gravatar
kpeter (Peter Kovacs)
kpeter@inf.elte.hu
Overall clean-up in maps.h - Rename some map types: * IntegerMap -> RangeMap * StdMap -> SparseMap * FunctorMap -> FunctorToMap * MapFunctor -> MapToFunctor * ForkWriteMap -> ForkMap * SimpleMap -> WrapMap * SimpleWriteMap -> WrapWriteMap - Remove the read-only ForkMap version. - Rename map-creator functions for the read-write arithmetic and logical maps. - Small fixes and improvements in the code. - Fix the typedefs of RangeMap to work correctly with bool type, too. - Rename template parameters, function parameters, and private members in many classes to be uniform and to avoid parameter names starting with underscore. - Use Key and Value types instead of K and V template parameters in public functions. - Extend the documentation with examples (e.g. for basic arithmetic and logical maps). - Many doc improvements. - Reorder the classes. - StoreBoolMap, BackInserterBoolMap, FrontInserterBoolMap, InserterBoolMap, FillBoolMap, SettingOrderBoolMap are almost unchanged, since they will be removed. - Also improve maps_test.cc to correctly check every map class, every constructor, and every creator function.
0 2 0
default
2 files changed with 1427 insertions and 1061 deletions:
↑ Collapse diff ↑
Ignore white space 6 line context
... ...
@@ -24,12 +24,12 @@
24 24
#include <vector>
25 25

	
26 26
#include <lemon/bits/utility.h>
27
// #include <lemon/bits/traits.h>
27
#include <lemon/bits/traits.h>
28 28

	
29 29
///\file
30 30
///\ingroup maps
31 31
///\brief Miscellaneous property maps
32
///
32

	
33 33
#include <map>
34 34

	
35 35
namespace lemon {
... ...
@@ -39,41 +39,46 @@
39 39

	
40 40
  /// Base class of maps.
41 41

	
42
  /// Base class of maps.
43
  /// It provides the necessary <tt>typedef</tt>s required by the map concept.
44
  template<typename K, typename T>
42
  /// Base class of maps. It provides the necessary type definitions
43
  /// required by the map %concepts.
44
  template<typename K, typename V>
45 45
  class MapBase {
46 46
  public:
47
    /// The key type of the map.
47
    /// \biref The key type of the map.
48 48
    typedef K Key;
49
    /// The value type of the map. (The type of objects associated with the keys).
50
    typedef T Value;
49
    /// \brief The value type of the map.
50
    /// (The type of objects associated with the keys).
51
    typedef V Value;
51 52
  };
52 53

	
54

	
53 55
  /// Null map. (a.k.a. DoNothingMap)
54 56

	
55 57
  /// This map can be used if you have to provide a map only for
56
  /// its type definitions, or if you have to provide a writable map, 
57
  /// but data written to it is not required (i.e. it will be sent to 
58
  /// its type definitions, or if you have to provide a writable map,
59
  /// but data written to it is not required (i.e. it will be sent to
58 60
  /// <tt>/dev/null</tt>).
59
  template<typename K, typename T>
60
  class NullMap : public MapBase<K, T> {
61
  /// It conforms the \ref concepts::ReadWriteMap "ReadWriteMap" concept.
62
  ///
63
  /// \sa ConstMap
64
  template<typename K, typename V>
65
  class NullMap : public MapBase<K, V> {
61 66
  public:
62
    typedef MapBase<K, T> Parent;
67
    typedef MapBase<K, V> Parent;
63 68
    typedef typename Parent::Key Key;
64 69
    typedef typename Parent::Value Value;
65
    
70

	
66 71
    /// Gives back a default constructed element.
67
    T operator[](const K&) const { return T(); }
72
    Value operator[](const Key&) const { return Value(); }
68 73
    /// Absorbs the value.
69
    void set(const K&, const T&) {}
74
    void set(const Key&, const Value&) {}
70 75
  };
71 76

	
72
  ///Returns a \c NullMap class
77
  /// Returns a \ref NullMap class
73 78

	
74
  ///This function just returns a \c NullMap class.
75
  ///\relates NullMap
76
  template <typename K, typename V> 
79
  /// This function just returns a \ref NullMap class.
80
  /// \relates NullMap
81
  template <typename K, typename V>
77 82
  NullMap<K, V> nullMap() {
78 83
    return NullMap<K, V>();
79 84
  }
... ...
@@ -81,62 +86,81 @@
81 86

	
82 87
  /// Constant map.
83 88

	
84
  /// This is a \ref concepts::ReadMap "readable" map which assigns a 
89
  /// This is a \ref concepts::ReadMap "readable" map which assigns a
85 90
  /// specified value to each key.
86
  /// In other aspects it is equivalent to \c NullMap.
87
  template<typename K, typename T>
88
  class ConstMap : public MapBase<K, T> {
91
  ///
92
  /// In other aspects it is equivalent to \ref NullMap.
93
  /// So it conforms the \ref concepts::ReadWriteMap "ReadWriteMap"
94
  /// concept, but it absorbs the data written to it.
95
  ///
96
  /// The simplest way of using this map is through the constMap()
97
  /// function.
98
  ///
99
  /// \sa NullMap
100
  /// \sa IdentityMap
101
  template<typename K, typename V>
102
  class ConstMap : public MapBase<K, V> {
89 103
  private:
90
    T v;
104
    V _value;
91 105
  public:
92

	
93
    typedef MapBase<K, T> Parent;
106
    typedef MapBase<K, V> Parent;
94 107
    typedef typename Parent::Key Key;
95 108
    typedef typename Parent::Value Value;
96 109

	
97 110
    /// Default constructor
98 111

	
99 112
    /// Default constructor.
100
    /// The value of the map will be uninitialized. 
101
    /// (More exactly it will be default constructed.)
113
    /// The value of the map will be default constructed.
102 114
    ConstMap() {}
103
    
115

	
104 116
    /// Constructor with specified initial value
105 117

	
106 118
    /// Constructor with specified initial value.
107
    /// \param _v is the initial value of the map.
108
    ConstMap(const T &_v) : v(_v) {}
109
    
110
    ///\e
111
    T operator[](const K&) const { return v; }
119
    /// \param v is the initial value of the map.
120
    ConstMap(const Value &v) : _value(v) {}
112 121

	
113
    ///\e
114
    void setAll(const T &t) {
115
      v = t;
116
    }    
122
    /// Gives back the specified value.
123
    Value operator[](const Key&) const { return _value; }
117 124

	
118
    template<typename T1>
119
    ConstMap(const ConstMap<K, T1> &, const T &_v) : v(_v) {}
125
    /// Absorbs the value.
126
    void set(const Key&, const Value&) {}
127

	
128
    /// Sets the value that is assigned to each key.
129
    void setAll(const Value &v) {
130
      _value = v;
131
    }
132

	
133
    template<typename V1>
134
    ConstMap(const ConstMap<K, V1> &, const Value &v) : _value(v) {}
120 135
  };
121 136

	
122
  ///Returns a \c ConstMap class
137
  /// Returns a \ref ConstMap class
123 138

	
124
  ///This function just returns a \c ConstMap class.
125
  ///\relates ConstMap
126
  template<typename K, typename V> 
139
  /// This function just returns a \ref ConstMap class.
140
  /// \relates ConstMap
141
  template<typename K, typename V>
127 142
  inline ConstMap<K, V> constMap(const V &v) {
128 143
    return ConstMap<K, V>(v);
129 144
  }
130 145

	
131 146

	
132 147
  template<typename T, T v>
133
  struct Const { };
148
  struct Const {};
134 149

	
135 150
  /// Constant map with inlined constant value.
136 151

	
137
  /// This is a \ref concepts::ReadMap "readable" map which assigns a 
152
  /// This is a \ref concepts::ReadMap "readable" map which assigns a
138 153
  /// specified value to each key.
139
  /// In other aspects it is equivalent to \c NullMap.
154
  ///
155
  /// In other aspects it is equivalent to \ref NullMap.
156
  /// So it conforms the \ref concepts::ReadWriteMap "ReadWriteMap"
157
  /// concept, but it absorbs the data written to it.
158
  ///
159
  /// The simplest way of using this map is through the constMap()
160
  /// function.
161
  ///
162
  /// \sa NullMap
163
  /// \sa IdentityMap
140 164
  template<typename K, typename V, V v>
141 165
  class ConstMap<K, Const<V, v> > : public MapBase<K, V> {
142 166
  public:
... ...
@@ -144,69 +168,230 @@
144 168
    typedef typename Parent::Key Key;
145 169
    typedef typename Parent::Value Value;
146 170

	
147
    ConstMap() { }
148
    ///\e
149
    V operator[](const K&) const { return v; }
150
    ///\e
151
    void set(const K&, const V&) { }
171
    /// Constructor.
172
    ConstMap() {}
173

	
174
    /// Gives back the specified value.
175
    Value operator[](const Key&) const { return v; }
176

	
177
    /// Absorbs the value.
178
    void set(const Key&, const Value&) {}
152 179
  };
153 180

	
154
  ///Returns a \c ConstMap class with inlined value
181
  /// Returns a \ref ConstMap class with inlined constant value
155 182

	
156
  ///This function just returns a \c ConstMap class with inlined value.
157
  ///\relates ConstMap
158
  template<typename K, typename V, V v> 
183
  /// This function just returns a \ref ConstMap class with inlined
184
  /// constant value.
185
  /// \relates ConstMap
186
  template<typename K, typename V, V v>
159 187
  inline ConstMap<K, Const<V, v> > constMap() {
160 188
    return ConstMap<K, Const<V, v> >();
161 189
  }
162 190

	
163
  ///Map based on \c std::map
164 191

	
165
  ///This is essentially a wrapper for \c std::map with addition that
166
  ///you can specify a default value different from \c Value().
167
  ///It meets the \ref concepts::ReferenceMap "ReferenceMap" concept.
168
  template <typename K, typename T, typename Compare = std::less<K> >
169
  class StdMap : public MapBase<K, T> {
170
    template <typename K1, typename T1, typename C1>
171
    friend class StdMap;
192
  /// \brief Identity map.
193
  ///
194
  /// This map gives back the given key as value without any
195
  /// modification.
196
  ///
197
  /// \sa ConstMap
198
  template <typename T>
199
  class IdentityMap : public MapBase<T, T> {
200
  public:
201
    typedef MapBase<T, T> Parent;
202
    typedef typename Parent::Key Key;
203
    typedef typename Parent::Value Value;
204

	
205
    /// Gives back the given value without any modification.
206
    const T& operator[](const T& t) const {
207
      return t;
208
    }
209
  };
210

	
211
  /// Returns an \ref IdentityMap class
212

	
213
  /// This function just returns an \ref IdentityMap class.
214
  /// \relates IdentityMap
215
  template<typename T>
216
  inline IdentityMap<T> identityMap() {
217
    return IdentityMap<T>();
218
  }
219

	
220

	
221
  /// \brief Map for storing values for integer keys from the range
222
  /// <tt>[0..size-1]</tt>.
223
  ///
224
  /// This map is essentially a wrapper for \c std::vector. It assigns
225
  /// values to integer keys from the range <tt>[0..size-1]</tt>.
226
  /// It can be used with some data structures, for example
227
  /// \ref UnionFind, \ref BinHeap, when the used items are small
228
  /// integers. This map conforms the \ref concepts::ReferenceMap
229
  /// "ReferenceMap" concept.
230
  ///
231
  /// The simplest way of using this map is through the rangeMap()
232
  /// function.
233
  template <typename V>
234
  class RangeMap : public MapBase<int, V> {
235
    template <typename V1>
236
    friend class RangeMap;
237
  private:
238

	
239
    typedef std::vector<V> Vector;
240
    Vector _vector;
241

	
172 242
  public:
173 243

	
174
    typedef MapBase<K, T> Parent;
175
    ///Key type
244
    typedef MapBase<int, V> Parent;
245
    /// Key type
176 246
    typedef typename Parent::Key Key;
177
    ///Value type
247
    /// Value type
178 248
    typedef typename Parent::Value Value;
179
    ///Reference Type
180
    typedef T& Reference;
181
    ///Const reference type
182
    typedef const T& ConstReference;
249
    /// Reference type
250
    typedef typename Vector::reference Reference;
251
    /// Const reference type
252
    typedef typename Vector::const_reference ConstReference;
253

	
254
    typedef True ReferenceMapTag;
255

	
256
  public:
257

	
258
    /// Constructor with specified default value.
259
    RangeMap(int size = 0, const Value &value = Value())
260
      : _vector(size, value) {}
261

	
262
    /// Constructs the map from an appropriate \c std::vector.
263
    template <typename V1>
264
    RangeMap(const std::vector<V1>& vector)
265
      : _vector(vector.begin(), vector.end()) {}
266

	
267
    /// Constructs the map from another \ref RangeMap.
268
    template <typename V1>
269
    RangeMap(const RangeMap<V1> &c)
270
      : _vector(c._vector.begin(), c._vector.end()) {}
271

	
272
    /// Returns the size of the map.
273
    int size() {
274
      return _vector.size();
275
    }
276

	
277
    /// Resizes the map.
278

	
279
    /// Resizes the underlying \c std::vector container, so changes the
280
    /// keyset of the map.
281
    /// \param size The new size of the map. The new keyset will be the
282
    /// range <tt>[0..size-1]</tt>.
283
    /// \param value The default value to assign to the new keys.
284
    void resize(int size, const Value &value = Value()) {
285
      _vector.resize(size, value);
286
    }
287

	
288
  private:
289

	
290
    RangeMap& operator=(const RangeMap&);
291

	
292
  public:
293

	
294
    ///\e
295
    Reference operator[](const Key &k) {
296
      return _vector[k];
297
    }
298

	
299
    ///\e
300
    ConstReference operator[](const Key &k) const {
301
      return _vector[k];
302
    }
303

	
304
    ///\e
305
    void set(const Key &k, const Value &v) {
306
      _vector[k] = v;
307
    }
308
  };
309

	
310
  /// Returns a \ref RangeMap class
311

	
312
  /// This function just returns a \ref RangeMap class.
313
  /// \relates RangeMap
314
  template<typename V>
315
  inline RangeMap<V> rangeMap(int size = 0, const V &value = V()) {
316
    return RangeMap<V>(size, value);
317
  }
318

	
319
  /// \brief Returns a \ref RangeMap class created from an appropriate
320
  /// \c std::vector
321

	
322
  /// This function just returns a \ref RangeMap class created from an
323
  /// appropriate \c std::vector.
324
  /// \relates RangeMap
325
  template<typename V>
326
  inline RangeMap<V> rangeMap(const std::vector<V> &vector) {
327
    return RangeMap<V>(vector);
328
  }
329

	
330

	
331
  /// Map type based on \c std::map
332

	
333
  /// This map is essentially a wrapper for \c std::map with addition
334
  /// that you can specify a default value for the keys that are not
335
  /// stored actually. This value can be different from the default
336
  /// contructed value (i.e. \c %Value()).
337
  /// This type conforms the \ref concepts::ReferenceMap "ReferenceMap"
338
  /// concept.
339
  ///
340
  /// This map is useful if a default value should be assigned to most of
341
  /// the keys and different values should be assigned only to a few
342
  /// keys (i.e. the map is "sparse").
343
  /// The name of this type also refers to this important usage.
344
  ///
345
  /// Apart form that this map can be used in many other cases since it
346
  /// is based on \c std::map, which is a general associative container.
347
  /// However keep in mind that it is usually not as efficient as other
348
  /// maps.
349
  ///
350
  /// The simplest way of using this map is through the sparseMap()
351
  /// function.
352
  template <typename K, typename V, typename Compare = std::less<K> >
353
  class SparseMap : public MapBase<K, V> {
354
    template <typename K1, typename V1, typename C1>
355
    friend class SparseMap;
356
  public:
357

	
358
    typedef MapBase<K, V> Parent;
359
    /// Key type
360
    typedef typename Parent::Key Key;
361
    /// Value type
362
    typedef typename Parent::Value Value;
363
    /// Reference type
364
    typedef Value& Reference;
365
    /// Const reference type
366
    typedef const Value& ConstReference;
183 367

	
184 368
    typedef True ReferenceMapTag;
185 369

	
186 370
  private:
187
    
188
    typedef std::map<K, T, Compare> Map;
371

	
372
    typedef std::map<K, V, Compare> Map;
373
    Map _map;
189 374
    Value _value;
190
    Map _map;
191 375

	
192 376
  public:
193 377

	
194
    /// Constructor with specified default value
195
    StdMap(const T& value = T()) : _value(value) {}
196
    /// \brief Constructs the map from an appropriate \c std::map, and 
378
    /// \brief Constructor with specified default value.
379
    SparseMap(const Value &value = Value()) : _value(value) {}
380
    /// \brief Constructs the map from an appropriate \c std::map, and
197 381
    /// explicitly specifies a default value.
198
    template <typename T1, typename Comp1>
199
    StdMap(const std::map<Key, T1, Comp1> &map, const T& value = T()) 
382
    template <typename V1, typename Comp1>
383
    SparseMap(const std::map<Key, V1, Comp1> &map,
384
              const Value &value = Value())
200 385
      : _map(map.begin(), map.end()), _value(value) {}
201
    
202
    /// \brief Constructs a map from an other \ref StdMap.
203
    template<typename T1, typename Comp1>
204
    StdMap(const StdMap<Key, T1, Comp1> &c) 
386

	
387
    /// \brief Constructs the map from another \ref SparseMap.
388
    template<typename V1, typename Comp1>
389
    SparseMap(const SparseMap<Key, V1, Comp1> &c)
205 390
      : _map(c._map.begin(), c._map.end()), _value(c._value) {}
206 391

	
207 392
  private:
208 393

	
209
    StdMap& operator=(const StdMap&);
394
    SparseMap& operator=(const SparseMap&);
210 395

	
211 396
  public:
212 397

	
... ...
@@ -219,7 +404,7 @@
219 404
	return _map.insert(it, std::make_pair(k, _value))->second;
220 405
    }
221 406

	
222
    /// \e 
407
    ///\e
223 408
    ConstReference operator[](const Key &k) const {
224 409
      typename Map::const_iterator it = _map.find(k);
225 410
      if (it != _map.end())
... ...
@@ -228,149 +413,48 @@
228 413
	return _value;
229 414
    }
230 415

	
231
    /// \e 
232
    void set(const Key &k, const T &t) {
416
    ///\e
417
    void set(const Key &k, const Value &v) {
233 418
      typename Map::iterator it = _map.lower_bound(k);
234 419
      if (it != _map.end() && !_map.key_comp()(k, it->first))
235
	it->second = t;
420
	it->second = v;
236 421
      else
237
	_map.insert(it, std::make_pair(k, t));
422
	_map.insert(it, std::make_pair(k, v));
238 423
    }
239 424

	
240
    /// \e
241
    void setAll(const T &t) {
242
      _value = t;
425
    ///\e
426
    void setAll(const Value &v) {
427
      _value = v;
243 428
      _map.clear();
244
    }    
429
    }
430
  };
245 431

	
246
  };
247
  
248
  ///Returns a \c StdMap class
432
  /// Returns a \ref SparseMap class
249 433

	
250
  ///This function just returns a \c StdMap class with specified 
251
  ///default value.
252
  ///\relates StdMap
253
  template<typename K, typename V, typename Compare> 
254
  inline StdMap<K, V, Compare> stdMap(const V& value = V()) {
255
    return StdMap<K, V, Compare>(value);
256
  }
257
  
258
  ///Returns a \c StdMap class
259

	
260
  ///This function just returns a \c StdMap class with specified 
261
  ///default value.
262
  ///\relates StdMap
263
  template<typename K, typename V> 
264
  inline StdMap<K, V, std::less<K> > stdMap(const V& value = V()) {
265
    return StdMap<K, V, std::less<K> >(value);
266
  }
267
  
268
  ///Returns a \c StdMap class created from an appropriate std::map
269

	
270
  ///This function just returns a \c StdMap class created from an 
271
  ///appropriate std::map.
272
  ///\relates StdMap
273
  template<typename K, typename V, typename Compare> 
274
  inline StdMap<K, V, Compare> stdMap( const std::map<K, V, Compare> &map, 
275
                                       const V& value = V() ) {
276
    return StdMap<K, V, Compare>(map, value);
434
  /// This function just returns a \ref SparseMap class with specified
435
  /// default value.
436
  /// \relates SparseMap
437
  template<typename K, typename V, typename Compare>
438
  inline SparseMap<K, V, Compare> sparseMap(const V& value = V()) {
439
    return SparseMap<K, V, Compare>(value);
277 440
  }
278 441

	
279
  ///Returns a \c StdMap class created from an appropriate std::map
280

	
281
  ///This function just returns a \c StdMap class created from an 
282
  ///appropriate std::map.
283
  ///\relates StdMap
284
  template<typename K, typename V> 
285
  inline StdMap<K, V, std::less<K> > stdMap( const std::map<K, V, std::less<K> > &map, 
286
                                             const V& value = V() ) {
287
    return StdMap<K, V, std::less<K> >(map, value);
442
  template<typename K, typename V>
443
  inline SparseMap<K, V, std::less<K> > sparseMap(const V& value = V()) {
444
    return SparseMap<K, V, std::less<K> >(value);
288 445
  }
289 446

	
290
  /// \brief Map for storing values for keys from the range <tt>[0..size-1]</tt>
291
  ///
292
  /// This map has the <tt>[0..size-1]</tt> keyset and the values
293
  /// are stored in a \c std::vector<T>  container. It can be used with
294
  /// some data structures, for example \c UnionFind, \c BinHeap, when 
295
  /// the used items are small integer numbers.
296
  /// This map meets the \ref concepts::ReferenceMap "ReferenceMap" concept.
297
  ///
298
  /// \todo Revise its name
299
  template <typename T>
300
  class IntegerMap : public MapBase<int, T> {
447
  /// \brief Returns a \ref SparseMap class created from an appropriate
448
  /// \c std::map
301 449

	
302
    template <typename T1>
303
    friend class IntegerMap;
304

	
305
  public:
306

	
307
    typedef MapBase<int, T> Parent;
308
    ///\e
309
    typedef typename Parent::Key Key;
310
    ///\e
311
    typedef typename Parent::Value Value;
312
    ///\e
313
    typedef T& Reference;
314
    ///\e
315
    typedef const T& ConstReference;
316

	
317
    typedef True ReferenceMapTag;
318

	
319
  private:
320
    
321
    typedef std::vector<T> Vector;
322
    Vector _vector;
323

	
324
  public:
325

	
326
    /// Constructor with specified default value
327
    IntegerMap(int size = 0, const T& value = T()) : _vector(size, value) {}
328

	
329
    /// \brief Constructs the map from an appropriate \c std::vector.
330
    template <typename T1>
331
    IntegerMap(const std::vector<T1>& vector) 
332
      : _vector(vector.begin(), vector.end()) {}
333
    
334
    /// \brief Constructs a map from an other \ref IntegerMap.
335
    template <typename T1>
336
    IntegerMap(const IntegerMap<T1> &c) 
337
      : _vector(c._vector.begin(), c._vector.end()) {}
338

	
339
    /// \brief Resize the container
340
    void resize(int size, const T& value = T()) {
341
      _vector.resize(size, value);
342
    }
343

	
344
  private:
345

	
346
    IntegerMap& operator=(const IntegerMap&);
347

	
348
  public:
349

	
350
    ///\e
351
    Reference operator[](Key k) {
352
      return _vector[k];
353
    }
354

	
355
    /// \e 
356
    ConstReference operator[](Key k) const {
357
      return _vector[k];
358
    }
359

	
360
    /// \e 
361
    void set(const Key &k, const T& t) {
362
      _vector[k] = t;
363
    }
364

	
365
  };
366
  
367
  ///Returns an \c IntegerMap class
368

	
369
  ///This function just returns an \c IntegerMap class.
370
  ///\relates IntegerMap
371
  template<typename T>
372
  inline IntegerMap<T> integerMap(int size = 0, const T& value = T()) {
373
    return IntegerMap<T>(size, value);
450
  /// This function just returns a \ref SparseMap class created from an
451
  /// appropriate \c std::map.
452
  /// \relates SparseMap
453
  template<typename K, typename V, typename Compare>
454
  inline SparseMap<K, V, Compare>
455
    sparseMap(const std::map<K, V, Compare> &map, const V& value = V())
456
  {
457
    return SparseMap<K, V, Compare>(map, value);
374 458
  }
375 459

	
376 460
  /// @}
... ...
@@ -378,886 +462,1008 @@
378 462
  /// \addtogroup map_adaptors
379 463
  /// @{
380 464

	
381
  /// \brief Identity map.
465
  /// Composition of two maps
466

	
467
  /// This \ref concepts::ReadMap "read only map" returns the
468
  /// composition of two given maps. That is to say, if \c m1 is of
469
  /// type \c M1 and \c m2 is of \c M2, then for
470
  /// \code
471
  ///   ComposeMap<M1, M2> cm(m1,m2);
472
  /// \endcode
473
  /// <tt>cm[x]</tt> will be equal to <tt>m1[m2[x]]</tt>.
382 474
  ///
383
  /// This map gives back the given key as value without any
384
  /// modification. 
385
  template <typename T>
386
  class IdentityMap : public MapBase<T, T> {
475
  /// The \c Key type of the map is inherited from \c M2 and the
476
  /// \c Value type is from \c M1.
477
  /// \c M2::Value must be convertible to \c M1::Key.
478
  ///
479
  /// The simplest way of using this map is through the composeMap()
480
  /// function.
481
  ///
482
  /// \sa CombineMap
483
  ///
484
  /// \todo Check the requirements.
485
  template <typename M1, typename M2>
486
  class ComposeMap : public MapBase<typename M2::Key, typename M1::Value> {
487
    const M1 &_m1;
488
    const M2 &_m2;
387 489
  public:
388
    typedef MapBase<T, T> Parent;
490
    typedef MapBase<typename M2::Key, typename M1::Value> Parent;
389 491
    typedef typename Parent::Key Key;
390 492
    typedef typename Parent::Value Value;
391 493

	
494
    /// Constructor
495
    ComposeMap(const M1 &m1, const M2 &m2) : _m1(m1), _m2(m2) {}
496

	
392 497
    /// \e
393
    const T& operator[](const T& t) const {
394
      return t;
395
    }
498
    typename MapTraits<M1>::ConstReturnValue
499
    operator[](const Key &k) const { return _m1[_m2[k]]; }
396 500
  };
397 501

	
398
  ///Returns an \c IdentityMap class
502
  /// Returns a \ref ComposeMap class
399 503

	
400
  ///This function just returns an \c IdentityMap class.
401
  ///\relates IdentityMap
402
  template<typename T>
403
  inline IdentityMap<T> identityMap() {
404
    return IdentityMap<T>();
504
  /// This function just returns a \ref ComposeMap class.
505
  ///
506
  /// If \c m1 and \c m2 are maps and the \c Value type of \c m2 is
507
  /// convertible to the \c Key of \c m1, then <tt>composeMap(m1,m2)[x]</tt>
508
  /// will be equal to <tt>m1[m2[x]]</tt>.
509
  ///
510
  /// \relates ComposeMap
511
  template <typename M1, typename M2>
512
  inline ComposeMap<M1, M2> composeMap(const M1 &m1, const M2 &m2) {
513
    return ComposeMap<M1, M2>(m1, m2);
405 514
  }
406
  
407 515

	
408
  ///\brief Convert the \c Value of a map to another type using
409
  ///the default conversion.
516

	
517
  /// Combination of two maps using an STL (binary) functor.
518

	
519
  /// This \ref concepts::ReadMap "read only map" takes two maps and a
520
  /// binary functor and returns the combination of the two given maps
521
  /// using the functor.
522
  /// That is to say, if \c m1 is of type \c M1 and \c m2 is of \c M2
523
  /// and \c f is of \c F, then for
524
  /// \code
525
  ///   CombineMap<M1,M2,F,V> cm(m1,m2,f);
526
  /// \endcode
527
  /// <tt>cm[x]</tt> will be equal to <tt>f(m1[x],m2[x])</tt>.
410 528
  ///
411
  ///This \ref concepts::ReadMap "read only map"
412
  ///converts the \c Value of a map to type \c T.
413
  ///Its \c Key is inherited from \c M.
414
  template <typename M, typename T> 
415
  class ConvertMap : public MapBase<typename M::Key, T> {
416
    const M& m;
529
  /// The \c Key type of the map is inherited from \c M1 (\c M1::Key
530
  /// must be convertible to \c M2::Key) and the \c Value type is \c V.
531
  /// \c M2::Value and \c M1::Value must be convertible to the
532
  /// corresponding input parameter of \c F and the return type of \c F
533
  /// must be convertible to \c V.
534
  ///
535
  /// The simplest way of using this map is through the combineMap()
536
  /// function.
537
  ///
538
  /// \sa ComposeMap
539
  ///
540
  /// \todo Check the requirements.
541
  template<typename M1, typename M2, typename F,
542
	   typename V = typename F::result_type>
543
  class CombineMap : public MapBase<typename M1::Key, V> {
544
    const M1 &_m1;
545
    const M2 &_m2;
546
    F _f;
417 547
  public:
418
    typedef MapBase<typename M::Key, T> Parent;
548
    typedef MapBase<typename M1::Key, V> Parent;
419 549
    typedef typename Parent::Key Key;
420 550
    typedef typename Parent::Value Value;
421 551

	
422
    ///Constructor
552
    /// Constructor
553
    CombineMap(const M1 &m1, const M2 &m2, const F &f = F())
554
      : _m1(m1), _m2(m2), _f(f) {}
555
    /// \e
556
    Value operator[](const Key &k) const { return _f(_m1[k],_m2[k]); }
557
  };
423 558

	
424
    ///Constructor.
425
    ///\param _m is the underlying map.
426
    ConvertMap(const M &_m) : m(_m) {};
559
  /// Returns a \ref CombineMap class
427 560

	
428
    ///\e
429
    Value operator[](const Key& k) const {return m[k];}
430
  };
431
  
432
  ///Returns a \c ConvertMap class
433

	
434
  ///This function just returns a \c ConvertMap class.
435
  ///\relates ConvertMap
436
  template<typename T, typename M>
437
  inline ConvertMap<M, T> convertMap(const M &m) {
438
    return ConvertMap<M, T>(m);
561
  /// This function just returns a \ref CombineMap class.
562
  ///
563
  /// For example, if \c m1 and \c m2 are both maps with \c double
564
  /// values, then
565
  /// \code
566
  ///   combineMap(m1,m2,std::plus<double>())
567
  /// \endcode
568
  /// is equivalent to
569
  /// \code
570
  ///   addMap(m1,m2)
571
  /// \endcode
572
  ///
573
  /// This function is specialized for adaptable binary function
574
  /// classes and C++ functions.
575
  ///
576
  /// \relates CombineMap
577
  template<typename M1, typename M2, typename F, typename V>
578
  inline CombineMap<M1, M2, F, V>
579
  combineMap(const M1 &m1, const M2 &m2, const F &f) {
580
    return CombineMap<M1, M2, F, V>(m1,m2,f);
439 581
  }
440 582

	
441
  ///Simple wrapping of a map
583
  template<typename M1, typename M2, typename F>
584
  inline CombineMap<M1, M2, F, typename F::result_type>
585
  combineMap(const M1 &m1, const M2 &m2, const F &f) {
586
    return combineMap<M1, M2, F, typename F::result_type>(m1,m2,f);
587
  }
442 588

	
443
  ///This \ref concepts::ReadMap "read only map" returns the simple
444
  ///wrapping of the given map. Sometimes the reference maps cannot be
445
  ///combined with simple read maps. This map adaptor wraps the given
446
  ///map to simple read map.
589
  template<typename M1, typename M2, typename K1, typename K2, typename V>
590
  inline CombineMap<M1, M2, V (*)(K1, K2), V>
591
  combineMap(const M1 &m1, const M2 &m2, V (*f)(K1, K2)) {
592
    return combineMap<M1, M2, V (*)(K1, K2), V>(m1,m2,f);
593
  }
594

	
595

	
596
  /// Converts an STL style (unary) functor to a map
597

	
598
  /// This \ref concepts::ReadMap "read only map" returns the value
599
  /// of a given functor. Actually, it just wraps the functor and
600
  /// provides the \c Key and \c Value typedefs.
447 601
  ///
448
  ///\sa SimpleWriteMap
602
  /// Template parameters \c K and \c V will become its \c Key and
603
  /// \c Value. In most cases they have to be given explicitly because
604
  /// a functor typically does not provide \c argument_type and
605
  /// \c result_type typedefs.
606
  /// Parameter \c F is the type of the used functor.
449 607
  ///
450
  /// \todo Revise the misleading name 
451
  template<typename M> 
452
  class SimpleMap : public MapBase<typename M::Key, typename M::Value> {
453
    const M& m;
608
  /// The simplest way of using this map is through the functorToMap()
609
  /// function.
610
  ///
611
  /// \sa MapToFunctor
612
  template<typename F,
613
	   typename K = typename F::argument_type,
614
	   typename V = typename F::result_type>
615
  class FunctorToMap : public MapBase<K, V> {
616
    const F &_f;
617
  public:
618
    typedef MapBase<K, V> Parent;
619
    typedef typename Parent::Key Key;
620
    typedef typename Parent::Value Value;
454 621

	
622
    /// Constructor
623
    FunctorToMap(const F &f = F()) : _f(f) {}
624
    /// \e
625
    Value operator[](const Key &k) const { return _f(k); }
626
  };
627

	
628
  /// Returns a \ref FunctorToMap class
629

	
630
  /// This function just returns a \ref FunctorToMap class.
631
  ///
632
  /// This function is specialized for adaptable binary function
633
  /// classes and C++ functions.
634
  ///
635
  /// \relates FunctorToMap
636
  template<typename K, typename V, typename F>
637
  inline FunctorToMap<F, K, V> functorToMap(const F &f) {
638
    return FunctorToMap<F, K, V>(f);
639
  }
640

	
641
  template <typename F>
642
  inline FunctorToMap<F, typename F::argument_type, typename F::result_type>
643
    functorToMap(const F &f)
644
  {
645
    return FunctorToMap<F, typename F::argument_type,
646
      typename F::result_type>(f);
647
  }
648

	
649
  template <typename K, typename V>
650
  inline FunctorToMap<V (*)(K), K, V> functorToMap(V (*f)(K)) {
651
    return FunctorToMap<V (*)(K), K, V>(f);
652
  }
653

	
654

	
655
  /// Converts a map to an STL style (unary) functor
656

	
657
  /// This class converts a map to an STL style (unary) functor.
658
  /// That is it provides an <tt>operator()</tt> to read its values.
659
  ///
660
  /// For the sake of convenience it also works as a usual
661
  /// \ref concepts::ReadMap "readable map", i.e. <tt>operator[]</tt>
662
  /// and the \c Key and \c Value typedefs also exist.
663
  ///
664
  /// The simplest way of using this map is through the mapToFunctor()
665
  /// function.
666
  ///
667
  ///\sa FunctorToMap
668
  template <typename M>
669
  class MapToFunctor : public MapBase<typename M::Key, typename M::Value> {
670
    const M &_m;
455 671
  public:
456 672
    typedef MapBase<typename M::Key, typename M::Value> Parent;
457 673
    typedef typename Parent::Key Key;
458 674
    typedef typename Parent::Value Value;
459 675

	
460
    ///Constructor
461
    SimpleMap(const M &_m) : m(_m) {};
462
    ///\e
463
    Value operator[](Key k) const {return m[k];}
676
    typedef typename Parent::Key argument_type;
677
    typedef typename Parent::Value result_type;
678

	
679
    /// Constructor
680
    MapToFunctor(const M &m) : _m(m) {}
681
    /// \e
682
    Value operator()(const Key &k) const { return _m[k]; }
683
    /// \e
684
    Value operator[](const Key &k) const { return _m[k]; }
464 685
  };
465
  
466
  ///Returns a \c SimpleMap class
467 686

	
468
  ///This function just returns a \c SimpleMap class.
469
  ///\relates SimpleMap
687
  /// Returns a \ref MapToFunctor class
688

	
689
  /// This function just returns a \ref MapToFunctor class.
690
  /// \relates MapToFunctor
470 691
  template<typename M>
471
  inline SimpleMap<M> simpleMap(const M &m) {
472
    return SimpleMap<M>(m);
692
  inline MapToFunctor<M> mapToFunctor(const M &m) {
693
    return MapToFunctor<M>(m);
473 694
  }
474 695

	
475
  ///Simple writable wrapping of a map
476 696

	
477
  ///This \ref concepts::ReadWriteMap "read-write map" returns the simple
478
  ///wrapping of the given map. Sometimes the reference maps cannot be
479
  ///combined with simple read-write maps. This map adaptor wraps the
480
  ///given map to simple read-write map.
697
  /// \brief Map adaptor to convert the \c Value type of a map to
698
  /// another type using the default conversion.
699

	
700
  /// Map adaptor to convert the \c Value type of a \ref concepts::ReadMap
701
  /// "readable map" to another type using the default conversion.
702
  /// The \c Key type of it is inherited from \c M and the \c Value
703
  /// type is \c V.
704
  /// This type conforms the \ref concepts::ReadMap "ReadMap" concept.
481 705
  ///
482
  ///\sa SimpleMap
706
  /// The simplest way of using this map is through the convertMap()
707
  /// function.
708
  template <typename M, typename V>
709
  class ConvertMap : public MapBase<typename M::Key, V> {
710
    const M &_m;
711
  public:
712
    typedef MapBase<typename M::Key, V> Parent;
713
    typedef typename Parent::Key Key;
714
    typedef typename Parent::Value Value;
715

	
716
    /// Constructor
717

	
718
    /// Constructor.
719
    /// \param m The underlying map.
720
    ConvertMap(const M &m) : _m(m) {}
721

	
722
    /// \e
723
    Value operator[](const Key &k) const { return _m[k]; }
724
  };
725

	
726
  /// Returns a \ref ConvertMap class
727

	
728
  /// This function just returns a \ref ConvertMap class.
729
  /// \relates ConvertMap
730
  template<typename V, typename M>
731
  inline ConvertMap<M, V> convertMap(const M &map) {
732
    return ConvertMap<M, V>(map);
733
  }
734

	
735

	
736
  /// Applies all map setting operations to two maps
737

	
738
  /// This map has two \ref concepts::WriteMap "writable map" parameters
739
  /// and each write request will be passed to both of them.
740
  /// If \c M1 is also \ref concepts::ReadMap "readable", then the read
741
  /// operations will return the corresponding values of \c M1.
483 742
  ///
484
  /// \todo Revise the misleading name
485
  template<typename M> 
486
  class SimpleWriteMap : public MapBase<typename M::Key, typename M::Value> {
487
    M& m;
743
  /// The \c Key and \c Value types are inherited from \c M1.
744
  /// The \c Key and \c Value of \c M2 must be convertible from those
745
  /// of \c M1.
746
  ///
747
  /// The simplest way of using this map is through the forkMap()
748
  /// function.
749
  template<typename  M1, typename M2>
750
  class ForkMap : public MapBase<typename M1::Key, typename M1::Value> {
751
    M1 &_m1;
752
    M2 &_m2;
753
  public:
754
    typedef MapBase<typename M1::Key, typename M1::Value> Parent;
755
    typedef typename Parent::Key Key;
756
    typedef typename Parent::Value Value;
488 757

	
758
    /// Constructor
759
    ForkMap(M1 &m1, M2 &m2) : _m1(m1), _m2(m2) {}
760
    /// Returns the value associated with the given key in the first map.
761
    Value operator[](const Key &k) const { return _m1[k]; }
762
    /// Sets the value associated with the given key in both maps.
763
    void set(const Key &k, const Value &v) { _m1.set(k,v); _m2.set(k,v); }
764
  };
765

	
766
  /// Returns a \ref ForkMap class
767

	
768
  /// This function just returns a \ref ForkMap class.
769
  /// \relates ForkMap
770
  template <typename M1, typename M2>
771
  inline ForkMap<M1,M2> forkMap(M1 &m1, M2 &m2) {
772
    return ForkMap<M1,M2>(m1,m2);
773
  }
774

	
775

	
776
  /// Simple wrapping of a map
777

	
778
  /// This \ref concepts::ReadMap "read only map" returns the simple
779
  /// wrapping of the given map. Sometimes the reference maps cannot be
780
  /// combined with simple read maps. This map adaptor wraps the given
781
  /// map to simple read map.
782
  ///
783
  /// The simplest way of using this map is through the wrapMap()
784
  /// function.
785
  ///
786
  /// \sa WrapWriteMap
787
  template<typename M>
788
  class WrapMap : public MapBase<typename M::Key, typename M::Value> {
789
    const M &_m;
489 790
  public:
490 791
    typedef MapBase<typename M::Key, typename M::Value> Parent;
491 792
    typedef typename Parent::Key Key;
492 793
    typedef typename Parent::Value Value;
493 794

	
494
    ///Constructor
495
    SimpleWriteMap(M &_m) : m(_m) {};
496
    ///\e
497
    Value operator[](Key k) const {return m[k];}
498
    ///\e
499
    void set(Key k, const Value& c) { m.set(k, c); }
795
    /// Constructor
796
    WrapMap(const M &m) : _m(m) {}
797
    /// \e
798
    Value operator[](const Key &k) const { return _m[k]; }
500 799
  };
501 800

	
502
  ///Returns a \c SimpleWriteMap class
801
  /// Returns a \ref WrapMap class
503 802

	
504
  ///This function just returns a \c SimpleWriteMap class.
505
  ///\relates SimpleWriteMap
803
  /// This function just returns a \ref WrapMap class.
804
  /// \relates WrapMap
506 805
  template<typename M>
507
  inline SimpleWriteMap<M> simpleWriteMap(M &m) {
508
    return SimpleWriteMap<M>(m);
806
  inline WrapMap<M> wrapMap(const M &map) {
807
    return WrapMap<M>(map);
509 808
  }
510 809

	
511
  ///Sum of two maps
512 810

	
513
  ///This \ref concepts::ReadMap "read only map" returns the sum of the two
514
  ///given maps.
515
  ///Its \c Key and \c Value are inherited from \c M1.
516
  ///The \c Key and \c Value of \c M2 must be convertible to those of \c M1.
517
  template<typename M1, typename M2> 
811
  /// Simple writable wrapping of a map
812

	
813
  /// This \ref concepts::ReadWriteMap "read-write map" returns the simple
814
  /// wrapping of the given map. Sometimes the reference maps cannot be
815
  /// combined with simple read-write maps. This map adaptor wraps the
816
  /// given map to simple read-write map.
817
  ///
818
  /// The simplest way of using this map is through the wrapWriteMap()
819
  /// function.
820
  ///
821
  /// \sa WrapMap
822
  template<typename M>
823
  class WrapWriteMap : public MapBase<typename M::Key, typename M::Value> {
824
    M &_m;
825
  public:
826
    typedef MapBase<typename M::Key, typename M::Value> Parent;
827
    typedef typename Parent::Key Key;
828
    typedef typename Parent::Value Value;
829

	
830
    /// Constructor
831
    WrapWriteMap(M &m) : _m(m) {}
832
    /// \e
833
    Value operator[](const Key &k) const { return _m[k]; }
834
    /// \e
835
    void set(const Key &k, const Value &c) { _m.set(k, c); }
836
  };
837

	
838
  ///Returns a \ref WrapWriteMap class
839

	
840
  ///This function just returns a \ref WrapWriteMap class.
841
  ///\relates WrapWriteMap
842
  template<typename M>
843
  inline WrapWriteMap<M> wrapWriteMap(M &map) {
844
    return WrapWriteMap<M>(map);
845
  }
846

	
847

	
848
  /// Sum of two maps
849

	
850
  /// This \ref concepts::ReadMap "read only map" returns the sum
851
  /// of the values of the two given maps.
852
  /// Its \c Key and \c Value types are inherited from \c M1.
853
  /// The \c Key and \c Value of \c M2 must be convertible to those of
854
  /// \c M1.
855
  ///
856
  /// If \c m1 is of type \c M1 and \c m2 is of \c M2, then for
857
  /// \code
858
  ///   AddMap<M1,M2> am(m1,m2);
859
  /// \endcode
860
  /// <tt>am[x]</tt> will be equal to <tt>m1[x]+m2[x]</tt>.
861
  ///
862
  /// The simplest way of using this map is through the addMap()
863
  /// function.
864
  ///
865
  /// \sa SubMap, MulMap, DivMap
866
  /// \sa ShiftMap, ShiftWriteMap
867
  template<typename M1, typename M2>
518 868
  class AddMap : public MapBase<typename M1::Key, typename M1::Value> {
519
    const M1& m1;
520
    const M2& m2;
521

	
869
    const M1 &_m1;
870
    const M2 &_m2;
522 871
  public:
523 872
    typedef MapBase<typename M1::Key, typename M1::Value> Parent;
524 873
    typedef typename Parent::Key Key;
525 874
    typedef typename Parent::Value Value;
526 875

	
527
    ///Constructor
528
    AddMap(const M1 &_m1,const M2 &_m2) : m1(_m1), m2(_m2) {};
529
    ///\e
530
    Value operator[](Key k) const {return m1[k]+m2[k];}
876
    /// Constructor
877
    AddMap(const M1 &m1, const M2 &m2) : _m1(m1), _m2(m2) {}
878
    /// \e
879
    Value operator[](const Key &k) const { return _m1[k]+_m2[k]; }
531 880
  };
532
  
533
  ///Returns an \c AddMap class
534 881

	
535
  ///This function just returns an \c AddMap class.
536
  ///\todo Extend the documentation: how to call these type of functions?
882
  /// Returns an \ref AddMap class
883

	
884
  /// This function just returns an \ref AddMap class.
537 885
  ///
538
  ///\relates AddMap
539
  template<typename M1, typename M2> 
540
  inline AddMap<M1, M2> addMap(const M1 &m1,const M2 &m2) {
886
  /// For example, if \c m1 and \c m2 are both maps with \c double
887
  /// values, then <tt>addMap(m1,m2)[x]</tt> will be equal to
888
  /// <tt>m1[x]+m2[x]</tt>.
889
  ///
890
  /// \relates AddMap
891
  template<typename M1, typename M2>
892
  inline AddMap<M1, M2> addMap(const M1 &m1, const M2 &m2) {
541 893
    return AddMap<M1, M2>(m1,m2);
542 894
  }
543 895

	
544
  ///Shift a map with a constant.
545 896

	
546
  ///This \ref concepts::ReadMap "read only map" returns the sum of the
547
  ///given map and a constant value.
548
  ///Its \c Key and \c Value are inherited from \c M.
897
  /// Difference of two maps
898

	
899
  /// This \ref concepts::ReadMap "read only map" returns the difference
900
  /// of the values of the two given maps.
901
  /// Its \c Key and \c Value types are inherited from \c M1.
902
  /// The \c Key and \c Value of \c M2 must be convertible to those of
903
  /// \c M1.
549 904
  ///
550
  ///Actually,
551
  ///\code
552
  ///  ShiftMap<X> sh(x,v);
553
  ///\endcode
554
  ///is equivalent to
555
  ///\code
556
  ///  ConstMap<X::Key, X::Value> c_tmp(v);
557
  ///  AddMap<X, ConstMap<X::Key, X::Value> > sh(x,v);
558
  ///\endcode
905
  /// If \c m1 is of type \c M1 and \c m2 is of \c M2, then for
906
  /// \code
907
  ///   SubMap<M1,M2> sm(m1,m2);
908
  /// \endcode
909
  /// <tt>sm[x]</tt> will be equal to <tt>m1[x]-m2[x]</tt>.
559 910
  ///
560
  ///\sa ShiftWriteMap
561
  template<typename M, typename C = typename M::Value> 
911
  /// The simplest way of using this map is through the subMap()
912
  /// function.
913
  ///
914
  /// \sa AddMap, MulMap, DivMap
915
  template<typename M1, typename M2>
916
  class SubMap : public MapBase<typename M1::Key, typename M1::Value> {
917
    const M1 &_m1;
918
    const M2 &_m2;
919
  public:
920
    typedef MapBase<typename M1::Key, typename M1::Value> Parent;
921
    typedef typename Parent::Key Key;
922
    typedef typename Parent::Value Value;
923

	
924
    /// Constructor
925
    SubMap(const M1 &m1, const M2 &m2) : _m1(m1), _m2(m2) {}
926
    /// \e
927
    Value operator[](const Key &k) const { return _m1[k]-_m2[k]; }
928
  };
929

	
930
  /// Returns a \ref SubMap class
931

	
932
  /// This function just returns a \ref SubMap class.
933
  ///
934
  /// For example, if \c m1 and \c m2 are both maps with \c double
935
  /// values, then <tt>subMap(m1,m2)[x]</tt> will be equal to
936
  /// <tt>m1[x]-m2[x]</tt>.
937
  ///
938
  /// \relates SubMap
939
  template<typename M1, typename M2>
940
  inline SubMap<M1, M2> subMap(const M1 &m1, const M2 &m2) {
941
    return SubMap<M1, M2>(m1,m2);
942
  }
943

	
944

	
945
  /// Product of two maps
946

	
947
  /// This \ref concepts::ReadMap "read only map" returns the product
948
  /// of the values of the two given maps.
949
  /// Its \c Key and \c Value types are inherited from \c M1.
950
  /// The \c Key and \c Value of \c M2 must be convertible to those of
951
  /// \c M1.
952
  ///
953
  /// If \c m1 is of type \c M1 and \c m2 is of \c M2, then for
954
  /// \code
955
  ///   MulMap<M1,M2> mm(m1,m2);
956
  /// \endcode
957
  /// <tt>mm[x]</tt> will be equal to <tt>m1[x]*m2[x]</tt>.
958
  ///
959
  /// The simplest way of using this map is through the mulMap()
960
  /// function.
961
  ///
962
  /// \sa AddMap, SubMap, DivMap
963
  /// \sa ScaleMap, ScaleWriteMap
964
  template<typename M1, typename M2>
965
  class MulMap : public MapBase<typename M1::Key, typename M1::Value> {
966
    const M1 &_m1;
967
    const M2 &_m2;
968
  public:
969
    typedef MapBase<typename M1::Key, typename M1::Value> Parent;
970
    typedef typename Parent::Key Key;
971
    typedef typename Parent::Value Value;
972

	
973
    /// Constructor
974
    MulMap(const M1 &m1,const M2 &m2) : _m1(m1), _m2(m2) {}
975
    /// \e
976
    Value operator[](const Key &k) const { return _m1[k]*_m2[k]; }
977
  };
978

	
979
  /// Returns a \ref MulMap class
980

	
981
  /// This function just returns a \ref MulMap class.
982
  ///
983
  /// For example, if \c m1 and \c m2 are both maps with \c double
984
  /// values, then <tt>mulMap(m1,m2)[x]</tt> will be equal to
985
  /// <tt>m1[x]*m2[x]</tt>.
986
  ///
987
  /// \relates MulMap
988
  template<typename M1, typename M2>
989
  inline MulMap<M1, M2> mulMap(const M1 &m1,const M2 &m2) {
990
    return MulMap<M1, M2>(m1,m2);
991
  }
992

	
993

	
994
  /// Quotient of two maps
995

	
996
  /// This \ref concepts::ReadMap "read only map" returns the quotient
997
  /// of the values of the two given maps.
998
  /// Its \c Key and \c Value types are inherited from \c M1.
999
  /// The \c Key and \c Value of \c M2 must be convertible to those of
1000
  /// \c M1.
1001
  ///
1002
  /// If \c m1 is of type \c M1 and \c m2 is of \c M2, then for
1003
  /// \code
1004
  ///   DivMap<M1,M2> dm(m1,m2);
1005
  /// \endcode
1006
  /// <tt>dm[x]</tt> will be equal to <tt>m1[x]/m2[x]</tt>.
1007
  ///
1008
  /// The simplest way of using this map is through the divMap()
1009
  /// function.
1010
  ///
1011
  /// \sa AddMap, SubMap, MulMap
1012
  template<typename M1, typename M2>
1013
  class DivMap : public MapBase<typename M1::Key, typename M1::Value> {
1014
    const M1 &_m1;
1015
    const M2 &_m2;
1016
  public:
1017
    typedef MapBase<typename M1::Key, typename M1::Value> Parent;
1018
    typedef typename Parent::Key Key;
1019
    typedef typename Parent::Value Value;
1020

	
1021
    /// Constructor
1022
    DivMap(const M1 &m1,const M2 &m2) : _m1(m1), _m2(m2) {}
1023
    /// \e
1024
    Value operator[](const Key &k) const { return _m1[k]/_m2[k]; }
1025
  };
1026

	
1027
  /// Returns a \ref DivMap class
1028

	
1029
  /// This function just returns a \ref DivMap class.
1030
  ///
1031
  /// For example, if \c m1 and \c m2 are both maps with \c double
1032
  /// values, then <tt>divMap(m1,m2)[x]</tt> will be equal to
1033
  /// <tt>m1[x]/m2[x]</tt>.
1034
  ///
1035
  /// \relates DivMap
1036
  template<typename M1, typename M2>
1037
  inline DivMap<M1, M2> divMap(const M1 &m1,const M2 &m2) {
1038
    return DivMap<M1, M2>(m1,m2);
1039
  }
1040

	
1041

	
1042
  /// Shifts a map with a constant.
1043

	
1044
  /// This \ref concepts::ReadMap "read only map" returns the sum of
1045
  /// the given map and a constant value (i.e. it shifts the map with
1046
  /// the constant). Its \c Key and \c Value are inherited from \c M.
1047
  ///
1048
  /// Actually,
1049
  /// \code
1050
  ///   ShiftMap<M> sh(m,v);
1051
  /// \endcode
1052
  /// is equivalent to
1053
  /// \code
1054
  ///   ConstMap<M::Key, M::Value> cm(v);
1055
  ///   AddMap<M, ConstMap<M::Key, M::Value> > sh(m,cm);
1056
  /// \endcode
1057
  ///
1058
  /// The simplest way of using this map is through the shiftMap()
1059
  /// function.
1060
  ///
1061
  /// \sa ShiftWriteMap
1062
  template<typename M, typename C = typename M::Value>
562 1063
  class ShiftMap : public MapBase<typename M::Key, typename M::Value> {
563
    const M& m;
564
    C v;
1064
    const M &_m;
1065
    C _v;
565 1066
  public:
566 1067
    typedef MapBase<typename M::Key, typename M::Value> Parent;
567 1068
    typedef typename Parent::Key Key;
568 1069
    typedef typename Parent::Value Value;
569 1070

	
570
    ///Constructor
1071
    /// Constructor
571 1072

	
572
    ///Constructor.
573
    ///\param _m is the undelying map.
574
    ///\param _v is the shift value.
575
    ShiftMap(const M &_m, const C &_v ) : m(_m), v(_v) {};
576
    ///\e
577
    Value operator[](Key k) const {return m[k] + v;}
1073
    /// Constructor.
1074
    /// \param m The undelying map.
1075
    /// \param v The constant value.
1076
    ShiftMap(const M &m, const C &v) : _m(m), _v(v) {}
1077
    /// \e
1078
    Value operator[](const Key &k) const { return _m[k]+_v; }
578 1079
  };
579 1080

	
580
  ///Shift a map with a constant (ReadWrite version).
1081
  /// Shifts a map with a constant (read-write version).
581 1082

	
582
  ///This \ref concepts::ReadWriteMap "read-write map" returns the sum of the
583
  ///given map and a constant value. It makes also possible to write the map.
584
  ///Its \c Key and \c Value are inherited from \c M.
1083
  /// This \ref concepts::ReadWriteMap "read-write map" returns the sum
1084
  /// of the given map and a constant value (i.e. it shifts the map with
1085
  /// the constant). Its \c Key and \c Value are inherited from \c M.
1086
  /// It makes also possible to write the map.
585 1087
  ///
586
  ///\sa ShiftMap
587
  template<typename M, typename C = typename M::Value> 
1088
  /// The simplest way of using this map is through the shiftWriteMap()
1089
  /// function.
1090
  ///
1091
  /// \sa ShiftMap
1092
  template<typename M, typename C = typename M::Value>
588 1093
  class ShiftWriteMap : public MapBase<typename M::Key, typename M::Value> {
589
    M& m;
590
    C v;
1094
    M &_m;
1095
    C _v;
591 1096
  public:
592 1097
    typedef MapBase<typename M::Key, typename M::Value> Parent;
593 1098
    typedef typename Parent::Key Key;
594 1099
    typedef typename Parent::Value Value;
595 1100

	
596
    ///Constructor
1101
    /// Constructor
597 1102

	
598
    ///Constructor.
599
    ///\param _m is the undelying map.
600
    ///\param _v is the shift value.
601
    ShiftWriteMap(M &_m, const C &_v ) : m(_m), v(_v) {};
1103
    /// Constructor.
1104
    /// \param m The undelying map.
1105
    /// \param v The constant value.
1106
    ShiftWriteMap(M &m, const C &v) : _m(m), _v(v) {}
602 1107
    /// \e
603
    Value operator[](Key k) const {return m[k] + v;}
1108
    Value operator[](const Key &k) const { return _m[k]+_v; }
604 1109
    /// \e
605
    void set(Key k, const Value& c) { m.set(k, c - v); }
1110
    void set(const Key &k, const Value &v) { _m.set(k, v-_v); }
606 1111
  };
607
  
608
  ///Returns a \c ShiftMap class
609 1112

	
610
  ///This function just returns a \c ShiftMap class.
611
  ///\relates ShiftMap
612
  template<typename M, typename C> 
613
  inline ShiftMap<M, C> shiftMap(const M &m,const C &v) {
1113
  /// Returns a \ref ShiftMap class
1114

	
1115
  /// This function just returns a \ref ShiftMap class.
1116
  ///
1117
  /// For example, if \c m is a map with \c double values and \c v is
1118
  /// \c double, then <tt>shiftMap(m,v)[x]</tt> will be equal to
1119
  /// <tt>m[x]+v</tt>.
1120
  ///
1121
  /// \relates ShiftMap
1122
  template<typename M, typename C>
1123
  inline ShiftMap<M, C> shiftMap(const M &m, const C &v) {
614 1124
    return ShiftMap<M, C>(m,v);
615 1125
  }
616 1126

	
617
  ///Returns a \c ShiftWriteMap class
1127
  /// Returns a \ref ShiftWriteMap class
618 1128

	
619
  ///This function just returns a \c ShiftWriteMap class.
620
  ///\relates ShiftWriteMap
621
  template<typename M, typename C> 
622
  inline ShiftWriteMap<M, C> shiftMap(M &m,const C &v) {
1129
  /// This function just returns a \ref ShiftWriteMap class.
1130
  ///
1131
  /// For example, if \c m is a map with \c double values and \c v is
1132
  /// \c double, then <tt>shiftWriteMap(m,v)[x]</tt> will be equal to
1133
  /// <tt>m[x]+v</tt>.
1134
  /// Moreover it makes also possible to write the map.
1135
  ///
1136
  /// \relates ShiftWriteMap
1137
  template<typename M, typename C>
1138
  inline ShiftWriteMap<M, C> shiftWriteMap(M &m, const C &v) {
623 1139
    return ShiftWriteMap<M, C>(m,v);
624 1140
  }
625 1141

	
626
  ///Difference of two maps
627 1142

	
628
  ///This \ref concepts::ReadMap "read only map" returns the difference
629
  ///of the values of the two given maps.
630
  ///Its \c Key and \c Value are inherited from \c M1.
631
  ///The \c Key and \c Value of \c M2 must be convertible to those of \c M1.
1143
  /// Scales a map with a constant.
1144

	
1145
  /// This \ref concepts::ReadMap "read only map" returns the value of
1146
  /// the given map multiplied from the left side with a constant value.
1147
  /// Its \c Key and \c Value are inherited from \c M.
632 1148
  ///
633
  /// \todo Revise the misleading name
634
  template<typename M1, typename M2> 
635
  class SubMap : public MapBase<typename M1::Key, typename M1::Value> {
636
    const M1& m1;
637
    const M2& m2;
638
  public:
639
    typedef MapBase<typename M1::Key, typename M1::Value> Parent;
640
    typedef typename Parent::Key Key;
641
    typedef typename Parent::Value Value;
642

	
643
    ///Constructor
644
    SubMap(const M1 &_m1,const M2 &_m2) : m1(_m1), m2(_m2) {};
645
    /// \e
646
    Value operator[](Key k) const {return m1[k]-m2[k];}
647
  };
648
  
649
  ///Returns a \c SubMap class
650

	
651
  ///This function just returns a \c SubMap class.
1149
  /// Actually,
1150
  /// \code
1151
  ///   ScaleMap<M> sc(m,v);
1152
  /// \endcode
1153
  /// is equivalent to
1154
  /// \code
1155
  ///   ConstMap<M::Key, M::Value> cm(v);
1156
  ///   MulMap<ConstMap<M::Key, M::Value>, M> sc(cm,m);
1157
  /// \endcode
652 1158
  ///
653
  ///\relates SubMap
654
  template<typename M1, typename M2> 
655
  inline SubMap<M1, M2> subMap(const M1 &m1, const M2 &m2) {
656
    return SubMap<M1, M2>(m1, m2);
657
  }
658

	
659
  ///Product of two maps
660

	
661
  ///This \ref concepts::ReadMap "read only map" returns the product of the
662
  ///values of the two given maps.
663
  ///Its \c Key and \c Value are inherited from \c M1.
664
  ///The \c Key and \c Value of \c M2 must be convertible to those of \c M1.
665
  template<typename M1, typename M2> 
666
  class MulMap : public MapBase<typename M1::Key, typename M1::Value> {
667
    const M1& m1;
668
    const M2& m2;
669
  public:
670
    typedef MapBase<typename M1::Key, typename M1::Value> Parent;
671
    typedef typename Parent::Key Key;
672
    typedef typename Parent::Value Value;
673

	
674
    ///Constructor
675
    MulMap(const M1 &_m1,const M2 &_m2) : m1(_m1), m2(_m2) {};
676
    /// \e
677
    Value operator[](Key k) const {return m1[k]*m2[k];}
678
  };
679
  
680
  ///Returns a \c MulMap class
681

	
682
  ///This function just returns a \c MulMap class.
683
  ///\relates MulMap
684
  template<typename M1, typename M2> 
685
  inline MulMap<M1, M2> mulMap(const M1 &m1,const M2 &m2) {
686
    return MulMap<M1, M2>(m1,m2);
687
  }
688
 
689
  ///Scales a map with a constant.
690

	
691
  ///This \ref concepts::ReadMap "read only map" returns the value of the
692
  ///given map multiplied from the left side with a constant value.
693
  ///Its \c Key and \c Value are inherited from \c M.
1159
  /// The simplest way of using this map is through the scaleMap()
1160
  /// function.
694 1161
  ///
695
  ///Actually,
696
  ///\code
697
  ///  ScaleMap<X> sc(x,v);
698
  ///\endcode
699
  ///is equivalent to
700
  ///\code
701
  ///  ConstMap<X::Key, X::Value> c_tmp(v);
702
  ///  MulMap<X, ConstMap<X::Key, X::Value> > sc(x,v);
703
  ///\endcode
704
  ///
705
  ///\sa ScaleWriteMap
706
  template<typename M, typename C = typename M::Value> 
1162
  /// \sa ScaleWriteMap
1163
  template<typename M, typename C = typename M::Value>
707 1164
  class ScaleMap : public MapBase<typename M::Key, typename M::Value> {
708
    const M& m;
709
    C v;
1165
    const M &_m;
1166
    C _v;
710 1167
  public:
711 1168
    typedef MapBase<typename M::Key, typename M::Value> Parent;
712 1169
    typedef typename Parent::Key Key;
713 1170
    typedef typename Parent::Value Value;
714 1171

	
715
    ///Constructor
1172
    /// Constructor
716 1173

	
717
    ///Constructor.
718
    ///\param _m is the undelying map.
719
    ///\param _v is the scaling value.
720
    ScaleMap(const M &_m, const C &_v ) : m(_m), v(_v) {};
1174
    /// Constructor.
1175
    /// \param m The undelying map.
1176
    /// \param v The constant value.
1177
    ScaleMap(const M &m, const C &v) : _m(m), _v(v) {}
721 1178
    /// \e
722
    Value operator[](Key k) const {return v * m[k];}
1179
    Value operator[](const Key &k) const { return _v*_m[k]; }
723 1180
  };
724 1181

	
725
  ///Scales a map with a constant (ReadWrite version).
1182
  /// Scales a map with a constant (read-write version).
726 1183

	
727
  ///This \ref concepts::ReadWriteMap "read-write map" returns the value of the
728
  ///given map multiplied from the left side with a constant value. It can
729
  ///also be used as write map if the \c / operator is defined between
730
  ///\c Value and \c C and the given multiplier is not zero.
731
  ///Its \c Key and \c Value are inherited from \c M.
1184
  /// This \ref concepts::ReadWriteMap "read-write map" returns the value of
1185
  /// the given map multiplied from the left side with a constant value.
1186
  /// Its \c Key and \c Value are inherited from \c M.
1187
  /// It can also be used as write map if the \c / operator is defined
1188
  /// between \c Value and \c C and the given multiplier is not zero.
732 1189
  ///
733
  ///\sa ScaleMap
734
  template<typename M, typename C = typename M::Value> 
1190
  /// The simplest way of using this map is through the scaleWriteMap()
1191
  /// function.
1192
  ///
1193
  /// \sa ScaleMap
1194
  template<typename M, typename C = typename M::Value>
735 1195
  class ScaleWriteMap : public MapBase<typename M::Key, typename M::Value> {
736
    M& m;
737
    C v;
1196
    M &_m;
1197
    C _v;
738 1198
  public:
739 1199
    typedef MapBase<typename M::Key, typename M::Value> Parent;
740 1200
    typedef typename Parent::Key Key;
741 1201
    typedef typename Parent::Value Value;
742 1202

	
743
    ///Constructor
1203
    /// Constructor
744 1204

	
745
    ///Constructor.
746
    ///\param _m is the undelying map.
747
    ///\param _v is the scaling value.
748
    ScaleWriteMap(M &_m, const C &_v ) : m(_m), v(_v) {};
1205
    /// Constructor.
1206
    /// \param m The undelying map.
1207
    /// \param v The constant value.
1208
    ScaleWriteMap(M &m, const C &v) : _m(m), _v(v) {}
749 1209
    /// \e
750
    Value operator[](Key k) const {return v * m[k];}
1210
    Value operator[](const Key &k) const { return _v*_m[k]; }
751 1211
    /// \e
752
    void set(Key k, const Value& c) { m.set(k, c / v);}
1212
    void set(const Key &k, const Value &v) { _m.set(k, v/_v); }
753 1213
  };
754
  
755
  ///Returns a \c ScaleMap class
756 1214

	
757
  ///This function just returns a \c ScaleMap class.
758
  ///\relates ScaleMap
759
  template<typename M, typename C> 
760
  inline ScaleMap<M, C> scaleMap(const M &m,const C &v) {
1215
  /// Returns a \ref ScaleMap class
1216

	
1217
  /// This function just returns a \ref ScaleMap class.
1218
  ///
1219
  /// For example, if \c m is a map with \c double values and \c v is
1220
  /// \c double, then <tt>scaleMap(m,v)[x]</tt> will be equal to
1221
  /// <tt>v*m[x]</tt>.
1222
  ///
1223
  /// \relates ScaleMap
1224
  template<typename M, typename C>
1225
  inline ScaleMap<M, C> scaleMap(const M &m, const C &v) {
761 1226
    return ScaleMap<M, C>(m,v);
762 1227
  }
763 1228

	
764
  ///Returns a \c ScaleWriteMap class
1229
  /// Returns a \ref ScaleWriteMap class
765 1230

	
766
  ///This function just returns a \c ScaleWriteMap class.
767
  ///\relates ScaleWriteMap
768
  template<typename M, typename C> 
769
  inline ScaleWriteMap<M, C> scaleMap(M &m,const C &v) {
1231
  /// This function just returns a \ref ScaleWriteMap class.
1232
  ///
1233
  /// For example, if \c m is a map with \c double values and \c v is
1234
  /// \c double, then <tt>scaleWriteMap(m,v)[x]</tt> will be equal to
1235
  /// <tt>v*m[x]</tt>.
1236
  /// Moreover it makes also possible to write the map.
1237
  ///
1238
  /// \relates ScaleWriteMap
1239
  template<typename M, typename C>
1240
  inline ScaleWriteMap<M, C> scaleWriteMap(M &m, const C &v) {
770 1241
    return ScaleWriteMap<M, C>(m,v);
771 1242
  }
772 1243

	
773
  ///Quotient of two maps
774 1244

	
775
  ///This \ref concepts::ReadMap "read only map" returns the quotient of the
776
  ///values of the two given maps.
777
  ///Its \c Key and \c Value are inherited from \c M1.
778
  ///The \c Key and \c Value of \c M2 must be convertible to those of \c M1.
779
  template<typename M1, typename M2> 
780
  class DivMap : public MapBase<typename M1::Key, typename M1::Value> {
781
    const M1& m1;
782
    const M2& m2;
783
  public:
784
    typedef MapBase<typename M1::Key, typename M1::Value> Parent;
785
    typedef typename Parent::Key Key;
786
    typedef typename Parent::Value Value;
1245
  /// Negative of a map
787 1246

	
788
    ///Constructor
789
    DivMap(const M1 &_m1,const M2 &_m2) : m1(_m1), m2(_m2) {};
790
    /// \e
791
    Value operator[](Key k) const {return m1[k]/m2[k];}
792
  };
793
  
794
  ///Returns a \c DivMap class
795

	
796
  ///This function just returns a \c DivMap class.
797
  ///\relates DivMap
798
  template<typename M1, typename M2> 
799
  inline DivMap<M1, M2> divMap(const M1 &m1,const M2 &m2) {
800
    return DivMap<M1, M2>(m1,m2);
801
  }
802
  
803
  ///Composition of two maps
804

	
805
  ///This \ref concepts::ReadMap "read only map" returns the composition of
806
  ///two given maps.
807
  ///That is to say, if \c m1 is of type \c M1 and \c m2 is of \c M2,
808
  ///then for
809
  ///\code
810
  ///  ComposeMap<M1, M2> cm(m1,m2);
811
  ///\endcode
812
  /// <tt>cm[x]</tt> will be equal to <tt>m1[m2[x]]</tt>.
1247
  /// This \ref concepts::ReadMap "read only map" returns the negative
1248
  /// of the values of the given map (using the unary \c - operator).
1249
  /// Its \c Key and \c Value are inherited from \c M.
813 1250
  ///
814
  ///Its \c Key is inherited from \c M2 and its \c Value is from \c M1.
815
  ///\c M2::Value must be convertible to \c M1::Key.
1251
  /// If M::Value is \c int, \c double etc., then
1252
  /// \code
1253
  ///   NegMap<M> neg(m);
1254
  /// \endcode
1255
  /// is equivalent to
1256
  /// \code
1257
  ///   ScaleMap<M> neg(m,-1);
1258
  /// \endcode
816 1259
  ///
817
  ///\sa CombineMap
1260
  /// The simplest way of using this map is through the negMap()
1261
  /// function.
818 1262
  ///
819
  ///\todo Check the requirements.
820
  template <typename M1, typename M2> 
821
  class ComposeMap : public MapBase<typename M2::Key, typename M1::Value> {
822
    const M1& m1;
823
    const M2& m2;
824
  public:
825
    typedef MapBase<typename M2::Key, typename M1::Value> Parent;
826
    typedef typename Parent::Key Key;
827
    typedef typename Parent::Value Value;
828

	
829
    ///Constructor
830
    ComposeMap(const M1 &_m1,const M2 &_m2) : m1(_m1), m2(_m2) {};
831
    
832
    /// \e
833

	
834

	
835
    /// \todo Use the  MapTraits once it is ported.
836
    ///
837

	
838
    //typename MapTraits<M1>::ConstReturnValue
839
    typename M1::Value
840
    operator[](Key k) const {return m1[m2[k]];}
841
  };
842

	
843
  ///Returns a \c ComposeMap class
844

	
845
  ///This function just returns a \c ComposeMap class.
846
  ///\relates ComposeMap
847
  template <typename M1, typename M2> 
848
  inline ComposeMap<M1, M2> composeMap(const M1 &m1,const M2 &m2) {
849
    return ComposeMap<M1, M2>(m1,m2);
850
  }
851
  
852
  ///Combine of two maps using an STL (binary) functor.
853

	
854
  ///Combine of two maps using an STL (binary) functor.
855
  ///
856
  ///This \ref concepts::ReadMap "read only map" takes two maps and a
857
  ///binary functor and returns the composition of the two
858
  ///given maps unsing the functor. 
859
  ///That is to say, if \c m1 and \c m2 is of type \c M1 and \c M2
860
  ///and \c f is of \c F, then for
861
  ///\code
862
  ///  CombineMap<M1,M2,F,V> cm(m1,m2,f);
863
  ///\endcode
864
  /// <tt>cm[x]</tt> will be equal to <tt>f(m1[x],m2[x])</tt>
865
  ///
866
  ///Its \c Key is inherited from \c M1 and its \c Value is \c V.
867
  ///\c M2::Value and \c M1::Value must be convertible to the corresponding
868
  ///input parameter of \c F and the return type of \c F must be convertible
869
  ///to \c V.
870
  ///
871
  ///\sa ComposeMap
872
  ///
873
  ///\todo Check the requirements.
874
  template<typename M1, typename M2, typename F,
875
	   typename V = typename F::result_type> 
876
  class CombineMap : public MapBase<typename M1::Key, V> {
877
    const M1& m1;
878
    const M2& m2;
879
    F f;
880
  public:
881
    typedef MapBase<typename M1::Key, V> Parent;
882
    typedef typename Parent::Key Key;
883
    typedef typename Parent::Value Value;
884

	
885
    ///Constructor
886
    CombineMap(const M1 &_m1,const M2 &_m2,const F &_f = F())
887
      : m1(_m1), m2(_m2), f(_f) {};
888
    /// \e
889
    Value operator[](Key k) const {return f(m1[k],m2[k]);}
890
  };
891
  
892
  ///Returns a \c CombineMap class
893

	
894
  ///This function just returns a \c CombineMap class.
895
  ///
896
  ///For example if \c m1 and \c m2 are both \c double valued maps, then 
897
  ///\code
898
  ///combineMap(m1,m2,std::plus<double>())
899
  ///\endcode
900
  ///is equivalent to
901
  ///\code
902
  ///addMap(m1,m2)
903
  ///\endcode
904
  ///
905
  ///This function is specialized for adaptable binary function
906
  ///classes and C++ functions.
907
  ///
908
  ///\relates CombineMap
909
  template<typename M1, typename M2, typename F, typename V> 
910
  inline CombineMap<M1, M2, F, V> 
911
  combineMap(const M1& m1,const M2& m2, const F& f) {
912
    return CombineMap<M1, M2, F, V>(m1,m2,f);
913
  }
914

	
915
  template<typename M1, typename M2, typename F> 
916
  inline CombineMap<M1, M2, F, typename F::result_type> 
917
  combineMap(const M1& m1, const M2& m2, const F& f) {
918
    return combineMap<M1, M2, F, typename F::result_type>(m1,m2,f);
919
  }
920

	
921
  template<typename M1, typename M2, typename K1, typename K2, typename V> 
922
  inline CombineMap<M1, M2, V (*)(K1, K2), V> 
923
  combineMap(const M1 &m1, const M2 &m2, V (*f)(K1, K2)) {
924
    return combineMap<M1, M2, V (*)(K1, K2), V>(m1,m2,f);
925
  }
926

	
927
  ///Negative value of a map
928

	
929
  ///This \ref concepts::ReadMap "read only map" returns the negative
930
  ///value of the value returned by the given map.
931
  ///Its \c Key and \c Value are inherited from \c M.
932
  ///The unary \c - operator must be defined for \c Value, of course.
933
  ///
934
  ///\sa NegWriteMap
935
  template<typename M> 
1263
  /// \sa NegWriteMap
1264
  template<typename M>
936 1265
  class NegMap : public MapBase<typename M::Key, typename M::Value> {
937
    const M& m;
1266
    const M& _m;
938 1267
  public:
939 1268
    typedef MapBase<typename M::Key, typename M::Value> Parent;
940 1269
    typedef typename Parent::Key Key;
941 1270
    typedef typename Parent::Value Value;
942 1271

	
943
    ///Constructor
944
    NegMap(const M &_m) : m(_m) {};
1272
    /// Constructor
1273
    NegMap(const M &m) : _m(m) {}
945 1274
    /// \e
946
    Value operator[](Key k) const {return -m[k];}
1275
    Value operator[](const Key &k) const { return -_m[k]; }
947 1276
  };
948
  
949
  ///Negative value of a map (ReadWrite version)
950 1277

	
951
  ///This \ref concepts::ReadWriteMap "read-write map" returns the negative
952
  ///value of the value returned by the given map.
953
  ///Its \c Key and \c Value are inherited from \c M.
954
  ///The unary \c - operator must be defined for \c Value, of course.
1278
  /// Negative of a map (read-write version)
1279

	
1280
  /// This \ref concepts::ReadWriteMap "read-write map" returns the
1281
  /// negative of the values of the given map (using the unary \c -
1282
  /// operator).
1283
  /// Its \c Key and \c Value are inherited from \c M.
1284
  /// It makes also possible to write the map.
1285
  ///
1286
  /// If M::Value is \c int, \c double etc., then
1287
  /// \code
1288
  ///   NegWriteMap<M> neg(m);
1289
  /// \endcode
1290
  /// is equivalent to
1291
  /// \code
1292
  ///   ScaleWriteMap<M> neg(m,-1);
1293
  /// \endcode
1294
  ///
1295
  /// The simplest way of using this map is through the negWriteMap()
1296
  /// function.
955 1297
  ///
956 1298
  /// \sa NegMap
957
  template<typename M> 
1299
  template<typename M>
958 1300
  class NegWriteMap : public MapBase<typename M::Key, typename M::Value> {
959
    M& m;
1301
    M &_m;
960 1302
  public:
961 1303
    typedef MapBase<typename M::Key, typename M::Value> Parent;
962 1304
    typedef typename Parent::Key Key;
963 1305
    typedef typename Parent::Value Value;
964 1306

	
965
    ///Constructor
966
    NegWriteMap(M &_m) : m(_m) {};
1307
    /// Constructor
1308
    NegWriteMap(M &m) : _m(m) {}
967 1309
    /// \e
968
    Value operator[](Key k) const {return -m[k];}
1310
    Value operator[](const Key &k) const { return -_m[k]; }
969 1311
    /// \e
970
    void set(Key k, const Value& v) { m.set(k, -v); }
1312
    void set(const Key &k, const Value &v) { _m.set(k, -v); }
971 1313
  };
972 1314

	
973
  ///Returns a \c NegMap class
1315
  /// Returns a \ref NegMap class
974 1316

	
975
  ///This function just returns a \c NegMap class.
976
  ///\relates NegMap
977
  template <typename M> 
1317
  /// This function just returns a \ref NegMap class.
1318
  ///
1319
  /// For example, if \c m is a map with \c double values, then
1320
  /// <tt>negMap(m)[x]</tt> will be equal to <tt>-m[x]</tt>.
1321
  ///
1322
  /// \relates NegMap
1323
  template <typename M>
978 1324
  inline NegMap<M> negMap(const M &m) {
979 1325
    return NegMap<M>(m);
980 1326
  }
981 1327

	
982
  ///Returns a \c NegWriteMap class
1328
  /// Returns a \ref NegWriteMap class
983 1329

	
984
  ///This function just returns a \c NegWriteMap class.
985
  ///\relates NegWriteMap
986
  template <typename M> 
987
  inline NegWriteMap<M> negMap(M &m) {
1330
  /// This function just returns a \ref NegWriteMap class.
1331
  ///
1332
  /// For example, if \c m is a map with \c double values, then
1333
  /// <tt>negWriteMap(m)[x]</tt> will be equal to <tt>-m[x]</tt>.
1334
  /// Moreover it makes also possible to write the map.
1335
  ///
1336
  /// \relates NegWriteMap
1337
  template <typename M>
1338
  inline NegWriteMap<M> negWriteMap(M &m) {
988 1339
    return NegWriteMap<M>(m);
989 1340
  }
990 1341

	
991
  ///Absolute value of a map
992 1342

	
993
  ///This \ref concepts::ReadMap "read only map" returns the absolute value
994
  ///of the value returned by the given map.
995
  ///Its \c Key and \c Value are inherited from \c M. 
996
  ///\c Value must be comparable to \c 0 and the unary \c -
997
  ///operator must be defined for it, of course.
998
  template<typename M> 
1343
  /// Absolute value of a map
1344

	
1345
  /// This \ref concepts::ReadMap "read only map" returns the absolute
1346
  /// value of the values of the given map.
1347
  /// Its \c Key and \c Value are inherited from \c M.
1348
  /// \c Value must be comparable to \c 0 and the unary \c -
1349
  /// operator must be defined for it, of course.
1350
  ///
1351
  /// The simplest way of using this map is through the absMap()
1352
  /// function.
1353
  template<typename M>
999 1354
  class AbsMap : public MapBase<typename M::Key, typename M::Value> {
1000
    const M& m;
1355
    const M &_m;
1001 1356
  public:
1002 1357
    typedef MapBase<typename M::Key, typename M::Value> Parent;
1003 1358
    typedef typename Parent::Key Key;
1004 1359
    typedef typename Parent::Value Value;
1005 1360

	
1006
    ///Constructor
1007
    AbsMap(const M &_m) : m(_m) {};
1361
    /// Constructor
1362
    AbsMap(const M &m) : _m(m) {}
1008 1363
    /// \e
1009
    Value operator[](Key k) const {
1010
      Value tmp = m[k]; 
1364
    Value operator[](const Key &k) const {
1365
      Value tmp = _m[k];
1011 1366
      return tmp >= 0 ? tmp : -tmp;
1012 1367
    }
1013 1368

	
1014 1369
  };
1015
  
1016
  ///Returns an \c AbsMap class
1017 1370

	
1018
  ///This function just returns an \c AbsMap class.
1019
  ///\relates AbsMap
1020
  template<typename M> 
1371
  /// Returns an \ref AbsMap class
1372

	
1373
  /// This function just returns an \ref AbsMap class.
1374
  ///
1375
  /// For example, if \c m is a map with \c double values, then
1376
  /// <tt>absMap(m)[x]</tt> will be equal to <tt>m[x]</tt> if
1377
  /// it is positive or zero and <tt>-m[x]</tt> if <tt>m[x]</tt> is
1378
  /// negative.
1379
  ///
1380
  /// \relates AbsMap
1381
  template<typename M>
1021 1382
  inline AbsMap<M> absMap(const M &m) {
1022 1383
    return AbsMap<M>(m);
1023 1384
  }
1024 1385

	
1025
  ///Converts an STL style functor to a map
1026 1386

	
1027
  ///This \ref concepts::ReadMap "read only map" returns the value
1028
  ///of a given functor.
1387
  /// Logical 'not' of a map
1388

	
1389
  /// This \ref concepts::ReadMap "read only map" returns the logical
1390
  /// negation of the values of the given map.
1391
  /// Its \c Key is inherited from \c M and its \c Value is \c bool.
1029 1392
  ///
1030
  ///Template parameters \c K and \c V will become its
1031
  ///\c Key and \c Value. 
1032
  ///In most cases they have to be given explicitly because a 
1033
  ///functor typically does not provide \c argument_type and 
1034
  ///\c result_type typedefs.
1393
  /// The simplest way of using this map is through the notMap()
1394
  /// function.
1035 1395
  ///
1036
  ///Parameter \c F is the type of the used functor.
1037
  ///
1038
  ///\sa MapFunctor
1039
  template<typename F, 
1040
	   typename K = typename F::argument_type, 
1041
	   typename V = typename F::result_type> 
1042
  class FunctorMap : public MapBase<K, V> {
1043
    F f;
1044
  public:
1045
    typedef MapBase<K, V> Parent;
1046
    typedef typename Parent::Key Key;
1047
    typedef typename Parent::Value Value;
1048

	
1049
    ///Constructor
1050
    FunctorMap(const F &_f = F()) : f(_f) {}
1051
    /// \e
1052
    Value operator[](Key k) const { return f(k);}
1053
  };
1054
  
1055
  ///Returns a \c FunctorMap class
1056

	
1057
  ///This function just returns a \c FunctorMap class.
1058
  ///
1059
  ///This function is specialized for adaptable binary function
1060
  ///classes and C++ functions.
1061
  ///
1062
  ///\relates FunctorMap
1063
  template<typename K, typename V, typename F> inline 
1064
  FunctorMap<F, K, V> functorMap(const F &f) {
1065
    return FunctorMap<F, K, V>(f);
1066
  }
1067

	
1068
  template <typename F> inline 
1069
  FunctorMap<F, typename F::argument_type, typename F::result_type> 
1070
  functorMap(const F &f) {
1071
    return FunctorMap<F, typename F::argument_type, 
1072
      typename F::result_type>(f);
1073
  }
1074

	
1075
  template <typename K, typename V> inline 
1076
  FunctorMap<V (*)(K), K, V> functorMap(V (*f)(K)) {
1077
    return FunctorMap<V (*)(K), K, V>(f);
1078
  }
1079

	
1080

	
1081
  ///Converts a map to an STL style (unary) functor
1082

	
1083
  ///This class Converts a map to an STL style (unary) functor.
1084
  ///That is it provides an <tt>operator()</tt> to read its values.
1085
  ///
1086
  ///For the sake of convenience it also works as
1087
  ///a ususal \ref concepts::ReadMap "readable map",
1088
  ///i.e. <tt>operator[]</tt> and the \c Key and \c Value typedefs also exist.
1089
  ///
1090
  ///\sa FunctorMap
1091
  template <typename M> 
1092
  class MapFunctor : public MapBase<typename M::Key, typename M::Value> {
1093
    const M& m;
1094
  public:
1095
    typedef MapBase<typename M::Key, typename M::Value> Parent;
1096
    typedef typename Parent::Key Key;
1097
    typedef typename Parent::Value Value;
1098

	
1099
    typedef typename M::Key argument_type;
1100
    typedef typename M::Value result_type;
1101

	
1102
    ///Constructor
1103
    MapFunctor(const M &_m) : m(_m) {};
1104
    ///\e
1105
    Value operator()(Key k) const {return m[k];}
1106
    ///\e
1107
    Value operator[](Key k) const {return m[k];}
1108
  };
1109
  
1110
  ///Returns a \c MapFunctor class
1111

	
1112
  ///This function just returns a \c MapFunctor class.
1113
  ///\relates MapFunctor
1114
  template<typename M> 
1115
  inline MapFunctor<M> mapFunctor(const M &m) {
1116
    return MapFunctor<M>(m);
1117
  }
1118

	
1119
  ///Just readable version of \ref ForkWriteMap
1120

	
1121
  ///This map has two \ref concepts::ReadMap "readable map"
1122
  ///parameters and each read request will be passed just to the
1123
  ///first map. This class is the just readable map type of \c ForkWriteMap.
1124
  ///
1125
  ///The \c Key and \c Value are inherited from \c M1.
1126
  ///The \c Key and \c Value of \c M2 must be convertible from those of \c M1.
1127
  ///
1128
  ///\sa ForkWriteMap
1129
  ///
1130
  /// \todo Why is it needed?
1131
  template<typename  M1, typename M2> 
1132
  class ForkMap : public MapBase<typename M1::Key, typename M1::Value> {
1133
    const M1& m1;
1134
    const M2& m2;
1135
  public:
1136
    typedef MapBase<typename M1::Key, typename M1::Value> Parent;
1137
    typedef typename Parent::Key Key;
1138
    typedef typename Parent::Value Value;
1139

	
1140
    ///Constructor
1141
    ForkMap(const M1 &_m1, const M2 &_m2) : m1(_m1), m2(_m2) {};
1142
    /// \e
1143
    Value operator[](Key k) const {return m1[k];}
1144
  };
1145

	
1146

	
1147
  ///Applies all map setting operations to two maps
1148

	
1149
  ///This map has two \ref concepts::WriteMap "writable map"
1150
  ///parameters and each write request will be passed to both of them.
1151
  ///If \c M1 is also \ref concepts::ReadMap "readable",
1152
  ///then the read operations will return the
1153
  ///corresponding values of \c M1.
1154
  ///
1155
  ///The \c Key and \c Value are inherited from \c M1.
1156
  ///The \c Key and \c Value of \c M2 must be convertible from those of \c M1.
1157
  ///
1158
  ///\sa ForkMap
1159
  template<typename  M1, typename M2> 
1160
  class ForkWriteMap : public MapBase<typename M1::Key, typename M1::Value> {
1161
    M1& m1;
1162
    M2& m2;
1163
  public:
1164
    typedef MapBase<typename M1::Key, typename M1::Value> Parent;
1165
    typedef typename Parent::Key Key;
1166
    typedef typename Parent::Value Value;
1167

	
1168
    ///Constructor
1169
    ForkWriteMap(M1 &_m1, M2 &_m2) : m1(_m1), m2(_m2) {};
1170
    ///\e
1171
    Value operator[](Key k) const {return m1[k];}
1172
    ///\e
1173
    void set(Key k, const Value &v) {m1.set(k,v); m2.set(k,v);}
1174
  };
1175
  
1176
  ///Returns a \c ForkMap class
1177

	
1178
  ///This function just returns a \c ForkMap class.
1179
  ///\relates ForkMap
1180
  template <typename M1, typename M2> 
1181
  inline ForkMap<M1, M2> forkMap(const M1 &m1, const M2 &m2) {
1182
    return ForkMap<M1, M2>(m1,m2);
1183
  }
1184

	
1185
  ///Returns a \c ForkWriteMap class
1186

	
1187
  ///This function just returns a \c ForkWriteMap class.
1188
  ///\relates ForkWriteMap
1189
  template <typename M1, typename M2> 
1190
  inline ForkWriteMap<M1, M2> forkMap(M1 &m1, M2 &m2) {
1191
    return ForkWriteMap<M1, M2>(m1,m2);
1192
  }
1193

	
1194

	
1195
  
1196
  /* ************* BOOL MAPS ******************* */
1197
  
1198
  ///Logical 'not' of a map
1199
  
1200
  ///This bool \ref concepts::ReadMap "read only map" returns the 
1201
  ///logical negation of the value returned by the given map.
1202
  ///Its \c Key is inherited from \c M, its \c Value is \c bool.
1203
  ///
1204
  ///\sa NotWriteMap
1205
  template <typename M> 
1396
  /// \sa NotWriteMap
1397
  template <typename M>
1206 1398
  class NotMap : public MapBase<typename M::Key, bool> {
1207
    const M& m;
1399
    const M &_m;
1208 1400
  public:
1209 1401
    typedef MapBase<typename M::Key, bool> Parent;
1210 1402
    typedef typename Parent::Key Key;
1211 1403
    typedef typename Parent::Value Value;
1212 1404

	
1213 1405
    /// Constructor
1214
    NotMap(const M &_m) : m(_m) {};
1215
    ///\e
1216
    Value operator[](Key k) const {return !m[k];}
1406
    NotMap(const M &m) : _m(m) {}
1407
    /// \e
1408
    Value operator[](const Key &k) const { return !_m[k]; }
1217 1409
  };
1218 1410

	
1219
  ///Logical 'not' of a map (ReadWrie version)
1220
  
1221
  ///This bool \ref concepts::ReadWriteMap "read-write map" returns the 
1222
  ///logical negation of the value returned by the given map. When it is set,
1223
  ///the opposite value is set to the original map.
1224
  ///Its \c Key is inherited from \c M, its \c Value is \c bool.
1411
  /// Logical 'not' of a map (read-write version)
1412

	
1413
  /// This \ref concepts::ReadWriteMap "read-write map" returns the
1414
  /// logical negation of the values of the given map.
1415
  /// Its \c Key is inherited from \c M and its \c Value is \c bool.
1416
  /// It makes also possible to write the map. When a value is set,
1417
  /// the opposite value is set to the original map.
1225 1418
  ///
1226
  ///\sa NotMap
1227
  template <typename M> 
1419
  /// The simplest way of using this map is through the notWriteMap()
1420
  /// function.
1421
  ///
1422
  /// \sa NotMap
1423
  template <typename M>
1228 1424
  class NotWriteMap : public MapBase<typename M::Key, bool> {
1229
    M& m;
1425
    M &_m;
1230 1426
  public:
1231 1427
    typedef MapBase<typename M::Key, bool> Parent;
1232 1428
    typedef typename Parent::Key Key;
1233 1429
    typedef typename Parent::Value Value;
1234 1430

	
1235 1431
    /// Constructor
1236
    NotWriteMap(M &_m) : m(_m) {};
1237
    ///\e
1238
    Value operator[](Key k) const {return !m[k];}
1239
    ///\e
1240
    void set(Key k, bool v) { m.set(k, !v); }
1432
    NotWriteMap(M &m) : _m(m) {}
1433
    /// \e
1434
    Value operator[](const Key &k) const { return !_m[k]; }
1435
    /// \e
1436
    void set(const Key &k, bool v) { _m.set(k, !v); }
1241 1437
  };
1242
  
1243
  ///Returns a \c NotMap class
1244
  
1245
  ///This function just returns a \c NotMap class.
1246
  ///\relates NotMap
1247
  template <typename M> 
1438

	
1439
  /// Returns a \ref NotMap class
1440

	
1441
  /// This function just returns a \ref NotMap class.
1442
  ///
1443
  /// For example, if \c m is a map with \c bool values, then
1444
  /// <tt>notMap(m)[x]</tt> will be equal to <tt>!m[x]</tt>.
1445
  ///
1446
  /// \relates NotMap
1447
  template <typename M>
1248 1448
  inline NotMap<M> notMap(const M &m) {
1249 1449
    return NotMap<M>(m);
1250 1450
  }
1251
  
1252
  ///Returns a \c NotWriteMap class
1253
  
1254
  ///This function just returns a \c NotWriteMap class.
1255
  ///\relates NotWriteMap
1256
  template <typename M> 
1257
  inline NotWriteMap<M> notMap(M &m) {
1451

	
1452
  /// Returns a \ref NotWriteMap class
1453

	
1454
  /// This function just returns a \ref NotWriteMap class.
1455
  ///
1456
  /// For example, if \c m is a map with \c bool values, then
1457
  /// <tt>notWriteMap(m)[x]</tt> will be equal to <tt>!m[x]</tt>.
1458
  /// Moreover it makes also possible to write the map.
1459
  ///
1460
  /// \relates NotWriteMap
1461
  template <typename M>
1462
  inline NotWriteMap<M> notWriteMap(M &m) {
1258 1463
    return NotWriteMap<M>(m);
1259 1464
  }
1260 1465

	
1466

	
1261 1467
  namespace _maps_bits {
1262 1468

	
1263 1469
    template <typename Value>
... ...
@@ -1276,44 +1482,44 @@
1276 1482

	
1277 1483
    template <typename _Iterator>
1278 1484
    struct IteratorTraits<_Iterator,
1279
      typename exists<typename _Iterator::container_type>::type> 
1485
      typename exists<typename _Iterator::container_type>::type>
1280 1486
    {
1281 1487
      typedef typename _Iterator::container_type::value_type Value;
1282 1488
    };
1283 1489

	
1284 1490
  }
1285
  
1491

	
1286 1492

	
1287 1493
  /// \brief Writable bool map for logging each \c true assigned element
1288 1494
  ///
1289
  /// A \ref concepts::ReadWriteMap "read-write" bool map for logging 
1290
  /// each \c true assigned element, i.e it copies all the keys set 
1495
  /// A \ref concepts::ReadWriteMap "read-write" bool map for logging
1496
  /// each \c true assigned element, i.e it copies all the keys set
1291 1497
  /// to \c true to the given iterator.
1292 1498
  ///
1293
  /// \note The container of the iterator should contain space 
1499
  /// \note The container of the iterator should contain space
1294 1500
  /// for each element.
1295 1501
  ///
1296
  /// The following example shows how you can write the edges found by 
1502
  /// The following example shows how you can write the edges found by
1297 1503
  /// the \ref Prim algorithm directly to the standard output.
1298
  ///\code
1299
  /// typedef IdMap<Graph, Edge> EdgeIdMap;
1300
  /// EdgeIdMap edgeId(graph);
1504
  /// \code
1505
  ///   typedef IdMap<Graph, Edge> EdgeIdMap;
1506
  ///   EdgeIdMap edgeId(graph);
1301 1507
  ///
1302
  /// typedef MapFunctor<EdgeIdMap> EdgeIdFunctor;
1303
  /// EdgeIdFunctor edgeIdFunctor(edgeId);
1508
  ///   typedef MapToFunctor<EdgeIdMap> EdgeIdFunctor;
1509
  ///   EdgeIdFunctor edgeIdFunctor(edgeId);
1304 1510
  ///
1305
  /// StoreBoolMap<ostream_iterator<int>, EdgeIdFunctor> 
1306
  ///   writerMap(ostream_iterator<int>(cout, " "), edgeIdFunctor);
1511
  ///   StoreBoolMap<ostream_iterator<int>, EdgeIdFunctor>
1512
  ///     writerMap(ostream_iterator<int>(cout, " "), edgeIdFunctor);
1307 1513
  ///
1308
  /// prim(graph, cost, writerMap);
1309
  ///\endcode
1514
  ///   prim(graph, cost, writerMap);
1515
  /// \endcode
1310 1516
  ///
1311
  ///\sa BackInserterBoolMap 
1312
  ///\sa FrontInserterBoolMap 
1313
  ///\sa InserterBoolMap 
1517
  /// \sa BackInserterBoolMap
1518
  /// \sa FrontInserterBoolMap
1519
  /// \sa InserterBoolMap
1314 1520
  ///
1315
  ///\todo Revise the name of this class and the related ones.
1316
  template <typename _Iterator, 
1521
  /// \todo Revise the name of this class and the related ones.
1522
  template <typename _Iterator,
1317 1523
            typename _Functor =
1318 1524
            _maps_bits::Identity<typename _maps_bits::
1319 1525
                                 IteratorTraits<_Iterator>::Value> >
... ...
@@ -1327,33 +1533,33 @@
1327 1533
    typedef _Functor Functor;
1328 1534

	
1329 1535
    /// Constructor
1330
    StoreBoolMap(Iterator it, const Functor& functor = Functor()) 
1536
    StoreBoolMap(Iterator it, const Functor& functor = Functor())
1331 1537
      : _begin(it), _end(it), _functor(functor) {}
1332 1538

	
1333 1539
    /// Gives back the given iterator set for the first key
1334 1540
    Iterator begin() const {
1335 1541
      return _begin;
1336 1542
    }
1337
 
1543

	
1338 1544
    /// Gives back the the 'after the last' iterator
1339 1545
    Iterator end() const {
1340 1546
      return _end;
1341 1547
    }
1342 1548

	
1343
    /// The \c set function of the map
1549
    /// The set function of the map
1344 1550
    void set(const Key& key, Value value) const {
1345 1551
      if (value) {
1346 1552
	*_end++ = _functor(key);
1347 1553
      }
1348 1554
    }
1349
    
1555

	
1350 1556
  private:
1351 1557
    Iterator _begin;
1352 1558
    mutable Iterator _end;
1353 1559
    Functor _functor;
1354 1560
  };
1355 1561

	
1356
  /// \brief Writable bool map for logging each \c true assigned element in 
1562
  /// \brief Writable bool map for logging each \c true assigned element in
1357 1563
  /// a back insertable container.
1358 1564
  ///
1359 1565
  /// Writable bool map for logging each \c true assigned element by pushing
... ...
@@ -1362,15 +1568,15 @@
1362 1568
  /// container. The next example shows how you can store the
1363 1569
  /// edges found by the Prim algorithm in a vector.
1364 1570
  ///
1365
  ///\code
1366
  /// vector<Edge> span_tree_edges;
1367
  /// BackInserterBoolMap<vector<Edge> > inserter_map(span_tree_edges);
1368
  /// prim(graph, cost, inserter_map);
1369
  ///\endcode
1571
  /// \code
1572
  ///   vector<Edge> span_tree_edges;
1573
  ///   BackInserterBoolMap<vector<Edge> > inserter_map(span_tree_edges);
1574
  ///   prim(graph, cost, inserter_map);
1575
  /// \endcode
1370 1576
  ///
1371
  ///\sa StoreBoolMap
1372
  ///\sa FrontInserterBoolMap
1373
  ///\sa InserterBoolMap
1577
  /// \sa StoreBoolMap
1578
  /// \sa FrontInserterBoolMap
1579
  /// \sa InserterBoolMap
1374 1580
  template <typename Container,
1375 1581
            typename Functor =
1376 1582
            _maps_bits::Identity<typename Container::value_type> >
... ...
@@ -1380,23 +1586,23 @@
1380 1586
    typedef bool Value;
1381 1587

	
1382 1588
    /// Constructor
1383
    BackInserterBoolMap(Container& _container, 
1384
                        const Functor& _functor = Functor()) 
1589
    BackInserterBoolMap(Container& _container,
1590
                        const Functor& _functor = Functor())
1385 1591
      : container(_container), functor(_functor) {}
1386 1592

	
1387
    /// The \c set function of the map
1593
    /// The set function of the map
1388 1594
    void set(const Key& key, Value value) {
1389 1595
      if (value) {
1390 1596
	container.push_back(functor(key));
1391 1597
      }
1392 1598
    }
1393
    
1599

	
1394 1600
  private:
1395 1601
    Container& container;
1396 1602
    Functor functor;
1397 1603
  };
1398 1604

	
1399
  /// \brief Writable bool map for logging each \c true assigned element in 
1605
  /// \brief Writable bool map for logging each \c true assigned element in
1400 1606
  /// a front insertable container.
1401 1607
  ///
1402 1608
  /// Writable bool map for logging each \c true assigned element by pushing
... ...
@@ -1404,8 +1610,8 @@
1404 1610
  /// It can be used to retrieve the items into a standard
1405 1611
  /// container. For example see \ref BackInserterBoolMap.
1406 1612
  ///
1407
  ///\sa BackInserterBoolMap
1408
  ///\sa InserterBoolMap
1613
  /// \sa BackInserterBoolMap
1614
  /// \sa InserterBoolMap
1409 1615
  template <typename Container,
1410 1616
            typename Functor =
1411 1617
            _maps_bits::Identity<typename Container::value_type> >
... ...
@@ -1416,39 +1622,39 @@
1416 1622

	
1417 1623
    /// Constructor
1418 1624
    FrontInserterBoolMap(Container& _container,
1419
                         const Functor& _functor = Functor()) 
1625
                         const Functor& _functor = Functor())
1420 1626
      : container(_container), functor(_functor) {}
1421 1627

	
1422
    /// The \c set function of the map
1628
    /// The set function of the map
1423 1629
    void set(const Key& key, Value value) {
1424 1630
      if (value) {
1425 1631
	container.push_front(functor(key));
1426 1632
      }
1427 1633
    }
1428
    
1634

	
1429 1635
  private:
1430
    Container& container;    
1636
    Container& container;
1431 1637
    Functor functor;
1432 1638
  };
1433 1639

	
1434
  /// \brief Writable bool map for storing each \c true assigned element in 
1640
  /// \brief Writable bool map for storing each \c true assigned element in
1435 1641
  /// an insertable container.
1436 1642
  ///
1437
  /// Writable bool map for storing each \c true assigned element in an 
1643
  /// Writable bool map for storing each \c true assigned element in an
1438 1644
  /// insertable container. It will insert all the keys set to \c true into
1439 1645
  /// the container.
1440 1646
  ///
1441 1647
  /// For example, if you want to store the cut arcs of the strongly
1442 1648
  /// connected components in a set you can use the next code:
1443 1649
  ///
1444
  ///\code
1445
  /// set<Arc> cut_arcs;
1446
  /// InserterBoolMap<set<Arc> > inserter_map(cut_arcs);
1447
  /// stronglyConnectedCutArcs(digraph, cost, inserter_map);
1448
  ///\endcode
1650
  /// \code
1651
  ///   set<Arc> cut_arcs;
1652
  ///   InserterBoolMap<set<Arc> > inserter_map(cut_arcs);
1653
  ///   stronglyConnectedCutArcs(digraph, cost, inserter_map);
1654
  /// \endcode
1449 1655
  ///
1450
  ///\sa BackInserterBoolMap
1451
  ///\sa FrontInserterBoolMap
1656
  /// \sa BackInserterBoolMap
1657
  /// \sa FrontInserterBoolMap
1452 1658
  template <typename Container,
1453 1659
            typename Functor =
1454 1660
            _maps_bits::Identity<typename Container::value_type> >
... ...
@@ -1458,13 +1664,13 @@
1458 1664
    typedef bool Value;
1459 1665

	
1460 1666
    /// Constructor with specified iterator
1461
    
1667

	
1462 1668
    /// Constructor with specified iterator.
1463 1669
    /// \param _container The container for storing the elements.
1464 1670
    /// \param _it The elements will be inserted before this iterator.
1465 1671
    /// \param _functor The functor that is used when an element is stored.
1466 1672
    InserterBoolMap(Container& _container, typename Container::iterator _it,
1467
                    const Functor& _functor = Functor()) 
1673
                    const Functor& _functor = Functor())
1468 1674
      : container(_container), it(_it), functor(_functor) {}
1469 1675

	
1470 1676
    /// Constructor
... ...
@@ -1476,45 +1682,45 @@
1476 1682
    InserterBoolMap(Container& _container, const Functor& _functor = Functor())
1477 1683
      : container(_container), it(_container.end()), functor(_functor) {}
1478 1684

	
1479
    /// The \c set function of the map
1685
    /// The set function of the map
1480 1686
    void set(const Key& key, Value value) {
1481 1687
      if (value) {
1482 1688
	it = container.insert(it, functor(key));
1483 1689
        ++it;
1484 1690
      }
1485 1691
    }
1486
    
1692

	
1487 1693
  private:
1488 1694
    Container& container;
1489 1695
    typename Container::iterator it;
1490 1696
    Functor functor;
1491 1697
  };
1492 1698

	
1493
  /// \brief Writable bool map for filling each \c true assigned element with a 
1699
  /// \brief Writable bool map for filling each \c true assigned element with a
1494 1700
  /// given value.
1495 1701
  ///
1496
  /// Writable bool map for filling each \c true assigned element with a 
1702
  /// Writable bool map for filling each \c true assigned element with a
1497 1703
  /// given value. The value can set the container.
1498 1704
  ///
1499 1705
  /// The following code finds the connected components of a graph
1500 1706
  /// and stores it in the \c comp map:
1501
  ///\code
1502
  /// typedef Graph::NodeMap<int> ComponentMap;
1503
  /// ComponentMap comp(graph);
1504
  /// typedef FillBoolMap<Graph::NodeMap<int> > ComponentFillerMap;
1505
  /// ComponentFillerMap filler(comp, 0);
1707
  /// \code
1708
  ///   typedef Graph::NodeMap<int> ComponentMap;
1709
  ///   ComponentMap comp(graph);
1710
  ///   typedef FillBoolMap<Graph::NodeMap<int> > ComponentFillerMap;
1711
  ///   ComponentFillerMap filler(comp, 0);
1506 1712
  ///
1507
  /// Dfs<Graph>::DefProcessedMap<ComponentFillerMap>::Create dfs(graph);
1508
  /// dfs.processedMap(filler);
1509
  /// dfs.init();
1510
  /// for (NodeIt it(graph); it != INVALID; ++it) {
1511
  ///   if (!dfs.reached(it)) {
1512
  ///     dfs.addSource(it);
1513
  ///     dfs.start();
1514
  ///     ++filler.fillValue();
1713
  ///   Dfs<Graph>::DefProcessedMap<ComponentFillerMap>::Create dfs(graph);
1714
  ///   dfs.processedMap(filler);
1715
  ///   dfs.init();
1716
  ///   for (NodeIt it(graph); it != INVALID; ++it) {
1717
  ///     if (!dfs.reached(it)) {
1718
  ///       dfs.addSource(it);
1719
  ///       dfs.start();
1720
  ///       ++filler.fillValue();
1721
  ///     }
1515 1722
  ///   }
1516
  /// }
1517
  ///\endcode
1723
  /// \endcode
1518 1724
  template <typename Map>
1519 1725
  class FillBoolMap {
1520 1726
  public:
... ...
@@ -1522,90 +1728,90 @@
1522 1728
    typedef bool Value;
1523 1729

	
1524 1730
    /// Constructor
1525
    FillBoolMap(Map& _map, const typename Map::Value& _fill) 
1731
    FillBoolMap(Map& _map, const typename Map::Value& _fill)
1526 1732
      : map(_map), fill(_fill) {}
1527 1733

	
1528 1734
    /// Constructor
1529
    FillBoolMap(Map& _map) 
1735
    FillBoolMap(Map& _map)
1530 1736
      : map(_map), fill() {}
1531 1737

	
1532 1738
    /// Gives back the current fill value
1533 1739
    const typename Map::Value& fillValue() const {
1534 1740
      return fill;
1535
    } 
1741
    }
1536 1742

	
1537 1743
    /// Gives back the current fill value
1538 1744
    typename Map::Value& fillValue() {
1539 1745
      return fill;
1540
    } 
1746
    }
1541 1747

	
1542 1748
    /// Sets the current fill value
1543 1749
    void fillValue(const typename Map::Value& _fill) {
1544 1750
      fill = _fill;
1545
    } 
1751
    }
1546 1752

	
1547
    /// The \c set function of the map
1753
    /// The set function of the map
1548 1754
    void set(const Key& key, Value value) {
1549 1755
      if (value) {
1550 1756
	map.set(key, fill);
1551 1757
      }
1552 1758
    }
1553
    
1759

	
1554 1760
  private:
1555 1761
    Map& map;
1556 1762
    typename Map::Value fill;
1557 1763
  };
1558 1764

	
1559 1765

	
1560
  /// \brief Writable bool map for storing the sequence number of 
1561
  /// \c true assignments.  
1562
  /// 
1563
  /// Writable bool map that stores for each \c true assigned elements  
1766
  /// \brief Writable bool map for storing the sequence number of
1767
  /// \c true assignments.
1768
  ///
1769
  /// Writable bool map that stores for each \c true assigned elements
1564 1770
  /// the sequence number of this setting.
1565 1771
  /// It makes it easy to calculate the leaving
1566
  /// order of the nodes in the \c Dfs algorithm.
1772
  /// order of the nodes in the \ref Dfs algorithm.
1567 1773
  ///
1568
  ///\code
1569
  /// typedef Digraph::NodeMap<int> OrderMap;
1570
  /// OrderMap order(digraph);
1571
  /// typedef SettingOrderBoolMap<OrderMap> OrderSetterMap;
1572
  /// OrderSetterMap setter(order);
1573
  /// Dfs<Digraph>::DefProcessedMap<OrderSetterMap>::Create dfs(digraph);
1574
  /// dfs.processedMap(setter);
1575
  /// dfs.init();
1576
  /// for (NodeIt it(digraph); it != INVALID; ++it) {
1577
  ///   if (!dfs.reached(it)) {
1578
  ///     dfs.addSource(it);
1579
  ///     dfs.start();
1774
  /// \code
1775
  ///   typedef Digraph::NodeMap<int> OrderMap;
1776
  ///   OrderMap order(digraph);
1777
  ///   typedef SettingOrderBoolMap<OrderMap> OrderSetterMap;
1778
  ///   OrderSetterMap setter(order);
1779
  ///   Dfs<Digraph>::DefProcessedMap<OrderSetterMap>::Create dfs(digraph);
1780
  ///   dfs.processedMap(setter);
1781
  ///   dfs.init();
1782
  ///   for (NodeIt it(digraph); it != INVALID; ++it) {
1783
  ///     if (!dfs.reached(it)) {
1784
  ///       dfs.addSource(it);
1785
  ///       dfs.start();
1786
  ///     }
1580 1787
  ///   }
1581
  /// }
1582
  ///\endcode
1788
  /// \endcode
1583 1789
  ///
1584 1790
  /// The storing of the discovering order is more difficult because the
1585 1791
  /// ReachedMap should be readable in the dfs algorithm but the setting
1586 1792
  /// order map is not readable. Thus we must use the fork map:
1587 1793
  ///
1588
  ///\code
1589
  /// typedef Digraph::NodeMap<int> OrderMap;
1590
  /// OrderMap order(digraph);
1591
  /// typedef SettingOrderBoolMap<OrderMap> OrderSetterMap;
1592
  /// OrderSetterMap setter(order);
1593
  /// typedef Digraph::NodeMap<bool> StoreMap;
1594
  /// StoreMap store(digraph);
1794
  /// \code
1795
  ///   typedef Digraph::NodeMap<int> OrderMap;
1796
  ///   OrderMap order(digraph);
1797
  ///   typedef SettingOrderBoolMap<OrderMap> OrderSetterMap;
1798
  ///   OrderSetterMap setter(order);
1799
  ///   typedef Digraph::NodeMap<bool> StoreMap;
1800
  ///   StoreMap store(digraph);
1595 1801
  ///
1596
  /// typedef ForkWriteMap<StoreMap, OrderSetterMap> ReachedMap;
1597
  /// ReachedMap reached(store, setter);
1802
  ///   typedef ForkMap<StoreMap, OrderSetterMap> ReachedMap;
1803
  ///   ReachedMap reached(store, setter);
1598 1804
  ///
1599
  /// Dfs<Digraph>::DefReachedMap<ReachedMap>::Create dfs(digraph);
1600
  /// dfs.reachedMap(reached);
1601
  /// dfs.init();
1602
  /// for (NodeIt it(digraph); it != INVALID; ++it) {
1603
  ///   if (!dfs.reached(it)) {
1604
  ///     dfs.addSource(it);
1605
  ///     dfs.start();
1805
  ///   Dfs<Digraph>::DefReachedMap<ReachedMap>::Create dfs(digraph);
1806
  ///   dfs.reachedMap(reached);
1807
  ///   dfs.init();
1808
  ///   for (NodeIt it(digraph); it != INVALID; ++it) {
1809
  ///     if (!dfs.reached(it)) {
1810
  ///       dfs.addSource(it);
1811
  ///       dfs.start();
1812
  ///     }
1606 1813
  ///   }
1607
  /// }
1608
  ///\endcode
1814
  /// \endcode
1609 1815
  template <typename Map>
1610 1816
  class SettingOrderBoolMap {
1611 1817
  public:
... ...
@@ -1613,7 +1819,7 @@
1613 1819
    typedef bool Value;
1614 1820

	
1615 1821
    /// Constructor
1616
    SettingOrderBoolMap(Map& _map) 
1822
    SettingOrderBoolMap(Map& _map)
1617 1823
      : map(_map), counter(0) {}
1618 1824

	
1619 1825
    /// Number of set operations.
... ...
@@ -1621,13 +1827,13 @@
1621 1827
      return counter;
1622 1828
    }
1623 1829

	
1624
    /// The \c set function of the map
1830
    /// The set function of the map
1625 1831
    void set(const Key& key, Value value) {
1626 1832
      if (value) {
1627 1833
	map.set(key, counter++);
1628 1834
      }
1629 1835
    }
1630
    
1836

	
1631 1837
  private:
1632 1838
    Map& map;
1633 1839
    int counter;
Ignore white space 6 line context
... ...
@@ -37,72 +37,232 @@
37 37
  typedef A argument_type;
38 38
  typedef B result_type;
39 39

	
40
  B operator()(const A &) const {return B();}
40
  B operator()(const A&) const { return B(); }
41
private:
42
  F& operator=(const F&);
41 43
};
42 44

	
43
int func(A) {return 3;}
45
int func(A) { return 3; }
44 46

	
45
int binc(int, B) {return 4;}
47
int binc(int a, B) { return a+1; }
46 48

	
47
typedef ReadMap<A,double> DoubleMap;
48
typedef ReadWriteMap<A, double> WriteDoubleMap;
49
typedef ReadMap<A, double> DoubleMap;
50
typedef ReadWriteMap<A, double> DoubleWriteMap;
51
typedef ReferenceMap<A, double, double&, const double&> DoubleRefMap;
49 52

	
50
typedef ReadMap<A,bool> BoolMap;
53
typedef ReadMap<A, bool> BoolMap;
51 54
typedef ReadWriteMap<A, bool> BoolWriteMap;
55
typedef ReferenceMap<A, bool, bool&, const bool&> BoolRefMap;
52 56

	
53 57
int main()
54
{ // checking graph components
55
  
58
{
59
  // Map concepts
56 60
  checkConcept<ReadMap<A,B>, ReadMap<A,B> >();
57 61
  checkConcept<WriteMap<A,B>, WriteMap<A,B> >();
58 62
  checkConcept<ReadWriteMap<A,B>, ReadWriteMap<A,B> >();
59 63
  checkConcept<ReferenceMap<A,B,B&,const B&>, ReferenceMap<A,B,B&,const B&> >();
60 64

	
61
  checkConcept<ReadMap<A,double>, AddMap<DoubleMap,DoubleMap> >();
62
  checkConcept<ReadMap<A,double>, SubMap<DoubleMap,DoubleMap> >();
63
  checkConcept<ReadMap<A,double>, MulMap<DoubleMap,DoubleMap> >();
64
  checkConcept<ReadMap<A,double>, DivMap<DoubleMap,DoubleMap> >();
65
  checkConcept<ReadMap<A,double>, NegMap<DoubleMap> >();
66
  checkConcept<ReadWriteMap<A,double>, NegWriteMap<WriteDoubleMap> >();
67
  checkConcept<ReadMap<A,double>, AbsMap<DoubleMap> >();
68
  checkConcept<ReadMap<A,double>, ShiftMap<DoubleMap> >();
69
  checkConcept<ReadWriteMap<A,double>, ShiftWriteMap<WriteDoubleMap> >();
70
  checkConcept<ReadMap<A,double>, ScaleMap<DoubleMap> >();
71
  checkConcept<ReadWriteMap<A,double>, ScaleWriteMap<WriteDoubleMap> >();
72
  checkConcept<ReadMap<A,double>, ForkMap<DoubleMap, DoubleMap> >();
73
  checkConcept<ReadWriteMap<A,double>, 
74
    ForkWriteMap<WriteDoubleMap, WriteDoubleMap> >();
65
  // NullMap
66
  {
67
    checkConcept<ReadWriteMap<A,B>, NullMap<A,B> >();
68
    NullMap<A,B> map1;
69
    NullMap<A,B> map2 = map1;
70
    map1 = nullMap<A,B>();
71
  }
72

	
73
  // ConstMap
74
  {
75
    checkConcept<ReadWriteMap<A,B>, ConstMap<A,B> >();
76
    ConstMap<A,B> map1;
77
    ConstMap<A,B> map2(B());
78
    ConstMap<A,B> map3 = map1;
79
    map1 = constMap<A>(B());
80
    map1.setAll(B());
81
    
82
    checkConcept<ReadWriteMap<A,int>, ConstMap<A,int> >();
83
    check(constMap<A>(10)[A()] == 10, "Something is wrong with ConstMap");
84

	
85
    checkConcept<ReadWriteMap<A,int>, ConstMap<A,Const<int,10> > >();
86
    ConstMap<A,Const<int,10> > map4;
87
    ConstMap<A,Const<int,10> > map5 = map4;
88
    map4 = map5;
89
    check(map4[A()] == 10 && map5[A()] == 10, "Something is wrong with ConstMap");
90
  }
91

	
92
  // IdentityMap
93
  {
94
    checkConcept<ReadMap<A,A>, IdentityMap<A> >();
95
    IdentityMap<A> map1;
96
    IdentityMap<A> map2 = map1;
97
    map1 = identityMap<A>();
98
    
99
    checkConcept<ReadMap<double,double>, IdentityMap<double> >();
100
    check(identityMap<double>()[1.0] == 1.0 && identityMap<double>()[3.14] == 3.14,
101
          "Something is wrong with IdentityMap");
102
  }
103

	
104
  // RangeMap
105
  {
106
    checkConcept<ReferenceMap<int,B,B&,const B&>, RangeMap<B> >();
107
    RangeMap<B> map1;
108
    RangeMap<B> map2(10);
109
    RangeMap<B> map3(10,B());
110
    RangeMap<B> map4 = map1;
111
    RangeMap<B> map5 = rangeMap<B>();
112
    RangeMap<B> map6 = rangeMap<B>(10);
113
    RangeMap<B> map7 = rangeMap(10,B());
114

	
115
    checkConcept< ReferenceMap<int, double, double&, const double&>,
116
                  RangeMap<double> >();
117
    std::vector<double> v(10, 0);
118
    v[5] = 100;
119
    RangeMap<double> map8(v);
120
    RangeMap<double> map9 = rangeMap(v);
121
    check(map9.size() == 10 && map9[2] == 0 && map9[5] == 100,
122
          "Something is wrong with RangeMap");
123
  }
124

	
125
  // SparseMap
126
  {
127
    checkConcept<ReferenceMap<A,B,B&,const B&>, SparseMap<A,B> >();
128
    SparseMap<A,B> map1;
129
    SparseMap<A,B> map2(B());
130
    SparseMap<A,B> map3 = sparseMap<A,B>();
131
    SparseMap<A,B> map4 = sparseMap<A>(B());
132

	
133
    checkConcept< ReferenceMap<double, int, int&, const int&>,
134
                  SparseMap<double, int> >();
135
    std::map<double, int> m;
136
    SparseMap<double, int> map5(m);
137
    SparseMap<double, int> map6(m,10);
138
    SparseMap<double, int> map7 = sparseMap(m);
139
    SparseMap<double, int> map8 = sparseMap(m,10);
140

	
141
    check(map5[1.0] == 0 && map5[3.14] == 0 && map6[1.0] == 10 && map6[3.14] == 10,
142
          "Something is wrong with SparseMap");
143
    map5[1.0] = map6[3.14] = 100;
144
    check(map5[1.0] == 100 && map5[3.14] == 0 && map6[1.0] == 10 && map6[3.14] == 100,
145
          "Something is wrong with SparseMap");
146
  }
147

	
148
  // ComposeMap
149
  {
150
    typedef ComposeMap<DoubleMap, ReadMap<B,A> > CompMap;
151
    checkConcept<ReadMap<B,double>, CompMap>();
152
    CompMap map1(DoubleMap(),ReadMap<B,A>());
153
    CompMap map2 = composeMap(DoubleMap(), ReadMap<B,A>());
154
    
155
    SparseMap<double, bool> m1(false); m1[3.14] = true;
156
    RangeMap<double> m2(2); m2[0] = 3.0; m2[1] = 3.14;
157
    check(!composeMap(m1,m2)[0] && composeMap(m1,m2)[1], "Something is wrong with ComposeMap")
158
  }
159

	
160
  // CombineMap
161
  {
162
    typedef CombineMap<DoubleMap, DoubleMap, std::plus<double> > CombMap;
163
    checkConcept<ReadMap<A,double>, CombMap>();
164
    CombMap map1(DoubleMap(), DoubleMap());
165
    CombMap map2 = combineMap(DoubleMap(), DoubleMap(), std::plus<double>());
166

	
167
    check(combineMap(constMap<B,int,2>(), identityMap<B>(), &binc)[B()] == 3,
168
          "Something is wrong with CombineMap");
169
  }
170

	
171
  // FunctorToMap, MapToFunctor
172
  {
173
    checkConcept<ReadMap<A,B>, FunctorToMap<F,A,B> >();
174
    checkConcept<ReadMap<A,B>, FunctorToMap<F> >();
175
    FunctorToMap<F> map1;
176
    FunctorToMap<F> map2(F());
177
    B b = functorToMap(F())[A()];
178

	
179
    checkConcept<ReadMap<A,B>, MapToFunctor<ReadMap<A,B> > >();
180
    MapToFunctor<ReadMap<A,B> > map(ReadMap<A,B>());
181

	
182
    check(functorToMap(&func)[A()] == 3, "Something is wrong with FunctorToMap");
183
    check(mapToFunctor(constMap<A,int>(2))(A()) == 2, "Something is wrong with MapToFunctor");
184
    check(mapToFunctor(functorToMap(&func))(A()) == 3 && mapToFunctor(functorToMap(&func))[A()] == 3,
185
          "Something is wrong with FunctorToMap or MapToFunctor");
186
    check(functorToMap(mapToFunctor(constMap<A,int>(2)))[A()] == 2,
187
          "Something is wrong with FunctorToMap or MapToFunctor");
188
  }
189

	
190
  // ConvertMap
191
  {
192
    checkConcept<ReadMap<double,double>, ConvertMap<ReadMap<double, int>, double> >();
193
    ConvertMap<RangeMap<bool>, int> map1(rangeMap(1, true));
194
    ConvertMap<RangeMap<bool>, int> map2 = convertMap<int>(rangeMap(2, false));
195
  }
196

	
197
  // ForkMap
198
  {
199
    checkConcept<DoubleWriteMap, ForkMap<DoubleWriteMap, DoubleWriteMap> >();
200
    
201
    typedef RangeMap<double> RM;
202
    typedef SparseMap<int, double> SM;
203
    RM m1(10, -1);
204
    SM m2(-1);
205
    checkConcept<ReadWriteMap<int, double>, ForkMap<RM, SM> >();
206
    checkConcept<ReadWriteMap<int, double>, ForkMap<SM, RM> >();
207
    ForkMap<RM, SM> map1(m1,m2);
208
    ForkMap<SM, RM> map2 = forkMap(m2,m1);
209
    map2.set(5, 10);
210
    check(m1[1] == -1 && m1[5] == 10 && m2[1] == -1 && m2[5] == 10 && map2[1] == -1 && map2[5] == 10,
211
          "Something is wrong with ForkMap");
212
  }
75 213
  
76
  checkConcept<ReadMap<B,double>, ComposeMap<DoubleMap,ReadMap<B,A> > >();
214
  // Arithmetic maps:
215
  // - AddMap, SubMap, MulMap, DivMap
216
  // - ShiftMap, ShiftWriteMap, ScaleMap, ScaleWriteMap
217
  // - NegMap, NegWriteMap, AbsMap
218
  {
219
    checkConcept<DoubleMap, AddMap<DoubleMap,DoubleMap> >();
220
    checkConcept<DoubleMap, SubMap<DoubleMap,DoubleMap> >();
221
    checkConcept<DoubleMap, MulMap<DoubleMap,DoubleMap> >();
222
    checkConcept<DoubleMap, DivMap<DoubleMap,DoubleMap> >();
223
    
224
    ConstMap<int, double> c1(1.0), c2(3.14);
225
    IdentityMap<int> im;
226
    ConvertMap<IdentityMap<int>, double> id(im);
227
    check(addMap(c1,id)[0] == 1.0  && addMap(c1,id)[10] == 11.0, "Something is wrong with AddMap");
228
    check(subMap(id,c1)[0] == -1.0 && subMap(id,c1)[10] == 9.0,  "Something is wrong with SubMap");
229
    check(mulMap(id,c2)[0] == 0    && mulMap(id,c2)[2]  == 6.28, "Something is wrong with MulMap");
230
    check(divMap(c2,id)[1] == 3.14 && divMap(c2,id)[2]  == 1.57, "Something is wrong with DivMap");
231
    
232
    checkConcept<DoubleMap, ShiftMap<DoubleMap> >();
233
    checkConcept<DoubleWriteMap, ShiftWriteMap<DoubleWriteMap> >();
234
    checkConcept<DoubleMap, ScaleMap<DoubleMap> >();
235
    checkConcept<DoubleWriteMap, ScaleWriteMap<DoubleWriteMap> >();
236
    checkConcept<DoubleMap, NegMap<DoubleMap> >();
237
    checkConcept<DoubleWriteMap, NegWriteMap<DoubleWriteMap> >();
238
    checkConcept<DoubleMap, AbsMap<DoubleMap> >();
77 239

	
78
  checkConcept<ReadMap<A,B>, FunctorMap<F, A, B> >();
240
    check(shiftMap(id, 2.0)[1] == 3.0 && shiftMap(id, 2.0)[10] == 12.0,
241
          "Something is wrong with ShiftMap");
242
    check(shiftWriteMap(id, 2.0)[1] == 3.0 && shiftWriteMap(id, 2.0)[10] == 12.0,
243
          "Something is wrong with ShiftWriteMap");
244
    check(scaleMap(id, 2.0)[1] == 2.0 && scaleMap(id, 2.0)[10] == 20.0,
245
          "Something is wrong with ScaleMap");
246
    check(scaleWriteMap(id, 2.0)[1] == 2.0 && scaleWriteMap(id, 2.0)[10] == 20.0,
247
          "Something is wrong with ScaleWriteMap");
248
    check(negMap(id)[1] == -1.0 && negMap(id)[-10] == 10.0,
249
          "Something is wrong with NegMap");
250
    check(negWriteMap(id)[1] == -1.0 && negWriteMap(id)[-10] == 10.0,
251
          "Something is wrong with NegWriteMap");
252
    check(absMap(id)[1] == 1.0 && absMap(id)[-10] == 10.0,
253
          "Something is wrong with AbsMap");
254
  }
255
  
256
  // Logical maps
257
  {
258
    checkConcept<BoolMap, NotMap<BoolMap> >();
259
    checkConcept<BoolWriteMap, NotWriteMap<BoolWriteMap> >();
260
    
261
    RangeMap<bool> rm(2);
262
    rm[0] = true; rm[1] = false;
263
    check(!(notMap(rm)[0]) && notMap(rm)[1], "Something is wrong with NotMap");
264
    check(!(notWriteMap(rm)[0]) && notWriteMap(rm)[1], "Something is wrong with NotWriteMap");
265
  }
79 266

	
80
  checkConcept<ReadMap<A, bool>, NotMap<BoolMap> >();
81
  checkConcept<ReadWriteMap<A, bool>, NotWriteMap<BoolWriteMap> >();
82

	
83
  checkConcept<WriteMap<A, bool>, StoreBoolMap<A*> >();
84
  checkConcept<WriteMap<A, bool>, BackInserterBoolMap<std::deque<A> > >();
85
  checkConcept<WriteMap<A, bool>, FrontInserterBoolMap<std::deque<A> > >();
86
  checkConcept<WriteMap<A, bool>, InserterBoolMap<std::set<A> > >();
87
  checkConcept<WriteMap<A, bool>, FillBoolMap<WriteMap<A, B> > >();
88
  checkConcept<WriteMap<A, bool>, SettingOrderBoolMap<WriteMap<A, int> > >();
89

	
90
  int a;
91
  
92
  a=mapFunctor(constMap<A,int>(2))(A());
93
  check(a==2,"Something is wrong with mapFunctor");
94

	
95
  B b;
96
  b=functorMap(F())[A()];
97

	
98
  a=functorMap(&func)[A()];
99
  check(a==3,"Something is wrong with functorMap");
100

	
101
  a=combineMap(constMap<B, int, 1>(), identityMap<B>(), &binc)[B()];
102
  check(a==4,"Something is wrong with combineMap");
103
  
104

	
105
  std::cout << __FILE__ ": All tests passed.\n";
106
  
107 267
  return 0;
108 268
}
0 comments (0 inline)