3042 | 3042 |
_digraph->firstOut(e._item.first(), n); |
3043 | 3043 |
} |
3044 | 3044 |
} |
3045 | 3045 |
|
3046 | 3046 |
void nextOut(Arc& e) const { |
3047 | 3047 |
if (!e._item.firstState()) { |
3048 | 3048 |
e._item.setFirst(INVALID); |
3049 | 3049 |
} else { |
3050 | 3050 |
_digraph->nextOut(e._item.first()); |
3051 | 3051 |
} |
3052 | 3052 |
} |
3053 | 3053 |
|
3054 | 3054 |
void firstIn(Arc& e, const Node& n) const { |
3055 | 3055 |
if (!n._in) { |
3056 | 3056 |
e._item.setSecond(n); |
3057 | 3057 |
} else { |
3058 | 3058 |
e._item.setFirst(); |
3059 | 3059 |
_digraph->firstIn(e._item.first(), n); |
3060 | 3060 |
} |
3061 | 3061 |
} |
3062 | 3062 |
|
... | ... |
@@ -3258,381 +3258,381 @@ |
3258 | 3258 |
ArcImpl _arc_map; |
3259 | 3259 |
NodeImpl _node_map; |
3260 | 3260 |
}; |
3261 | 3261 |
|
3262 | 3262 |
public: |
3263 | 3263 |
|
3264 | 3264 |
template <typename V> |
3265 | 3265 |
class NodeMap |
3266 | 3266 |
: public SubMapExtender<SplitNodesBase<DGR>, NodeMapBase<V> > { |
3267 | 3267 |
typedef SubMapExtender<SplitNodesBase<DGR>, NodeMapBase<V> > Parent; |
3268 | 3268 |
|
3269 | 3269 |
public: |
3270 | 3270 |
typedef V Value; |
3271 | 3271 |
|
3272 | 3272 |
NodeMap(const SplitNodesBase<DGR>& adaptor) |
3273 | 3273 |
: Parent(adaptor) {} |
3274 | 3274 |
|
3275 | 3275 |
NodeMap(const SplitNodesBase<DGR>& adaptor, const V& value) |
3276 | 3276 |
: Parent(adaptor, value) {} |
3277 | 3277 |
|
3278 | 3278 |
private: |
3279 | 3279 |
NodeMap& operator=(const NodeMap& cmap) { |
3280 | 3280 |
return operator=<NodeMap>(cmap); |
3281 | 3281 |
} |
3282 | 3282 |
|
3283 | 3283 |
template <typename CMap> |
3284 | 3284 |
NodeMap& operator=(const CMap& cmap) { |
3285 | 3285 |
Parent::operator=(cmap); |
3286 | 3286 |
return *this; |
3287 | 3287 |
} |
3288 | 3288 |
}; |
3289 | 3289 |
|
3290 | 3290 |
template <typename V> |
3291 | 3291 |
class ArcMap |
3292 | 3292 |
: public SubMapExtender<SplitNodesBase<DGR>, ArcMapBase<V> > { |
3293 | 3293 |
typedef SubMapExtender<SplitNodesBase<DGR>, ArcMapBase<V> > Parent; |
3294 | 3294 |
|
3295 | 3295 |
public: |
3296 | 3296 |
typedef V Value; |
3297 | 3297 |
|
3298 | 3298 |
ArcMap(const SplitNodesBase<DGR>& adaptor) |
3299 | 3299 |
: Parent(adaptor) {} |
3300 | 3300 |
|
3301 | 3301 |
ArcMap(const SplitNodesBase<DGR>& adaptor, const V& value) |
3302 | 3302 |
: Parent(adaptor, value) {} |
3303 | 3303 |
|
3304 | 3304 |
private: |
3305 | 3305 |
ArcMap& operator=(const ArcMap& cmap) { |
3306 | 3306 |
return operator=<ArcMap>(cmap); |
3307 | 3307 |
} |
3308 | 3308 |
|
3309 | 3309 |
template <typename CMap> |
3310 | 3310 |
ArcMap& operator=(const CMap& cmap) { |
3311 | 3311 |
Parent::operator=(cmap); |
3312 | 3312 |
return *this; |
3313 | 3313 |
} |
3314 | 3314 |
}; |
3315 | 3315 |
|
3316 | 3316 |
protected: |
3317 | 3317 |
|
3318 | 3318 |
SplitNodesBase() : _digraph(0) {} |
3319 | 3319 |
|
3320 | 3320 |
DGR* _digraph; |
3321 | 3321 |
|
3322 | 3322 |
void initialize(Digraph& digraph) { |
3323 | 3323 |
_digraph = &digraph; |
3324 | 3324 |
} |
3325 | 3325 |
|
3326 | 3326 |
}; |
3327 | 3327 |
|
3328 | 3328 |
/// \ingroup graph_adaptors |
3329 | 3329 |
/// |
3330 | 3330 |
/// \brief Adaptor class for splitting the nodes of a digraph. |
3331 | 3331 |
/// |
3332 | 3332 |
/// SplitNodes adaptor can be used for splitting each node into an |
3333 | 3333 |
/// \e in-node and an \e out-node in a digraph. Formaly, the adaptor |
3334 | 3334 |
/// replaces each node \f$ u \f$ in the digraph with two nodes, |
3335 | 3335 |
/// namely node \f$ u_{in} \f$ and node \f$ u_{out} \f$. |
3336 | 3336 |
/// If there is a \f$ (v, u) \f$ arc in the original digraph, then the |
3337 | 3337 |
/// new target of the arc will be \f$ u_{in} \f$ and similarly the |
3338 | 3338 |
/// source of each original \f$ (u, v) \f$ arc will be \f$ u_{out} \f$. |
3339 | 3339 |
/// The adaptor adds an additional \e bind \e arc from \f$ u_{in} \f$ |
3340 | 3340 |
/// to \f$ u_{out} \f$ for each node \f$ u \f$ of the original digraph. |
3341 | 3341 |
/// |
3342 | 3342 |
/// The aim of this class is running an algorithm with respect to node |
3343 | 3343 |
/// costs or capacities if the algorithm considers only arc costs or |
3344 | 3344 |
/// capacities directly. |
3345 | 3345 |
/// In this case you can use \c SplitNodes adaptor, and set the node |
3346 | 3346 |
/// costs/capacities of the original digraph to the \e bind \e arcs |
3347 | 3347 |
/// in the adaptor. |
3348 | 3348 |
/// |
3349 | 3349 |
/// This class provides item counting in the same time as the adapted |
3350 | 3350 |
/// digraph structure. |
3351 | 3351 |
/// |
3352 | 3352 |
/// \tparam DGR The type of the adapted digraph. |
3353 | 3353 |
/// It must conform to the \ref concepts::Digraph "Digraph" concept. |
3354 | 3354 |
/// It is implicitly \c const. |
3355 | 3355 |
/// |
3356 | 3356 |
/// \note The \c Node type of this adaptor is converible to the \c Node |
3357 | 3357 |
/// type of the adapted digraph. |
3358 | 3358 |
template <typename DGR> |
3359 | 3359 |
#ifdef DOXYGEN |
3360 | 3360 |
class SplitNodes { |
3361 | 3361 |
#else |
3362 | 3362 |
class SplitNodes |
3363 | 3363 |
: public DigraphAdaptorExtender<SplitNodesBase<const DGR> > { |
3364 | 3364 |
#endif |
3365 | 3365 |
typedef DigraphAdaptorExtender<SplitNodesBase<const DGR> > Parent; |
3366 | 3366 |
|
3367 | 3367 |
public: |
3368 | 3368 |
typedef DGR Digraph; |
3369 | 3369 |
|
3370 | 3370 |
typedef typename DGR::Node DigraphNode; |
3371 | 3371 |
typedef typename DGR::Arc DigraphArc; |
3372 | 3372 |
|
3373 | 3373 |
typedef typename Parent::Node Node; |
3374 | 3374 |
typedef typename Parent::Arc Arc; |
3375 | 3375 |
|
3376 | 3376 |
/// \brief Constructor |
3377 | 3377 |
/// |
3378 | 3378 |
/// Constructor of the adaptor. |
3379 | 3379 |
SplitNodes(const DGR& g) { |
3380 | 3380 |
Parent::initialize(g); |
3381 | 3381 |
} |
3382 | 3382 |
|
3383 | 3383 |
/// \brief Returns \c true if the given node is an in-node. |
3384 | 3384 |
/// |
3385 | 3385 |
/// Returns \c true if the given node is an in-node. |
3386 | 3386 |
static bool inNode(const Node& n) { |
3387 | 3387 |
return Parent::inNode(n); |
3388 | 3388 |
} |
3389 | 3389 |
|
3390 | 3390 |
/// \brief Returns \c true if the given node is an out-node. |
3391 | 3391 |
/// |
3392 | 3392 |
/// Returns \c true if the given node is an out-node. |
3393 | 3393 |
static bool outNode(const Node& n) { |
3394 | 3394 |
return Parent::outNode(n); |
3395 | 3395 |
} |
3396 | 3396 |
|
3397 | 3397 |
/// \brief Returns \c true if the given arc is an original arc. |
3398 | 3398 |
/// |
3399 | 3399 |
/// Returns \c true if the given arc is one of the arcs in the |
3400 | 3400 |
/// original digraph. |
3401 | 3401 |
static bool origArc(const Arc& a) { |
3402 | 3402 |
return Parent::origArc(a); |
3403 | 3403 |
} |
3404 | 3404 |
|
3405 | 3405 |
/// \brief Returns \c true if the given arc is a bind arc. |
3406 | 3406 |
/// |
3407 | 3407 |
/// Returns \c true if the given arc is a bind arc, i.e. it connects |
3408 | 3408 |
/// an in-node and an out-node. |
3409 | 3409 |
static bool bindArc(const Arc& a) { |
3410 | 3410 |
return Parent::bindArc(a); |
3411 | 3411 |
} |
3412 | 3412 |
|
3413 | 3413 |
/// \brief Returns the in-node created from the given original node. |
3414 | 3414 |
/// |
3415 | 3415 |
/// Returns the in-node created from the given original node. |
3416 | 3416 |
static Node inNode(const DigraphNode& n) { |
3417 | 3417 |
return Parent::inNode(n); |
3418 | 3418 |
} |
3419 | 3419 |
|
3420 | 3420 |
/// \brief Returns the out-node created from the given original node. |
3421 | 3421 |
/// |
3422 | 3422 |
/// Returns the out-node created from the given original node. |
3423 | 3423 |
static Node outNode(const DigraphNode& n) { |
3424 | 3424 |
return Parent::outNode(n); |
3425 | 3425 |
} |
3426 | 3426 |
|
3427 | 3427 |
/// \brief Returns the bind arc that corresponds to the given |
3428 | 3428 |
/// original node. |
3429 | 3429 |
/// |
3430 | 3430 |
/// Returns the bind arc in the adaptor that corresponds to the given |
3431 | 3431 |
/// original node, i.e. the arc connecting the in-node and out-node |
3432 | 3432 |
/// of \c n. |
3433 | 3433 |
static Arc arc(const DigraphNode& n) { |
3434 | 3434 |
return Parent::arc(n); |
3435 | 3435 |
} |
3436 | 3436 |
|
3437 | 3437 |
/// \brief Returns the arc that corresponds to the given original arc. |
3438 | 3438 |
/// |
3439 | 3439 |
/// Returns the arc in the adaptor that corresponds to the given |
3440 | 3440 |
/// original arc. |
3441 | 3441 |
static Arc arc(const DigraphArc& a) { |
3442 | 3442 |
return Parent::arc(a); |
3443 | 3443 |
} |
3444 | 3444 |
|
3445 | 3445 |
/// \brief Node map combined from two original node maps |
3446 | 3446 |
/// |
3447 | 3447 |
/// This map adaptor class adapts two node maps of the original digraph |
3448 | 3448 |
/// to get a node map of the split digraph. |
3449 | 3449 |
/// Its value type is inherited from the first node map type (\c IN). |
3450 |
/// \tparam IN The type of the node map for the in-nodes. |
|
3450 |
/// \tparam IN The type of the node map for the in-nodes. |
|
3451 | 3451 |
/// \tparam OUT The type of the node map for the out-nodes. |
3452 | 3452 |
template <typename IN, typename OUT> |
3453 | 3453 |
class CombinedNodeMap { |
3454 | 3454 |
public: |
3455 | 3455 |
|
3456 | 3456 |
/// The key type of the map |
3457 | 3457 |
typedef Node Key; |
3458 | 3458 |
/// The value type of the map |
3459 | 3459 |
typedef typename IN::Value Value; |
3460 | 3460 |
|
3461 | 3461 |
typedef typename MapTraits<IN>::ReferenceMapTag ReferenceMapTag; |
3462 | 3462 |
typedef typename MapTraits<IN>::ReturnValue ReturnValue; |
3463 | 3463 |
typedef typename MapTraits<IN>::ConstReturnValue ConstReturnValue; |
3464 | 3464 |
typedef typename MapTraits<IN>::ReturnValue Reference; |
3465 | 3465 |
typedef typename MapTraits<IN>::ConstReturnValue ConstReference; |
3466 | 3466 |
|
3467 | 3467 |
/// Constructor |
3468 | 3468 |
CombinedNodeMap(IN& in_map, OUT& out_map) |
3469 | 3469 |
: _in_map(in_map), _out_map(out_map) {} |
3470 | 3470 |
|
3471 | 3471 |
/// Returns the value associated with the given key. |
3472 | 3472 |
Value operator[](const Key& key) const { |
3473 | 3473 |
if (SplitNodesBase<const DGR>::inNode(key)) { |
3474 | 3474 |
return _in_map[key]; |
3475 | 3475 |
} else { |
3476 | 3476 |
return _out_map[key]; |
3477 | 3477 |
} |
3478 | 3478 |
} |
3479 | 3479 |
|
3480 | 3480 |
/// Returns a reference to the value associated with the given key. |
3481 | 3481 |
Value& operator[](const Key& key) { |
3482 | 3482 |
if (SplitNodesBase<const DGR>::inNode(key)) { |
3483 | 3483 |
return _in_map[key]; |
3484 | 3484 |
} else { |
3485 | 3485 |
return _out_map[key]; |
3486 | 3486 |
} |
3487 | 3487 |
} |
3488 | 3488 |
|
3489 | 3489 |
/// Sets the value associated with the given key. |
3490 | 3490 |
void set(const Key& key, const Value& value) { |
3491 | 3491 |
if (SplitNodesBase<const DGR>::inNode(key)) { |
3492 | 3492 |
_in_map.set(key, value); |
3493 | 3493 |
} else { |
3494 | 3494 |
_out_map.set(key, value); |
3495 | 3495 |
} |
3496 | 3496 |
} |
3497 | 3497 |
|
3498 | 3498 |
private: |
3499 | 3499 |
|
3500 | 3500 |
IN& _in_map; |
3501 | 3501 |
OUT& _out_map; |
3502 | 3502 |
|
3503 | 3503 |
}; |
3504 | 3504 |
|
3505 | 3505 |
|
3506 | 3506 |
/// \brief Returns a combined node map |
3507 | 3507 |
/// |
3508 | 3508 |
/// This function just returns a combined node map. |
3509 | 3509 |
template <typename IN, typename OUT> |
3510 | 3510 |
static CombinedNodeMap<IN, OUT> |
3511 | 3511 |
combinedNodeMap(IN& in_map, OUT& out_map) { |
3512 | 3512 |
return CombinedNodeMap<IN, OUT>(in_map, out_map); |
3513 | 3513 |
} |
3514 | 3514 |
|
3515 | 3515 |
template <typename IN, typename OUT> |
3516 | 3516 |
static CombinedNodeMap<const IN, OUT> |
3517 | 3517 |
combinedNodeMap(const IN& in_map, OUT& out_map) { |
3518 | 3518 |
return CombinedNodeMap<const IN, OUT>(in_map, out_map); |
3519 | 3519 |
} |
3520 | 3520 |
|
3521 | 3521 |
template <typename IN, typename OUT> |
3522 | 3522 |
static CombinedNodeMap<IN, const OUT> |
3523 | 3523 |
combinedNodeMap(IN& in_map, const OUT& out_map) { |
3524 | 3524 |
return CombinedNodeMap<IN, const OUT>(in_map, out_map); |
3525 | 3525 |
} |
3526 | 3526 |
|
3527 | 3527 |
template <typename IN, typename OUT> |
3528 | 3528 |
static CombinedNodeMap<const IN, const OUT> |
3529 | 3529 |
combinedNodeMap(const IN& in_map, const OUT& out_map) { |
3530 | 3530 |
return CombinedNodeMap<const IN, const OUT>(in_map, out_map); |
3531 | 3531 |
} |
3532 | 3532 |
|
3533 | 3533 |
/// \brief Arc map combined from an arc map and a node map of the |
3534 | 3534 |
/// original digraph. |
3535 | 3535 |
/// |
3536 | 3536 |
/// This map adaptor class adapts an arc map and a node map of the |
3537 | 3537 |
/// original digraph to get an arc map of the split digraph. |
3538 | 3538 |
/// Its value type is inherited from the original arc map type (\c AM). |
3539 | 3539 |
/// \tparam AM The type of the arc map. |
3540 | 3540 |
/// \tparam NM the type of the node map. |
3541 | 3541 |
template <typename AM, typename NM> |
3542 | 3542 |
class CombinedArcMap { |
3543 | 3543 |
public: |
3544 | 3544 |
|
3545 | 3545 |
/// The key type of the map |
3546 | 3546 |
typedef Arc Key; |
3547 | 3547 |
/// The value type of the map |
3548 | 3548 |
typedef typename AM::Value Value; |
3549 | 3549 |
|
3550 | 3550 |
typedef typename MapTraits<AM>::ReferenceMapTag ReferenceMapTag; |
3551 | 3551 |
typedef typename MapTraits<AM>::ReturnValue ReturnValue; |
3552 | 3552 |
typedef typename MapTraits<AM>::ConstReturnValue ConstReturnValue; |
3553 | 3553 |
typedef typename MapTraits<AM>::ReturnValue Reference; |
3554 | 3554 |
typedef typename MapTraits<AM>::ConstReturnValue ConstReference; |
3555 | 3555 |
|
3556 | 3556 |
/// Constructor |
3557 | 3557 |
CombinedArcMap(AM& arc_map, NM& node_map) |
3558 | 3558 |
: _arc_map(arc_map), _node_map(node_map) {} |
3559 | 3559 |
|
3560 | 3560 |
/// Returns the value associated with the given key. |
3561 | 3561 |
Value operator[](const Key& arc) const { |
3562 | 3562 |
if (SplitNodesBase<const DGR>::origArc(arc)) { |
3563 | 3563 |
return _arc_map[arc]; |
3564 | 3564 |
} else { |
3565 | 3565 |
return _node_map[arc]; |
3566 | 3566 |
} |
3567 | 3567 |
} |
3568 | 3568 |
|
3569 | 3569 |
/// Returns a reference to the value associated with the given key. |
3570 | 3570 |
Value& operator[](const Key& arc) { |
3571 | 3571 |
if (SplitNodesBase<const DGR>::origArc(arc)) { |
3572 | 3572 |
return _arc_map[arc]; |
3573 | 3573 |
} else { |
3574 | 3574 |
return _node_map[arc]; |
3575 | 3575 |
} |
3576 | 3576 |
} |
3577 | 3577 |
|
3578 | 3578 |
/// Sets the value associated with the given key. |
3579 | 3579 |
void set(const Arc& arc, const Value& val) { |
3580 | 3580 |
if (SplitNodesBase<const DGR>::origArc(arc)) { |
3581 | 3581 |
_arc_map.set(arc, val); |
3582 | 3582 |
} else { |
3583 | 3583 |
_node_map.set(arc, val); |
3584 | 3584 |
} |
3585 | 3585 |
} |
3586 | 3586 |
|
3587 | 3587 |
private: |
3588 | 3588 |
|
3589 | 3589 |
AM& _arc_map; |
3590 | 3590 |
NM& _node_map; |
3591 | 3591 |
|
3592 | 3592 |
}; |
3593 | 3593 |
|
3594 | 3594 |
/// \brief Returns a combined arc map |
3595 | 3595 |
/// |
3596 | 3596 |
/// This function just returns a combined arc map. |
3597 | 3597 |
template <typename ArcMap, typename NodeMap> |
3598 | 3598 |
static CombinedArcMap<ArcMap, NodeMap> |
3599 | 3599 |
combinedArcMap(ArcMap& arc_map, NodeMap& node_map) { |
3600 | 3600 |
return CombinedArcMap<ArcMap, NodeMap>(arc_map, node_map); |
3601 | 3601 |
} |
3602 | 3602 |
|
3603 | 3603 |
template <typename ArcMap, typename NodeMap> |
3604 | 3604 |
static CombinedArcMap<const ArcMap, NodeMap> |
3605 | 3605 |
combinedArcMap(const ArcMap& arc_map, NodeMap& node_map) { |
3606 | 3606 |
return CombinedArcMap<const ArcMap, NodeMap>(arc_map, node_map); |
3607 | 3607 |
} |
3608 | 3608 |
|
3609 | 3609 |
template <typename ArcMap, typename NodeMap> |
3610 | 3610 |
static CombinedArcMap<ArcMap, const NodeMap> |
3611 | 3611 |
combinedArcMap(ArcMap& arc_map, const NodeMap& node_map) { |
3612 | 3612 |
return CombinedArcMap<ArcMap, const NodeMap>(arc_map, node_map); |
3613 | 3613 |
} |
3614 | 3614 |
|
3615 | 3615 |
template <typename ArcMap, typename NodeMap> |
3616 | 3616 |
static CombinedArcMap<const ArcMap, const NodeMap> |
3617 | 3617 |
combinedArcMap(const ArcMap& arc_map, const NodeMap& node_map) { |
3618 | 3618 |
return CombinedArcMap<const ArcMap, const NodeMap>(arc_map, node_map); |
3619 | 3619 |
} |
3620 | 3620 |
|
3621 | 3621 |
}; |
3622 | 3622 |
|
3623 | 3623 |
/// \brief Returns a (read-only) SplitNodes adaptor |
3624 | 3624 |
/// |
3625 | 3625 |
/// This function just returns a (read-only) \ref SplitNodes adaptor. |
3626 | 3626 |
/// \ingroup graph_adaptors |
3627 | 3627 |
/// \relates SplitNodes |
3628 | 3628 |
template<typename DGR> |
3629 | 3629 |
SplitNodes<DGR> |
3630 | 3630 |
splitNodes(const DGR& digraph) { |
3631 | 3631 |
return SplitNodes<DGR>(digraph); |
3632 | 3632 |
} |
3633 | 3633 |
|
3634 | 3634 |
#undef LEMON_SCOPE_FIX |
3635 | 3635 |
|
3636 | 3636 |
} //namespace lemon |
3637 | 3637 |
|
3638 | 3638 |
#endif //LEMON_ADAPTORS_H |
1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 |
* Copyright (C) 2003- |
|
5 |
* Copyright (C) 2003-2010 |
|
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 | 19 |
#include <lemon/arg_parser.h> |
20 | 20 |
|
21 | 21 |
namespace lemon { |
22 | 22 |
|
23 | 23 |
void ArgParser::_terminate(ArgParserException::Reason reason) const |
24 | 24 |
{ |
25 | 25 |
if(_exit_on_problems) |
26 | 26 |
exit(1); |
27 | 27 |
else throw(ArgParserException(reason)); |
28 | 28 |
} |
29 |
|
|
30 |
|
|
29 |
|
|
30 |
|
|
31 | 31 |
void ArgParser::_showHelp(void *p) |
32 | 32 |
{ |
33 | 33 |
(static_cast<ArgParser*>(p))->showHelp(); |
34 | 34 |
(static_cast<ArgParser*>(p))->_terminate(ArgParserException::HELP); |
35 | 35 |
} |
36 | 36 |
|
37 | 37 |
ArgParser::ArgParser(int argc, const char * const *argv) |
38 | 38 |
:_argc(argc), _argv(argv), _command_name(argv[0]), |
39 | 39 |
_exit_on_problems(true) { |
40 | 40 |
funcOption("-help","Print a short help message",_showHelp,this); |
41 | 41 |
synonym("help","-help"); |
42 | 42 |
synonym("h","-help"); |
43 | 43 |
} |
44 | 44 |
|
45 | 45 |
ArgParser::~ArgParser() |
46 | 46 |
{ |
47 | 47 |
for(Opts::iterator i=_opts.begin();i!=_opts.end();++i) |
48 | 48 |
if(i->second.self_delete) |
49 | 49 |
switch(i->second.type) { |
50 | 50 |
case BOOL: |
51 | 51 |
delete i->second.bool_p; |
52 | 52 |
break; |
53 | 53 |
case STRING: |
54 | 54 |
delete i->second.string_p; |
55 | 55 |
break; |
56 | 56 |
case DOUBLE: |
57 | 57 |
delete i->second.double_p; |
58 | 58 |
break; |
59 | 59 |
case INTEGER: |
60 | 60 |
delete i->second.int_p; |
61 | 61 |
break; |
62 | 62 |
case UNKNOWN: |
63 | 63 |
break; |
64 | 64 |
case FUNC: |
65 | 65 |
break; |
66 | 66 |
} |
67 | 67 |
} |
68 | 68 |
|
69 | 69 |
|
70 | 70 |
ArgParser &ArgParser::intOption(const std::string &name, |
71 | 71 |
const std::string &help, |
72 | 72 |
int value, bool obl) |
73 | 73 |
{ |
74 | 74 |
ParData p; |
75 | 75 |
p.int_p=new int(value); |
76 | 76 |
p.self_delete=true; |
77 | 77 |
p.help=help; |
78 | 78 |
p.type=INTEGER; |
79 | 79 |
p.mandatory=obl; |
80 | 80 |
_opts[name]=p; |
81 | 81 |
return *this; |
82 | 82 |
} |
83 | 83 |
|
84 | 84 |
ArgParser &ArgParser::doubleOption(const std::string &name, |
85 | 85 |
const std::string &help, |
86 | 86 |
double value, bool obl) |
87 | 87 |
{ |
88 | 88 |
ParData p; |
89 | 89 |
p.double_p=new double(value); |
90 | 90 |
p.self_delete=true; |
91 | 91 |
p.help=help; |
92 | 92 |
p.type=DOUBLE; |
93 | 93 |
p.mandatory=obl; |
94 | 94 |
_opts[name]=p; |
95 | 95 |
return *this; |
96 | 96 |
} |
97 | 97 |
|
98 | 98 |
ArgParser &ArgParser::boolOption(const std::string &name, |
99 | 99 |
const std::string &help, |
100 | 100 |
bool value, bool obl) |
101 | 101 |
{ |
102 | 102 |
ParData p; |
103 | 103 |
p.bool_p=new bool(value); |
104 | 104 |
p.self_delete=true; |
105 | 105 |
p.help=help; |
106 | 106 |
p.type=BOOL; |
107 | 107 |
p.mandatory=obl; |
108 | 108 |
_opts[name]=p; |
109 | 109 |
return *this; |
110 | 110 |
} |
111 | 111 |
|
112 | 112 |
ArgParser &ArgParser::stringOption(const std::string &name, |
113 | 113 |
const std::string &help, |
114 | 114 |
std::string value, bool obl) |
115 | 115 |
{ |
116 | 116 |
ParData p; |
117 | 117 |
p.string_p=new std::string(value); |
118 | 118 |
p.self_delete=true; |
119 | 119 |
p.help=help; |
120 | 120 |
p.type=STRING; |
121 | 121 |
p.mandatory=obl; |
122 | 122 |
_opts[name]=p; |
123 | 123 |
return *this; |
124 | 124 |
} |
125 | 125 |
|
126 | 126 |
ArgParser &ArgParser::refOption(const std::string &name, |
127 | 127 |
const std::string &help, |
128 | 128 |
int &ref, bool obl) |
129 | 129 |
{ |
130 | 130 |
ParData p; |
131 | 131 |
p.int_p=&ref; |
132 | 132 |
p.self_delete=false; |
133 | 133 |
p.help=help; |
134 | 134 |
p.type=INTEGER; |
135 | 135 |
p.mandatory=obl; |
136 | 136 |
_opts[name]=p; |
137 | 137 |
return *this; |
138 | 138 |
} |
139 | 139 |
|
140 | 140 |
ArgParser &ArgParser::refOption(const std::string &name, |
141 | 141 |
const std::string &help, |
142 | 142 |
double &ref, bool obl) |
143 | 143 |
{ |
144 | 144 |
ParData p; |
145 | 145 |
p.double_p=&ref; |
146 | 146 |
p.self_delete=false; |
147 | 147 |
p.help=help; |
148 | 148 |
p.type=DOUBLE; |
149 | 149 |
p.mandatory=obl; |
150 | 150 |
_opts[name]=p; |
151 | 151 |
return *this; |
152 | 152 |
} |
153 | 153 |
|
154 | 154 |
ArgParser &ArgParser::refOption(const std::string &name, |
155 | 155 |
const std::string &help, |
156 | 156 |
bool &ref, bool obl) |
157 | 157 |
{ |
158 | 158 |
ParData p; |
159 | 159 |
p.bool_p=&ref; |
160 | 160 |
p.self_delete=false; |
161 | 161 |
p.help=help; |
162 | 162 |
p.type=BOOL; |
163 | 163 |
p.mandatory=obl; |
164 | 164 |
_opts[name]=p; |
165 | 165 |
|
166 | 166 |
ref = false; |
167 | 167 |
|
168 | 168 |
return *this; |
169 | 169 |
} |
170 | 170 |
|
171 | 171 |
ArgParser &ArgParser::refOption(const std::string &name, |
172 | 172 |
const std::string &help, |
173 | 173 |
std::string &ref, bool obl) |
174 | 174 |
{ |
175 | 175 |
ParData p; |
176 | 176 |
p.string_p=&ref; |
177 | 177 |
p.self_delete=false; |
178 | 178 |
p.help=help; |
179 | 179 |
p.type=STRING; |
180 | 180 |
p.mandatory=obl; |
181 | 181 |
_opts[name]=p; |
182 | 182 |
return *this; |
183 | 183 |
} |
184 | 184 |
|
185 | 185 |
ArgParser &ArgParser::funcOption(const std::string &name, |
186 | 186 |
const std::string &help, |
187 | 187 |
void (*func)(void *),void *data) |
188 | 188 |
{ |
189 | 189 |
ParData p; |
190 | 190 |
p.func_p.p=func; |
191 | 191 |
p.func_p.data=data; |
192 | 192 |
p.self_delete=false; |
193 | 193 |
p.help=help; |
194 | 194 |
p.type=FUNC; |
195 | 195 |
p.mandatory=false; |
196 | 196 |
_opts[name]=p; |
197 | 197 |
return *this; |
198 | 198 |
} |
199 | 199 |
|
200 | 200 |
ArgParser &ArgParser::optionGroup(const std::string &group, |
201 | 201 |
const std::string &opt) |
202 | 202 |
{ |
203 | 203 |
Opts::iterator i = _opts.find(opt); |
204 | 204 |
LEMON_ASSERT(i!=_opts.end(), "Unknown option: '"+opt+"'"); |
205 | 205 |
LEMON_ASSERT(!(i->second.ingroup), |
206 | 206 |
"Option already in option group: '"+opt+"'"); |
207 | 207 |
GroupData &g=_groups[group]; |
208 | 208 |
g.opts.push_back(opt); |
209 | 209 |
i->second.ingroup=true; |
210 | 210 |
return *this; |
211 | 211 |
} |
212 | 212 |
|
213 | 213 |
ArgParser &ArgParser::onlyOneGroup(const std::string &group) |
214 | 214 |
{ |
215 | 215 |
GroupData &g=_groups[group]; |
216 | 216 |
g.only_one=true; |
217 | 217 |
return *this; |
218 | 218 |
} |
219 | 219 |
|
220 | 220 |
ArgParser &ArgParser::synonym(const std::string &syn, |
221 | 221 |
const std::string &opt) |
222 | 222 |
{ |
1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 |
* Copyright (C) 2003- |
|
5 |
* Copyright (C) 2003-2010 |
|
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 | 19 |
#ifndef LEMON_ARG_PARSER_H |
20 | 20 |
#define LEMON_ARG_PARSER_H |
21 | 21 |
|
22 | 22 |
#include <vector> |
23 | 23 |
#include <map> |
24 | 24 |
#include <list> |
25 | 25 |
#include <string> |
26 | 26 |
#include <iostream> |
27 | 27 |
#include <sstream> |
28 | 28 |
#include <algorithm> |
29 | 29 |
#include <lemon/assert.h> |
30 | 30 |
|
31 | 31 |
///\ingroup misc |
32 | 32 |
///\file |
33 | 33 |
///\brief A tool to parse command line arguments. |
34 | 34 |
|
35 | 35 |
namespace lemon { |
36 | 36 |
|
37 | 37 |
///Exception used by ArgParser |
38 | 38 |
class ArgParserException : public Exception { |
39 | 39 |
public: |
40 | 40 |
enum Reason { |
41 | 41 |
HELP, /// <tt>--help</tt> option was given |
42 | 42 |
UNKNOWN_OPT, /// Unknown option was given |
43 | 43 |
INVALID_OPT /// Invalid combination of options |
44 | 44 |
}; |
45 |
|
|
45 |
|
|
46 | 46 |
private: |
47 | 47 |
Reason _reason; |
48 |
|
|
48 |
|
|
49 | 49 |
public: |
50 | 50 |
///Constructor |
51 | 51 |
ArgParserException(Reason r) throw() : _reason(r) {} |
52 | 52 |
///Virtual destructor |
53 | 53 |
virtual ~ArgParserException() throw() {} |
54 | 54 |
///A short description of the exception |
55 | 55 |
virtual const char* what() const throw() { |
56 | 56 |
switch(_reason) |
57 | 57 |
{ |
58 | 58 |
case HELP: |
59 | 59 |
return "lemon::ArgParseException: ask for help"; |
60 | 60 |
break; |
61 | 61 |
case UNKNOWN_OPT: |
62 | 62 |
return "lemon::ArgParseException: unknown option"; |
63 | 63 |
break; |
64 | 64 |
case INVALID_OPT: |
65 | 65 |
return "lemon::ArgParseException: invalid combination of options"; |
66 | 66 |
break; |
67 | 67 |
} |
68 | 68 |
return ""; |
69 | 69 |
} |
70 | 70 |
///Return the reason for the failure |
71 | 71 |
Reason reason() const {return _reason; } |
72 | 72 |
}; |
73 | 73 |
|
74 | 74 |
|
75 | 75 |
///Command line arguments parser |
76 | 76 |
|
77 | 77 |
///\ingroup misc |
78 | 78 |
///Command line arguments parser. |
79 | 79 |
/// |
80 | 80 |
///For a complete example see the \ref arg_parser_demo.cc demo file. |
81 | 81 |
class ArgParser { |
82 | 82 |
|
83 | 83 |
static void _showHelp(void *p); |
84 | 84 |
protected: |
85 | 85 |
|
86 | 86 |
int _argc; |
87 | 87 |
const char * const *_argv; |
88 | 88 |
|
89 | 89 |
enum OptType { UNKNOWN=0, BOOL=1, STRING=2, DOUBLE=3, INTEGER=4, FUNC=5 }; |
90 | 90 |
|
91 | 91 |
class ParData { |
92 | 92 |
public: |
93 | 93 |
union { |
94 | 94 |
bool *bool_p; |
95 | 95 |
int *int_p; |
96 | 96 |
double *double_p; |
97 | 97 |
std::string *string_p; |
98 | 98 |
struct { |
99 | 99 |
void (*p)(void *); |
100 | 100 |
void *data; |
101 | 101 |
} func_p; |
102 | 102 |
|
103 | 103 |
}; |
104 | 104 |
std::string help; |
105 | 105 |
bool mandatory; |
106 | 106 |
OptType type; |
107 | 107 |
bool set; |
108 | 108 |
bool ingroup; |
109 | 109 |
bool has_syn; |
110 | 110 |
bool syn; |
111 | 111 |
bool self_delete; |
112 | 112 |
ParData() : mandatory(false), type(UNKNOWN), set(false), ingroup(false), |
113 | 113 |
has_syn(false), syn(false), self_delete(false) {} |
114 | 114 |
}; |
115 | 115 |
|
116 | 116 |
typedef std::map<std::string,ParData> Opts; |
117 | 117 |
Opts _opts; |
118 | 118 |
|
119 | 119 |
class GroupData |
120 | 120 |
{ |
121 | 121 |
public: |
122 | 122 |
typedef std::list<std::string> Opts; |
123 | 123 |
Opts opts; |
124 | 124 |
bool only_one; |
125 | 125 |
bool mandatory; |
126 | 126 |
GroupData() :only_one(false), mandatory(false) {} |
127 | 127 |
}; |
128 | 128 |
|
129 | 129 |
typedef std::map<std::string,GroupData> Groups; |
130 | 130 |
Groups _groups; |
131 | 131 |
|
132 | 132 |
struct OtherArg |
133 | 133 |
{ |
134 | 134 |
std::string name; |
135 | 135 |
std::string help; |
136 | 136 |
OtherArg(std::string n, std::string h) :name(n), help(h) {} |
137 | 137 |
|
138 | 138 |
}; |
139 | 139 |
|
140 | 140 |
std::vector<OtherArg> _others_help; |
141 | 141 |
std::vector<std::string> _file_args; |
142 | 142 |
std::string _command_name; |
143 | 143 |
|
144 |
|
|
144 |
|
|
145 | 145 |
private: |
146 | 146 |
//Bind a function to an option. |
147 | 147 |
|
148 | 148 |
//\param name The name of the option. The leading '-' must be omitted. |
149 | 149 |
//\param help A help string. |
150 | 150 |
//\retval func The function to be called when the option is given. It |
151 | 151 |
// must be of type "void f(void *)" |
152 | 152 |
//\param data Data to be passed to \c func |
153 | 153 |
ArgParser &funcOption(const std::string &name, |
154 | 154 |
const std::string &help, |
155 | 155 |
void (*func)(void *),void *data); |
156 | 156 |
|
157 | 157 |
bool _exit_on_problems; |
158 |
|
|
158 |
|
|
159 | 159 |
void _terminate(ArgParserException::Reason reason) const; |
160 | 160 |
|
161 | 161 |
public: |
162 | 162 |
|
163 | 163 |
///Constructor |
164 | 164 |
ArgParser(int argc, const char * const *argv); |
165 | 165 |
|
166 | 166 |
~ArgParser(); |
167 | 167 |
|
168 | 168 |
///\name Options |
169 | 169 |
/// |
170 | 170 |
|
171 | 171 |
///@{ |
172 | 172 |
|
173 | 173 |
///Add a new integer type option |
174 | 174 |
|
175 | 175 |
///Add a new integer type option. |
176 | 176 |
///\param name The name of the option. The leading '-' must be omitted. |
177 | 177 |
///\param help A help string. |
178 | 178 |
///\param value A default value for the option. |
179 | 179 |
///\param obl Indicate if the option is mandatory. |
180 | 180 |
ArgParser &intOption(const std::string &name, |
181 | 181 |
const std::string &help, |
182 | 182 |
int value=0, bool obl=false); |
183 | 183 |
|
184 | 184 |
///Add a new floating point type option |
185 | 185 |
|
186 | 186 |
///Add a new floating point type option. |
187 | 187 |
///\param name The name of the option. The leading '-' must be omitted. |
188 | 188 |
///\param help A help string. |
189 | 189 |
///\param value A default value for the option. |
190 | 190 |
///\param obl Indicate if the option is mandatory. |
191 | 191 |
ArgParser &doubleOption(const std::string &name, |
192 | 192 |
const std::string &help, |
193 | 193 |
double value=0, bool obl=false); |
194 | 194 |
|
195 | 195 |
///Add a new bool type option |
196 | 196 |
|
197 | 197 |
///Add a new bool type option. |
198 | 198 |
///\param name The name of the option. The leading '-' must be omitted. |
199 | 199 |
///\param help A help string. |
200 | 200 |
///\param value A default value for the option. |
201 | 201 |
///\param obl Indicate if the option is mandatory. |
202 | 202 |
///\note A mandatory bool obtion is of very little use. |
203 | 203 |
ArgParser &boolOption(const std::string &name, |
204 | 204 |
const std::string &help, |
205 | 205 |
bool value=false, bool obl=false); |
206 | 206 |
|
207 | 207 |
///Add a new string type option |
208 | 208 |
|
209 | 209 |
///Add a new string type option. |
210 | 210 |
///\param name The name of the option. The leading '-' must be omitted. |
211 | 211 |
///\param help A help string. |
212 | 212 |
///\param value A default value for the option. |
213 | 213 |
///\param obl Indicate if the option is mandatory. |
214 | 214 |
ArgParser &stringOption(const std::string &name, |
215 | 215 |
const std::string &help, |
216 | 216 |
std::string value="", bool obl=false); |
217 | 217 |
|
218 | 218 |
///Give help string for non-parsed arguments. |
219 | 219 |
|
220 | 220 |
///With this function you can give help string for non-parsed arguments. |
221 | 221 |
///The parameter \c name will be printed in the short usage line, while |
222 | 222 |
///\c help gives a more detailed description. |
223 | 223 |
ArgParser &other(const std::string &name, |
224 | 224 |
const std::string &help=""); |
225 | 225 |
|
226 | 226 |
///@} |
227 | 227 |
|
228 | 228 |
///\name Options with External Storage |
229 | 229 |
///Using this functions, the value of the option will be directly written |
230 | 230 |
///into a variable once the option appears in the command line. |
231 | 231 |
|
232 | 232 |
///@{ |
233 | 233 |
|
234 | 234 |
///Add a new integer type option with a storage reference |
235 | 235 |
|
236 | 236 |
///Add a new integer type option with a storage reference. |
237 | 237 |
///\param name The name of the option. The leading '-' must be omitted. |
238 | 238 |
///\param help A help string. |
239 | 239 |
///\param obl Indicate if the option is mandatory. |
240 | 240 |
///\retval ref The value of the argument will be written to this variable. |
241 | 241 |
ArgParser &refOption(const std::string &name, |
242 | 242 |
const std::string &help, |
243 | 243 |
int &ref, bool obl=false); |
244 | 244 |
|
245 | 245 |
///Add a new floating type option with a storage reference |
246 | 246 |
|
247 | 247 |
///Add a new floating type option with a storage reference. |
248 | 248 |
///\param name The name of the option. The leading '-' must be omitted. |
249 | 249 |
///\param help A help string. |
250 | 250 |
///\param obl Indicate if the option is mandatory. |
251 | 251 |
///\retval ref The value of the argument will be written to this variable. |
252 | 252 |
ArgParser &refOption(const std::string &name, |
253 | 253 |
const std::string &help, |
254 | 254 |
double &ref, bool obl=false); |
255 | 255 |
|
256 | 256 |
///Add a new bool type option with a storage reference |
257 | 257 |
|
258 | 258 |
///Add a new bool type option with a storage reference. |
259 | 259 |
///\param name The name of the option. The leading '-' must be omitted. |
260 | 260 |
///\param help A help string. |
261 | 261 |
///\param obl Indicate if the option is mandatory. |
262 | 262 |
///\retval ref The value of the argument will be written to this variable. |
263 | 263 |
///\note A mandatory bool obtion is of very little use. |
264 | 264 |
ArgParser &refOption(const std::string &name, |
265 | 265 |
const std::string &help, |
266 | 266 |
bool &ref, bool obl=false); |
267 | 267 |
|
268 | 268 |
///Add a new string type option with a storage reference |
269 | 269 |
|
270 | 270 |
///Add a new string type option with a storage reference. |
271 | 271 |
///\param name The name of the option. The leading '-' must be omitted. |
272 | 272 |
///\param help A help string. |
273 | 273 |
///\param obl Indicate if the option is mandatory. |
274 | 274 |
///\retval ref The value of the argument will be written to this variable. |
275 | 275 |
ArgParser &refOption(const std::string &name, |
276 | 276 |
const std::string &help, |
277 | 277 |
std::string &ref, bool obl=false); |
278 | 278 |
|
279 | 279 |
///@} |
280 | 280 |
|
281 | 281 |
///\name Option Groups and Synonyms |
282 | 282 |
/// |
283 | 283 |
|
284 | 284 |
///@{ |
285 | 285 |
|
286 | 286 |
///Bundle some options into a group |
287 | 287 |
|
288 | 288 |
/// You can group some option by calling this function repeatedly for each |
289 | 289 |
/// option to be grouped with the same groupname. |
290 | 290 |
///\param group The group name. |
291 | 291 |
///\param opt The option name. |
292 | 292 |
ArgParser &optionGroup(const std::string &group, |
293 | 293 |
const std::string &opt); |
294 | 294 |
|
295 | 295 |
///Make the members of a group exclusive |
296 | 296 |
|
297 | 297 |
///If you call this function for a group, than at most one of them can be |
298 | 298 |
///given at the same time. |
299 | 299 |
ArgParser &onlyOneGroup(const std::string &group); |
300 | 300 |
|
301 | 301 |
///Make a group mandatory |
302 | 302 |
|
303 | 303 |
///Using this function, at least one of the members of \c group |
304 | 304 |
///must be given. |
305 | 305 |
ArgParser &mandatoryGroup(const std::string &group); |
306 | 306 |
|
307 | 307 |
///Create synonym to an option |
308 | 308 |
|
309 | 309 |
///With this function you can create a synonym \c syn of the |
310 | 310 |
///option \c opt. |
311 | 311 |
ArgParser &synonym(const std::string &syn, |
312 | 312 |
const std::string &opt); |
313 | 313 |
|
314 | 314 |
///@} |
315 | 315 |
|
316 | 316 |
private: |
317 | 317 |
void show(std::ostream &os,Opts::const_iterator i) const; |
318 | 318 |
void show(std::ostream &os,Groups::const_iterator i) const; |
319 | 319 |
void showHelp(Opts::const_iterator i) const; |
320 | 320 |
void showHelp(std::vector<OtherArg>::const_iterator i) const; |
321 | 321 |
|
322 | 322 |
void unknownOpt(std::string arg) const; |
323 | 323 |
|
324 | 324 |
void requiresValue(std::string arg, OptType t) const; |
325 | 325 |
void checkMandatories() const; |
326 | 326 |
|
327 | 327 |
void shortHelp() const; |
328 | 328 |
void showHelp() const; |
329 | 329 |
public: |
330 | 330 |
|
331 | 331 |
///Start the parsing process |
332 | 332 |
ArgParser &parse(); |
333 | 333 |
|
334 | 334 |
/// Synonym for parse() |
335 | 335 |
ArgParser &run() |
336 | 336 |
{ |
337 | 337 |
return parse(); |
338 | 338 |
} |
339 | 339 |
|
340 | 340 |
///Give back the command name (the 0th argument) |
341 | 341 |
const std::string &commandName() const { return _command_name; } |
342 | 342 |
|
343 | 343 |
///Check if an opion has been given to the command. |
344 | 344 |
bool given(std::string op) const |
345 | 345 |
{ |
346 | 346 |
Opts::const_iterator i = _opts.find(op); |
347 | 347 |
return i!=_opts.end()?i->second.set:false; |
348 | 348 |
} |
349 | 349 |
|
350 | 350 |
|
351 | 351 |
///Magic type for operator[] |
352 | 352 |
|
353 | 353 |
///This is the type of the return value of ArgParser::operator[](). |
354 | 354 |
///It automatically converts to \c int, \c double, \c bool or |
355 | 355 |
///\c std::string if the type of the option matches, which is checked |
356 | 356 |
///with an \ref LEMON_ASSERT "assertion" (i.e. it performs runtime |
357 | 357 |
///type checking). |
358 | 358 |
class RefType |
359 | 359 |
{ |
360 | 360 |
const ArgParser &_parser; |
361 | 361 |
std::string _name; |
362 | 362 |
public: |
363 | 363 |
///\e |
364 | 364 |
RefType(const ArgParser &p,const std::string &n) :_parser(p),_name(n) {} |
365 | 365 |
///\e |
366 | 366 |
operator bool() |
367 | 367 |
{ |
368 | 368 |
Opts::const_iterator i = _parser._opts.find(_name); |
369 | 369 |
LEMON_ASSERT(i!=_parser._opts.end(), |
370 | 370 |
std::string()+"Unkown option: '"+_name+"'"); |
371 | 371 |
LEMON_ASSERT(i->second.type==ArgParser::BOOL, |
372 | 372 |
std::string()+"'"+_name+"' is a bool option"); |
373 | 373 |
return *(i->second.bool_p); |
374 | 374 |
} |
375 | 375 |
///\e |
376 | 376 |
operator std::string() |
377 | 377 |
{ |
378 | 378 |
Opts::const_iterator i = _parser._opts.find(_name); |
379 | 379 |
LEMON_ASSERT(i!=_parser._opts.end(), |
380 | 380 |
std::string()+"Unkown option: '"+_name+"'"); |
381 | 381 |
LEMON_ASSERT(i->second.type==ArgParser::STRING, |
382 | 382 |
std::string()+"'"+_name+"' is a string option"); |
383 | 383 |
return *(i->second.string_p); |
384 | 384 |
} |
385 | 385 |
///\e |
386 | 386 |
operator double() |
387 | 387 |
{ |
388 | 388 |
Opts::const_iterator i = _parser._opts.find(_name); |
389 | 389 |
LEMON_ASSERT(i!=_parser._opts.end(), |
390 | 390 |
std::string()+"Unkown option: '"+_name+"'"); |
391 | 391 |
LEMON_ASSERT(i->second.type==ArgParser::DOUBLE || |
392 | 392 |
i->second.type==ArgParser::INTEGER, |
393 | 393 |
std::string()+"'"+_name+"' is a floating point option"); |
394 | 394 |
return i->second.type==ArgParser::DOUBLE ? |
395 | 395 |
*(i->second.double_p) : *(i->second.int_p); |
396 | 396 |
} |
397 | 397 |
///\e |
398 | 398 |
operator int() |
399 | 399 |
{ |
400 | 400 |
Opts::const_iterator i = _parser._opts.find(_name); |
401 | 401 |
LEMON_ASSERT(i!=_parser._opts.end(), |
402 | 402 |
std::string()+"Unkown option: '"+_name+"'"); |
403 | 403 |
LEMON_ASSERT(i->second.type==ArgParser::INTEGER, |
404 | 404 |
std::string()+"'"+_name+"' is an integer option"); |
405 | 405 |
return *(i->second.int_p); |
406 | 406 |
} |
407 | 407 |
|
408 | 408 |
}; |
409 | 409 |
|
410 | 410 |
///Give back the value of an option |
411 | 411 |
|
412 | 412 |
///Give back the value of an option. |
413 | 413 |
///\sa RefType |
414 | 414 |
RefType operator[](const std::string &n) const |
415 | 415 |
{ |
416 | 416 |
return RefType(*this, n); |
417 | 417 |
} |
418 | 418 |
|
419 | 419 |
///Give back the non-option type arguments. |
420 | 420 |
|
421 | 421 |
///Give back a reference to a vector consisting of the program arguments |
422 | 422 |
///not starting with a '-' character. |
423 | 423 |
const std::vector<std::string> &files() const { return _file_args; } |
424 | 424 |
|
425 | 425 |
///Throw instead of exit in case of problems |
426 |
void throwOnProblems() |
|
426 |
void throwOnProblems() |
|
427 | 427 |
{ |
428 | 428 |
_exit_on_problems=false; |
429 | 429 |
} |
430 | 430 |
}; |
431 | 431 |
} |
432 | 432 |
|
433 | 433 |
#endif // LEMON_ARG_PARSER_H |
1 |
/* -*- C++ -*- |
|
1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
|
2 | 2 |
* |
3 |
* This file is a part of LEMON, a generic C++ optimization library |
|
3 |
* This file is a part of LEMON, a generic C++ optimization library. |
|
4 | 4 |
* |
5 |
* Copyright (C) 2003- |
|
5 |
* Copyright (C) 2003-2010 |
|
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 | 19 |
#ifndef LEMON_BELLMAN_FORD_H |
20 | 20 |
#define LEMON_BELLMAN_FORD_H |
21 | 21 |
|
22 | 22 |
/// \ingroup shortest_path |
23 | 23 |
/// \file |
24 | 24 |
/// \brief Bellman-Ford algorithm. |
25 | 25 |
|
26 | 26 |
#include <lemon/list_graph.h> |
27 | 27 |
#include <lemon/bits/path_dump.h> |
28 | 28 |
#include <lemon/core.h> |
29 | 29 |
#include <lemon/error.h> |
30 | 30 |
#include <lemon/maps.h> |
31 | 31 |
#include <lemon/tolerance.h> |
32 | 32 |
#include <lemon/path.h> |
33 | 33 |
|
34 | 34 |
#include <limits> |
35 | 35 |
|
36 | 36 |
namespace lemon { |
37 | 37 |
|
38 | 38 |
/// \brief Default operation traits for the BellmanFord algorithm class. |
39 |
/// |
|
39 |
/// |
|
40 | 40 |
/// This operation traits class defines all computational operations |
41 | 41 |
/// and constants that are used in the Bellman-Ford algorithm. |
42 | 42 |
/// The default implementation is based on the \c numeric_limits class. |
43 | 43 |
/// If the numeric type does not have infinity value, then the maximum |
44 | 44 |
/// value is used as extremal infinity value. |
45 | 45 |
/// |
46 | 46 |
/// \see BellmanFordToleranceOperationTraits |
47 | 47 |
template < |
48 |
typename V, |
|
48 |
typename V, |
|
49 | 49 |
bool has_inf = std::numeric_limits<V>::has_infinity> |
50 | 50 |
struct BellmanFordDefaultOperationTraits { |
51 | 51 |
/// \brief Value type for the algorithm. |
52 | 52 |
typedef V Value; |
53 | 53 |
/// \brief Gives back the zero value of the type. |
54 | 54 |
static Value zero() { |
55 | 55 |
return static_cast<Value>(0); |
56 | 56 |
} |
57 | 57 |
/// \brief Gives back the positive infinity value of the type. |
58 | 58 |
static Value infinity() { |
59 | 59 |
return std::numeric_limits<Value>::infinity(); |
60 | 60 |
} |
61 | 61 |
/// \brief Gives back the sum of the given two elements. |
62 | 62 |
static Value plus(const Value& left, const Value& right) { |
63 | 63 |
return left + right; |
64 | 64 |
} |
65 | 65 |
/// \brief Gives back \c true only if the first value is less than |
66 | 66 |
/// the second. |
67 | 67 |
static bool less(const Value& left, const Value& right) { |
68 | 68 |
return left < right; |
69 | 69 |
} |
70 | 70 |
}; |
71 | 71 |
|
72 | 72 |
template <typename V> |
73 | 73 |
struct BellmanFordDefaultOperationTraits<V, false> { |
74 | 74 |
typedef V Value; |
75 | 75 |
static Value zero() { |
76 | 76 |
return static_cast<Value>(0); |
77 | 77 |
} |
78 | 78 |
static Value infinity() { |
79 | 79 |
return std::numeric_limits<Value>::max(); |
80 | 80 |
} |
81 | 81 |
static Value plus(const Value& left, const Value& right) { |
82 | 82 |
if (left == infinity() || right == infinity()) return infinity(); |
83 | 83 |
return left + right; |
84 | 84 |
} |
85 | 85 |
static bool less(const Value& left, const Value& right) { |
86 | 86 |
return left < right; |
87 | 87 |
} |
88 | 88 |
}; |
89 |
|
|
89 |
|
|
90 | 90 |
/// \brief Operation traits for the BellmanFord algorithm class |
91 | 91 |
/// using tolerance. |
92 | 92 |
/// |
93 | 93 |
/// This operation traits class defines all computational operations |
94 | 94 |
/// and constants that are used in the Bellman-Ford algorithm. |
95 | 95 |
/// The only difference between this implementation and |
96 | 96 |
/// \ref BellmanFordDefaultOperationTraits is that this class uses |
97 | 97 |
/// the \ref Tolerance "tolerance technique" in its \ref less() |
98 | 98 |
/// function. |
99 | 99 |
/// |
100 | 100 |
/// \tparam V The value type. |
101 | 101 |
/// \tparam eps The epsilon value for the \ref less() function. |
102 | 102 |
/// By default, it is the epsilon value used by \ref Tolerance |
103 | 103 |
/// "Tolerance<V>". |
104 | 104 |
/// |
105 | 105 |
/// \see BellmanFordDefaultOperationTraits |
106 | 106 |
#ifdef DOXYGEN |
107 | 107 |
template <typename V, V eps> |
108 | 108 |
#else |
109 | 109 |
template < |
110 | 110 |
typename V, |
111 | 111 |
V eps = Tolerance<V>::def_epsilon> |
112 | 112 |
#endif |
113 | 113 |
struct BellmanFordToleranceOperationTraits { |
114 | 114 |
/// \brief Value type for the algorithm. |
115 | 115 |
typedef V Value; |
116 | 116 |
/// \brief Gives back the zero value of the type. |
117 | 117 |
static Value zero() { |
118 | 118 |
return static_cast<Value>(0); |
119 | 119 |
} |
120 | 120 |
/// \brief Gives back the positive infinity value of the type. |
121 | 121 |
static Value infinity() { |
122 | 122 |
return std::numeric_limits<Value>::infinity(); |
123 | 123 |
} |
124 | 124 |
/// \brief Gives back the sum of the given two elements. |
125 | 125 |
static Value plus(const Value& left, const Value& right) { |
126 | 126 |
return left + right; |
127 | 127 |
} |
128 | 128 |
/// \brief Gives back \c true only if the first value is less than |
129 | 129 |
/// the second. |
130 | 130 |
static bool less(const Value& left, const Value& right) { |
131 | 131 |
return left + eps < right; |
132 | 132 |
} |
133 | 133 |
}; |
134 | 134 |
|
135 | 135 |
/// \brief Default traits class of BellmanFord class. |
136 | 136 |
/// |
137 | 137 |
/// Default traits class of BellmanFord class. |
138 | 138 |
/// \param GR The type of the digraph. |
139 | 139 |
/// \param LEN The type of the length map. |
140 | 140 |
template<typename GR, typename LEN> |
141 | 141 |
struct BellmanFordDefaultTraits { |
142 |
/// The type of the digraph the algorithm runs on. |
|
142 |
/// The type of the digraph the algorithm runs on. |
|
143 | 143 |
typedef GR Digraph; |
144 | 144 |
|
145 | 145 |
/// \brief The type of the map that stores the arc lengths. |
146 | 146 |
/// |
147 | 147 |
/// The type of the map that stores the arc lengths. |
148 | 148 |
/// It must conform to the \ref concepts::ReadMap "ReadMap" concept. |
149 | 149 |
typedef LEN LengthMap; |
150 | 150 |
|
151 | 151 |
/// The type of the arc lengths. |
152 | 152 |
typedef typename LEN::Value Value; |
153 | 153 |
|
154 | 154 |
/// \brief Operation traits for Bellman-Ford algorithm. |
155 | 155 |
/// |
156 | 156 |
/// It defines the used operations and the infinity value for the |
157 | 157 |
/// given \c Value type. |
158 | 158 |
/// \see BellmanFordDefaultOperationTraits, |
159 | 159 |
/// BellmanFordToleranceOperationTraits |
160 | 160 |
typedef BellmanFordDefaultOperationTraits<Value> OperationTraits; |
161 |
|
|
162 |
/// \brief The type of the map that stores the last arcs of the |
|
161 |
|
|
162 |
/// \brief The type of the map that stores the last arcs of the |
|
163 | 163 |
/// shortest paths. |
164 |
/// |
|
164 |
/// |
|
165 | 165 |
/// The type of the map that stores the last |
166 | 166 |
/// arcs of the shortest paths. |
167 | 167 |
/// It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
168 | 168 |
typedef typename GR::template NodeMap<typename GR::Arc> PredMap; |
169 | 169 |
|
170 | 170 |
/// \brief Instantiates a \c PredMap. |
171 |
/// |
|
172 |
/// This function instantiates a \ref PredMap. |
|
171 |
/// |
|
172 |
/// This function instantiates a \ref PredMap. |
|
173 | 173 |
/// \param g is the digraph to which we would like to define the |
174 | 174 |
/// \ref PredMap. |
175 | 175 |
static PredMap *createPredMap(const GR& g) { |
176 | 176 |
return new PredMap(g); |
177 | 177 |
} |
178 | 178 |
|
179 | 179 |
/// \brief The type of the map that stores the distances of the nodes. |
180 | 180 |
/// |
181 | 181 |
/// The type of the map that stores the distances of the nodes. |
182 | 182 |
/// It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
183 | 183 |
typedef typename GR::template NodeMap<typename LEN::Value> DistMap; |
184 | 184 |
|
185 | 185 |
/// \brief Instantiates a \c DistMap. |
186 | 186 |
/// |
187 |
/// This function instantiates a \ref DistMap. |
|
188 |
/// \param g is the digraph to which we would like to define the |
|
187 |
/// This function instantiates a \ref DistMap. |
|
188 |
/// \param g is the digraph to which we would like to define the |
|
189 | 189 |
/// \ref DistMap. |
190 | 190 |
static DistMap *createDistMap(const GR& g) { |
191 | 191 |
return new DistMap(g); |
192 | 192 |
} |
193 | 193 |
|
194 | 194 |
}; |
195 |
|
|
195 |
|
|
196 | 196 |
/// \brief %BellmanFord algorithm class. |
197 | 197 |
/// |
198 | 198 |
/// \ingroup shortest_path |
199 |
/// This class provides an efficient implementation of the Bellman-Ford |
|
199 |
/// This class provides an efficient implementation of the Bellman-Ford |
|
200 | 200 |
/// algorithm. The maximum time complexity of the algorithm is |
201 | 201 |
/// <tt>O(ne)</tt>. |
202 | 202 |
/// |
203 | 203 |
/// The Bellman-Ford algorithm solves the single-source shortest path |
204 | 204 |
/// problem when the arcs can have negative lengths, but the digraph |
205 | 205 |
/// should not contain directed cycles with negative total length. |
206 | 206 |
/// If all arc costs are non-negative, consider to use the Dijkstra |
207 | 207 |
/// algorithm instead, since it is more efficient. |
208 | 208 |
/// |
209 | 209 |
/// The arc lengths are passed to the algorithm using a |
210 |
/// \ref concepts::ReadMap "ReadMap", so it is easy to change it to any |
|
210 |
/// \ref concepts::ReadMap "ReadMap", so it is easy to change it to any |
|
211 | 211 |
/// kind of length. The type of the length values is determined by the |
212 | 212 |
/// \ref concepts::ReadMap::Value "Value" type of the length map. |
213 | 213 |
/// |
214 | 214 |
/// There is also a \ref bellmanFord() "function-type interface" for the |
215 | 215 |
/// Bellman-Ford algorithm, which is convenient in the simplier cases and |
216 | 216 |
/// it can be used easier. |
217 | 217 |
/// |
218 | 218 |
/// \tparam GR The type of the digraph the algorithm runs on. |
219 | 219 |
/// The default type is \ref ListDigraph. |
220 | 220 |
/// \tparam LEN A \ref concepts::ReadMap "readable" arc map that specifies |
221 | 221 |
/// the lengths of the arcs. The default map type is |
222 | 222 |
/// \ref concepts::Digraph::ArcMap "GR::ArcMap<int>". |
223 | 223 |
/// \tparam TR The traits class that defines various types used by the |
224 | 224 |
/// algorithm. By default, it is \ref BellmanFordDefaultTraits |
225 | 225 |
/// "BellmanFordDefaultTraits<GR, LEN>". |
226 | 226 |
/// In most cases, this parameter should not be set directly, |
227 | 227 |
/// consider to use the named template parameters instead. |
228 | 228 |
#ifdef DOXYGEN |
229 | 229 |
template <typename GR, typename LEN, typename TR> |
230 | 230 |
#else |
231 | 231 |
template <typename GR=ListDigraph, |
232 | 232 |
typename LEN=typename GR::template ArcMap<int>, |
233 | 233 |
typename TR=BellmanFordDefaultTraits<GR,LEN> > |
234 | 234 |
#endif |
235 | 235 |
class BellmanFord { |
236 | 236 |
public: |
237 | 237 |
|
238 | 238 |
///The type of the underlying digraph. |
239 | 239 |
typedef typename TR::Digraph Digraph; |
240 |
|
|
240 |
|
|
241 | 241 |
/// \brief The type of the arc lengths. |
242 | 242 |
typedef typename TR::LengthMap::Value Value; |
243 | 243 |
/// \brief The type of the map that stores the arc lengths. |
244 | 244 |
typedef typename TR::LengthMap LengthMap; |
245 | 245 |
/// \brief The type of the map that stores the last |
246 | 246 |
/// arcs of the shortest paths. |
247 | 247 |
typedef typename TR::PredMap PredMap; |
248 | 248 |
/// \brief The type of the map that stores the distances of the nodes. |
249 | 249 |
typedef typename TR::DistMap DistMap; |
250 | 250 |
/// The type of the paths. |
251 | 251 |
typedef PredMapPath<Digraph, PredMap> Path; |
252 | 252 |
///\brief The \ref BellmanFordDefaultOperationTraits |
253 | 253 |
/// "operation traits class" of the algorithm. |
254 | 254 |
typedef typename TR::OperationTraits OperationTraits; |
255 | 255 |
|
256 | 256 |
///The \ref BellmanFordDefaultTraits "traits class" of the algorithm. |
257 | 257 |
typedef TR Traits; |
258 | 258 |
|
259 | 259 |
private: |
260 | 260 |
|
261 | 261 |
typedef typename Digraph::Node Node; |
262 | 262 |
typedef typename Digraph::NodeIt NodeIt; |
263 | 263 |
typedef typename Digraph::Arc Arc; |
264 | 264 |
typedef typename Digraph::OutArcIt OutArcIt; |
265 | 265 |
|
266 | 266 |
// Pointer to the underlying digraph. |
267 | 267 |
const Digraph *_gr; |
268 | 268 |
// Pointer to the length map |
269 | 269 |
const LengthMap *_length; |
270 | 270 |
// Pointer to the map of predecessors arcs. |
271 | 271 |
PredMap *_pred; |
272 | 272 |
// Indicates if _pred is locally allocated (true) or not. |
273 | 273 |
bool _local_pred; |
274 | 274 |
// Pointer to the map of distances. |
275 | 275 |
DistMap *_dist; |
276 | 276 |
// Indicates if _dist is locally allocated (true) or not. |
277 | 277 |
bool _local_dist; |
278 | 278 |
|
279 | 279 |
typedef typename Digraph::template NodeMap<bool> MaskMap; |
280 | 280 |
MaskMap *_mask; |
281 | 281 |
|
282 | 282 |
std::vector<Node> _process; |
283 | 283 |
|
284 | 284 |
// Creates the maps if necessary. |
285 | 285 |
void create_maps() { |
286 | 286 |
if(!_pred) { |
287 |
_local_pred = true; |
|
288 |
_pred = Traits::createPredMap(*_gr); |
|
287 |
_local_pred = true; |
|
288 |
_pred = Traits::createPredMap(*_gr); |
|
289 | 289 |
} |
290 | 290 |
if(!_dist) { |
291 |
_local_dist = true; |
|
292 |
_dist = Traits::createDistMap(*_gr); |
|
291 |
_local_dist = true; |
|
292 |
_dist = Traits::createDistMap(*_gr); |
|
293 | 293 |
} |
294 | 294 |
if(!_mask) { |
295 | 295 |
_mask = new MaskMap(*_gr); |
296 | 296 |
} |
297 | 297 |
} |
298 |
|
|
298 |
|
|
299 | 299 |
public : |
300 |
|
|
300 |
|
|
301 | 301 |
typedef BellmanFord Create; |
302 | 302 |
|
303 | 303 |
/// \name Named Template Parameters |
304 | 304 |
|
305 | 305 |
///@{ |
306 | 306 |
|
307 | 307 |
template <class T> |
308 | 308 |
struct SetPredMapTraits : public Traits { |
309 | 309 |
typedef T PredMap; |
310 | 310 |
static PredMap *createPredMap(const Digraph&) { |
311 | 311 |
LEMON_ASSERT(false, "PredMap is not initialized"); |
312 | 312 |
return 0; // ignore warnings |
313 | 313 |
} |
314 | 314 |
}; |
315 | 315 |
|
316 | 316 |
/// \brief \ref named-templ-param "Named parameter" for setting |
317 | 317 |
/// \c PredMap type. |
318 | 318 |
/// |
319 | 319 |
/// \ref named-templ-param "Named parameter" for setting |
320 | 320 |
/// \c PredMap type. |
321 | 321 |
/// It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
322 | 322 |
template <class T> |
323 |
struct SetPredMap |
|
323 |
struct SetPredMap |
|
324 | 324 |
: public BellmanFord< Digraph, LengthMap, SetPredMapTraits<T> > { |
325 | 325 |
typedef BellmanFord< Digraph, LengthMap, SetPredMapTraits<T> > Create; |
326 | 326 |
}; |
327 |
|
|
327 |
|
|
328 | 328 |
template <class T> |
329 | 329 |
struct SetDistMapTraits : public Traits { |
330 | 330 |
typedef T DistMap; |
331 | 331 |
static DistMap *createDistMap(const Digraph&) { |
332 | 332 |
LEMON_ASSERT(false, "DistMap is not initialized"); |
333 | 333 |
return 0; // ignore warnings |
334 | 334 |
} |
335 | 335 |
}; |
336 | 336 |
|
337 | 337 |
/// \brief \ref named-templ-param "Named parameter" for setting |
338 | 338 |
/// \c DistMap type. |
339 | 339 |
/// |
340 | 340 |
/// \ref named-templ-param "Named parameter" for setting |
341 | 341 |
/// \c DistMap type. |
342 | 342 |
/// It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
343 | 343 |
template <class T> |
344 |
struct SetDistMap |
|
344 |
struct SetDistMap |
|
345 | 345 |
: public BellmanFord< Digraph, LengthMap, SetDistMapTraits<T> > { |
346 | 346 |
typedef BellmanFord< Digraph, LengthMap, SetDistMapTraits<T> > Create; |
347 | 347 |
}; |
348 | 348 |
|
349 | 349 |
template <class T> |
350 | 350 |
struct SetOperationTraitsTraits : public Traits { |
351 | 351 |
typedef T OperationTraits; |
352 | 352 |
}; |
353 |
|
|
354 |
/// \brief \ref named-templ-param "Named parameter" for setting |
|
353 |
|
|
354 |
/// \brief \ref named-templ-param "Named parameter" for setting |
|
355 | 355 |
/// \c OperationTraits type. |
356 | 356 |
/// |
357 | 357 |
/// \ref named-templ-param "Named parameter" for setting |
358 | 358 |
/// \c OperationTraits type. |
359 | 359 |
/// For more information, see \ref BellmanFordDefaultOperationTraits. |
360 | 360 |
template <class T> |
361 | 361 |
struct SetOperationTraits |
362 | 362 |
: public BellmanFord< Digraph, LengthMap, SetOperationTraitsTraits<T> > { |
363 | 363 |
typedef BellmanFord< Digraph, LengthMap, SetOperationTraitsTraits<T> > |
364 | 364 |
Create; |
365 | 365 |
}; |
366 |
|
|
366 |
|
|
367 | 367 |
///@} |
368 | 368 |
|
369 | 369 |
protected: |
370 |
|
|
370 |
|
|
371 | 371 |
BellmanFord() {} |
372 | 372 |
|
373 |
public: |
|
374 |
|
|
373 |
public: |
|
374 |
|
|
375 | 375 |
/// \brief Constructor. |
376 | 376 |
/// |
377 | 377 |
/// Constructor. |
378 | 378 |
/// \param g The digraph the algorithm runs on. |
379 | 379 |
/// \param length The length map used by the algorithm. |
380 | 380 |
BellmanFord(const Digraph& g, const LengthMap& length) : |
381 | 381 |
_gr(&g), _length(&length), |
382 | 382 |
_pred(0), _local_pred(false), |
383 | 383 |
_dist(0), _local_dist(false), _mask(0) {} |
384 |
|
|
384 |
|
|
385 | 385 |
///Destructor. |
386 | 386 |
~BellmanFord() { |
387 | 387 |
if(_local_pred) delete _pred; |
388 | 388 |
if(_local_dist) delete _dist; |
389 | 389 |
if(_mask) delete _mask; |
390 | 390 |
} |
391 | 391 |
|
392 | 392 |
/// \brief Sets the length map. |
393 | 393 |
/// |
394 | 394 |
/// Sets the length map. |
395 | 395 |
/// \return <tt>(*this)</tt> |
396 | 396 |
BellmanFord &lengthMap(const LengthMap &map) { |
397 | 397 |
_length = ↦ |
398 | 398 |
return *this; |
399 | 399 |
} |
400 | 400 |
|
401 | 401 |
/// \brief Sets the map that stores the predecessor arcs. |
402 | 402 |
/// |
403 | 403 |
/// Sets the map that stores the predecessor arcs. |
404 | 404 |
/// If you don't use this function before calling \ref run() |
405 | 405 |
/// or \ref init(), an instance will be allocated automatically. |
406 | 406 |
/// The destructor deallocates this automatically allocated map, |
407 | 407 |
/// of course. |
408 | 408 |
/// \return <tt>(*this)</tt> |
409 | 409 |
BellmanFord &predMap(PredMap &map) { |
410 | 410 |
if(_local_pred) { |
411 |
delete _pred; |
|
412 |
_local_pred=false; |
|
411 |
delete _pred; |
|
412 |
_local_pred=false; |
|
413 | 413 |
} |
414 | 414 |
_pred = ↦ |
415 | 415 |
return *this; |
416 | 416 |
} |
417 | 417 |
|
418 | 418 |
/// \brief Sets the map that stores the distances of the nodes. |
419 | 419 |
/// |
420 | 420 |
/// Sets the map that stores the distances of the nodes calculated |
421 | 421 |
/// by the algorithm. |
422 | 422 |
/// If you don't use this function before calling \ref run() |
423 | 423 |
/// or \ref init(), an instance will be allocated automatically. |
424 | 424 |
/// The destructor deallocates this automatically allocated map, |
425 | 425 |
/// of course. |
426 | 426 |
/// \return <tt>(*this)</tt> |
427 | 427 |
BellmanFord &distMap(DistMap &map) { |
428 | 428 |
if(_local_dist) { |
429 |
delete _dist; |
|
430 |
_local_dist=false; |
|
429 |
delete _dist; |
|
430 |
_local_dist=false; |
|
431 | 431 |
} |
432 | 432 |
_dist = ↦ |
433 | 433 |
return *this; |
434 | 434 |
} |
435 | 435 |
|
436 | 436 |
/// \name Execution Control |
437 | 437 |
/// The simplest way to execute the Bellman-Ford algorithm is to use |
438 | 438 |
/// one of the member functions called \ref run().\n |
439 | 439 |
/// If you need better control on the execution, you have to call |
440 | 440 |
/// \ref init() first, then you can add several source nodes |
441 | 441 |
/// with \ref addSource(). Finally the actual path computation can be |
442 | 442 |
/// performed with \ref start(), \ref checkedStart() or |
443 | 443 |
/// \ref limitedStart(). |
444 | 444 |
|
445 | 445 |
///@{ |
446 | 446 |
|
447 | 447 |
/// \brief Initializes the internal data structures. |
448 |
/// |
|
448 |
/// |
|
449 | 449 |
/// Initializes the internal data structures. The optional parameter |
450 | 450 |
/// is the initial distance of each node. |
451 | 451 |
void init(const Value value = OperationTraits::infinity()) { |
452 | 452 |
create_maps(); |
453 | 453 |
for (NodeIt it(*_gr); it != INVALID; ++it) { |
454 |
_pred->set(it, INVALID); |
|
455 |
_dist->set(it, value); |
|
454 |
_pred->set(it, INVALID); |
|
455 |
_dist->set(it, value); |
|
456 | 456 |
} |
457 | 457 |
_process.clear(); |
458 | 458 |
if (OperationTraits::less(value, OperationTraits::infinity())) { |
459 |
for (NodeIt it(*_gr); it != INVALID; ++it) { |
|
460 |
_process.push_back(it); |
|
461 |
_mask->set(it, true); |
|
462 |
} |
|
459 |
for (NodeIt it(*_gr); it != INVALID; ++it) { |
|
460 |
_process.push_back(it); |
|
461 |
_mask->set(it, true); |
|
462 |
} |
|
463 | 463 |
} else { |
464 |
for (NodeIt it(*_gr); it != INVALID; ++it) { |
|
465 |
_mask->set(it, false); |
|
466 |
|
|
464 |
for (NodeIt it(*_gr); it != INVALID; ++it) { |
|
465 |
_mask->set(it, false); |
|
466 |
} |
|
467 | 467 |
} |
468 | 468 |
} |
469 |
|
|
469 |
|
|
470 | 470 |
/// \brief Adds a new source node. |
471 | 471 |
/// |
472 | 472 |
/// This function adds a new source node. The optional second parameter |
473 | 473 |
/// is the initial distance of the node. |
474 | 474 |
void addSource(Node source, Value dst = OperationTraits::zero()) { |
475 | 475 |
_dist->set(source, dst); |
476 | 476 |
if (!(*_mask)[source]) { |
477 |
_process.push_back(source); |
|
478 |
_mask->set(source, true); |
|
477 |
_process.push_back(source); |
|
478 |
_mask->set(source, true); |
|
479 | 479 |
} |
480 | 480 |
} |
481 | 481 |
|
482 | 482 |
/// \brief Executes one round from the Bellman-Ford algorithm. |
483 | 483 |
/// |
484 | 484 |
/// If the algoritm calculated the distances in the previous round |
485 | 485 |
/// exactly for the paths of at most \c k arcs, then this function |
486 | 486 |
/// will calculate the distances exactly for the paths of at most |
487 | 487 |
/// <tt>k+1</tt> arcs. Performing \c k iterations using this function |
488 | 488 |
/// calculates the shortest path distances exactly for the paths |
489 | 489 |
/// consisting of at most \c k arcs. |
490 | 490 |
/// |
491 | 491 |
/// \warning The paths with limited arc number cannot be retrieved |
492 | 492 |
/// easily with \ref path() or \ref predArc() functions. If you also |
493 | 493 |
/// need the shortest paths and not only the distances, you should |
494 | 494 |
/// store the \ref predMap() "predecessor map" after each iteration |
495 | 495 |
/// and build the path manually. |
496 | 496 |
/// |
497 | 497 |
/// \return \c true when the algorithm have not found more shorter |
498 | 498 |
/// paths. |
499 | 499 |
/// |
500 | 500 |
/// \see ActiveIt |
501 | 501 |
bool processNextRound() { |
502 | 502 |
for (int i = 0; i < int(_process.size()); ++i) { |
503 |
|
|
503 |
_mask->set(_process[i], false); |
|
504 | 504 |
} |
505 | 505 |
std::vector<Node> nextProcess; |
506 | 506 |
std::vector<Value> values(_process.size()); |
507 | 507 |
for (int i = 0; i < int(_process.size()); ++i) { |
508 |
|
|
508 |
values[i] = (*_dist)[_process[i]]; |
|
509 | 509 |
} |
510 | 510 |
for (int i = 0; i < int(_process.size()); ++i) { |
511 |
for (OutArcIt it(*_gr, _process[i]); it != INVALID; ++it) { |
|
512 |
Node target = _gr->target(it); |
|
513 |
Value relaxed = OperationTraits::plus(values[i], (*_length)[it]); |
|
514 |
if (OperationTraits::less(relaxed, (*_dist)[target])) { |
|
515 |
_pred->set(target, it); |
|
516 |
_dist->set(target, relaxed); |
|
517 |
if (!(*_mask)[target]) { |
|
518 |
_mask->set(target, true); |
|
519 |
nextProcess.push_back(target); |
|
520 |
} |
|
521 |
} |
|
522 |
} |
|
511 |
for (OutArcIt it(*_gr, _process[i]); it != INVALID; ++it) { |
|
512 |
Node target = _gr->target(it); |
|
513 |
Value relaxed = OperationTraits::plus(values[i], (*_length)[it]); |
|
514 |
if (OperationTraits::less(relaxed, (*_dist)[target])) { |
|
515 |
_pred->set(target, it); |
|
516 |
_dist->set(target, relaxed); |
|
517 |
if (!(*_mask)[target]) { |
|
518 |
_mask->set(target, true); |
|
519 |
nextProcess.push_back(target); |
|
520 |
} |
|
521 |
} |
|
522 |
} |
|
523 | 523 |
} |
524 | 524 |
_process.swap(nextProcess); |
525 | 525 |
return _process.empty(); |
526 | 526 |
} |
527 | 527 |
|
528 | 528 |
/// \brief Executes one weak round from the Bellman-Ford algorithm. |
529 | 529 |
/// |
530 | 530 |
/// If the algorithm calculated the distances in the previous round |
531 | 531 |
/// at least for the paths of at most \c k arcs, then this function |
532 | 532 |
/// will calculate the distances at least for the paths of at most |
533 | 533 |
/// <tt>k+1</tt> arcs. |
534 | 534 |
/// This function does not make it possible to calculate the shortest |
535 | 535 |
/// path distances exactly for paths consisting of at most \c k arcs, |
536 | 536 |
/// this is why it is called weak round. |
537 | 537 |
/// |
538 | 538 |
/// \return \c true when the algorithm have not found more shorter |
539 | 539 |
/// paths. |
540 | 540 |
/// |
541 | 541 |
/// \see ActiveIt |
542 | 542 |
bool processNextWeakRound() { |
543 | 543 |
for (int i = 0; i < int(_process.size()); ++i) { |
544 |
|
|
544 |
_mask->set(_process[i], false); |
|
545 | 545 |
} |
546 | 546 |
std::vector<Node> nextProcess; |
547 | 547 |
for (int i = 0; i < int(_process.size()); ++i) { |
548 |
for (OutArcIt it(*_gr, _process[i]); it != INVALID; ++it) { |
|
549 |
Node target = _gr->target(it); |
|
550 |
Value relaxed = |
|
551 |
OperationTraits::plus((*_dist)[_process[i]], (*_length)[it]); |
|
552 |
if (OperationTraits::less(relaxed, (*_dist)[target])) { |
|
553 |
_pred->set(target, it); |
|
554 |
_dist->set(target, relaxed); |
|
555 |
if (!(*_mask)[target]) { |
|
556 |
_mask->set(target, true); |
|
557 |
nextProcess.push_back(target); |
|
558 |
} |
|
559 |
} |
|
560 |
|
|
548 |
for (OutArcIt it(*_gr, _process[i]); it != INVALID; ++it) { |
|
549 |
Node target = _gr->target(it); |
|
550 |
Value relaxed = |
|
551 |
OperationTraits::plus((*_dist)[_process[i]], (*_length)[it]); |
|
552 |
if (OperationTraits::less(relaxed, (*_dist)[target])) { |
|
553 |
_pred->set(target, it); |
|
554 |
_dist->set(target, relaxed); |
|
555 |
if (!(*_mask)[target]) { |
|
556 |
_mask->set(target, true); |
|
557 |
nextProcess.push_back(target); |
|
558 |
} |
|
559 |
} |
|
560 |
} |
|
561 | 561 |
} |
562 | 562 |
_process.swap(nextProcess); |
563 | 563 |
return _process.empty(); |
564 | 564 |
} |
565 | 565 |
|
566 | 566 |
/// \brief Executes the algorithm. |
567 | 567 |
/// |
568 | 568 |
/// Executes the algorithm. |
569 | 569 |
/// |
570 | 570 |
/// This method runs the Bellman-Ford algorithm from the root node(s) |
571 | 571 |
/// in order to compute the shortest path to each node. |
572 | 572 |
/// |
573 | 573 |
/// The algorithm computes |
574 | 574 |
/// - the shortest path tree (forest), |
575 | 575 |
/// - the distance of each node from the root(s). |
576 | 576 |
/// |
577 | 577 |
/// \pre init() must be called and at least one root node should be |
578 | 578 |
/// added with addSource() before using this function. |
579 | 579 |
void start() { |
580 | 580 |
int num = countNodes(*_gr) - 1; |
581 | 581 |
for (int i = 0; i < num; ++i) { |
582 |
|
|
582 |
if (processNextWeakRound()) break; |
|
583 | 583 |
} |
584 | 584 |
} |
585 | 585 |
|
586 | 586 |
/// \brief Executes the algorithm and checks the negative cycles. |
587 | 587 |
/// |
588 | 588 |
/// Executes the algorithm and checks the negative cycles. |
589 | 589 |
/// |
590 | 590 |
/// This method runs the Bellman-Ford algorithm from the root node(s) |
591 | 591 |
/// in order to compute the shortest path to each node and also checks |
592 | 592 |
/// if the digraph contains cycles with negative total length. |
593 | 593 |
/// |
594 |
/// The algorithm computes |
|
594 |
/// The algorithm computes |
|
595 | 595 |
/// - the shortest path tree (forest), |
596 | 596 |
/// - the distance of each node from the root(s). |
597 |
/// |
|
597 |
/// |
|
598 | 598 |
/// \return \c false if there is a negative cycle in the digraph. |
599 | 599 |
/// |
600 | 600 |
/// \pre init() must be called and at least one root node should be |
601 |
/// added with addSource() before using this function. |
|
601 |
/// added with addSource() before using this function. |
|
602 | 602 |
bool checkedStart() { |
603 | 603 |
int num = countNodes(*_gr); |
604 | 604 |
for (int i = 0; i < num; ++i) { |
605 |
|
|
605 |
if (processNextWeakRound()) return true; |
|
606 | 606 |
} |
607 | 607 |
return _process.empty(); |
608 | 608 |
} |
609 | 609 |
|
610 | 610 |
/// \brief Executes the algorithm with arc number limit. |
611 | 611 |
/// |
612 | 612 |
/// Executes the algorithm with arc number limit. |
613 | 613 |
/// |
614 | 614 |
/// This method runs the Bellman-Ford algorithm from the root node(s) |
615 | 615 |
/// in order to compute the shortest path distance for each node |
616 | 616 |
/// using only the paths consisting of at most \c num arcs. |
617 | 617 |
/// |
618 | 618 |
/// The algorithm computes |
619 | 619 |
/// - the limited distance of each node from the root(s), |
620 | 620 |
/// - the predecessor arc for each node. |
621 | 621 |
/// |
622 | 622 |
/// \warning The paths with limited arc number cannot be retrieved |
623 | 623 |
/// easily with \ref path() or \ref predArc() functions. If you also |
624 | 624 |
/// need the shortest paths and not only the distances, you should |
625 | 625 |
/// store the \ref predMap() "predecessor map" after each iteration |
626 | 626 |
/// and build the path manually. |
627 | 627 |
/// |
628 | 628 |
/// \pre init() must be called and at least one root node should be |
629 |
/// added with addSource() before using this function. |
|
629 |
/// added with addSource() before using this function. |
|
630 | 630 |
void limitedStart(int num) { |
631 | 631 |
for (int i = 0; i < num; ++i) { |
632 |
|
|
632 |
if (processNextRound()) break; |
|
633 | 633 |
} |
634 | 634 |
} |
635 |
|
|
635 |
|
|
636 | 636 |
/// \brief Runs the algorithm from the given root node. |
637 |
/// |
|
637 |
/// |
|
638 | 638 |
/// This method runs the Bellman-Ford algorithm from the given root |
639 | 639 |
/// node \c s in order to compute the shortest path to each node. |
640 | 640 |
/// |
641 | 641 |
/// The algorithm computes |
642 | 642 |
/// - the shortest path tree (forest), |
643 | 643 |
/// - the distance of each node from the root(s). |
644 | 644 |
/// |
645 | 645 |
/// \note bf.run(s) is just a shortcut of the following code. |
646 | 646 |
/// \code |
647 | 647 |
/// bf.init(); |
648 | 648 |
/// bf.addSource(s); |
649 | 649 |
/// bf.start(); |
650 | 650 |
/// \endcode |
651 | 651 |
void run(Node s) { |
652 | 652 |
init(); |
653 | 653 |
addSource(s); |
654 | 654 |
start(); |
655 | 655 |
} |
656 |
|
|
656 |
|
|
657 | 657 |
/// \brief Runs the algorithm from the given root node with arc |
658 | 658 |
/// number limit. |
659 |
/// |
|
659 |
/// |
|
660 | 660 |
/// This method runs the Bellman-Ford algorithm from the given root |
661 | 661 |
/// node \c s in order to compute the shortest path distance for each |
662 | 662 |
/// node using only the paths consisting of at most \c num arcs. |
663 | 663 |
/// |
664 | 664 |
/// The algorithm computes |
665 | 665 |
/// - the limited distance of each node from the root(s), |
666 | 666 |
/// - the predecessor arc for each node. |
667 | 667 |
/// |
668 | 668 |
/// \warning The paths with limited arc number cannot be retrieved |
669 | 669 |
/// easily with \ref path() or \ref predArc() functions. If you also |
670 | 670 |
/// need the shortest paths and not only the distances, you should |
671 | 671 |
/// store the \ref predMap() "predecessor map" after each iteration |
672 | 672 |
/// and build the path manually. |
673 | 673 |
/// |
674 | 674 |
/// \note bf.run(s, num) is just a shortcut of the following code. |
675 | 675 |
/// \code |
676 | 676 |
/// bf.init(); |
677 | 677 |
/// bf.addSource(s); |
678 | 678 |
/// bf.limitedStart(num); |
679 | 679 |
/// \endcode |
680 | 680 |
void run(Node s, int num) { |
681 | 681 |
init(); |
682 | 682 |
addSource(s); |
683 | 683 |
limitedStart(num); |
684 | 684 |
} |
685 |
|
|
685 |
|
|
686 | 686 |
///@} |
687 | 687 |
|
688 | 688 |
/// \brief LEMON iterator for getting the active nodes. |
689 | 689 |
/// |
690 | 690 |
/// This class provides a common style LEMON iterator that traverses |
691 | 691 |
/// the active nodes of the Bellman-Ford algorithm after the last |
692 | 692 |
/// phase. These nodes should be checked in the next phase to |
693 | 693 |
/// find augmenting arcs outgoing from them. |
694 | 694 |
class ActiveIt { |
695 | 695 |
public: |
696 | 696 |
|
697 | 697 |
/// \brief Constructor. |
698 | 698 |
/// |
699 | 699 |
/// Constructor for getting the active nodes of the given BellmanFord |
700 |
/// instance. |
|
700 |
/// instance. |
|
701 | 701 |
ActiveIt(const BellmanFord& algorithm) : _algorithm(&algorithm) |
702 | 702 |
{ |
703 | 703 |
_index = _algorithm->_process.size() - 1; |
704 | 704 |
} |
705 | 705 |
|
706 | 706 |
/// \brief Invalid constructor. |
707 | 707 |
/// |
708 | 708 |
/// Invalid constructor. |
709 | 709 |
ActiveIt(Invalid) : _algorithm(0), _index(-1) {} |
710 | 710 |
|
711 | 711 |
/// \brief Conversion to \c Node. |
712 | 712 |
/// |
713 | 713 |
/// Conversion to \c Node. |
714 |
operator Node() const { |
|
714 |
operator Node() const { |
|
715 | 715 |
return _index >= 0 ? _algorithm->_process[_index] : INVALID; |
716 | 716 |
} |
717 | 717 |
|
718 | 718 |
/// \brief Increment operator. |
719 | 719 |
/// |
720 | 720 |
/// Increment operator. |
721 | 721 |
ActiveIt& operator++() { |
722 | 722 |
--_index; |
723 |
return *this; |
|
723 |
return *this; |
|
724 | 724 |
} |
725 | 725 |
|
726 |
bool operator==(const ActiveIt& it) const { |
|
727 |
return static_cast<Node>(*this) == static_cast<Node>(it); |
|
726 |
bool operator==(const ActiveIt& it) const { |
|
727 |
return static_cast<Node>(*this) == static_cast<Node>(it); |
|
728 | 728 |
} |
729 |
bool operator!=(const ActiveIt& it) const { |
|
730 |
return static_cast<Node>(*this) != static_cast<Node>(it); |
|
729 |
bool operator!=(const ActiveIt& it) const { |
|
730 |
return static_cast<Node>(*this) != static_cast<Node>(it); |
|
731 | 731 |
} |
732 |
bool operator<(const ActiveIt& it) const { |
|
733 |
return static_cast<Node>(*this) < static_cast<Node>(it); |
|
732 |
bool operator<(const ActiveIt& it) const { |
|
733 |
return static_cast<Node>(*this) < static_cast<Node>(it); |
|
734 | 734 |
} |
735 |
|
|
735 |
|
|
736 | 736 |
private: |
737 | 737 |
const BellmanFord* _algorithm; |
738 | 738 |
int _index; |
739 | 739 |
}; |
740 |
|
|
740 |
|
|
741 | 741 |
/// \name Query Functions |
742 | 742 |
/// The result of the Bellman-Ford algorithm can be obtained using these |
743 | 743 |
/// functions.\n |
744 | 744 |
/// Either \ref run() or \ref init() should be called before using them. |
745 |
|
|
745 |
|
|
746 | 746 |
///@{ |
747 | 747 |
|
748 | 748 |
/// \brief The shortest path to the given node. |
749 |
/// |
|
749 |
/// |
|
750 | 750 |
/// Gives back the shortest path to the given node from the root(s). |
751 | 751 |
/// |
752 | 752 |
/// \warning \c t should be reached from the root(s). |
753 | 753 |
/// |
754 | 754 |
/// \pre Either \ref run() or \ref init() must be called before |
755 | 755 |
/// using this function. |
756 | 756 |
Path path(Node t) const |
757 | 757 |
{ |
758 | 758 |
return Path(*_gr, *_pred, t); |
759 | 759 |
} |
760 |
|
|
760 |
|
|
761 | 761 |
/// \brief The distance of the given node from the root(s). |
762 | 762 |
/// |
763 | 763 |
/// Returns the distance of the given node from the root(s). |
764 | 764 |
/// |
765 | 765 |
/// \warning If node \c v is not reached from the root(s), then |
766 | 766 |
/// the return value of this function is undefined. |
767 | 767 |
/// |
768 | 768 |
/// \pre Either \ref run() or \ref init() must be called before |
769 | 769 |
/// using this function. |
770 | 770 |
Value dist(Node v) const { return (*_dist)[v]; } |
771 | 771 |
|
772 | 772 |
/// \brief Returns the 'previous arc' of the shortest path tree for |
773 | 773 |
/// the given node. |
774 | 774 |
/// |
775 | 775 |
/// This function returns the 'previous arc' of the shortest path |
776 | 776 |
/// tree for node \c v, i.e. it returns the last arc of a |
777 | 777 |
/// shortest path from a root to \c v. It is \c INVALID if \c v |
778 | 778 |
/// is not reached from the root(s) or if \c v is a root. |
779 | 779 |
/// |
780 | 780 |
/// The shortest path tree used here is equal to the shortest path |
781 | 781 |
/// tree used in \ref predNode() and \ref predMap(). |
782 | 782 |
/// |
783 | 783 |
/// \pre Either \ref run() or \ref init() must be called before |
784 | 784 |
/// using this function. |
785 | 785 |
Arc predArc(Node v) const { return (*_pred)[v]; } |
786 | 786 |
|
787 | 787 |
/// \brief Returns the 'previous node' of the shortest path tree for |
788 | 788 |
/// the given node. |
789 | 789 |
/// |
790 | 790 |
/// This function returns the 'previous node' of the shortest path |
791 | 791 |
/// tree for node \c v, i.e. it returns the last but one node of |
792 | 792 |
/// a shortest path from a root to \c v. It is \c INVALID if \c v |
793 | 793 |
/// is not reached from the root(s) or if \c v is a root. |
794 | 794 |
/// |
795 | 795 |
/// The shortest path tree used here is equal to the shortest path |
796 | 796 |
/// tree used in \ref predArc() and \ref predMap(). |
797 | 797 |
/// |
798 | 798 |
/// \pre Either \ref run() or \ref init() must be called before |
799 | 799 |
/// using this function. |
800 |
Node predNode(Node v) const { |
|
801 |
return (*_pred)[v] == INVALID ? INVALID : _gr->source((*_pred)[v]); |
|
800 |
Node predNode(Node v) const { |
|
801 |
return (*_pred)[v] == INVALID ? INVALID : _gr->source((*_pred)[v]); |
|
802 | 802 |
} |
803 |
|
|
803 |
|
|
804 | 804 |
/// \brief Returns a const reference to the node map that stores the |
805 | 805 |
/// distances of the nodes. |
806 | 806 |
/// |
807 | 807 |
/// Returns a const reference to the node map that stores the distances |
808 | 808 |
/// of the nodes calculated by the algorithm. |
809 | 809 |
/// |
810 | 810 |
/// \pre Either \ref run() or \ref init() must be called before |
811 | 811 |
/// using this function. |
812 | 812 |
const DistMap &distMap() const { return *_dist;} |
813 |
|
|
813 |
|
|
814 | 814 |
/// \brief Returns a const reference to the node map that stores the |
815 | 815 |
/// predecessor arcs. |
816 | 816 |
/// |
817 | 817 |
/// Returns a const reference to the node map that stores the predecessor |
818 | 818 |
/// arcs, which form the shortest path tree (forest). |
819 | 819 |
/// |
820 | 820 |
/// \pre Either \ref run() or \ref init() must be called before |
821 | 821 |
/// using this function. |
822 | 822 |
const PredMap &predMap() const { return *_pred; } |
823 |
|
|
823 |
|
|
824 | 824 |
/// \brief Checks if a node is reached from the root(s). |
825 | 825 |
/// |
826 | 826 |
/// Returns \c true if \c v is reached from the root(s). |
827 | 827 |
/// |
828 | 828 |
/// \pre Either \ref run() or \ref init() must be called before |
829 | 829 |
/// using this function. |
830 | 830 |
bool reached(Node v) const { |
831 | 831 |
return (*_dist)[v] != OperationTraits::infinity(); |
832 | 832 |
} |
833 | 833 |
|
834 | 834 |
/// \brief Gives back a negative cycle. |
835 |
/// |
|
835 |
/// |
|
836 | 836 |
/// This function gives back a directed cycle with negative total |
837 | 837 |
/// length if the algorithm has already found one. |
838 | 838 |
/// Otherwise it gives back an empty path. |
839 | 839 |
lemon::Path<Digraph> negativeCycle() const { |
840 | 840 |
typename Digraph::template NodeMap<int> state(*_gr, -1); |
841 | 841 |
lemon::Path<Digraph> cycle; |
842 | 842 |
for (int i = 0; i < int(_process.size()); ++i) { |
843 | 843 |
if (state[_process[i]] != -1) continue; |
844 | 844 |
for (Node v = _process[i]; (*_pred)[v] != INVALID; |
845 | 845 |
v = _gr->source((*_pred)[v])) { |
846 | 846 |
if (state[v] == i) { |
847 | 847 |
cycle.addFront((*_pred)[v]); |
848 | 848 |
for (Node u = _gr->source((*_pred)[v]); u != v; |
849 | 849 |
u = _gr->source((*_pred)[u])) { |
850 | 850 |
cycle.addFront((*_pred)[u]); |
851 | 851 |
} |
852 | 852 |
return cycle; |
853 | 853 |
} |
854 | 854 |
else if (state[v] >= 0) { |
855 | 855 |
break; |
856 | 856 |
} |
857 | 857 |
state[v] = i; |
858 | 858 |
} |
859 | 859 |
} |
860 | 860 |
return cycle; |
861 | 861 |
} |
862 |
|
|
862 |
|
|
863 | 863 |
///@} |
864 | 864 |
}; |
865 |
|
|
865 |
|
|
866 | 866 |
/// \brief Default traits class of bellmanFord() function. |
867 | 867 |
/// |
868 | 868 |
/// Default traits class of bellmanFord() function. |
869 | 869 |
/// \tparam GR The type of the digraph. |
870 | 870 |
/// \tparam LEN The type of the length map. |
871 | 871 |
template <typename GR, typename LEN> |
872 | 872 |
struct BellmanFordWizardDefaultTraits { |
873 |
/// The type of the digraph the algorithm runs on. |
|
873 |
/// The type of the digraph the algorithm runs on. |
|
874 | 874 |
typedef GR Digraph; |
875 | 875 |
|
876 | 876 |
/// \brief The type of the map that stores the arc lengths. |
877 | 877 |
/// |
878 | 878 |
/// The type of the map that stores the arc lengths. |
879 | 879 |
/// It must meet the \ref concepts::ReadMap "ReadMap" concept. |
880 | 880 |
typedef LEN LengthMap; |
881 | 881 |
|
882 | 882 |
/// The type of the arc lengths. |
883 | 883 |
typedef typename LEN::Value Value; |
884 | 884 |
|
885 | 885 |
/// \brief Operation traits for Bellman-Ford algorithm. |
886 | 886 |
/// |
887 | 887 |
/// It defines the used operations and the infinity value for the |
888 | 888 |
/// given \c Value type. |
889 | 889 |
/// \see BellmanFordDefaultOperationTraits, |
890 | 890 |
/// BellmanFordToleranceOperationTraits |
891 | 891 |
typedef BellmanFordDefaultOperationTraits<Value> OperationTraits; |
892 | 892 |
|
893 | 893 |
/// \brief The type of the map that stores the last |
894 | 894 |
/// arcs of the shortest paths. |
895 |
/// |
|
895 |
/// |
|
896 | 896 |
/// The type of the map that stores the last arcs of the shortest paths. |
897 | 897 |
/// It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
898 | 898 |
typedef typename GR::template NodeMap<typename GR::Arc> PredMap; |
899 | 899 |
|
900 | 900 |
/// \brief Instantiates a \c PredMap. |
901 |
/// |
|
901 |
/// |
|
902 | 902 |
/// This function instantiates a \ref PredMap. |
903 | 903 |
/// \param g is the digraph to which we would like to define the |
904 | 904 |
/// \ref PredMap. |
905 | 905 |
static PredMap *createPredMap(const GR &g) { |
906 | 906 |
return new PredMap(g); |
907 | 907 |
} |
908 | 908 |
|
909 | 909 |
/// \brief The type of the map that stores the distances of the nodes. |
910 | 910 |
/// |
911 | 911 |
/// The type of the map that stores the distances of the nodes. |
912 | 912 |
/// It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
913 | 913 |
typedef typename GR::template NodeMap<Value> DistMap; |
914 | 914 |
|
915 | 915 |
/// \brief Instantiates a \c DistMap. |
916 | 916 |
/// |
917 |
/// This function instantiates a \ref DistMap. |
|
917 |
/// This function instantiates a \ref DistMap. |
|
918 | 918 |
/// \param g is the digraph to which we would like to define the |
919 | 919 |
/// \ref DistMap. |
920 | 920 |
static DistMap *createDistMap(const GR &g) { |
921 | 921 |
return new DistMap(g); |
922 | 922 |
} |
923 | 923 |
|
924 | 924 |
///The type of the shortest paths. |
925 | 925 |
|
926 | 926 |
///The type of the shortest paths. |
927 | 927 |
///It must meet the \ref concepts::Path "Path" concept. |
928 | 928 |
typedef lemon::Path<Digraph> Path; |
929 | 929 |
}; |
930 |
|
|
930 |
|
|
931 | 931 |
/// \brief Default traits class used by BellmanFordWizard. |
932 | 932 |
/// |
933 | 933 |
/// Default traits class used by BellmanFordWizard. |
934 | 934 |
/// \tparam GR The type of the digraph. |
935 | 935 |
/// \tparam LEN The type of the length map. |
936 | 936 |
template <typename GR, typename LEN> |
937 |
class BellmanFordWizardBase |
|
937 |
class BellmanFordWizardBase |
|
938 | 938 |
: public BellmanFordWizardDefaultTraits<GR, LEN> { |
939 | 939 |
|
940 | 940 |
typedef BellmanFordWizardDefaultTraits<GR, LEN> Base; |
941 | 941 |
protected: |
942 | 942 |
// Type of the nodes in the digraph. |
943 | 943 |
typedef typename Base::Digraph::Node Node; |
944 | 944 |
|
945 | 945 |
// Pointer to the underlying digraph. |
946 | 946 |
void *_graph; |
947 | 947 |
// Pointer to the length map |
948 | 948 |
void *_length; |
949 | 949 |
// Pointer to the map of predecessors arcs. |
950 | 950 |
void *_pred; |
951 | 951 |
// Pointer to the map of distances. |
952 | 952 |
void *_dist; |
953 | 953 |
//Pointer to the shortest path to the target node. |
954 | 954 |
void *_path; |
955 | 955 |
//Pointer to the distance of the target node. |
956 | 956 |
void *_di; |
957 | 957 |
|
958 | 958 |
public: |
959 | 959 |
/// Constructor. |
960 |
|
|
960 |
|
|
961 | 961 |
/// This constructor does not require parameters, it initiates |
962 | 962 |
/// all of the attributes to default values \c 0. |
963 | 963 |
BellmanFordWizardBase() : |
964 | 964 |
_graph(0), _length(0), _pred(0), _dist(0), _path(0), _di(0) {} |
965 | 965 |
|
966 | 966 |
/// Constructor. |
967 |
|
|
967 |
|
|
968 | 968 |
/// This constructor requires two parameters, |
969 | 969 |
/// others are initiated to \c 0. |
970 | 970 |
/// \param gr The digraph the algorithm runs on. |
971 | 971 |
/// \param len The length map. |
972 |
BellmanFordWizardBase(const GR& gr, |
|
973 |
const LEN& len) : |
|
974 |
_graph(reinterpret_cast<void*>(const_cast<GR*>(&gr))), |
|
975 |
_length(reinterpret_cast<void*>(const_cast<LEN*>(&len))), |
|
972 |
BellmanFordWizardBase(const GR& gr, |
|
973 |
const LEN& len) : |
|
974 |
_graph(reinterpret_cast<void*>(const_cast<GR*>(&gr))), |
|
975 |
_length(reinterpret_cast<void*>(const_cast<LEN*>(&len))), |
|
976 | 976 |
_pred(0), _dist(0), _path(0), _di(0) {} |
977 | 977 |
|
978 | 978 |
}; |
979 |
|
|
979 |
|
|
980 | 980 |
/// \brief Auxiliary class for the function-type interface of the |
981 | 981 |
/// \ref BellmanFord "Bellman-Ford" algorithm. |
982 | 982 |
/// |
983 | 983 |
/// This auxiliary class is created to implement the |
984 | 984 |
/// \ref bellmanFord() "function-type interface" of the |
985 | 985 |
/// \ref BellmanFord "Bellman-Ford" algorithm. |
986 | 986 |
/// It does not have own \ref run() method, it uses the |
987 | 987 |
/// functions and features of the plain \ref BellmanFord. |
988 | 988 |
/// |
989 | 989 |
/// This class should only be used through the \ref bellmanFord() |
990 | 990 |
/// function, which makes it easier to use the algorithm. |
991 | 991 |
/// |
992 | 992 |
/// \tparam TR The traits class that defines various types used by the |
993 | 993 |
/// algorithm. |
994 | 994 |
template<class TR> |
995 | 995 |
class BellmanFordWizard : public TR { |
996 | 996 |
typedef TR Base; |
997 | 997 |
|
998 | 998 |
typedef typename TR::Digraph Digraph; |
999 | 999 |
|
1000 | 1000 |
typedef typename Digraph::Node Node; |
1001 | 1001 |
typedef typename Digraph::NodeIt NodeIt; |
1002 | 1002 |
typedef typename Digraph::Arc Arc; |
1003 | 1003 |
typedef typename Digraph::OutArcIt ArcIt; |
1004 |
|
|
1004 |
|
|
1005 | 1005 |
typedef typename TR::LengthMap LengthMap; |
1006 | 1006 |
typedef typename LengthMap::Value Value; |
1007 | 1007 |
typedef typename TR::PredMap PredMap; |
1008 | 1008 |
typedef typename TR::DistMap DistMap; |
1009 | 1009 |
typedef typename TR::Path Path; |
1010 | 1010 |
|
1011 | 1011 |
public: |
1012 | 1012 |
/// Constructor. |
1013 | 1013 |
BellmanFordWizard() : TR() {} |
1014 | 1014 |
|
1015 | 1015 |
/// \brief Constructor that requires parameters. |
1016 | 1016 |
/// |
1017 | 1017 |
/// Constructor that requires parameters. |
1018 | 1018 |
/// These parameters will be the default values for the traits class. |
1019 | 1019 |
/// \param gr The digraph the algorithm runs on. |
1020 | 1020 |
/// \param len The length map. |
1021 |
BellmanFordWizard(const Digraph& gr, const LengthMap& len) |
|
1021 |
BellmanFordWizard(const Digraph& gr, const LengthMap& len) |
|
1022 | 1022 |
: TR(gr, len) {} |
1023 | 1023 |
|
1024 | 1024 |
/// \brief Copy constructor |
1025 | 1025 |
BellmanFordWizard(const TR &b) : TR(b) {} |
1026 | 1026 |
|
1027 | 1027 |
~BellmanFordWizard() {} |
1028 | 1028 |
|
1029 | 1029 |
/// \brief Runs the Bellman-Ford algorithm from the given source node. |
1030 |
/// |
|
1030 |
/// |
|
1031 | 1031 |
/// This method runs the Bellman-Ford algorithm from the given source |
1032 | 1032 |
/// node in order to compute the shortest path to each node. |
1033 | 1033 |
void run(Node s) { |
1034 |
BellmanFord<Digraph,LengthMap,TR> |
|
1035 |
bf(*reinterpret_cast<const Digraph*>(Base::_graph), |
|
1034 |
BellmanFord<Digraph,LengthMap,TR> |
|
1035 |
bf(*reinterpret_cast<const Digraph*>(Base::_graph), |
|
1036 | 1036 |
*reinterpret_cast<const LengthMap*>(Base::_length)); |
1037 | 1037 |
if (Base::_pred) bf.predMap(*reinterpret_cast<PredMap*>(Base::_pred)); |
1038 | 1038 |
if (Base::_dist) bf.distMap(*reinterpret_cast<DistMap*>(Base::_dist)); |
1039 | 1039 |
bf.run(s); |
1040 | 1040 |
} |
1041 | 1041 |
|
1042 | 1042 |
/// \brief Runs the Bellman-Ford algorithm to find the shortest path |
1043 | 1043 |
/// between \c s and \c t. |
1044 | 1044 |
/// |
1045 | 1045 |
/// This method runs the Bellman-Ford algorithm from node \c s |
1046 | 1046 |
/// in order to compute the shortest path to node \c t. |
1047 | 1047 |
/// Actually, it computes the shortest path to each node, but using |
1048 | 1048 |
/// this function you can retrieve the distance and the shortest path |
1049 | 1049 |
/// for a single target node easier. |
1050 | 1050 |
/// |
1051 | 1051 |
/// \return \c true if \c t is reachable form \c s. |
1052 | 1052 |
bool run(Node s, Node t) { |
1053 | 1053 |
BellmanFord<Digraph,LengthMap,TR> |
1054 | 1054 |
bf(*reinterpret_cast<const Digraph*>(Base::_graph), |
1055 | 1055 |
*reinterpret_cast<const LengthMap*>(Base::_length)); |
1056 | 1056 |
if (Base::_pred) bf.predMap(*reinterpret_cast<PredMap*>(Base::_pred)); |
1057 | 1057 |
if (Base::_dist) bf.distMap(*reinterpret_cast<DistMap*>(Base::_dist)); |
1058 | 1058 |
bf.run(s); |
1059 | 1059 |
if (Base::_path) *reinterpret_cast<Path*>(Base::_path) = bf.path(t); |
1060 | 1060 |
if (Base::_di) *reinterpret_cast<Value*>(Base::_di) = bf.dist(t); |
1061 | 1061 |
return bf.reached(t); |
1062 | 1062 |
} |
1063 | 1063 |
|
1064 | 1064 |
template<class T> |
1065 | 1065 |
struct SetPredMapBase : public Base { |
1066 | 1066 |
typedef T PredMap; |
1067 | 1067 |
static PredMap *createPredMap(const Digraph &) { return 0; }; |
1068 | 1068 |
SetPredMapBase(const TR &b) : TR(b) {} |
1069 | 1069 |
}; |
1070 |
|
|
1070 |
|
|
1071 | 1071 |
/// \brief \ref named-templ-param "Named parameter" for setting |
1072 | 1072 |
/// the predecessor map. |
1073 | 1073 |
/// |
1074 | 1074 |
/// \ref named-templ-param "Named parameter" for setting |
1075 | 1075 |
/// the map that stores the predecessor arcs of the nodes. |
1076 | 1076 |
template<class T> |
1077 | 1077 |
BellmanFordWizard<SetPredMapBase<T> > predMap(const T &t) { |
1078 | 1078 |
Base::_pred=reinterpret_cast<void*>(const_cast<T*>(&t)); |
1079 | 1079 |
return BellmanFordWizard<SetPredMapBase<T> >(*this); |
1080 | 1080 |
} |
1081 |
|
|
1081 |
|
|
1082 | 1082 |
template<class T> |
1083 | 1083 |
struct SetDistMapBase : public Base { |
1084 | 1084 |
typedef T DistMap; |
1085 | 1085 |
static DistMap *createDistMap(const Digraph &) { return 0; }; |
1086 | 1086 |
SetDistMapBase(const TR &b) : TR(b) {} |
1087 | 1087 |
}; |
1088 |
|
|
1088 |
|
|
1089 | 1089 |
/// \brief \ref named-templ-param "Named parameter" for setting |
1090 | 1090 |
/// the distance map. |
1091 | 1091 |
/// |
1092 | 1092 |
/// \ref named-templ-param "Named parameter" for setting |
1093 | 1093 |
/// the map that stores the distances of the nodes calculated |
1094 | 1094 |
/// by the algorithm. |
1095 | 1095 |
template<class T> |
1096 | 1096 |
BellmanFordWizard<SetDistMapBase<T> > distMap(const T &t) { |
1097 | 1097 |
Base::_dist=reinterpret_cast<void*>(const_cast<T*>(&t)); |
1098 | 1098 |
return BellmanFordWizard<SetDistMapBase<T> >(*this); |
1099 | 1099 |
} |
1100 | 1100 |
|
1101 | 1101 |
template<class T> |
1102 | 1102 |
struct SetPathBase : public Base { |
1103 | 1103 |
typedef T Path; |
1104 | 1104 |
SetPathBase(const TR &b) : TR(b) {} |
1105 | 1105 |
}; |
1106 | 1106 |
|
1107 | 1107 |
/// \brief \ref named-func-param "Named parameter" for getting |
1108 | 1108 |
/// the shortest path to the target node. |
1109 | 1109 |
/// |
1110 | 1110 |
/// \ref named-func-param "Named parameter" for getting |
1111 | 1111 |
/// the shortest path to the target node. |
1112 | 1112 |
template<class T> |
1113 | 1113 |
BellmanFordWizard<SetPathBase<T> > path(const T &t) |
1114 | 1114 |
{ |
1115 | 1115 |
Base::_path=reinterpret_cast<void*>(const_cast<T*>(&t)); |
1116 | 1116 |
return BellmanFordWizard<SetPathBase<T> >(*this); |
1117 | 1117 |
} |
1118 | 1118 |
|
1119 | 1119 |
/// \brief \ref named-func-param "Named parameter" for getting |
1120 | 1120 |
/// the distance of the target node. |
1121 | 1121 |
/// |
1122 | 1122 |
/// \ref named-func-param "Named parameter" for getting |
1123 | 1123 |
/// the distance of the target node. |
1124 | 1124 |
BellmanFordWizard dist(const Value &d) |
1125 | 1125 |
{ |
1126 | 1126 |
Base::_di=reinterpret_cast<void*>(const_cast<Value*>(&d)); |
1127 | 1127 |
return *this; |
1128 | 1128 |
} |
1129 |
|
|
1129 |
|
|
1130 | 1130 |
}; |
1131 |
|
|
1131 |
|
|
1132 | 1132 |
/// \brief Function type interface for the \ref BellmanFord "Bellman-Ford" |
1133 | 1133 |
/// algorithm. |
1134 | 1134 |
/// |
1135 | 1135 |
/// \ingroup shortest_path |
1136 | 1136 |
/// Function type interface for the \ref BellmanFord "Bellman-Ford" |
1137 | 1137 |
/// algorithm. |
1138 | 1138 |
/// |
1139 |
/// This function also has several \ref named-templ-func-param |
|
1140 |
/// "named parameters", they are declared as the members of class |
|
1139 |
/// This function also has several \ref named-templ-func-param |
|
1140 |
/// "named parameters", they are declared as the members of class |
|
1141 | 1141 |
/// \ref BellmanFordWizard. |
1142 | 1142 |
/// The following examples show how to use these parameters. |
1143 | 1143 |
/// \code |
1144 | 1144 |
/// // Compute shortest path from node s to each node |
1145 | 1145 |
/// bellmanFord(g,length).predMap(preds).distMap(dists).run(s); |
1146 | 1146 |
/// |
1147 | 1147 |
/// // Compute shortest path from s to t |
1148 | 1148 |
/// bool reached = bellmanFord(g,length).path(p).dist(d).run(s,t); |
1149 | 1149 |
/// \endcode |
1150 | 1150 |
/// \warning Don't forget to put the \ref BellmanFordWizard::run() "run()" |
1151 | 1151 |
/// to the end of the parameter list. |
1152 | 1152 |
/// \sa BellmanFordWizard |
1153 | 1153 |
/// \sa BellmanFord |
1154 | 1154 |
template<typename GR, typename LEN> |
1155 | 1155 |
BellmanFordWizard<BellmanFordWizardBase<GR,LEN> > |
1156 | 1156 |
bellmanFord(const GR& digraph, |
1157 |
|
|
1157 |
const LEN& length) |
|
1158 | 1158 |
{ |
1159 | 1159 |
return BellmanFordWizard<BellmanFordWizardBase<GR,LEN> >(digraph, length); |
1160 | 1160 |
} |
1161 | 1161 |
|
1162 | 1162 |
} //END OF NAMESPACE LEMON |
1163 | 1163 |
|
1164 | 1164 |
#endif |
1165 | 1165 |
1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 |
* Copyright (C) 2003- |
|
5 |
* Copyright (C) 2003-2010 |
|
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 | 19 |
#ifndef LEMON_BFS_H |
20 | 20 |
#define LEMON_BFS_H |
21 | 21 |
|
22 | 22 |
///\ingroup search |
23 | 23 |
///\file |
24 | 24 |
///\brief BFS algorithm. |
25 | 25 |
|
26 | 26 |
#include <lemon/list_graph.h> |
27 | 27 |
#include <lemon/bits/path_dump.h> |
28 | 28 |
#include <lemon/core.h> |
29 | 29 |
#include <lemon/error.h> |
30 | 30 |
#include <lemon/maps.h> |
31 | 31 |
#include <lemon/path.h> |
32 | 32 |
|
33 | 33 |
namespace lemon { |
34 | 34 |
|
35 | 35 |
///Default traits class of Bfs class. |
36 | 36 |
|
37 | 37 |
///Default traits class of Bfs class. |
38 | 38 |
///\tparam GR Digraph type. |
39 | 39 |
template<class GR> |
40 | 40 |
struct BfsDefaultTraits |
41 | 41 |
{ |
42 | 42 |
///The type of the digraph the algorithm runs on. |
43 | 43 |
typedef GR Digraph; |
44 | 44 |
|
45 | 45 |
///\brief The type of the map that stores the predecessor |
46 | 46 |
///arcs of the shortest paths. |
47 | 47 |
/// |
48 | 48 |
///The type of the map that stores the predecessor |
49 | 49 |
///arcs of the shortest paths. |
50 | 50 |
///It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
51 | 51 |
typedef typename Digraph::template NodeMap<typename Digraph::Arc> PredMap; |
52 | 52 |
///Instantiates a \c PredMap. |
53 | 53 |
|
54 | 54 |
///This function instantiates a \ref PredMap. |
55 | 55 |
///\param g is the digraph, to which we would like to define the |
56 | 56 |
///\ref PredMap. |
57 | 57 |
static PredMap *createPredMap(const Digraph &g) |
58 | 58 |
{ |
59 | 59 |
return new PredMap(g); |
60 | 60 |
} |
61 | 61 |
|
62 | 62 |
///The type of the map that indicates which nodes are processed. |
63 | 63 |
|
64 | 64 |
///The type of the map that indicates which nodes are processed. |
65 | 65 |
///It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
66 | 66 |
///By default, it is a NullMap. |
67 | 67 |
typedef NullMap<typename Digraph::Node,bool> ProcessedMap; |
68 | 68 |
///Instantiates a \c ProcessedMap. |
69 | 69 |
|
70 | 70 |
///This function instantiates a \ref ProcessedMap. |
71 | 71 |
///\param g is the digraph, to which |
72 | 72 |
///we would like to define the \ref ProcessedMap |
73 | 73 |
#ifdef DOXYGEN |
74 | 74 |
static ProcessedMap *createProcessedMap(const Digraph &g) |
75 | 75 |
#else |
76 | 76 |
static ProcessedMap *createProcessedMap(const Digraph &) |
77 | 77 |
#endif |
78 | 78 |
{ |
79 | 79 |
return new ProcessedMap(); |
80 | 80 |
} |
81 | 81 |
|
82 | 82 |
///The type of the map that indicates which nodes are reached. |
83 | 83 |
|
84 | 84 |
///The type of the map that indicates which nodes are reached. |
85 |
///It must conform to |
|
85 |
///It must conform to |
|
86 |
///the \ref concepts::ReadWriteMap "ReadWriteMap" concept. |
|
86 | 87 |
typedef typename Digraph::template NodeMap<bool> ReachedMap; |
87 | 88 |
///Instantiates a \c ReachedMap. |
88 | 89 |
|
89 | 90 |
///This function instantiates a \ref ReachedMap. |
90 | 91 |
///\param g is the digraph, to which |
91 | 92 |
///we would like to define the \ref ReachedMap. |
92 | 93 |
static ReachedMap *createReachedMap(const Digraph &g) |
93 | 94 |
{ |
94 | 95 |
return new ReachedMap(g); |
95 | 96 |
} |
96 | 97 |
|
97 | 98 |
///The type of the map that stores the distances of the nodes. |
98 | 99 |
|
99 | 100 |
///The type of the map that stores the distances of the nodes. |
100 | 101 |
///It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
101 | 102 |
typedef typename Digraph::template NodeMap<int> DistMap; |
102 | 103 |
///Instantiates a \c DistMap. |
103 | 104 |
|
104 | 105 |
///This function instantiates a \ref DistMap. |
105 | 106 |
///\param g is the digraph, to which we would like to define the |
106 | 107 |
///\ref DistMap. |
107 | 108 |
static DistMap *createDistMap(const Digraph &g) |
108 | 109 |
{ |
109 | 110 |
return new DistMap(g); |
110 | 111 |
} |
111 | 112 |
}; |
112 | 113 |
|
113 | 114 |
///%BFS algorithm class. |
114 | 115 |
|
115 | 116 |
///\ingroup search |
116 | 117 |
///This class provides an efficient implementation of the %BFS algorithm. |
117 | 118 |
/// |
118 | 119 |
///There is also a \ref bfs() "function-type interface" for the BFS |
119 | 120 |
///algorithm, which is convenient in the simplier cases and it can be |
120 | 121 |
///used easier. |
121 | 122 |
/// |
122 | 123 |
///\tparam GR The type of the digraph the algorithm runs on. |
123 | 124 |
///The default type is \ref ListDigraph. |
124 | 125 |
///\tparam TR The traits class that defines various types used by the |
125 | 126 |
///algorithm. By default, it is \ref BfsDefaultTraits |
126 | 127 |
///"BfsDefaultTraits<GR>". |
127 | 128 |
///In most cases, this parameter should not be set directly, |
128 | 129 |
///consider to use the named template parameters instead. |
129 | 130 |
#ifdef DOXYGEN |
130 | 131 |
template <typename GR, |
131 | 132 |
typename TR> |
132 | 133 |
#else |
133 | 134 |
template <typename GR=ListDigraph, |
134 | 135 |
typename TR=BfsDefaultTraits<GR> > |
135 | 136 |
#endif |
136 | 137 |
class Bfs { |
137 | 138 |
public: |
138 | 139 |
|
139 | 140 |
///The type of the digraph the algorithm runs on. |
140 | 141 |
typedef typename TR::Digraph Digraph; |
141 | 142 |
|
142 | 143 |
///\brief The type of the map that stores the predecessor arcs of the |
143 | 144 |
///shortest paths. |
144 | 145 |
typedef typename TR::PredMap PredMap; |
145 | 146 |
///The type of the map that stores the distances of the nodes. |
146 | 147 |
typedef typename TR::DistMap DistMap; |
147 | 148 |
///The type of the map that indicates which nodes are reached. |
148 | 149 |
typedef typename TR::ReachedMap ReachedMap; |
149 | 150 |
///The type of the map that indicates which nodes are processed. |
150 | 151 |
typedef typename TR::ProcessedMap ProcessedMap; |
151 | 152 |
///The type of the paths. |
152 | 153 |
typedef PredMapPath<Digraph, PredMap> Path; |
153 | 154 |
|
154 | 155 |
///The \ref BfsDefaultTraits "traits class" of the algorithm. |
155 | 156 |
typedef TR Traits; |
156 | 157 |
|
157 | 158 |
private: |
158 | 159 |
|
159 | 160 |
typedef typename Digraph::Node Node; |
160 | 161 |
typedef typename Digraph::NodeIt NodeIt; |
161 | 162 |
typedef typename Digraph::Arc Arc; |
162 | 163 |
typedef typename Digraph::OutArcIt OutArcIt; |
163 | 164 |
|
164 | 165 |
//Pointer to the underlying digraph. |
165 | 166 |
const Digraph *G; |
166 | 167 |
//Pointer to the map of predecessor arcs. |
167 | 168 |
PredMap *_pred; |
168 | 169 |
//Indicates if _pred is locally allocated (true) or not. |
169 | 170 |
bool local_pred; |
170 | 171 |
//Pointer to the map of distances. |
171 | 172 |
DistMap *_dist; |
172 | 173 |
//Indicates if _dist is locally allocated (true) or not. |
173 | 174 |
bool local_dist; |
174 | 175 |
//Pointer to the map of reached status of the nodes. |
175 | 176 |
ReachedMap *_reached; |
176 | 177 |
//Indicates if _reached is locally allocated (true) or not. |
177 | 178 |
bool local_reached; |
178 | 179 |
//Pointer to the map of processed status of the nodes. |
179 | 180 |
ProcessedMap *_processed; |
180 | 181 |
//Indicates if _processed is locally allocated (true) or not. |
181 | 182 |
bool local_processed; |
182 | 183 |
|
183 | 184 |
std::vector<typename Digraph::Node> _queue; |
184 | 185 |
int _queue_head,_queue_tail,_queue_next_dist; |
185 | 186 |
int _curr_dist; |
186 | 187 |
|
187 | 188 |
//Creates the maps if necessary. |
188 | 189 |
void create_maps() |
189 | 190 |
{ |
190 | 191 |
if(!_pred) { |
191 | 192 |
local_pred = true; |
192 | 193 |
_pred = Traits::createPredMap(*G); |
193 | 194 |
} |
194 | 195 |
if(!_dist) { |
195 | 196 |
local_dist = true; |
196 | 197 |
_dist = Traits::createDistMap(*G); |
197 | 198 |
} |
198 | 199 |
if(!_reached) { |
199 | 200 |
local_reached = true; |
200 | 201 |
_reached = Traits::createReachedMap(*G); |
201 | 202 |
} |
202 | 203 |
if(!_processed) { |
203 | 204 |
local_processed = true; |
204 | 205 |
_processed = Traits::createProcessedMap(*G); |
205 | 206 |
} |
206 | 207 |
} |
207 | 208 |
|
208 | 209 |
protected: |
209 | 210 |
|
210 | 211 |
Bfs() {} |
211 | 212 |
|
212 | 213 |
public: |
213 | 214 |
|
214 | 215 |
typedef Bfs Create; |
215 | 216 |
|
216 | 217 |
///\name Named Template Parameters |
217 | 218 |
|
218 | 219 |
///@{ |
219 | 220 |
|
220 | 221 |
template <class T> |
221 | 222 |
struct SetPredMapTraits : public Traits { |
222 | 223 |
typedef T PredMap; |
223 | 224 |
static PredMap *createPredMap(const Digraph &) |
224 | 225 |
{ |
225 | 226 |
LEMON_ASSERT(false, "PredMap is not initialized"); |
226 | 227 |
return 0; // ignore warnings |
227 | 228 |
} |
228 | 229 |
}; |
229 | 230 |
///\brief \ref named-templ-param "Named parameter" for setting |
230 | 231 |
///\c PredMap type. |
231 | 232 |
/// |
232 | 233 |
///\ref named-templ-param "Named parameter" for setting |
233 | 234 |
///\c PredMap type. |
234 | 235 |
///It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
235 | 236 |
template <class T> |
236 | 237 |
struct SetPredMap : public Bfs< Digraph, SetPredMapTraits<T> > { |
237 | 238 |
typedef Bfs< Digraph, SetPredMapTraits<T> > Create; |
238 | 239 |
}; |
239 | 240 |
|
240 | 241 |
template <class T> |
241 | 242 |
struct SetDistMapTraits : public Traits { |
242 | 243 |
typedef T DistMap; |
243 | 244 |
static DistMap *createDistMap(const Digraph &) |
244 | 245 |
{ |
245 | 246 |
LEMON_ASSERT(false, "DistMap is not initialized"); |
246 | 247 |
return 0; // ignore warnings |
247 | 248 |
} |
248 | 249 |
}; |
249 | 250 |
///\brief \ref named-templ-param "Named parameter" for setting |
250 | 251 |
///\c DistMap type. |
251 | 252 |
/// |
252 | 253 |
///\ref named-templ-param "Named parameter" for setting |
253 | 254 |
///\c DistMap type. |
254 | 255 |
///It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
255 | 256 |
template <class T> |
256 | 257 |
struct SetDistMap : public Bfs< Digraph, SetDistMapTraits<T> > { |
257 | 258 |
typedef Bfs< Digraph, SetDistMapTraits<T> > Create; |
258 | 259 |
}; |
259 | 260 |
|
260 | 261 |
template <class T> |
261 | 262 |
struct SetReachedMapTraits : public Traits { |
262 | 263 |
typedef T ReachedMap; |
263 | 264 |
static ReachedMap *createReachedMap(const Digraph &) |
264 | 265 |
{ |
265 | 266 |
LEMON_ASSERT(false, "ReachedMap is not initialized"); |
266 | 267 |
return 0; // ignore warnings |
267 | 268 |
} |
268 | 269 |
}; |
269 | 270 |
///\brief \ref named-templ-param "Named parameter" for setting |
270 | 271 |
///\c ReachedMap type. |
271 | 272 |
/// |
272 | 273 |
///\ref named-templ-param "Named parameter" for setting |
273 | 274 |
///\c ReachedMap type. |
274 |
///It must conform to |
|
275 |
///It must conform to |
|
276 |
///the \ref concepts::ReadWriteMap "ReadWriteMap" concept. |
|
275 | 277 |
template <class T> |
276 | 278 |
struct SetReachedMap : public Bfs< Digraph, SetReachedMapTraits<T> > { |
277 | 279 |
typedef Bfs< Digraph, SetReachedMapTraits<T> > Create; |
278 | 280 |
}; |
279 | 281 |
|
280 | 282 |
template <class T> |
281 | 283 |
struct SetProcessedMapTraits : public Traits { |
282 | 284 |
typedef T ProcessedMap; |
283 | 285 |
static ProcessedMap *createProcessedMap(const Digraph &) |
284 | 286 |
{ |
285 | 287 |
LEMON_ASSERT(false, "ProcessedMap is not initialized"); |
286 | 288 |
return 0; // ignore warnings |
287 | 289 |
} |
288 | 290 |
}; |
289 | 291 |
///\brief \ref named-templ-param "Named parameter" for setting |
290 | 292 |
///\c ProcessedMap type. |
291 | 293 |
/// |
292 | 294 |
///\ref named-templ-param "Named parameter" for setting |
293 | 295 |
///\c ProcessedMap type. |
294 | 296 |
///It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
295 | 297 |
template <class T> |
296 | 298 |
struct SetProcessedMap : public Bfs< Digraph, SetProcessedMapTraits<T> > { |
297 | 299 |
typedef Bfs< Digraph, SetProcessedMapTraits<T> > Create; |
298 | 300 |
}; |
299 | 301 |
|
300 | 302 |
struct SetStandardProcessedMapTraits : public Traits { |
301 | 303 |
typedef typename Digraph::template NodeMap<bool> ProcessedMap; |
302 | 304 |
static ProcessedMap *createProcessedMap(const Digraph &g) |
303 | 305 |
{ |
304 | 306 |
return new ProcessedMap(g); |
305 | 307 |
return 0; // ignore warnings |
306 | 308 |
} |
307 | 309 |
}; |
308 | 310 |
///\brief \ref named-templ-param "Named parameter" for setting |
309 | 311 |
///\c ProcessedMap type to be <tt>Digraph::NodeMap<bool></tt>. |
310 | 312 |
/// |
311 | 313 |
///\ref named-templ-param "Named parameter" for setting |
312 | 314 |
///\c ProcessedMap type to be <tt>Digraph::NodeMap<bool></tt>. |
313 | 315 |
///If you don't set it explicitly, it will be automatically allocated. |
314 | 316 |
struct SetStandardProcessedMap : |
315 | 317 |
public Bfs< Digraph, SetStandardProcessedMapTraits > { |
316 | 318 |
typedef Bfs< Digraph, SetStandardProcessedMapTraits > Create; |
317 | 319 |
}; |
318 | 320 |
|
319 | 321 |
///@} |
320 | 322 |
|
321 | 323 |
public: |
322 | 324 |
|
323 | 325 |
///Constructor. |
324 | 326 |
|
325 | 327 |
///Constructor. |
326 | 328 |
///\param g The digraph the algorithm runs on. |
327 | 329 |
Bfs(const Digraph &g) : |
328 | 330 |
G(&g), |
329 | 331 |
_pred(NULL), local_pred(false), |
330 | 332 |
_dist(NULL), local_dist(false), |
331 | 333 |
_reached(NULL), local_reached(false), |
332 | 334 |
_processed(NULL), local_processed(false) |
333 | 335 |
{ } |
334 | 336 |
|
335 | 337 |
///Destructor. |
336 | 338 |
~Bfs() |
337 | 339 |
{ |
338 | 340 |
if(local_pred) delete _pred; |
339 | 341 |
if(local_dist) delete _dist; |
340 | 342 |
if(local_reached) delete _reached; |
341 | 343 |
if(local_processed) delete _processed; |
342 | 344 |
} |
343 | 345 |
|
344 | 346 |
///Sets the map that stores the predecessor arcs. |
345 | 347 |
|
346 | 348 |
///Sets the map that stores the predecessor arcs. |
347 | 349 |
///If you don't use this function before calling \ref run(Node) "run()" |
348 | 350 |
///or \ref init(), an instance will be allocated automatically. |
349 | 351 |
///The destructor deallocates this automatically allocated map, |
350 | 352 |
///of course. |
351 | 353 |
///\return <tt> (*this) </tt> |
352 | 354 |
Bfs &predMap(PredMap &m) |
353 | 355 |
{ |
354 | 356 |
if(local_pred) { |
355 | 357 |
delete _pred; |
356 | 358 |
local_pred=false; |
357 | 359 |
} |
358 | 360 |
_pred = &m; |
359 | 361 |
return *this; |
360 | 362 |
} |
361 | 363 |
|
362 | 364 |
///Sets the map that indicates which nodes are reached. |
363 | 365 |
|
364 | 366 |
///Sets the map that indicates which nodes are reached. |
365 | 367 |
///If you don't use this function before calling \ref run(Node) "run()" |
366 | 368 |
///or \ref init(), an instance will be allocated automatically. |
367 | 369 |
///The destructor deallocates this automatically allocated map, |
368 | 370 |
///of course. |
369 | 371 |
///\return <tt> (*this) </tt> |
370 | 372 |
Bfs &reachedMap(ReachedMap &m) |
371 | 373 |
{ |
372 | 374 |
if(local_reached) { |
373 | 375 |
delete _reached; |
374 | 376 |
local_reached=false; |
375 | 377 |
} |
376 | 378 |
_reached = &m; |
377 | 379 |
return *this; |
378 | 380 |
} |
379 | 381 |
|
380 | 382 |
///Sets the map that indicates which nodes are processed. |
381 | 383 |
|
382 | 384 |
///Sets the map that indicates which nodes are processed. |
383 | 385 |
///If you don't use this function before calling \ref run(Node) "run()" |
384 | 386 |
///or \ref init(), an instance will be allocated automatically. |
385 | 387 |
///The destructor deallocates this automatically allocated map, |
386 | 388 |
///of course. |
387 | 389 |
///\return <tt> (*this) </tt> |
388 | 390 |
Bfs &processedMap(ProcessedMap &m) |
389 | 391 |
{ |
390 | 392 |
if(local_processed) { |
391 | 393 |
delete _processed; |
392 | 394 |
local_processed=false; |
393 | 395 |
} |
394 | 396 |
_processed = &m; |
395 | 397 |
return *this; |
396 | 398 |
} |
397 | 399 |
|
398 | 400 |
///Sets the map that stores the distances of the nodes. |
399 | 401 |
|
400 | 402 |
///Sets the map that stores the distances of the nodes calculated by |
401 | 403 |
///the algorithm. |
402 | 404 |
///If you don't use this function before calling \ref run(Node) "run()" |
403 | 405 |
///or \ref init(), an instance will be allocated automatically. |
404 | 406 |
///The destructor deallocates this automatically allocated map, |
405 | 407 |
///of course. |
406 | 408 |
///\return <tt> (*this) </tt> |
407 | 409 |
Bfs &distMap(DistMap &m) |
408 | 410 |
{ |
409 | 411 |
if(local_dist) { |
410 | 412 |
delete _dist; |
411 | 413 |
local_dist=false; |
412 | 414 |
} |
413 | 415 |
_dist = &m; |
414 | 416 |
return *this; |
415 | 417 |
} |
416 | 418 |
|
417 | 419 |
public: |
418 | 420 |
|
419 | 421 |
///\name Execution Control |
420 | 422 |
///The simplest way to execute the BFS algorithm is to use one of the |
421 | 423 |
///member functions called \ref run(Node) "run()".\n |
422 | 424 |
///If you need better control on the execution, you have to call |
423 | 425 |
///\ref init() first, then you can add several source nodes with |
424 | 426 |
///\ref addSource(). Finally the actual path computation can be |
425 | 427 |
///performed with one of the \ref start() functions. |
426 | 428 |
|
427 | 429 |
///@{ |
428 | 430 |
|
429 | 431 |
///\brief Initializes the internal data structures. |
430 | 432 |
/// |
431 | 433 |
///Initializes the internal data structures. |
432 | 434 |
void init() |
433 | 435 |
{ |
434 | 436 |
create_maps(); |
435 | 437 |
_queue.resize(countNodes(*G)); |
436 | 438 |
_queue_head=_queue_tail=0; |
437 | 439 |
_curr_dist=1; |
438 | 440 |
for ( NodeIt u(*G) ; u!=INVALID ; ++u ) { |
439 | 441 |
_pred->set(u,INVALID); |
440 | 442 |
_reached->set(u,false); |
441 | 443 |
_processed->set(u,false); |
442 | 444 |
} |
443 | 445 |
} |
444 | 446 |
|
445 | 447 |
///Adds a new source node. |
446 | 448 |
|
447 | 449 |
///Adds a new source node to the set of nodes to be processed. |
448 | 450 |
/// |
449 | 451 |
void addSource(Node s) |
450 | 452 |
{ |
451 | 453 |
if(!(*_reached)[s]) |
452 | 454 |
{ |
453 | 455 |
_reached->set(s,true); |
454 | 456 |
_pred->set(s,INVALID); |
455 | 457 |
_dist->set(s,0); |
456 | 458 |
_queue[_queue_head++]=s; |
457 | 459 |
_queue_next_dist=_queue_head; |
458 | 460 |
} |
459 | 461 |
} |
460 | 462 |
|
461 | 463 |
///Processes the next node. |
462 | 464 |
|
463 | 465 |
///Processes the next node. |
464 | 466 |
/// |
465 | 467 |
///\return The processed node. |
466 | 468 |
/// |
... | ... |
@@ -683,385 +685,386 @@ |
683 | 685 |
} |
684 | 686 |
|
685 | 687 |
///Finds the shortest path between \c s and \c t. |
686 | 688 |
|
687 | 689 |
///This method runs the %BFS algorithm from node \c s |
688 | 690 |
///in order to compute the shortest path to node \c t |
689 | 691 |
///(it stops searching when \c t is processed). |
690 | 692 |
/// |
691 | 693 |
///\return \c true if \c t is reachable form \c s. |
692 | 694 |
/// |
693 | 695 |
///\note Apart from the return value, <tt>b.run(s,t)</tt> is just a |
694 | 696 |
///shortcut of the following code. |
695 | 697 |
///\code |
696 | 698 |
/// b.init(); |
697 | 699 |
/// b.addSource(s); |
698 | 700 |
/// b.start(t); |
699 | 701 |
///\endcode |
700 | 702 |
bool run(Node s,Node t) { |
701 | 703 |
init(); |
702 | 704 |
addSource(s); |
703 | 705 |
start(t); |
704 | 706 |
return reached(t); |
705 | 707 |
} |
706 | 708 |
|
707 | 709 |
///Runs the algorithm to visit all nodes in the digraph. |
708 | 710 |
|
709 | 711 |
///This method runs the %BFS algorithm in order to visit all nodes |
710 | 712 |
///in the digraph. |
711 | 713 |
/// |
712 | 714 |
///\note <tt>b.run(s)</tt> is just a shortcut of the following code. |
713 | 715 |
///\code |
714 | 716 |
/// b.init(); |
715 | 717 |
/// for (NodeIt n(gr); n != INVALID; ++n) { |
716 | 718 |
/// if (!b.reached(n)) { |
717 | 719 |
/// b.addSource(n); |
718 | 720 |
/// b.start(); |
719 | 721 |
/// } |
720 | 722 |
/// } |
721 | 723 |
///\endcode |
722 | 724 |
void run() { |
723 | 725 |
init(); |
724 | 726 |
for (NodeIt n(*G); n != INVALID; ++n) { |
725 | 727 |
if (!reached(n)) { |
726 | 728 |
addSource(n); |
727 | 729 |
start(); |
728 | 730 |
} |
729 | 731 |
} |
730 | 732 |
} |
731 | 733 |
|
732 | 734 |
///@} |
733 | 735 |
|
734 | 736 |
///\name Query Functions |
735 | 737 |
///The results of the BFS algorithm can be obtained using these |
736 | 738 |
///functions.\n |
737 | 739 |
///Either \ref run(Node) "run()" or \ref start() should be called |
738 | 740 |
///before using them. |
739 | 741 |
|
740 | 742 |
///@{ |
741 | 743 |
|
742 | 744 |
///The shortest path to the given node. |
743 | 745 |
|
744 | 746 |
///Returns the shortest path to the given node from the root(s). |
745 | 747 |
/// |
746 | 748 |
///\warning \c t should be reached from the root(s). |
747 | 749 |
/// |
748 | 750 |
///\pre Either \ref run(Node) "run()" or \ref init() |
749 | 751 |
///must be called before using this function. |
750 | 752 |
Path path(Node t) const { return Path(*G, *_pred, t); } |
751 | 753 |
|
752 | 754 |
///The distance of the given node from the root(s). |
753 | 755 |
|
754 | 756 |
///Returns the distance of the given node from the root(s). |
755 | 757 |
/// |
756 | 758 |
///\warning If node \c v is not reached from the root(s), then |
757 | 759 |
///the return value of this function is undefined. |
758 | 760 |
/// |
759 | 761 |
///\pre Either \ref run(Node) "run()" or \ref init() |
760 | 762 |
///must be called before using this function. |
761 | 763 |
int dist(Node v) const { return (*_dist)[v]; } |
762 | 764 |
|
763 | 765 |
///\brief Returns the 'previous arc' of the shortest path tree for |
764 | 766 |
///the given node. |
765 | 767 |
/// |
766 | 768 |
///This function returns the 'previous arc' of the shortest path |
767 | 769 |
///tree for the node \c v, i.e. it returns the last arc of a |
768 | 770 |
///shortest path from a root to \c v. It is \c INVALID if \c v |
769 | 771 |
///is not reached from the root(s) or if \c v is a root. |
770 | 772 |
/// |
771 | 773 |
///The shortest path tree used here is equal to the shortest path |
772 | 774 |
///tree used in \ref predNode() and \ref predMap(). |
773 | 775 |
/// |
774 | 776 |
///\pre Either \ref run(Node) "run()" or \ref init() |
775 | 777 |
///must be called before using this function. |
776 | 778 |
Arc predArc(Node v) const { return (*_pred)[v];} |
777 | 779 |
|
778 | 780 |
///\brief Returns the 'previous node' of the shortest path tree for |
779 | 781 |
///the given node. |
780 | 782 |
/// |
781 | 783 |
///This function returns the 'previous node' of the shortest path |
782 | 784 |
///tree for the node \c v, i.e. it returns the last but one node |
783 | 785 |
///of a shortest path from a root to \c v. It is \c INVALID |
784 | 786 |
///if \c v is not reached from the root(s) or if \c v is a root. |
785 | 787 |
/// |
786 | 788 |
///The shortest path tree used here is equal to the shortest path |
787 | 789 |
///tree used in \ref predArc() and \ref predMap(). |
788 | 790 |
/// |
789 | 791 |
///\pre Either \ref run(Node) "run()" or \ref init() |
790 | 792 |
///must be called before using this function. |
791 | 793 |
Node predNode(Node v) const { return (*_pred)[v]==INVALID ? INVALID: |
792 | 794 |
G->source((*_pred)[v]); } |
793 | 795 |
|
794 | 796 |
///\brief Returns a const reference to the node map that stores the |
795 | 797 |
/// distances of the nodes. |
796 | 798 |
/// |
797 | 799 |
///Returns a const reference to the node map that stores the distances |
798 | 800 |
///of the nodes calculated by the algorithm. |
799 | 801 |
/// |
800 | 802 |
///\pre Either \ref run(Node) "run()" or \ref init() |
801 | 803 |
///must be called before using this function. |
802 | 804 |
const DistMap &distMap() const { return *_dist;} |
803 | 805 |
|
804 | 806 |
///\brief Returns a const reference to the node map that stores the |
805 | 807 |
///predecessor arcs. |
806 | 808 |
/// |
807 | 809 |
///Returns a const reference to the node map that stores the predecessor |
808 | 810 |
///arcs, which form the shortest path tree (forest). |
809 | 811 |
/// |
810 | 812 |
///\pre Either \ref run(Node) "run()" or \ref init() |
811 | 813 |
///must be called before using this function. |
812 | 814 |
const PredMap &predMap() const { return *_pred;} |
813 | 815 |
|
814 | 816 |
///Checks if the given node is reached from the root(s). |
815 | 817 |
|
816 | 818 |
///Returns \c true if \c v is reached from the root(s). |
817 | 819 |
/// |
818 | 820 |
///\pre Either \ref run(Node) "run()" or \ref init() |
819 | 821 |
///must be called before using this function. |
820 | 822 |
bool reached(Node v) const { return (*_reached)[v]; } |
821 | 823 |
|
822 | 824 |
///@} |
823 | 825 |
}; |
824 | 826 |
|
825 | 827 |
///Default traits class of bfs() function. |
826 | 828 |
|
827 | 829 |
///Default traits class of bfs() function. |
828 | 830 |
///\tparam GR Digraph type. |
829 | 831 |
template<class GR> |
830 | 832 |
struct BfsWizardDefaultTraits |
831 | 833 |
{ |
832 | 834 |
///The type of the digraph the algorithm runs on. |
833 | 835 |
typedef GR Digraph; |
834 | 836 |
|
835 | 837 |
///\brief The type of the map that stores the predecessor |
836 | 838 |
///arcs of the shortest paths. |
837 | 839 |
/// |
838 | 840 |
///The type of the map that stores the predecessor |
839 | 841 |
///arcs of the shortest paths. |
840 | 842 |
///It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
841 | 843 |
typedef typename Digraph::template NodeMap<typename Digraph::Arc> PredMap; |
842 | 844 |
///Instantiates a PredMap. |
843 | 845 |
|
844 | 846 |
///This function instantiates a PredMap. |
845 | 847 |
///\param g is the digraph, to which we would like to define the |
846 | 848 |
///PredMap. |
847 | 849 |
static PredMap *createPredMap(const Digraph &g) |
848 | 850 |
{ |
849 | 851 |
return new PredMap(g); |
850 | 852 |
} |
851 | 853 |
|
852 | 854 |
///The type of the map that indicates which nodes are processed. |
853 | 855 |
|
854 | 856 |
///The type of the map that indicates which nodes are processed. |
855 | 857 |
///It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
856 | 858 |
///By default, it is a NullMap. |
857 | 859 |
typedef NullMap<typename Digraph::Node,bool> ProcessedMap; |
858 | 860 |
///Instantiates a ProcessedMap. |
859 | 861 |
|
860 | 862 |
///This function instantiates a ProcessedMap. |
861 | 863 |
///\param g is the digraph, to which |
862 | 864 |
///we would like to define the ProcessedMap. |
863 | 865 |
#ifdef DOXYGEN |
864 | 866 |
static ProcessedMap *createProcessedMap(const Digraph &g) |
865 | 867 |
#else |
866 | 868 |
static ProcessedMap *createProcessedMap(const Digraph &) |
867 | 869 |
#endif |
868 | 870 |
{ |
869 | 871 |
return new ProcessedMap(); |
870 | 872 |
} |
871 | 873 |
|
872 | 874 |
///The type of the map that indicates which nodes are reached. |
873 | 875 |
|
874 | 876 |
///The type of the map that indicates which nodes are reached. |
875 |
///It must conform to |
|
877 |
///It must conform to |
|
878 |
///the \ref concepts::ReadWriteMap "ReadWriteMap" concept. |
|
876 | 879 |
typedef typename Digraph::template NodeMap<bool> ReachedMap; |
877 | 880 |
///Instantiates a ReachedMap. |
878 | 881 |
|
879 | 882 |
///This function instantiates a ReachedMap. |
880 | 883 |
///\param g is the digraph, to which |
881 | 884 |
///we would like to define the ReachedMap. |
882 | 885 |
static ReachedMap *createReachedMap(const Digraph &g) |
883 | 886 |
{ |
884 | 887 |
return new ReachedMap(g); |
885 | 888 |
} |
886 | 889 |
|
887 | 890 |
///The type of the map that stores the distances of the nodes. |
888 | 891 |
|
889 | 892 |
///The type of the map that stores the distances of the nodes. |
890 | 893 |
///It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
891 | 894 |
typedef typename Digraph::template NodeMap<int> DistMap; |
892 | 895 |
///Instantiates a DistMap. |
893 | 896 |
|
894 | 897 |
///This function instantiates a DistMap. |
895 | 898 |
///\param g is the digraph, to which we would like to define |
896 | 899 |
///the DistMap |
897 | 900 |
static DistMap *createDistMap(const Digraph &g) |
898 | 901 |
{ |
899 | 902 |
return new DistMap(g); |
900 | 903 |
} |
901 | 904 |
|
902 | 905 |
///The type of the shortest paths. |
903 | 906 |
|
904 | 907 |
///The type of the shortest paths. |
905 | 908 |
///It must conform to the \ref concepts::Path "Path" concept. |
906 | 909 |
typedef lemon::Path<Digraph> Path; |
907 | 910 |
}; |
908 | 911 |
|
909 | 912 |
/// Default traits class used by BfsWizard |
910 | 913 |
|
911 | 914 |
/// Default traits class used by BfsWizard. |
912 | 915 |
/// \tparam GR The type of the digraph. |
913 | 916 |
template<class GR> |
914 | 917 |
class BfsWizardBase : public BfsWizardDefaultTraits<GR> |
915 | 918 |
{ |
916 | 919 |
|
917 | 920 |
typedef BfsWizardDefaultTraits<GR> Base; |
918 | 921 |
protected: |
919 | 922 |
//The type of the nodes in the digraph. |
920 | 923 |
typedef typename Base::Digraph::Node Node; |
921 | 924 |
|
922 | 925 |
//Pointer to the digraph the algorithm runs on. |
923 | 926 |
void *_g; |
924 | 927 |
//Pointer to the map of reached nodes. |
925 | 928 |
void *_reached; |
926 | 929 |
//Pointer to the map of processed nodes. |
927 | 930 |
void *_processed; |
928 | 931 |
//Pointer to the map of predecessors arcs. |
929 | 932 |
void *_pred; |
930 | 933 |
//Pointer to the map of distances. |
931 | 934 |
void *_dist; |
932 | 935 |
//Pointer to the shortest path to the target node. |
933 | 936 |
void *_path; |
934 | 937 |
//Pointer to the distance of the target node. |
935 | 938 |
int *_di; |
936 | 939 |
|
937 | 940 |
public: |
938 | 941 |
/// Constructor. |
939 | 942 |
|
940 | 943 |
/// This constructor does not require parameters, it initiates |
941 | 944 |
/// all of the attributes to \c 0. |
942 | 945 |
BfsWizardBase() : _g(0), _reached(0), _processed(0), _pred(0), |
943 | 946 |
_dist(0), _path(0), _di(0) {} |
944 | 947 |
|
945 | 948 |
/// Constructor. |
946 | 949 |
|
947 | 950 |
/// This constructor requires one parameter, |
948 | 951 |
/// others are initiated to \c 0. |
949 | 952 |
/// \param g The digraph the algorithm runs on. |
950 | 953 |
BfsWizardBase(const GR &g) : |
951 | 954 |
_g(reinterpret_cast<void*>(const_cast<GR*>(&g))), |
952 | 955 |
_reached(0), _processed(0), _pred(0), _dist(0), _path(0), _di(0) {} |
953 | 956 |
|
954 | 957 |
}; |
955 | 958 |
|
956 | 959 |
/// Auxiliary class for the function-type interface of BFS algorithm. |
957 | 960 |
|
958 | 961 |
/// This auxiliary class is created to implement the |
959 | 962 |
/// \ref bfs() "function-type interface" of \ref Bfs algorithm. |
960 | 963 |
/// It does not have own \ref run(Node) "run()" method, it uses the |
961 | 964 |
/// functions and features of the plain \ref Bfs. |
962 | 965 |
/// |
963 | 966 |
/// This class should only be used through the \ref bfs() function, |
964 | 967 |
/// which makes it easier to use the algorithm. |
965 | 968 |
/// |
966 | 969 |
/// \tparam TR The traits class that defines various types used by the |
967 | 970 |
/// algorithm. |
968 | 971 |
template<class TR> |
969 | 972 |
class BfsWizard : public TR |
970 | 973 |
{ |
971 | 974 |
typedef TR Base; |
972 | 975 |
|
973 | 976 |
typedef typename TR::Digraph Digraph; |
974 | 977 |
|
975 | 978 |
typedef typename Digraph::Node Node; |
976 | 979 |
typedef typename Digraph::NodeIt NodeIt; |
977 | 980 |
typedef typename Digraph::Arc Arc; |
978 | 981 |
typedef typename Digraph::OutArcIt OutArcIt; |
979 | 982 |
|
980 | 983 |
typedef typename TR::PredMap PredMap; |
981 | 984 |
typedef typename TR::DistMap DistMap; |
982 | 985 |
typedef typename TR::ReachedMap ReachedMap; |
983 | 986 |
typedef typename TR::ProcessedMap ProcessedMap; |
984 | 987 |
typedef typename TR::Path Path; |
985 | 988 |
|
986 | 989 |
public: |
987 | 990 |
|
988 | 991 |
/// Constructor. |
989 | 992 |
BfsWizard() : TR() {} |
990 | 993 |
|
991 | 994 |
/// Constructor that requires parameters. |
992 | 995 |
|
993 | 996 |
/// Constructor that requires parameters. |
994 | 997 |
/// These parameters will be the default values for the traits class. |
995 | 998 |
/// \param g The digraph the algorithm runs on. |
996 | 999 |
BfsWizard(const Digraph &g) : |
997 | 1000 |
TR(g) {} |
998 | 1001 |
|
999 | 1002 |
///Copy constructor |
1000 | 1003 |
BfsWizard(const TR &b) : TR(b) {} |
1001 | 1004 |
|
1002 | 1005 |
~BfsWizard() {} |
1003 | 1006 |
|
1004 | 1007 |
///Runs BFS algorithm from the given source node. |
1005 | 1008 |
|
1006 | 1009 |
///This method runs BFS algorithm from node \c s |
1007 | 1010 |
///in order to compute the shortest path to each node. |
1008 | 1011 |
void run(Node s) |
1009 | 1012 |
{ |
1010 | 1013 |
Bfs<Digraph,TR> alg(*reinterpret_cast<const Digraph*>(Base::_g)); |
1011 | 1014 |
if (Base::_pred) |
1012 | 1015 |
alg.predMap(*reinterpret_cast<PredMap*>(Base::_pred)); |
1013 | 1016 |
if (Base::_dist) |
1014 | 1017 |
alg.distMap(*reinterpret_cast<DistMap*>(Base::_dist)); |
1015 | 1018 |
if (Base::_reached) |
1016 | 1019 |
alg.reachedMap(*reinterpret_cast<ReachedMap*>(Base::_reached)); |
1017 | 1020 |
if (Base::_processed) |
1018 | 1021 |
alg.processedMap(*reinterpret_cast<ProcessedMap*>(Base::_processed)); |
1019 | 1022 |
if (s!=INVALID) |
1020 | 1023 |
alg.run(s); |
1021 | 1024 |
else |
1022 | 1025 |
alg.run(); |
1023 | 1026 |
} |
1024 | 1027 |
|
1025 | 1028 |
///Finds the shortest path between \c s and \c t. |
1026 | 1029 |
|
1027 | 1030 |
///This method runs BFS algorithm from node \c s |
1028 | 1031 |
///in order to compute the shortest path to node \c t |
1029 | 1032 |
///(it stops searching when \c t is processed). |
1030 | 1033 |
/// |
1031 | 1034 |
///\return \c true if \c t is reachable form \c s. |
1032 | 1035 |
bool run(Node s, Node t) |
1033 | 1036 |
{ |
1034 | 1037 |
Bfs<Digraph,TR> alg(*reinterpret_cast<const Digraph*>(Base::_g)); |
1035 | 1038 |
if (Base::_pred) |
1036 | 1039 |
alg.predMap(*reinterpret_cast<PredMap*>(Base::_pred)); |
1037 | 1040 |
if (Base::_dist) |
1038 | 1041 |
alg.distMap(*reinterpret_cast<DistMap*>(Base::_dist)); |
1039 | 1042 |
if (Base::_reached) |
1040 | 1043 |
alg.reachedMap(*reinterpret_cast<ReachedMap*>(Base::_reached)); |
1041 | 1044 |
if (Base::_processed) |
1042 | 1045 |
alg.processedMap(*reinterpret_cast<ProcessedMap*>(Base::_processed)); |
1043 | 1046 |
alg.run(s,t); |
1044 | 1047 |
if (Base::_path) |
1045 | 1048 |
*reinterpret_cast<Path*>(Base::_path) = alg.path(t); |
1046 | 1049 |
if (Base::_di) |
1047 | 1050 |
*Base::_di = alg.dist(t); |
1048 | 1051 |
return alg.reached(t); |
1049 | 1052 |
} |
1050 | 1053 |
|
1051 | 1054 |
///Runs BFS algorithm to visit all nodes in the digraph. |
1052 | 1055 |
|
1053 | 1056 |
///This method runs BFS algorithm in order to visit all nodes |
1054 | 1057 |
///in the digraph. |
1055 | 1058 |
void run() |
1056 | 1059 |
{ |
1057 | 1060 |
run(INVALID); |
1058 | 1061 |
} |
1059 | 1062 |
|
1060 | 1063 |
template<class T> |
1061 | 1064 |
struct SetPredMapBase : public Base { |
1062 | 1065 |
typedef T PredMap; |
1063 | 1066 |
static PredMap *createPredMap(const Digraph &) { return 0; }; |
1064 | 1067 |
SetPredMapBase(const TR &b) : TR(b) {} |
1065 | 1068 |
}; |
1066 | 1069 |
|
1067 | 1070 |
///\brief \ref named-templ-param "Named parameter" for setting |
... | ... |
@@ -1076,385 +1079,386 @@ |
1076 | 1079 |
return BfsWizard<SetPredMapBase<T> >(*this); |
1077 | 1080 |
} |
1078 | 1081 |
|
1079 | 1082 |
template<class T> |
1080 | 1083 |
struct SetReachedMapBase : public Base { |
1081 | 1084 |
typedef T ReachedMap; |
1082 | 1085 |
static ReachedMap *createReachedMap(const Digraph &) { return 0; }; |
1083 | 1086 |
SetReachedMapBase(const TR &b) : TR(b) {} |
1084 | 1087 |
}; |
1085 | 1088 |
|
1086 | 1089 |
///\brief \ref named-templ-param "Named parameter" for setting |
1087 | 1090 |
///the reached map. |
1088 | 1091 |
/// |
1089 | 1092 |
///\ref named-templ-param "Named parameter" function for setting |
1090 | 1093 |
///the map that indicates which nodes are reached. |
1091 | 1094 |
template<class T> |
1092 | 1095 |
BfsWizard<SetReachedMapBase<T> > reachedMap(const T &t) |
1093 | 1096 |
{ |
1094 | 1097 |
Base::_reached=reinterpret_cast<void*>(const_cast<T*>(&t)); |
1095 | 1098 |
return BfsWizard<SetReachedMapBase<T> >(*this); |
1096 | 1099 |
} |
1097 | 1100 |
|
1098 | 1101 |
template<class T> |
1099 | 1102 |
struct SetDistMapBase : public Base { |
1100 | 1103 |
typedef T DistMap; |
1101 | 1104 |
static DistMap *createDistMap(const Digraph &) { return 0; }; |
1102 | 1105 |
SetDistMapBase(const TR &b) : TR(b) {} |
1103 | 1106 |
}; |
1104 | 1107 |
|
1105 | 1108 |
///\brief \ref named-templ-param "Named parameter" for setting |
1106 | 1109 |
///the distance map. |
1107 | 1110 |
/// |
1108 | 1111 |
///\ref named-templ-param "Named parameter" function for setting |
1109 | 1112 |
///the map that stores the distances of the nodes calculated |
1110 | 1113 |
///by the algorithm. |
1111 | 1114 |
template<class T> |
1112 | 1115 |
BfsWizard<SetDistMapBase<T> > distMap(const T &t) |
1113 | 1116 |
{ |
1114 | 1117 |
Base::_dist=reinterpret_cast<void*>(const_cast<T*>(&t)); |
1115 | 1118 |
return BfsWizard<SetDistMapBase<T> >(*this); |
1116 | 1119 |
} |
1117 | 1120 |
|
1118 | 1121 |
template<class T> |
1119 | 1122 |
struct SetProcessedMapBase : public Base { |
1120 | 1123 |
typedef T ProcessedMap; |
1121 | 1124 |
static ProcessedMap *createProcessedMap(const Digraph &) { return 0; }; |
1122 | 1125 |
SetProcessedMapBase(const TR &b) : TR(b) {} |
1123 | 1126 |
}; |
1124 | 1127 |
|
1125 | 1128 |
///\brief \ref named-func-param "Named parameter" for setting |
1126 | 1129 |
///the processed map. |
1127 | 1130 |
/// |
1128 | 1131 |
///\ref named-templ-param "Named parameter" function for setting |
1129 | 1132 |
///the map that indicates which nodes are processed. |
1130 | 1133 |
template<class T> |
1131 | 1134 |
BfsWizard<SetProcessedMapBase<T> > processedMap(const T &t) |
1132 | 1135 |
{ |
1133 | 1136 |
Base::_processed=reinterpret_cast<void*>(const_cast<T*>(&t)); |
1134 | 1137 |
return BfsWizard<SetProcessedMapBase<T> >(*this); |
1135 | 1138 |
} |
1136 | 1139 |
|
1137 | 1140 |
template<class T> |
1138 | 1141 |
struct SetPathBase : public Base { |
1139 | 1142 |
typedef T Path; |
1140 | 1143 |
SetPathBase(const TR &b) : TR(b) {} |
1141 | 1144 |
}; |
1142 | 1145 |
///\brief \ref named-func-param "Named parameter" |
1143 | 1146 |
///for getting the shortest path to the target node. |
1144 | 1147 |
/// |
1145 | 1148 |
///\ref named-func-param "Named parameter" |
1146 | 1149 |
///for getting the shortest path to the target node. |
1147 | 1150 |
template<class T> |
1148 | 1151 |
BfsWizard<SetPathBase<T> > path(const T &t) |
1149 | 1152 |
{ |
1150 | 1153 |
Base::_path=reinterpret_cast<void*>(const_cast<T*>(&t)); |
1151 | 1154 |
return BfsWizard<SetPathBase<T> >(*this); |
1152 | 1155 |
} |
1153 | 1156 |
|
1154 | 1157 |
///\brief \ref named-func-param "Named parameter" |
1155 | 1158 |
///for getting the distance of the target node. |
1156 | 1159 |
/// |
1157 | 1160 |
///\ref named-func-param "Named parameter" |
1158 | 1161 |
///for getting the distance of the target node. |
1159 | 1162 |
BfsWizard dist(const int &d) |
1160 | 1163 |
{ |
1161 | 1164 |
Base::_di=const_cast<int*>(&d); |
1162 | 1165 |
return *this; |
1163 | 1166 |
} |
1164 | 1167 |
|
1165 | 1168 |
}; |
1166 | 1169 |
|
1167 | 1170 |
///Function-type interface for BFS algorithm. |
1168 | 1171 |
|
1169 | 1172 |
/// \ingroup search |
1170 | 1173 |
///Function-type interface for BFS algorithm. |
1171 | 1174 |
/// |
1172 | 1175 |
///This function also has several \ref named-func-param "named parameters", |
1173 | 1176 |
///they are declared as the members of class \ref BfsWizard. |
1174 | 1177 |
///The following examples show how to use these parameters. |
1175 | 1178 |
///\code |
1176 | 1179 |
/// // Compute shortest path from node s to each node |
1177 | 1180 |
/// bfs(g).predMap(preds).distMap(dists).run(s); |
1178 | 1181 |
/// |
1179 | 1182 |
/// // Compute shortest path from s to t |
1180 | 1183 |
/// bool reached = bfs(g).path(p).dist(d).run(s,t); |
1181 | 1184 |
///\endcode |
1182 | 1185 |
///\warning Don't forget to put the \ref BfsWizard::run(Node) "run()" |
1183 | 1186 |
///to the end of the parameter list. |
1184 | 1187 |
///\sa BfsWizard |
1185 | 1188 |
///\sa Bfs |
1186 | 1189 |
template<class GR> |
1187 | 1190 |
BfsWizard<BfsWizardBase<GR> > |
1188 | 1191 |
bfs(const GR &digraph) |
1189 | 1192 |
{ |
1190 | 1193 |
return BfsWizard<BfsWizardBase<GR> >(digraph); |
1191 | 1194 |
} |
1192 | 1195 |
|
1193 | 1196 |
#ifdef DOXYGEN |
1194 | 1197 |
/// \brief Visitor class for BFS. |
1195 | 1198 |
/// |
1196 | 1199 |
/// This class defines the interface of the BfsVisit events, and |
1197 | 1200 |
/// it could be the base of a real visitor class. |
1198 | 1201 |
template <typename GR> |
1199 | 1202 |
struct BfsVisitor { |
1200 | 1203 |
typedef GR Digraph; |
1201 | 1204 |
typedef typename Digraph::Arc Arc; |
1202 | 1205 |
typedef typename Digraph::Node Node; |
1203 | 1206 |
/// \brief Called for the source node(s) of the BFS. |
1204 | 1207 |
/// |
1205 | 1208 |
/// This function is called for the source node(s) of the BFS. |
1206 | 1209 |
void start(const Node& node) {} |
1207 | 1210 |
/// \brief Called when a node is reached first time. |
1208 | 1211 |
/// |
1209 | 1212 |
/// This function is called when a node is reached first time. |
1210 | 1213 |
void reach(const Node& node) {} |
1211 | 1214 |
/// \brief Called when a node is processed. |
1212 | 1215 |
/// |
1213 | 1216 |
/// This function is called when a node is processed. |
1214 | 1217 |
void process(const Node& node) {} |
1215 | 1218 |
/// \brief Called when an arc reaches a new node. |
1216 | 1219 |
/// |
1217 | 1220 |
/// This function is called when the BFS finds an arc whose target node |
1218 | 1221 |
/// is not reached yet. |
1219 | 1222 |
void discover(const Arc& arc) {} |
1220 | 1223 |
/// \brief Called when an arc is examined but its target node is |
1221 | 1224 |
/// already discovered. |
1222 | 1225 |
/// |
1223 | 1226 |
/// This function is called when an arc is examined but its target node is |
1224 | 1227 |
/// already discovered. |
1225 | 1228 |
void examine(const Arc& arc) {} |
1226 | 1229 |
}; |
1227 | 1230 |
#else |
1228 | 1231 |
template <typename GR> |
1229 | 1232 |
struct BfsVisitor { |
1230 | 1233 |
typedef GR Digraph; |
1231 | 1234 |
typedef typename Digraph::Arc Arc; |
1232 | 1235 |
typedef typename Digraph::Node Node; |
1233 | 1236 |
void start(const Node&) {} |
1234 | 1237 |
void reach(const Node&) {} |
1235 | 1238 |
void process(const Node&) {} |
1236 | 1239 |
void discover(const Arc&) {} |
1237 | 1240 |
void examine(const Arc&) {} |
1238 | 1241 |
|
1239 | 1242 |
template <typename _Visitor> |
1240 | 1243 |
struct Constraints { |
1241 | 1244 |
void constraints() { |
1242 | 1245 |
Arc arc; |
1243 | 1246 |
Node node; |
1244 | 1247 |
visitor.start(node); |
1245 | 1248 |
visitor.reach(node); |
1246 | 1249 |
visitor.process(node); |
1247 | 1250 |
visitor.discover(arc); |
1248 | 1251 |
visitor.examine(arc); |
1249 | 1252 |
} |
1250 | 1253 |
_Visitor& visitor; |
1251 | 1254 |
}; |
1252 | 1255 |
}; |
1253 | 1256 |
#endif |
1254 | 1257 |
|
1255 | 1258 |
/// \brief Default traits class of BfsVisit class. |
1256 | 1259 |
/// |
1257 | 1260 |
/// Default traits class of BfsVisit class. |
1258 | 1261 |
/// \tparam GR The type of the digraph the algorithm runs on. |
1259 | 1262 |
template<class GR> |
1260 | 1263 |
struct BfsVisitDefaultTraits { |
1261 | 1264 |
|
1262 | 1265 |
/// \brief The type of the digraph the algorithm runs on. |
1263 | 1266 |
typedef GR Digraph; |
1264 | 1267 |
|
1265 | 1268 |
/// \brief The type of the map that indicates which nodes are reached. |
1266 | 1269 |
/// |
1267 | 1270 |
/// The type of the map that indicates which nodes are reached. |
1268 |
/// It must conform to |
|
1271 |
/// It must conform to |
|
1272 |
///the \ref concepts::ReadWriteMap "ReadWriteMap" concept. |
|
1269 | 1273 |
typedef typename Digraph::template NodeMap<bool> ReachedMap; |
1270 | 1274 |
|
1271 | 1275 |
/// \brief Instantiates a ReachedMap. |
1272 | 1276 |
/// |
1273 | 1277 |
/// This function instantiates a ReachedMap. |
1274 | 1278 |
/// \param digraph is the digraph, to which |
1275 | 1279 |
/// we would like to define the ReachedMap. |
1276 | 1280 |
static ReachedMap *createReachedMap(const Digraph &digraph) { |
1277 | 1281 |
return new ReachedMap(digraph); |
1278 | 1282 |
} |
1279 | 1283 |
|
1280 | 1284 |
}; |
1281 | 1285 |
|
1282 | 1286 |
/// \ingroup search |
1283 | 1287 |
/// |
1284 | 1288 |
/// \brief BFS algorithm class with visitor interface. |
1285 | 1289 |
/// |
1286 | 1290 |
/// This class provides an efficient implementation of the BFS algorithm |
1287 | 1291 |
/// with visitor interface. |
1288 | 1292 |
/// |
1289 | 1293 |
/// The BfsVisit class provides an alternative interface to the Bfs |
1290 | 1294 |
/// class. It works with callback mechanism, the BfsVisit object calls |
1291 | 1295 |
/// the member functions of the \c Visitor class on every BFS event. |
1292 | 1296 |
/// |
1293 | 1297 |
/// This interface of the BFS algorithm should be used in special cases |
1294 | 1298 |
/// when extra actions have to be performed in connection with certain |
1295 | 1299 |
/// events of the BFS algorithm. Otherwise consider to use Bfs or bfs() |
1296 | 1300 |
/// instead. |
1297 | 1301 |
/// |
1298 | 1302 |
/// \tparam GR The type of the digraph the algorithm runs on. |
1299 | 1303 |
/// The default type is \ref ListDigraph. |
1300 | 1304 |
/// The value of GR is not used directly by \ref BfsVisit, |
1301 | 1305 |
/// it is only passed to \ref BfsVisitDefaultTraits. |
1302 | 1306 |
/// \tparam VS The Visitor type that is used by the algorithm. |
1303 | 1307 |
/// \ref BfsVisitor "BfsVisitor<GR>" is an empty visitor, which |
1304 | 1308 |
/// does not observe the BFS events. If you want to observe the BFS |
1305 | 1309 |
/// events, you should implement your own visitor class. |
1306 | 1310 |
/// \tparam TR The traits class that defines various types used by the |
1307 | 1311 |
/// algorithm. By default, it is \ref BfsVisitDefaultTraits |
1308 | 1312 |
/// "BfsVisitDefaultTraits<GR>". |
1309 | 1313 |
/// In most cases, this parameter should not be set directly, |
1310 | 1314 |
/// consider to use the named template parameters instead. |
1311 | 1315 |
#ifdef DOXYGEN |
1312 | 1316 |
template <typename GR, typename VS, typename TR> |
1313 | 1317 |
#else |
1314 | 1318 |
template <typename GR = ListDigraph, |
1315 | 1319 |
typename VS = BfsVisitor<GR>, |
1316 | 1320 |
typename TR = BfsVisitDefaultTraits<GR> > |
1317 | 1321 |
#endif |
1318 | 1322 |
class BfsVisit { |
1319 | 1323 |
public: |
1320 | 1324 |
|
1321 | 1325 |
///The traits class. |
1322 | 1326 |
typedef TR Traits; |
1323 | 1327 |
|
1324 | 1328 |
///The type of the digraph the algorithm runs on. |
1325 | 1329 |
typedef typename Traits::Digraph Digraph; |
1326 | 1330 |
|
1327 | 1331 |
///The visitor type used by the algorithm. |
1328 | 1332 |
typedef VS Visitor; |
1329 | 1333 |
|
1330 | 1334 |
///The type of the map that indicates which nodes are reached. |
1331 | 1335 |
typedef typename Traits::ReachedMap ReachedMap; |
1332 | 1336 |
|
1333 | 1337 |
private: |
1334 | 1338 |
|
1335 | 1339 |
typedef typename Digraph::Node Node; |
1336 | 1340 |
typedef typename Digraph::NodeIt NodeIt; |
1337 | 1341 |
typedef typename Digraph::Arc Arc; |
1338 | 1342 |
typedef typename Digraph::OutArcIt OutArcIt; |
1339 | 1343 |
|
1340 | 1344 |
//Pointer to the underlying digraph. |
1341 | 1345 |
const Digraph *_digraph; |
1342 | 1346 |
//Pointer to the visitor object. |
1343 | 1347 |
Visitor *_visitor; |
1344 | 1348 |
//Pointer to the map of reached status of the nodes. |
1345 | 1349 |
ReachedMap *_reached; |
1346 | 1350 |
//Indicates if _reached is locally allocated (true) or not. |
1347 | 1351 |
bool local_reached; |
1348 | 1352 |
|
1349 | 1353 |
std::vector<typename Digraph::Node> _list; |
1350 | 1354 |
int _list_front, _list_back; |
1351 | 1355 |
|
1352 | 1356 |
//Creates the maps if necessary. |
1353 | 1357 |
void create_maps() { |
1354 | 1358 |
if(!_reached) { |
1355 | 1359 |
local_reached = true; |
1356 | 1360 |
_reached = Traits::createReachedMap(*_digraph); |
1357 | 1361 |
} |
1358 | 1362 |
} |
1359 | 1363 |
|
1360 | 1364 |
protected: |
1361 | 1365 |
|
1362 | 1366 |
BfsVisit() {} |
1363 | 1367 |
|
1364 | 1368 |
public: |
1365 | 1369 |
|
1366 | 1370 |
typedef BfsVisit Create; |
1367 | 1371 |
|
1368 | 1372 |
/// \name Named Template Parameters |
1369 | 1373 |
|
1370 | 1374 |
///@{ |
1371 | 1375 |
template <class T> |
1372 | 1376 |
struct SetReachedMapTraits : public Traits { |
1373 | 1377 |
typedef T ReachedMap; |
1374 | 1378 |
static ReachedMap *createReachedMap(const Digraph &digraph) { |
1375 | 1379 |
LEMON_ASSERT(false, "ReachedMap is not initialized"); |
1376 | 1380 |
return 0; // ignore warnings |
1377 | 1381 |
} |
1378 | 1382 |
}; |
1379 | 1383 |
/// \brief \ref named-templ-param "Named parameter" for setting |
1380 | 1384 |
/// ReachedMap type. |
1381 | 1385 |
/// |
1382 | 1386 |
/// \ref named-templ-param "Named parameter" for setting ReachedMap type. |
1383 | 1387 |
template <class T> |
1384 | 1388 |
struct SetReachedMap : public BfsVisit< Digraph, Visitor, |
1385 | 1389 |
SetReachedMapTraits<T> > { |
1386 | 1390 |
typedef BfsVisit< Digraph, Visitor, SetReachedMapTraits<T> > Create; |
1387 | 1391 |
}; |
1388 | 1392 |
///@} |
1389 | 1393 |
|
1390 | 1394 |
public: |
1391 | 1395 |
|
1392 | 1396 |
/// \brief Constructor. |
1393 | 1397 |
/// |
1394 | 1398 |
/// Constructor. |
1395 | 1399 |
/// |
1396 | 1400 |
/// \param digraph The digraph the algorithm runs on. |
1397 | 1401 |
/// \param visitor The visitor object of the algorithm. |
1398 | 1402 |
BfsVisit(const Digraph& digraph, Visitor& visitor) |
1399 | 1403 |
: _digraph(&digraph), _visitor(&visitor), |
1400 | 1404 |
_reached(0), local_reached(false) {} |
1401 | 1405 |
|
1402 | 1406 |
/// \brief Destructor. |
1403 | 1407 |
~BfsVisit() { |
1404 | 1408 |
if(local_reached) delete _reached; |
1405 | 1409 |
} |
1406 | 1410 |
|
1407 | 1411 |
/// \brief Sets the map that indicates which nodes are reached. |
1408 | 1412 |
/// |
1409 | 1413 |
/// Sets the map that indicates which nodes are reached. |
1410 | 1414 |
/// If you don't use this function before calling \ref run(Node) "run()" |
1411 | 1415 |
/// or \ref init(), an instance will be allocated automatically. |
1412 | 1416 |
/// The destructor deallocates this automatically allocated map, |
1413 | 1417 |
/// of course. |
1414 | 1418 |
/// \return <tt> (*this) </tt> |
1415 | 1419 |
BfsVisit &reachedMap(ReachedMap &m) { |
1416 | 1420 |
if(local_reached) { |
1417 | 1421 |
delete _reached; |
1418 | 1422 |
local_reached = false; |
1419 | 1423 |
} |
1420 | 1424 |
_reached = &m; |
1421 | 1425 |
return *this; |
1422 | 1426 |
} |
1423 | 1427 |
|
1424 | 1428 |
public: |
1425 | 1429 |
|
1426 | 1430 |
/// \name Execution Control |
1427 | 1431 |
/// The simplest way to execute the BFS algorithm is to use one of the |
1428 | 1432 |
/// member functions called \ref run(Node) "run()".\n |
1429 | 1433 |
/// If you need better control on the execution, you have to call |
1430 | 1434 |
/// \ref init() first, then you can add several source nodes with |
1431 | 1435 |
/// \ref addSource(). Finally the actual path computation can be |
1432 | 1436 |
/// performed with one of the \ref start() functions. |
1433 | 1437 |
|
1434 | 1438 |
/// @{ |
1435 | 1439 |
|
1436 | 1440 |
/// \brief Initializes the internal data structures. |
1437 | 1441 |
/// |
1438 | 1442 |
/// Initializes the internal data structures. |
1439 | 1443 |
void init() { |
1440 | 1444 |
create_maps(); |
1441 | 1445 |
_list.resize(countNodes(*_digraph)); |
1442 | 1446 |
_list_front = _list_back = -1; |
1443 | 1447 |
for (NodeIt u(*_digraph) ; u != INVALID ; ++u) { |
1444 | 1448 |
_reached->set(u, false); |
1445 | 1449 |
} |
1446 | 1450 |
} |
1447 | 1451 |
|
1448 | 1452 |
/// \brief Adds a new source node. |
1449 | 1453 |
/// |
1450 | 1454 |
/// Adds a new source node to the set of nodes to be processed. |
1451 | 1455 |
void addSource(Node s) { |
1452 | 1456 |
if(!(*_reached)[s]) { |
1453 | 1457 |
_reached->set(s,true); |
1454 | 1458 |
_visitor->start(s); |
1455 | 1459 |
_visitor->reach(s); |
1456 | 1460 |
_list[++_list_back] = s; |
1457 | 1461 |
} |
1458 | 1462 |
} |
1459 | 1463 |
|
1460 | 1464 |
/// \brief Processes the next node. |
1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 |
* Copyright (C) 2003- |
|
5 |
* Copyright (C) 2003-2010 |
|
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 | 19 |
#ifndef LEMON_BINOMIAL_HEAP_H |
20 | 20 |
#define LEMON_BINOMIAL_HEAP_H |
21 | 21 |
|
22 | 22 |
///\file |
23 | 23 |
///\ingroup heaps |
24 | 24 |
///\brief Binomial Heap implementation. |
25 | 25 |
|
26 | 26 |
#include <vector> |
27 | 27 |
#include <utility> |
28 | 28 |
#include <functional> |
29 | 29 |
#include <lemon/math.h> |
30 | 30 |
#include <lemon/counter.h> |
31 | 31 |
|
32 | 32 |
namespace lemon { |
33 | 33 |
|
34 | 34 |
/// \ingroup heaps |
35 | 35 |
/// |
36 | 36 |
///\brief Binomial heap data structure. |
37 | 37 |
/// |
38 | 38 |
/// This class implements the \e binomial \e heap data structure. |
39 | 39 |
/// It fully conforms to the \ref concepts::Heap "heap concept". |
40 | 40 |
/// |
41 | 41 |
/// The methods \ref increase() and \ref erase() are not efficient |
42 | 42 |
/// in a binomial heap. In case of many calls of these operations, |
43 | 43 |
/// it is better to use other heap structure, e.g. \ref BinHeap |
44 | 44 |
/// "binary heap". |
45 | 45 |
/// |
46 | 46 |
/// \tparam PR Type of the priorities of the items. |
47 | 47 |
/// \tparam IM A read-writable item map with \c int values, used |
48 | 48 |
/// internally to handle the cross references. |
49 | 49 |
/// \tparam CMP A functor class for comparing the priorities. |
50 | 50 |
/// The default is \c std::less<PR>. |
51 | 51 |
#ifdef DOXYGEN |
52 | 52 |
template <typename PR, typename IM, typename CMP> |
53 | 53 |
#else |
54 | 54 |
template <typename PR, typename IM, typename CMP = std::less<PR> > |
55 | 55 |
#endif |
56 | 56 |
class BinomialHeap { |
57 | 57 |
public: |
58 | 58 |
/// Type of the item-int map. |
59 | 59 |
typedef IM ItemIntMap; |
60 | 60 |
/// Type of the priorities. |
61 | 61 |
typedef PR Prio; |
62 | 62 |
/// Type of the items stored in the heap. |
63 | 63 |
typedef typename ItemIntMap::Key Item; |
64 | 64 |
/// Functor type for comparing the priorities. |
65 | 65 |
typedef CMP Compare; |
66 | 66 |
|
67 | 67 |
/// \brief Type to represent the states of the items. |
68 | 68 |
/// |
69 | 69 |
/// Each item has a state associated to it. It can be "in heap", |
70 | 70 |
/// "pre-heap" or "post-heap". The latter two are indifferent from the |
71 | 71 |
/// heap's point of view, but may be useful to the user. |
72 | 72 |
/// |
73 | 73 |
/// The item-int map must be initialized in such way that it assigns |
74 | 74 |
/// \c PRE_HEAP (<tt>-1</tt>) to any element to be put in the heap. |
75 | 75 |
enum State { |
76 | 76 |
IN_HEAP = 0, ///< = 0. |
77 | 77 |
PRE_HEAP = -1, ///< = -1. |
78 | 78 |
POST_HEAP = -2 ///< = -2. |
79 | 79 |
}; |
80 | 80 |
|
81 | 81 |
private: |
82 | 82 |
class Store; |
83 | 83 |
|
84 | 84 |
std::vector<Store> _data; |
85 | 85 |
int _min, _head; |
86 | 86 |
ItemIntMap &_iim; |
87 | 87 |
Compare _comp; |
88 | 88 |
int _num_items; |
89 | 89 |
|
90 | 90 |
public: |
91 | 91 |
/// \brief Constructor. |
92 | 92 |
/// |
93 | 93 |
/// Constructor. |
94 | 94 |
/// \param map A map that assigns \c int values to the items. |
95 | 95 |
/// It is used internally to handle the cross references. |
96 | 96 |
/// The assigned value must be \c PRE_HEAP (<tt>-1</tt>) for each item. |
97 | 97 |
explicit BinomialHeap(ItemIntMap &map) |
98 | 98 |
: _min(0), _head(-1), _iim(map), _num_items(0) {} |
99 | 99 |
|
100 | 100 |
/// \brief Constructor. |
101 | 101 |
/// |
102 | 102 |
/// Constructor. |
103 | 103 |
/// \param map A map that assigns \c int values to the items. |
104 | 104 |
/// It is used internally to handle the cross references. |
105 | 105 |
/// The assigned value must be \c PRE_HEAP (<tt>-1</tt>) for each item. |
106 | 106 |
/// \param comp The function object used for comparing the priorities. |
107 | 107 |
BinomialHeap(ItemIntMap &map, const Compare &comp) |
108 | 108 |
: _min(0), _head(-1), _iim(map), _comp(comp), _num_items(0) {} |
109 | 109 |
|
110 | 110 |
/// \brief The number of items stored in the heap. |
111 | 111 |
/// |
112 | 112 |
/// This function returns the number of items stored in the heap. |
113 | 113 |
int size() const { return _num_items; } |
114 | 114 |
|
115 | 115 |
/// \brief Check if the heap is empty. |
116 | 116 |
/// |
117 | 117 |
/// This function returns \c true if the heap is empty. |
118 | 118 |
bool empty() const { return _num_items==0; } |
119 | 119 |
|
120 | 120 |
/// \brief Make the heap empty. |
121 | 121 |
/// |
122 | 122 |
/// This functon makes the heap empty. |
123 | 123 |
/// It does not change the cross reference map. If you want to reuse |
124 | 124 |
/// a heap that is not surely empty, you should first clear it and |
125 | 125 |
/// then you should set the cross reference map to \c PRE_HEAP |
126 | 126 |
/// for each item. |
127 | 127 |
void clear() { |
128 | 128 |
_data.clear(); _min=0; _num_items=0; _head=-1; |
129 | 129 |
} |
130 | 130 |
|
131 | 131 |
/// \brief Set the priority of an item or insert it, if it is |
132 | 132 |
/// not stored in the heap. |
133 | 133 |
/// |
134 | 134 |
/// This method sets the priority of the given item if it is |
135 | 135 |
/// already stored in the heap. Otherwise it inserts the given |
136 | 136 |
/// item into the heap with the given priority. |
137 | 137 |
/// \param item The item. |
138 | 138 |
/// \param value The priority. |
139 | 139 |
void set (const Item& item, const Prio& value) { |
140 | 140 |
int i=_iim[item]; |
141 | 141 |
if ( i >= 0 && _data[i].in ) { |
142 | 142 |
if ( _comp(value, _data[i].prio) ) decrease(item, value); |
143 | 143 |
if ( _comp(_data[i].prio, value) ) increase(item, value); |
144 | 144 |
} else push(item, value); |
145 | 145 |
} |
146 | 146 |
|
147 | 147 |
/// \brief Insert an item into the heap with the given priority. |
148 | 148 |
/// |
149 | 149 |
/// This function inserts the given item into the heap with the |
150 | 150 |
/// given priority. |
151 | 151 |
/// \param item The item to insert. |
152 | 152 |
/// \param value The priority of the item. |
153 | 153 |
/// \pre \e item must not be stored in the heap. |
154 | 154 |
void push (const Item& item, const Prio& value) { |
155 | 155 |
int i=_iim[item]; |
156 | 156 |
if ( i<0 ) { |
157 | 157 |
int s=_data.size(); |
158 | 158 |
_iim.set( item,s ); |
159 | 159 |
Store st; |
160 | 160 |
st.name=item; |
161 | 161 |
st.prio=value; |
162 | 162 |
_data.push_back(st); |
163 | 163 |
i=s; |
164 | 164 |
} |
165 | 165 |
else { |
166 | 166 |
_data[i].parent=_data[i].right_neighbor=_data[i].child=-1; |
167 | 167 |
_data[i].degree=0; |
168 | 168 |
_data[i].in=true; |
169 | 169 |
_data[i].prio=value; |
170 | 170 |
} |
171 | 171 |
|
172 | 172 |
if( 0==_num_items ) { |
173 | 173 |
_head=i; |
174 | 174 |
_min=i; |
175 | 175 |
} else { |
176 | 176 |
merge(i); |
177 | 177 |
if( _comp(_data[i].prio, _data[_min].prio) ) _min=i; |
178 | 178 |
} |
179 | 179 |
++_num_items; |
180 | 180 |
} |
181 | 181 |
|
182 | 182 |
/// \brief Return the item having minimum priority. |
183 | 183 |
/// |
184 | 184 |
/// This function returns the item having minimum priority. |
185 | 185 |
/// \pre The heap must be non-empty. |
186 | 186 |
Item top() const { return _data[_min].name; } |
187 | 187 |
|
188 | 188 |
/// \brief The minimum priority. |
189 | 189 |
/// |
190 | 190 |
/// This function returns the minimum priority. |
191 | 191 |
/// \pre The heap must be non-empty. |
192 | 192 |
Prio prio() const { return _data[_min].prio; } |
193 | 193 |
|
194 | 194 |
/// \brief The priority of the given item. |
195 | 195 |
/// |
196 | 196 |
/// This function returns the priority of the given item. |
197 | 197 |
/// \param item The item. |
198 | 198 |
/// \pre \e item must be in the heap. |
199 | 199 |
const Prio& operator[](const Item& item) const { |
200 | 200 |
return _data[_iim[item]].prio; |
201 | 201 |
} |
202 | 202 |
|
203 | 203 |
/// \brief Remove the item having minimum priority. |
204 | 204 |
/// |
205 | 205 |
/// This function removes the item having minimum priority. |
206 | 206 |
/// \pre The heap must be non-empty. |
207 | 207 |
void pop() { |
208 | 208 |
_data[_min].in=false; |
209 | 209 |
|
210 | 210 |
int head_child=-1; |
211 | 211 |
if ( _data[_min].child!=-1 ) { |
212 | 212 |
int child=_data[_min].child; |
213 | 213 |
int neighb; |
214 | 214 |
while( child!=-1 ) { |
215 | 215 |
neighb=_data[child].right_neighbor; |
216 | 216 |
_data[child].parent=-1; |
217 | 217 |
_data[child].right_neighbor=head_child; |
218 | 218 |
head_child=child; |
219 | 219 |
child=neighb; |
220 | 220 |
} |
221 | 221 |
} |
222 | 222 |
|
223 | 223 |
if ( _data[_head].right_neighbor==-1 ) { |
224 | 224 |
// there was only one root |
225 | 225 |
_head=head_child; |
226 | 226 |
} |
227 | 227 |
else { |
228 | 228 |
// there were more roots |
229 | 229 |
if( _head!=_min ) { unlace(_min); } |
230 | 230 |
else { _head=_data[_head].right_neighbor; } |
231 | 231 |
merge(head_child); |
232 | 232 |
} |
233 | 233 |
_min=findMin(); |
234 | 234 |
--_num_items; |
235 | 235 |
} |
236 | 236 |
|
237 | 237 |
/// \brief Remove the given item from the heap. |
238 | 238 |
/// |
239 | 239 |
/// This function removes the given item from the heap if it is |
240 | 240 |
/// already stored. |
241 | 241 |
/// \param item The item to delete. |
242 | 242 |
/// \pre \e item must be in the heap. |
243 | 243 |
void erase (const Item& item) { |
244 | 244 |
int i=_iim[item]; |
245 | 245 |
if ( i >= 0 && _data[i].in ) { |
246 | 246 |
decrease( item, _data[_min].prio-1 ); |
247 | 247 |
pop(); |
248 | 248 |
} |
249 | 249 |
} |
250 | 250 |
|
251 | 251 |
/// \brief Decrease the priority of an item to the given value. |
252 | 252 |
/// |
253 | 253 |
/// This function decreases the priority of an item to the given value. |
254 | 254 |
/// \param item The item. |
255 | 255 |
/// \param value The priority. |
256 | 256 |
/// \pre \e item must be stored in the heap with priority at least \e value. |
257 | 257 |
void decrease (Item item, const Prio& value) { |
258 | 258 |
int i=_iim[item]; |
259 | 259 |
int p=_data[i].parent; |
260 | 260 |
_data[i].prio=value; |
261 |
|
|
261 |
|
|
262 | 262 |
while( p!=-1 && _comp(value, _data[p].prio) ) { |
263 | 263 |
_data[i].name=_data[p].name; |
264 | 264 |
_data[i].prio=_data[p].prio; |
265 | 265 |
_data[p].name=item; |
266 | 266 |
_data[p].prio=value; |
267 | 267 |
_iim[_data[i].name]=i; |
268 | 268 |
i=p; |
269 | 269 |
p=_data[p].parent; |
270 | 270 |
} |
271 | 271 |
_iim[item]=i; |
272 | 272 |
if ( _comp(value, _data[_min].prio) ) _min=i; |
273 | 273 |
} |
274 | 274 |
|
275 | 275 |
/// \brief Increase the priority of an item to the given value. |
276 | 276 |
/// |
277 | 277 |
/// This function increases the priority of an item to the given value. |
278 | 278 |
/// \param item The item. |
279 | 279 |
/// \param value The priority. |
280 | 280 |
/// \pre \e item must be stored in the heap with priority at most \e value. |
281 | 281 |
void increase (Item item, const Prio& value) { |
282 | 282 |
erase(item); |
283 | 283 |
push(item, value); |
284 | 284 |
} |
285 | 285 |
|
286 | 286 |
/// \brief Return the state of an item. |
287 | 287 |
/// |
288 | 288 |
/// This method returns \c PRE_HEAP if the given item has never |
289 | 289 |
/// been in the heap, \c IN_HEAP if it is in the heap at the moment, |
290 | 290 |
/// and \c POST_HEAP otherwise. |
291 | 291 |
/// In the latter case it is possible that the item will get back |
292 | 292 |
/// to the heap again. |
293 | 293 |
/// \param item The item. |
294 | 294 |
State state(const Item &item) const { |
295 | 295 |
int i=_iim[item]; |
296 | 296 |
if( i>=0 ) { |
297 | 297 |
if ( _data[i].in ) i=0; |
298 | 298 |
else i=-2; |
299 | 299 |
} |
300 | 300 |
return State(i); |
301 | 301 |
} |
302 | 302 |
|
303 | 303 |
/// \brief Set the state of an item in the heap. |
304 | 304 |
/// |
305 | 305 |
/// This function sets the state of the given item in the heap. |
306 | 306 |
/// It can be used to manually clear the heap when it is important |
307 | 307 |
/// to achive better time complexity. |
308 | 308 |
/// \param i The item. |
309 | 309 |
/// \param st The state. It should not be \c IN_HEAP. |
310 | 310 |
void state(const Item& i, State st) { |
311 | 311 |
switch (st) { |
312 | 312 |
case POST_HEAP: |
313 | 313 |
case PRE_HEAP: |
314 | 314 |
if (state(i) == IN_HEAP) { |
315 | 315 |
erase(i); |
316 | 316 |
} |
317 | 317 |
_iim[i] = st; |
318 | 318 |
break; |
319 | 319 |
case IN_HEAP: |
320 | 320 |
break; |
321 | 321 |
} |
322 | 322 |
} |
323 | 323 |
|
324 | 324 |
private: |
325 |
|
|
325 |
|
|
326 | 326 |
// Find the minimum of the roots |
327 | 327 |
int findMin() { |
328 | 328 |
if( _head!=-1 ) { |
329 | 329 |
int min_loc=_head, min_val=_data[_head].prio; |
330 | 330 |
for( int x=_data[_head].right_neighbor; x!=-1; |
331 | 331 |
x=_data[x].right_neighbor ) { |
332 | 332 |
if( _comp( _data[x].prio,min_val ) ) { |
333 | 333 |
min_val=_data[x].prio; |
334 | 334 |
min_loc=x; |
335 | 335 |
} |
336 | 336 |
} |
337 | 337 |
return min_loc; |
338 | 338 |
} |
339 | 339 |
else return -1; |
340 | 340 |
} |
341 | 341 |
|
342 | 342 |
// Merge the heap with another heap starting at the given position |
343 | 343 |
void merge(int a) { |
344 | 344 |
if( _head==-1 || a==-1 ) return; |
345 | 345 |
if( _data[a].right_neighbor==-1 && |
346 | 346 |
_data[a].degree<=_data[_head].degree ) { |
347 | 347 |
_data[a].right_neighbor=_head; |
348 | 348 |
_head=a; |
349 | 349 |
} else { |
350 | 350 |
interleave(a); |
351 | 351 |
} |
352 | 352 |
if( _data[_head].right_neighbor==-1 ) return; |
353 |
|
|
353 |
|
|
354 | 354 |
int x=_head; |
355 | 355 |
int x_prev=-1, x_next=_data[x].right_neighbor; |
356 | 356 |
while( x_next!=-1 ) { |
357 | 357 |
if( _data[x].degree!=_data[x_next].degree || |
358 | 358 |
( _data[x_next].right_neighbor!=-1 && |
359 | 359 |
_data[_data[x_next].right_neighbor].degree==_data[x].degree ) ) { |
360 | 360 |
x_prev=x; |
361 | 361 |
x=x_next; |
362 | 362 |
} |
363 | 363 |
else { |
364 | 364 |
if( _comp(_data[x_next].prio,_data[x].prio) ) { |
365 | 365 |
if( x_prev==-1 ) { |
366 | 366 |
_head=x_next; |
367 | 367 |
} else { |
368 | 368 |
_data[x_prev].right_neighbor=x_next; |
369 | 369 |
} |
370 | 370 |
fuse(x,x_next); |
371 | 371 |
x=x_next; |
372 | 372 |
} |
373 | 373 |
else { |
374 | 374 |
_data[x].right_neighbor=_data[x_next].right_neighbor; |
375 | 375 |
fuse(x_next,x); |
376 | 376 |
} |
377 | 377 |
} |
378 | 378 |
x_next=_data[x].right_neighbor; |
379 | 379 |
} |
380 | 380 |
} |
381 | 381 |
|
382 | 382 |
// Interleave the elements of the given list into the list of the roots |
383 | 383 |
void interleave(int a) { |
384 | 384 |
int p=_head, q=a; |
385 | 385 |
int curr=_data.size(); |
386 | 386 |
_data.push_back(Store()); |
387 |
|
|
387 |
|
|
388 | 388 |
while( p!=-1 || q!=-1 ) { |
389 | 389 |
if( q==-1 || ( p!=-1 && _data[p].degree<_data[q].degree ) ) { |
390 | 390 |
_data[curr].right_neighbor=p; |
391 | 391 |
curr=p; |
392 | 392 |
p=_data[p].right_neighbor; |
393 | 393 |
} |
394 | 394 |
else { |
395 | 395 |
_data[curr].right_neighbor=q; |
396 | 396 |
curr=q; |
397 | 397 |
q=_data[q].right_neighbor; |
398 | 398 |
} |
399 | 399 |
} |
400 |
|
|
400 |
|
|
401 | 401 |
_head=_data.back().right_neighbor; |
402 | 402 |
_data.pop_back(); |
403 | 403 |
} |
404 | 404 |
|
405 | 405 |
// Lace node a under node b |
406 | 406 |
void fuse(int a, int b) { |
407 | 407 |
_data[a].parent=b; |
408 | 408 |
_data[a].right_neighbor=_data[b].child; |
409 | 409 |
_data[b].child=a; |
410 | 410 |
|
411 | 411 |
++_data[b].degree; |
412 | 412 |
} |
413 | 413 |
|
414 | 414 |
// Unlace node a (if it has siblings) |
415 | 415 |
void unlace(int a) { |
416 | 416 |
int neighb=_data[a].right_neighbor; |
417 | 417 |
int other=_head; |
418 | 418 |
|
419 | 419 |
while( _data[other].right_neighbor!=a ) |
420 | 420 |
other=_data[other].right_neighbor; |
421 | 421 |
_data[other].right_neighbor=neighb; |
422 | 422 |
} |
423 | 423 |
|
424 | 424 |
private: |
425 | 425 |
|
426 | 426 |
class Store { |
427 | 427 |
friend class BinomialHeap; |
428 | 428 |
|
429 | 429 |
Item name; |
430 | 430 |
int parent; |
431 | 431 |
int right_neighbor; |
432 | 432 |
int child; |
433 | 433 |
int degree; |
434 | 434 |
bool in; |
435 | 435 |
Prio prio; |
436 | 436 |
|
437 | 437 |
Store() : parent(-1), right_neighbor(-1), child(-1), degree(0), |
438 | 438 |
in(true) {} |
439 | 439 |
}; |
440 | 440 |
}; |
441 | 441 |
|
442 | 442 |
} //namespace lemon |
443 | 443 |
|
444 | 444 |
#endif //LEMON_BINOMIAL_HEAP_H |
445 | 445 |
Changeset was too big and was cut off... Show full diff
0 comments (0 inline)